déposer
version française rss feed


L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion d'articles scientifiques de niveau recherche, publiés ou non, et de thèses, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derniers Dépôts 
Chimie
Économie et finance quantitative
Informatique
Mathématiques
Physique
Planète et Univers
Science non linéaire
Sciences cognitives
Sciences de l'environnement
Sciences de l'Homme et Société
Sciences de l'ingénieur
Sciences du Vivant
Statistiques
We obtain polynomial type bounds for the size of the integral solutions of Thue equations $F(X,Y) = m$ defined over a totally real number field $K$, assuming that $F(X,1)$ has at least a non real root and, for every couple of non real conjugate roots $(\alpha, \bar{\alpha})$ of $F(X,1)$, the field $K(\alpha, \bar{\alpha})$ is a CM-field. In case where $F(X,1)$ has also real roots, our approach gives polynomial type bounds that the Baker's method was not able to provide other than exponential bounds.
Let $K_{[k,t]}$ be the complete graph on $k$ vertices from which a set of edges, induced by a clique of order $t$, has been dropped. In this note we give two explicit upper bounds for $R(K_{[k_1,t_1]},\dots, K_{[k_r,t_r]})$ (the smallest integer $n$ such that for any $r$-edge coloring of $K_n$ there always occurs a monochromatic $K_{[k_i,t_i]}$ for some $i$). Our first upper bound contains a classical one in the case when $k_1=\cdots =k_r$ and $t_i=1$ for all $i$. The second one is obtained by introducing a new edge coloring called {\em $\chi_r$-colorings}. We finally discuss a conjecture claiming, in particular, that our second upper bound improves the classical one in infinitely many cases.
We study the two dimensional Lennard-Jones energy per particle of lattices and we prove that the minimizer among Bravais lattices with sufficiently large density is triangular and that is not the case for sufficiently small density. We give other results about the global minimizer of this energy. Moreover we study the energy per particle stemming from Thomas-Fermi model in two dimensions and we prove that the minimizer among Bravais lattices with fixed density is triangular. We use a result of Montgomery from Number Theory about the minimization of Theta functions in the plane.
À l'attention du déposant 
  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive (voir le guide du déposant)
  • Tout dépôt est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Consulter le ManuHAL
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.
À l'attention des lecteurs 
  • Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.
Conditions d'utilisation 
  • Les métadonnées de HAL peuvent être consultées de façon totale ou partielle par moissonage OAI-PMH dans le respect du code de la propriété intellectuelle ;
  • Pas d'utilisation commerciale des données extraites ;
  • Obligation de citer la source (exemple : hal.archives-ouvertes.fr/hal-00000001).

  Déposer
Identifiant
Mot de passe
s'inscrireretrouver son mot de passe
  Documents avec texte intégral
313334
  Dépôts du jour
  Contact
 - support.ccsd.cnrs.fr
 - 
  Actualités
Les services modération et support pendant les vacances scolaires (10/07/2014)
Quelques nouvelles de HAL v3 (10/07/2014)
Les nouveautés de HAL v3 (27/06/2014)
La première réunion du Comité Scientifique et Technique (11/06/2014)
  À voir

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...