%0 Journal Article %T Probing the gamma-ray emission from HESS J1834-087 using H.E.S.S. and Fermi LAT observations %+ Laboratoire Leprince-Ringuet (LLR) %+ Laboratoire Univers et Théories (LUTH (UMR_8102)) %+ Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE) %+ Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU) %+ GLAST %+ APC - Astrophysique des Hautes Energies (APC - AHE) %+ AstroParticule et Cosmologie (APC (UMR_7164)) %+ Laboratoire Univers et Particules de Montpellier (LUPM) %+ Laboratoire d'Annecy de Physique des Particules (LAPP) %+ Unité Scientifique de la Station de Nançay (USN) %A Abramowski, A. %A Aharonian, F. %A Benkhali, F. Ait %A Akhperjanian, A. G. %A Angüner, E. %A Anton, G. %A Backes, M. %A Balenderan, S. %A Balzer, Agnès %A Barnacka, A. %A Becherini, Y. %A Tjus, J. Becker %A Bernlöhr, K. %A Birsin, E. %A Bissaldi, E. %A Biteau, J. %A Böttcher, M. %A Boisson, C. %A Bolmont, J. %A Bordas, P. %A Brucker, J. %A Brun, F. %A Brun, P. %A Bulik, T. %A Carrigan, S. %A Casanova, S. %A Chadwick, P. M. %A Chalme-Calvet, R. %A Chaves, R. C. G. %A Cheesebrough, A. %A Chrétien, M. %A Colafrancesco, S. %A Cologna, G. %A Conrad, J. %A Couturier, C. %A Cui, Y. %A Dalton, M. %A Daniel, M. K. %A Davids, I. D. %A Degrange, B. %A Deil, C. %A Dewilt, P. %A Dickinson, H. J. %A Djannati-Ataï, A. %A Domainko, W. %A Drury, L. O'C. %A Dubus, G. %A Dutson, K. %A Dyks, J. %A Dyrda, M. %A Edwards, T. %A Egberts, K. %A Eger, P. %A Espigat, P. %A Farnier, C. %A Fegan, S. %A Feinstein, F. %A Fernandes, M. V. %A Fernandez, D. %A Fiasson, A. %A Fontaine, G. %A Förster, A. %A Füssling, M. %A Gajdus, M. %A Gallant, Y. A. %A Garrigoux, T. %A Giavitto, G. %A Giebels, B. %A Glicenstein, J. F. %A Grondin, M. -H. %A Grudzińska, M. %A Häffner, S. %A Hahn, J. %A Harris, J. %A Heinzelmann, G. %A Henri, G. %A Hermann, G. %A Hervet, O. %A Hillert, A. %A Hinton, J. A. %A Hofmann, W. %A Hofverberg, P. %A Holler, M. %A Horns, D. %A Jacholkowska, A. %A Jahn, C. %A Jamrozy, M. %A Janiak, M. %A Jankowsky, F. %A Jung, I. %A Kastendieck, M. A. %A Katarzyński, K. %A Katz, U. %A Kaufmann, S. %A Khélifi, B. %A Kieffer, Michel %A Klepser, S. %A Klochkov, D. %A Kluźniak, W. %A Kneiske, T. %A Kolitzus, D. %A Komin, Nu. %A Kosack, K. %A Krakau, S. %A Krayzel, F. %A Krüger, P. P. %A Laffon, H. %A Lamanna, G. %A Lefaucheur, J. %A Lemière, A. %A Lemoine-Goumard, M. %A Lenain, J. -P. %A Lohse, T. %A Lopatin, A. %A Lu, C. -C. %A Marandon, V. %A Marcowith, Alexandre %A Marx, R. %A Maurin, G. %A Maxted, N. %A Mayer, M. %A Mccomb, T. J. L. %A Méhault, J. %A Meintjes, P. J. %A Menzler, U. %A Meyer, M. %A Moderski, R. %A Mohamed, M. %A Moulin, Emmanuel %A Murach, T. %A Naumann, C. L. %A de Naurois, M. %A Niemiec, J. %A Nolan, S. J. %A Oakes, L. %A Odaka, H. %A Ohm, S. %A Wilhelmi, E. de Oña %A Opitz, B. %A Ostrowski, M. %A Oya, I. %A Panter, M. %A Parsons, R. D. %A Arribas, M. Paz %A Pekeur, N. W. %A Pelletier, G. %A Perez, J. %A Petrucci, P. -O. %A Peyaud, B. %A Pita, S. %A Poon, H. %A Pühlhofer, G. %A Punch, M. %A Quirrenbach, A. %A Raab, S. %A Raue, M. %A Reichardt, I. %A Reimer, A. %A Reimer, O. %A Renaud, Matthieu %A Reyes, R. de Los %A Rieger, F. %A Rob, L. %A Romoli, C. %A Rosier-Lees, S. %A Rowell, G. %A Rudak, B. %A Rulten, C. B. %A Sahakian, V. %A Sanchez, D. A. %A Santangelo, A. %A Schlickeiser, R. %A Schüssler, F. %A Schulz, A. %A Schwanke, U. %A Schwarzburg, S. %A Schwemmer, S. %A Sol, H. %A Spengler, G. %A Spies, F. %A Stawarz, Ł. %A Steenkamp, R. %A Stegmann, C. %A Stinzing, F. %A Stycz, K. %A