déposer
version française rss feed


L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion d'articles scientifiques de niveau recherche, publiés ou non, et de thèses, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derniers Dépôts 
Chimie
Économie et finance quantitative
Informatique
Mathématiques
Physique
Planète et Univers
Science non linéaire
Sciences cognitives
Sciences de l'environnement
Sciences de l'Homme et Société
Sciences de l'ingénieur
Sciences du Vivant
Statistiques
We consider a robust switching control problem. The controller only observes the evolution of the state process, and thus uses feedback (closed-loop) switching strategies, a non standard class of switching controls introduced in this paper. The adverse player (nature) chooses open-loop controls that represent the so-called Knightian uncertainty, i.e., misspecifications of the model. The (half) game switcher versus nature is then formulated as a two-step (robust) optimization problem. We develop the stochastic Perron method in this framework, and prove that it produces a viscosity sub and supersolution to a system of Hamilton-Jacobi-Bellman (HJB) variational inequalities, which envelope the value function. Together with a comparison principle, this characterizes the value function of the game as the unique viscosity solution to the HJB equation, and shows as a byproduct the dynamic programming principle for robust feedback switching control problem.
This article deals with the numerical approximation of Markovian backward stochastic differential equations (BSDEs) with generators of quadratic growth with respect to $z$ and bounded terminal conditions. We first study a slight modification of the classical dynamic programming equation arising from the time-discretization of BSDEs. By using a linearization argument and BMO martingales tools, we obtain a comparison theorem, a priori estimates and stability results for the solution of this scheme. Then we provide a control on the time-discretization error of order $\frac{1}{2}-\varepsilon$ for all $\varepsilon>0$. In the last part, we give a fully implementable algorithm for quadratic BSDEs based on quantization and illustrate our convergence results with numerical examples.
Estimating the contribution of Antarctica and Greenland to sea-level rise is a hot topic in glaciology. Good estimates rely on our ability to run a precisely calibrated ice sheet evolution model starting from a reliable initial state. Data assimilation aims to provide an answer to this problem by combining the model equations with observations. In this paper we aim to study a state-of-the-art ensemble Kalman filter (ETKF) to address this problem. This method is implemented and validated in the twin experiments framework for a shallow ice flowline model of ice dynamics. The results are very encouraging, as they show a good convergence of the ETKF (with localisation and inflation), even for small-sized ensembles.
À l'attention du déposant 
  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive (voir le guide du déposant)
  • Tout dépôt est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Consulter le ManuHAL
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.
À l'attention des lecteurs 
  • Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.
Conditions d'utilisation 
  • Les métadonnées de HAL peuvent être consultées de façon totale ou partielle par moissonnage OAI-PMH dans le respect du code de la propriété intellectuelle ;
  • Pas d'utilisation commerciale des données extraites ;
  • Obligation de citer la source (exemple : hal.archives-ouvertes.fr/hal-00000001).

  Déposer
Identifiant
Mot de passe
s'inscrireretrouver son mot de passe
  Documents avec texte intégral
319582
  Evolution des dépôts
  Contact
 - support.ccsd.cnrs.fr
 - 
  Actualités
Quelques nouvelles de HAL v3 (10/07/2014)
Les nouveautés de HAL v3 (27/06/2014)
La première réunion du Comité Scientifique et Technique (11/06/2014)
Le CCSD devient unité mixte de service (25/04/2014)
  À voir

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...