déposer
version française rss feed


L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion d'articles scientifiques de niveau recherche, publiés ou non, et de thèses, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derniers Dépôts 
Chimie
Économie et finance quantitative
Informatique
Mathématiques
Physique
Planète et Univers
Science non linéaire
Sciences cognitives
Sciences de l'environnement
Sciences de l'Homme et Société
Sciences de l'ingénieur
Sciences du Vivant
Statistiques
We study the structure and properties of the weak closed set of all upper bounds of a finite family of self-adjoint operators for Löwner ordering. Firstly, we prove that we can find a upper bound satisfying additional constraints. Secondly, we give two characterizations of minimal upper bounds. Finally, we furnish a complete description of pairs of positives operators such that the sum is a minimal upper bound.
Let (S, B) be the log pair associated with a projective completion of a smooth quasi-projective surface V . Under the assumption that the boundary B is irreducible, we obtain an algorithm to factorize any automorphism of V into a sequence of simple birational links. This factorization lies in the framework of the log Mori theory, with the property that all the blow-ups and contractions involved in the process occur on the boundary. When the completion S is smooth, we obtain a description of the automorphisms of V which is reminiscent of a presentation by generators and relations except that the "generators" are no longer automorphisms. They are instead isomorphisms between different models of V preserving certain rational fibrations. This description enables one to define normal forms of automorphisms and leads in particular to a natural generalization of the usual notions of affine and Jonquieres automorphisms of the affine plane. When V is affine, we show however that except for a finite family of surfaces including the affine plane, the group generated by these affine and Jonquieres automorphisms, which we call the tame group of V , is a proper subgroup of Aut(V ).
The Air Traffic Control system of a country manages all the aircrafts that fly in its airspace, designs control sectors, manages the flows between the different airports and beacons, ensures separation between aircraft during their flight, take off and landing. Thus, it operates at different levels, each one of them designed to provide control, ensure safety, and limit the traffic passed to the following level. In this paper, we show how Genetic Algorithms can improve some of the tasks manually done by the ATC system. After a brief description of GAs, some of the improvements used (simulated annealing, sharing), we study three applications of GAs to ATC. We first show an application of GAs to en-route conflict resolution. Then we give an example on GAs used to optimize air space sectoring. The last part gives an application of GAs to traffic assignment.
À l'attention du déposant 
  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive (voir le guide du déposant)
  • Tout dépôt est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Consulter le ManuHAL
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.
À l'attention des lecteurs 
  • Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.
Conditions d'utilisation 
  • Les métadonnées de HAL peuvent être consultées de façon totale ou partielle par moissonage OAI-PMH dans le respect du code de la propriété intellectuelle ;
  • Pas d'utilisation commerciale des données extraites ;
  • Obligation de citer la source (exemple : hal.archives-ouvertes.fr/hal-00000001).

  Déposer
Identifiant
Mot de passe
s'inscrireretrouver son mot de passe
  Documents avec texte intégral
282109
  Dépôts du jour
  Contact
 - support.ccsd.cnrs.fr
 - 
  Actualités
Hal v3 : à vous de tester ! (31/03/2014)
HAL v3 : forme auteur, idHAL et CV (26/03/2014)
Comptes et profils : ce qui change avec HAL v3 (21/03/2014)
Identité(s) numérique(s) et archives ouvertes (13/12/2013)
  À voir

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...