Sushch, I. %A Tavernet, J. -P. %A Tavernier, T. %A Taylor, A. M. %A Terrier, R. %A Tluczykont, M. %A Trichard, C. %A Valerius, K. %A van Eldik, C. %A van Soelen, B. %A Vasileiadis, George %A Venter, C. %A Viana, A. %A Vincent, P. %A Völk, H. J. %A Volpe, F. %A Vorster, M. %A Vuillaume, T. %A Wagner, S. J. %A Wagner, P. %A Wagner, R. M. %A Ward, M. %A Weidinger, M. %A Weitzel, Q. %A White, R. %A Wierzcholska, A. %A Willmann, P. %A Wörnlein, A. %A Wouters, D. %A Yang, R. %A Zabalza, V. %A Zacharias, M. %A Zdziarski, A. A. %A Zech, A. %A Zechlin, H. -S. %A Collaboration, Fermi-Lat %A Acero, Fabio %A Casandjian, J. M. %A Cohen-Tanugi, J. %A Giordano, F. %A Guillemot, Lucas %A Lande, J. %A Pletsch, H. %A Uchiyama, Y. %Z 12 pages, 8 figures, Accepted for publication in Astronomy & Astrophysics %< avec comité de lecture %@ 0004-6361 %J Astronomy and Astrophysics - A&A %I EDP Sciences %V 574 %P A27 %8 2015 %D 2015 %Z 1407.0862 %Z 2014arXiv1407.0862T %R 10.1051/0004-6361/201322694 %Z Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] %Z Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Journal articles %X Previous observations with HESS have revealed the existence of an extended very-high-energy (VHE; E>100 GeV) gamma-ray source, HESS J1834-087, coincident with the SNR W41. The origin of the gamma-ray emission has been further investigated with HESS and the Fermi-LAT. The gamma-ray data provided by 61h (HESS) and 4 yrs (Fermi LAT) of observations cover over 5 decades in energy (1.8GeV - 30TeV). The morphology and spectrum of the TeV and GeV sources have been studied and multi-wavelength data have been used to investigate the origin of the observed emission. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sig_TeV = 0.17{\deg}), both centered on SNR W41 and exhibiting spectra described by a power law of index 2.6. The GeV source detected with Fermi is extended (sig_GeV =0.15{\deg}) and morphologically matches the VHE emission. Its spectrum can be described by a power-law with index 2.15 and joins smoothly the one of the whole TeV source. A break appears in the spectra around 100 GeV. Two main scenarios are proposed to explain the emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with a molecular cloud. X-ray observations suggest the presence of a point-like source (pulsar candidate) near the center of the SNR and non-thermal X-ray diffuse emission which could arise from a potential PWN. The PWN scenario is supported by the match of of the TeV and GeV positions with the putative pulsar. However, the overall spectrum is reproduced by a 1-zone leptonic model only if an excess of low-energy electrons is injected by a high spin-down power pulsar. This low-energy component is not needed if the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH maser lines and the hadronic modeling. %G English %Z HESS %2 https://hal.in2p3.fr/in2p3-01025854/document %2 https://hal.in2p3.fr/in2p3-01025854/file/aa22694-13.pdf %L in2p3-01025854 %U https://hal.in2p3.fr/in2p3-01025854 %~ IN2P3 %~ OBSPM %~ CEA %~ INSU %~ UNIV-PARIS7 %~ X %~ UNIV-SAVOIE %~ UPMC %~ UGA %~ CENBG %~ LAPP %~ LLR %~ LPNHE %~ APC %~ CNRS %~ UNIV-ORLEANS %~ LUTH %~ USN %~ X-LLR %~ X-DEP %~ X-DEP-PHYS %~ LUPM %~ FRANCE-GRILLES %~ OSUC %~ DSM-IRFU %~ IRFU-APC %~ CEA-UPSAY %~ PSL %~ UNIV-PARIS-SACLAY %~ CEA-UPSAY-SACLAY %~ UPMC_POLE_2 %~ UNIV-MONTPELLIER %~ CEA-DRF %~ SORBONNE-UNIVERSITE %~ LUPM_EMA %~ SU-SCIENCES %~ UNIV-PARIS %~ UP-SCIENCES %~ OBSPM-PSL %~ USMB-COMUE %~ SU-TI %~ ALLIANCE-SU %~ UM-2015-2021 %~ LPNHE-2