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Affect-grounded Language Learning in a Robot
Zakaria Lemhaouri, Laura Cohen and Lola Canamero

I. INTRODUCTION

Most of the computational models of language development
adopt a passive-learner view on language learning, and disre-
gard the important role that affect plays in the development
of communication, intersubjectivity, and the (co-)construction
and sharing of meaning. Typical solutions propose teaching
the artificial agent (infant) an association between a sensory
perception of an object (e.g., an image) and a label (i.e.,
the name of the object) given by a knowledgeable caregiver
[11], [10]. In this view, commonly adopted in AI, learning
language is a goal in itself during the course of development.
We propose to adopt an alternative view: that communication
has an extrinsic functionality, i.e., a goal to achieve in the
world that lies outside of language itself and can be better
described as a means to reach this goal. This idea is in line with
typical observations of infants’ development, who can convey
functional meanings before they master the adults’ language
[6]. For example, communication can be a way to obtain a
desired object by requesting it from an adult, or a means to
strengthen a social bond. Halliday argues that children initially
develop “meaning potentials” to serve some functions that
he identifies as instrumental, regulatory, interactional/social,
personal, heuristic, imaginative and informative. We posit
that endowing robots with the ability to learn language in
this functional way is key towards bridging the gap between
language and meaning in artificial agents, which remains one
of the big challenges in artificial intelligence.

Previous work [3] uses a reinforcement learning paradigm
[12] to model the learning of verbal and gestural communi-
cation skills through the interaction with a caregiver. It shows
that a robot can learn both symbolic words and gestures to re-
quest objects by interacting with a caregiver. This corresponds
to the instrumental function of language. We propose to extend
this work to the other early functions of language described by
Halliday, namely the regulatory, social and personal functions.
For this purpose, we propose to include a model of affect
[2], [9] as a prerequisite to motivate the acquisition of these
functions of language [13], to ground the development of
“meaning potentials” in emotional and affective internal states,
beyond the basic biological needs. In this workshop, we will
introduce the proposed framework and set the basis of our
approach to a functionalist and embodied model of language
learning by a robot, and we will present some preliminary
results.

II. METHOD

In the present work, we propose to extend the RL approach
proposed by [3] dedicated to learning associations between
internal needs and words in a robot. The goal is to endow the

robot with the ability to express its internal states by requesting
an object from a human caregiver. However, the internal states
of the robot remain limited as they are modeled by binary
variables and do not evolve with time. Furthermore, the robot
is not able to modulate these internal states depending on the
visual perception of an object, as it does not have a vision
module. In the present work, we propose to include more re-
alistic affective internal states and a visual perception module
to overcome these limitations. The proposed architecture is
shown on Fig.1. The formalism is based on the sensory-motor
PerAc neural architecture [5].

Fig. 1. The overall architecture of the model. A: corresponds to the RL block
which allows the robot to create the association internal needs/words. B: The
visual perception module for the association object/need. C: The motivation
module for the affective internal states modeling.

A. Words / internal needs association

The association between the robot vocabulary and internal
state (fig.1.A) follows the reinforcement learning approach
proposed in [3]. In this context, the robot has three internal
needs that can be satisfied with specific objects. The robot
vocabulary is composed of words formed of two syllables
(that corresponds to 10 of the most frequent syllables of
an 8-month-old infant [8]). The robot starts by randomly
producing a word when one need outweighs the others, the
caregiver/human partner does not have access to the internal
need of the robot. He/she reacts to the robot’s vocalization by
selecting an object and handing it to the robot. If the given
object satisfies the robot’s need, the motivation related to this
need decreases, a reward of +1 is given to the robot which
expresses its satisfaction with a happy gesture, otherwise the
word receives a reward of -1, which decrease the probability
of reusing the word in this context, and the robot expresses



its dissatisfaction.

In RL, this problem is formulated as a contextual multi-
armed bandit problem, in which the action space consists
of the words that the robot can vocalize and the contexts
correspond to the internal needs. In each context, the Q-value
of each action a is estimated with the equations:

Qn+1(a) =
h− 1

h
Qn(a) +Rn (1)

with h, a parameter used to avoid the Q-value divergence, and
Rn the reward received at time step n.

The robot uses a greedy approach to select a word according
to its internal needs:

An = argmax
a

Qn(a) (2)

B. Object’s recognition

To learn the association between the visual appearance of an
object and the satisfaction of a need, we propose to include a
visual perception module (fig.1.B) to our architecture, we used
an online incremental learning method, similar to Kohonen’s
map[7], called SAW (Self Adaptive Winner). In this method,
we define a matrix of visual features VF as:

V Fj = netj .Hmax(γ,net+σnet)
(netj) (3)

with :

netj = 1− 1

N
.

