déposer
version française rss feed


L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion d'articles scientifiques de niveau recherche, publiés ou non, et de thèses, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derniers Dépôts 
Chimie
Économie et finance quantitative
Informatique
Mathématiques
Physique
Planète et Univers
Science non linéaire
Sciences cognitives
Sciences de l'environnement
Sciences de l'Homme et Société
Sciences de l'ingénieur
Sciences du Vivant
Statistiques
We present a Kedlaya-style point counting algorithm for cyclic covers $y^r = f(x)$ over a finite field $\mathbb{F}_{p^n}$ with $p$ not dividing $r$, and $r$ and $\deg{f}$ not necessarily coprime. This algorithm generalizes the Gaudry-Gürel algorithm for superelliptic curves to a more general class of curves, and has essentially the same complexity. Our practical improvements include a simplified algorithm exploiting the automorphism of $\mathcal{C}$, refined bounds on the $p$-adic precision, and an alternative pseudo-basis for the Monsky-Washnitzer cohomology which leads to an integral matrix when $p \geq 2r$. Each of these improvements can also be applied to the original Gaudry-Gürel algorithm. We include some experimental results, applying our algorithm to compute Weil polynomials of some large genus cyclic covers.
In 1893, the "physicist-engineer" André Blondel invents the oscilloscope for displaying voltage and current variables. With this powerful means of investigation, he first studies the phenomena of the arc then used for the coastal and urban lighting and then, the singing arc used as a transmitter of radio waves in wireless telegraphy. In 1905, he highlights a new type of non-sinusoidal oscillations in the singing arc. Twenty years later, Balthasar van der Pol will recognize that such oscillations were in fact "relaxation oscillations". To explain this phenomenon, he uses a representation in the phase plane and shows that its evolution takes the form of small cycles. During World War I the triode gradually replaces the singing arc in transmission systems. At the end of the war, using analogy, Blondel transposes to the triode most of the results he had obtained for the singing arc. In April 1919, he publishes a long memoir in which he introduces the terminology "self-sustained oscillations" and proposes to illustrate this concept starting from the example of the Tantalus cup which is then picked up by Van der Pol and Philippe Le Corbeiller. He then provides the definition of a self sustained system which is quite similar to that given later by Aleksandr Andronov and Van der Pol. To study the stability of oscillations sustained by the triode and by the singing arc he uses, this time, a representation in the complex plane and he expresses the amplitude in polar coordinates. He then justifies the maintaining of oscillations by the existence cycles which nearly present all the features of Poincaré's limit cycles. Finally, in November 1919, Blondel performs, a year before Van der Pol, the setting in equation of the triode oscillations. In March 1926, Blondel establishes the differential equation characterizing the oscillations of the singing arc, completely similar to that obtained concomitantly by Van der Pol for the triode. Thus, throughout his career, Blondel, has made fundamental and relatively unknown contributions to the development of the theory of nonlinear oscillations. The purpose of this article is to analyze his main work in this area and to measure their importance or influence by placing them in the perspective of the development of this theory.
The motivation of this work is to define cohomology classes in the space of knots that are both easy to find and to evaluate, by reducing the problem to simple linear algebra. We achieve this goal by defining a combinatorial graded cochain complex, such that the elements of an explicit submodule in the cohomology define algebraic intersections with some "geometrically simple" strata in the space of knots. Such strata are endowed with explicit co-orientations, that are canonical in some sense. The combinatorial tools involved are natural generalisations (degeneracies) of usual methods using arrow diagrams.
À l'attention du déposant 
  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive (voir le guide du déposant)
  • Tout dépôt est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Consulter le ManuHAL
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.
À l'attention des lecteurs 
  • Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.
Conditions d'utilisation 
  • Les métadonnées de HAL peuvent être consultées de façon totale ou partielle par moissonnage OAI-PMH dans le respect du code de la propriété intellectuelle ;
  • Pas d'utilisation commerciale des données extraites ;
  • Obligation de citer la source (exemple : hal.archives-ouvertes.fr/hal-00000001).

  Déposer
Identifiant
Mot de passe
s'inscrireretrouver son mot de passe
  Documents avec texte intégral
315954
  Evolution des dépôts
  Contact
 - support.ccsd.cnrs.fr
 - 
  Actualités
Les services modération et support pendant les vacances scolaires (10/07/2014)
Quelques nouvelles de HAL v3 (10/07/2014)
Les nouveautés de HAL v3 (27/06/2014)
La première réunion du Comité Scientifique et Technique (11/06/2014)
  À voir

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...