%0 Journal Article %T TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S. %+ Laboratoire Leprince-Ringuet (LLR) %+ Laboratoire Univers et Théories (LUTH (UMR_8102)) %+ Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE) %+ Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU) %+ FERMI %+ APC - Astrophysique des Hautes Energies (APC - AHE) %+ AstroParticule et Cosmologie (APC (UMR_7164)) %+ Laboratoire Univers et Particules de Montpellier (LUPM) %+ Laboratoire d'Annecy de Physique des Particules (LAPP) %A Abramowski, A. %A Aharonian, F. %A Benkhali, F. Ait %A Akhperjanian, A. G. %A Angüner, E. %A Anton, G. %A Balenderan, S. %A Balzer, Agnès %A Barnacka, A. %A Becherini, Y. %A Tjus, J. Becker %A Bernlöhr, K. %A Birsin, E. %A Bissaldi, E. %A Biteau, J. %A Böttcher, M. %A Boisson, C. %A Bolmont, J. %A Bordas, P. %A Brucker, J. %A Brun, F. %A Brun, P. %A Bulik, T. %A Carrigan, S. %A Casanova, S. %A Cerruti, M. %A Chadwick, P. M. %A Chalme-Calvet, R. %A Chaves, R. C. G. %A Cheesebrough, A. %A Chrétien, M. %A Colafrancesco, S. %A Cologna, G. %A Conrad, J. %A Couturier, C. %A Cui, Y. %A Dalton, M. %A Daniel, M. K. %A Davids, I. D. %A Degrange, B. %A Deil, C. %A Dewilt, P. %A Dickinson, H. J. %A Djannati-Ataï, A. %A Domainko, W. %A Drury, L. O'C. %A Dubus, G. %A Dutson, K. %A Dyks, J. %A Dyrda, M. %A Edwards, T. %A Egberts, K. %A Eger, P. %A Espigat, P. %A Farnier, C. %A Fegan, S. %A Feinstein, F. %A Fernandes, M. V. %A Fernandez, D. %A Fiasson, A. %A Fontaine, G. %A Förster, A. %A Füssling, M. %A Gajdus, M. %A Gallant, Y. A. %A Garrigoux, T. %A Giavitto, G. %A Giebels, B. %A Glicenstein, J. F. %A Grondin, M. -H. %A Grudzińska, M. %A Häffner, S. %A Hahn, J. %A Harris, J. %A Heinzelmann, G. %A Henri, G. %A Hermann, G. %A Hervet, O. %A Hillert, A. %A Hinton, J. A. %A Hofmann, W. %A Hofverberg, P. %A Holler, M. %A Horns, D. %A Jacholkowska, A. %A Jahn, C. %A Jamrozy, M. %A Janiak, M. %A Jankowsky, F. %A Jung, I. %A Kastendieck, M. A. %A Katarzyński, K. %A Katz, U. %A Kaufmann, S. %A Khélifi, B. %A Kieffer, Michel %A Klepser, S. %A Klochkov, D. %A Kluźniak, W. %A Kneiske, T. %A Kolitzus, D. %A Komin, Nu. %A Kosack, K. %A Krakau, S. %A Krayzel, F. %A Krüger, P. P. %A Laffon, H. %A Lamanna, G. %A Lefaucheur, J. %A Lemière, A. %A Lemoine-Goumard, M. %A Lenain, J. -P. %A Lennarz, D. %A Lohse, T. %A Lopatin, A. %A Lu, C. -C. %A Marandon, V. %A Marcowith, Alexandre %A Marx, R. %A Maurin, G. %A Maxted, N. %A Mayer, M. %A Mccomb, T. J. L. %A Méhault, J. %A Meintjes, P. J. %A Menzler, U. %A Meyer, M. %A Moderski, R. %A Mohamed, M. %A Moulin, Emmanuel %A Murach, T. %A Naumann, C. L. %A de Naurois, M. %A Niemiec, J. %A Nolan, S. J. %A Oakes, L. %A Ohm, S. %A Wilhelmi, E. de Oña %A Opitz, B. %A Ostrowski, M. %A Oya, I. %A Panter, M. %A Parsons, R. D. %A Arribas, M. Paz %A Pekeur, N. W. %A Pelletier, G. %A Perez, J. %A Petrucci, P. -O. %A Peyaud, B. %A