N∑
i=1

|Wij − Ii| (4)

netj : is a measure of the similarity between the features bank
VF and the new visual input I, this latter is a size N descriptor
calculated around an extracted key points (fig.2 ).
W : the synaptic weight of the connection between the visual
input I and the visual features bank VF.
H : the Heaviside function that allow the recruitment of a
new neuron,i.e. adding the new visual input to VF, when the
similarity is below the threshold of recognition γ:

Hθ(x) =

{
1 if θ < x

0 otherwise
(5)

The modification of the weights W is computed as:

∆Wij = aj(t)Ii + µ(1− δkj ).(Ii −Wij)(1− V Fj) (6)

with:
k = argMax(aj) (7)

aj =

{
1 if a new neuron is recruited
0 otherwise

(8)

δkj Kronecker symbol :

δkj =

{
1 if j=k
0 otherwise

(9)

The VF bank is then used for training a neural network to
predict the internal need that can be satisfied with the detected

object. The synaptic weights update of this neural network
follows the least mean square rule:

∆ωij = εV Fi(RISj − ISPj) (10)

with : ε the learning rate, RIS the robot internal state and
ISP internal state prediction.

Fig. 2. Robot visual perception and the extracted key-points used to recognize
objects.

C. Internal motivation
To endow the robot with a more realistic intrinsic motivation

(fig.1.C), each internal need is modeled by a homeostatic
variable h(t) [4] that decreases over time and increases when
the need is fulfilled :

hi(t) = h0e
−t/τi +

∑
k

αki
∑
jk

u(t− tjk)e−(t−tjk)/τi (11)

τi is the variable decay and u(t) is the Heaviside-step
function ,αki indicates the amount by which the homeostatic
variable increases when the need is fulfilled by an object k at
time tjk

The robot drive, representing the urge to act, is defined as
the difference between the current homeostatic variable and
its optimal value hop:

di(t) = hop − hi(t) (12)

The robot’s motivation to satisfy a need depends on the related
drive and the intensity of the stimulus / object that can satisfy
this need [1]:

m = d+ d.s (13)

The intensity of the stimulus s is estimated by the object
recognition module, for this purpose, we used the estimated
activation of each class as the intensity of the stimulus
corresponding to each object.

III. EXPERIMENTAL SETUP

To test our model, we used the social robot Reachy with
the Unity simulation environment, the robot has three internal
needs: hunger, thirst and curiosity, each need is satisfied by
one of the three objects present in scene. These objects can
be given to the robot by a human caregiver when the robot
expresses its need. The vocabulary of the robot consists in 10
words, when a need is triggered, the robot says a word and
the correspondent text is displayed (fig.3).



Fig. 3. Experimental setup. The Reachy robot is placed in front of a table
with 3 objects that can satisfy each of his 3 internal states (i.e., curiosity,
hunger and thirst). In a given internal state, he says a word from his word
repertoire to get the corresponding object. The human partner tries to guess
which object is desired and clicks on it. The robot then shows an expressive
attitude as a feedback on his satisfaction or frustration.

IV. RESULTS

After the learning phase, the results show the convergence of
the moving average of the reward (fig.4 ). Table I represents an
example of the Q-table of the association between the robot’s
vocabulary and the internal needs, after learning, each need
has only one word with a max Q-value which confirms the
convergence.

Fig. 4. Evolution of Average Reward.

”wada” ”naba” ”maba” ”daba” ”paba” ”bada” ”bama” ”babe” ”waba” ”wama”

”Hunger” -1.5 2 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5
”Thirst” -1.375 -1.5 -1.25 -1.15 -1.5 -1.5 -1.5 -1.5 -1.5 2

”Curiosity” -1.69 -1.75 2 -1.83 -1.79 -1.6 -1.76 -1.71 -1.83 -1.75

TABLE I
Q-TABLE OF THE ASSOCIATION BETWEEN THE ROBOT VOCABULARY AND

ITS INTERNAL STATES.

As a consequence of this words/needs mapping obtained
by reinforcement learning and objects/needs correspondence
made possible by the visual perception module, the robot was
able to create a general association of word-object-need.

V. CONCLUSION

We have presented an improved model of active language
learning. As in the previous work [3], the robot was able to

Fig. 5. The evolution of the robot’s motivations. In this time interval, a drink
was presented in the environment of the robot at t1, which increased the
motivation to drink. At time t2, the caregiver gave the robot a toy, this act
reduced the motivation to discover.

create a mapping between its vocabulary and the goals it can
achieve with words. The visual perception module allowed the
robot to gain more autonomy and become able of recognizing
objects to associate them with its needs. This association was
made with respect to the developmental approach, since we
used only online learning methods without prior information.
The motivation module made the language learning more
realistic and more similar to child’s language acquisition. The
expansion of this motivational module with new emotional
and affective internal states will increase the number of
meaningful words in the robot’s vocabulary and will allow
the computational modeling of the more advanced functions
of language.
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monal feedback to modulate action selection in a compet-
itive scenario. In From Animals to Animats 8: Proceed-
ings of the 8th International Conference on Simulation of
Adaptive Behaviour, MIT Press, Cambridge, MA, pages
243–52. Citeseer, 2004.

[2] Dolores Canamero. Modeling motivations and emotions
as a basis for intelligent behavior. In Proceedings of
the first international conference on Autonomous agents,
pages 148–155, 1997.

[3] Laura Cohen and Aude Billard. Social babbling: The
emergence of symbolic gestures and words. Neural
Networks, 106:194–204, 2018.

[4] Ignasi Cos, Lola Canamero, Gillian M Hayes, and An-
drew Gillies. Hedonic value: Enhancing adaptation for
motivated agents. Adaptive Behavior, 21(6):465–483,
2013.

[5] Philippe Gaussier and Stéphane Zrehen. Perac: A neural
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