déposer
version française rss feed


L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion d'articles scientifiques de niveau recherche, publiés ou non, et de thèses, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derniers Dépôts 
Chimie
Économie et finance quantitative
Informatique
Mathématiques
Physique
Planète et Univers
Science non linéaire
Sciences cognitives
Sciences de l'environnement
Sciences de l'Homme et Société
Sciences de l'ingénieur
Sciences du Vivant
Statistiques
We obtain macroscopic adiabatic thermodynamic transformations by space-time scalings of a microscopic Hamiltonian dynamics subject to random collisions with the environment. The microscopic dynamics is given by a chain of oscillators subject to a varying tension (external force) and to collisions with external independent particles of ''infinite mass''. The effect of each collision is to change the sign of the velocity without changing the modulus. This way the energy is conserved by the resulting dynamics. After a diffusive space-time scaling and cross-graining, the profiles of volume and energy converge to the solution of a deterministic diffusive system of equations with boundary conditions given by the applied tension. This defines an irreversible thermodynamic transformation from an initial equilibrium to a new equilibrium given by the final tension applied. Quasi-static reversible adiabatic transformations are then obtained by a further time scaling. Then we prove that the relations between the limit work, internal energy and thermodynamic entropy agree with the first and second principle of thermodynamics.
The paper is and extended form of a course given at a CIMPA master class held in LIMA, Perù, in the summer of 2008. It aims at showing the resurgent methods acting on an example and, along that line, to extend the presentation of the resurgence theory of Jean Ecalle provided that the need. The example that we follow along this paper is the first Painlevé differential equation. Among various results, we detail the formal transform that brings Painlevé I to its normal form and we analyze its 1-summability. The complete resurgent structure is eventually shown for Painlevé I, as an upshot from the resurgence theory. The paper is self-contained and essentially aims at graduate students.
In this article, we present a variety of evaluations of series of polylogarithmic nature. More precisely, we express the special values at positive integers of two classes of zeta functions of Arakawa-Kaneko-type by means of certain inverse binomial series involving harmonic sums which appeared fifteen years ago in physics in relation with the Feynman diagrams. In some cases, these series may be explicitly evaluated in terms of zeta values and other related numbers. Incidentally, this connection allows us to deduce new identities for the constant $C= \sum_{n\geq 1} \frac{1}{(2n)^3}(1+\frac13 + \dots + \frac{1}{2n-1})$ considered by S. Ramanujan in his notebooks.
À l'attention du déposant 
  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive (voir le guide du déposant)
  • Tout dépôt est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Consulter le ManuHAL
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.
À l'attention des lecteurs 
  • Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.
Conditions d'utilisation 
  • Les métadonnées de HAL peuvent être consultées de façon totale ou partielle par moissonnage OAI-PMH dans le respect du code de la propriété intellectuelle ;
  • Pas d'utilisation commerciale des données extraites ;
  • Obligation de citer la source (exemple : hal.archives-ouvertes.fr/hal-00000001).

  Déposer
Identifiant
Mot de passe
s'inscrireretrouver son mot de passe
  Documents avec texte intégral
319649
  Evolution des dépôts
  Contact
 - support.ccsd.cnrs.fr
 - 
  Actualités
Quelques nouvelles de HAL v3 (10/07/2014)
Les nouveautés de HAL v3 (27/06/2014)
La première réunion du Comité Scientifique et Technique (11/06/2014)
Le CCSD devient unité mixte de service (25/04/2014)
  À voir

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...