Pita, S. %A Poon, H. %A Pühlhofer, G. %A Punch, M. %A Quirrenbach, A. %A Raab, S. %A Raue, M. %A Reimer, A. %A Reimer, O. %A Renaud, Matthieu %A Reyes, R. de Los %A Rieger, F. %A Rob, L. %A Romoli, C. %A Rosier-Lees, S. %A Rowell, G. %A Rudak, B. %A Rulten, C. B. %A Sahakian, V. %A Sanchez, D. A. %A Santangelo, A. %A Schlickeiser, R. %A Schüssler, F. %A Schulz, A. %A Schwanke, U. %A Schwarzburg, S. %A Schwemmer, S. %A Sol, H. %A Spengler, G. %A Spies, F. %A Stawarz, Ł. %A Steenkamp, R. %A Stegmann, C. %A Stinzing, F. %A Stycz, K. %A Sushch, I. %A Szostek, A. %A Tavernet, J. -P. %A Tavernier, T. %A Taylor, A. M. %A Terrier, R. %A Tluczykont, M. %A Trichard, C. %A Valerius, K. %A van Eldik, C. %A van Soelen, B. %A Vasileiadis, George %A Venter, C. %A Viana, A. %A Vincent, P. %A Völk, H. J. %A Volpe, F. %A Vorster, M. %A Vuillaume, T. %A Wagner, S. J. %A Wagner, P. %A Ward, M. %A Weidinger, M. %A Weitzel, Q. %A White, R. %A Wierzcholska, A. %A Willmann, P. %A Wörnlein, A. %A Wouters, D. %A Zabalza, V. %A Zacharias, M. %A Zajczyk, A. %A Zdziarski, A. A. %A Zech, A. %A Zechlin, H. -S. %Z 9 pages, 2 figures, 4 tables. Accepted for publication in MNRAS %< avec comité de lecture %@ 0035-8711 %J Monthly Notices of the Royal Astronomical Society %I Oxford University Press (OUP): Policy P - Oxford Open Option A %V 441 %N 1 %P 790-799 %8 2014-06 %D 2014 %Z 1404.1613 %Z 2014MNRAS.441..790H %R 10.1093/mnras/stu459 %Z Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] %Z Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Journal articles %X The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E $>$ 0.1 TeV) {\gamma}-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE {\gamma}-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov telescope array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analyzed in the context of the multi-wavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant {\gamma}-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99% confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index {\Gamma} = 2.5 were set at 5.6 $\times$ 10$^{-13}$ cm$^{-2}$ s$^{-1}$ above 0.26 TeV and 3.2 $\times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B$_{\mathrm{G1.9}}$ $\gtrsim$ 11 {\mu}G for G1.9+0.3 and to B$_{\mathrm{G330}}$ $\gtrsim$ 8 {\mu}G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining. %G English %Z HESS %L in2p3-00975408 %U https://hal.in2p3.fr/in2p3-00975408 %~ IN2P3 %~ OBSPM %~ CEA %~ INSU %~ UNIV-PARIS7 %~ X %~ UNIV-SAVOIE %~ UPMC %~ UGA %~ CENBG %~ LAPP %~ LLR %~ LPNHE %~ APC %~ CNRS %~ UNIV-MONTP2 %~ LUTH %~ X-LLR %~ X-DEP %~ X-DEP-PHYS %~ LUPM %~ FRANCE-GRILLES %~ DSM-IRFU %~ IRFU-APC %~ PSL %~ UPMC_POLE_2 %~ MIPS %~ UNIV-MONTPELLIER %~ CEA-DRF %~ SORBONNE-UNIVERSITE %~ LUPM_EMA %~ SU-SCIENCES %~ UNIV-PARIS %~ UP-SCIENCES %~ OBSPM-PSL %~ USMB-COMUE %~ SU-TI %~ ALLIANCE-SU %~ UM1-UM2 %~ LPNHE-2