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Chapter 1
Semiclassical numerical modeling of gain
materials with a high order Discontinuous
Galerkin time-domain solver

Cédric Legrand, Stéphane Lanteri, and Stéphane Descombes

Abstract This paper is concerned with numerical modeling of the interaction be-
tween an electromagnetic field and a gain medium in the context of laser physics, with
the goal of simulating the gain process that results in an increase in optical power.
This phenomenon can be modelled by a four-level atomic differential system that
couples Maxwell’s equations with a set of non-linear Ordinary Differential Equations
(ODEs) to describe the electronic density evolution for each energy level. Most of the
existing works dealing with this model consider the Finite Difference Time-Domain
method (FDTD) as seen in [1]. In this article, we will present a novel numerical
modeling leveraging a Discontinuous Galerkin Time-Domain method (DGTD) in
3D that we have formulate to solve this model and will propose an estimation for the
continuous energy associated to the system. Based on the work done in [5], we used a
second order Leap-Frog temporal scheme and made approximation for the nonlinear
terms present in the ODEs. An energy estimate, for both continuous problem and
the discrete scheme, inspired by the work done in [3] allows us to prove stability of
the scheme. The method is validated in a 3D framework using a model problem with
manufactured solution.

1.1 Presentation of the physical problem

Gain materials have been extensively studied during the last decades. In laser physics,
gain or amplification is a process due to the interaction of an electromagnetic radi-
ation with a collection of atoms. This interaction has two effects. On one hand, the
medium has an effect on the field, and on the other hand the incident field causes
a change in the material parameters. As a result of these effects one observes the
total field which is the sum of the incident field and the field radiated by atoms. In
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fact, while the atoms lose energy through radiative or non-radiative mechanisms, the
medium attenuates or amplifies, and phase-shifts the total field [1].
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Fig. 1.1: Four-level atomic system
model of a gain medium.

In this process, the electrons have to be pumped
to different energy levels. The most common
model of this process considers that the elec-
trons reach four different levels of energy [2]. We
denote by these four different levels of energy,
⇢0, ⇢1, ⇢2 ⇢3. First, electrons are pumped by an
external mechanism to the third level ⇢3. They
quickly relax to ⇢2, non radiatively. Then they
transfer from ⇢2 to ⇢1 both radiatively and non
radiatively when the density population at ⇢2 is
higher than the one at ⇢1; this is the mechanism
known as lasing. Finally they transfer quickly
and non radiatively form ⇢1 to ⇢0 [2]. All the
parameters presented in figure 1.1 will be explained in section 1.2.

1.2 General model

In our problem we will consider two domains. The first one is a vacuum medium,
surrounding the second one, the gain medium. We will study the interaction between
the gain medium and the incident electromagnetic wave. Let us introduce ⌦1,⌦2 ⇢
R3, which are bounded domains corresponding respectively to the gain medium and
to the host medium. We denote by E and H, respectively the electric field and the
magnetic field vectors in R3. n and ` are respectively the electric permittivity and
the magnetic permeability of the material. They both depend on the position. We
introduce P the electric polarization density of the gain material and Jp his derivative
in the gain material. Jp will be considered equal to zero in ⌦2. E, H are functions
of space and time and are solutions of the following time-dependent Maxwell’s
equation on the time domain [0,)], with ) > 0 :

8>>>>><
>>>>>:

n

mE
mC

= r ⇥ H � Jp in ⌦1 [⌦2 ⇥ [0,)],

`

mH
mC

= �r ⇥ E in ⌦1 [⌦2 ⇥ [0,)].

At the boundary of the domain we impose perfect electric conditions as follows,
n ⇥ H = �B , n ⇥ E = 0, n · H = 0, n · E = dB/n .

The atomic density at the 8C⌘ energy level is denoted by #8 , and is a function of
time and space. Introducing Pa corresponding to the induced electric polarization
density on the lasing transition between the upper (⇢2) and lower (⇢1) levels and
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Pb the induced electric polarization density on the pumping transition between the
ground state level (⇢0) and the third level (⇢3). The total electric polarization of the
gain media is P = Pa + Pb and satisfies the equations [2] :

8>>>>><
>>>>>:

m
2Pa

mC
2 + W0

mPa
mC

+ l2
0
Pa = �^0 (#2 � #1) E in ⌦1 ⇥ [0,)],

m
2Pb

mC
2 + W0

mPb
mC

+ l2
1
Pb = �^1 (#3 � #0) E in ⌦1 ⇥ [0,)].

(1)

The evolution of the electron densities is characterized by a system of ODEs
called rate equations. The interaction between the electromagnetic field and the
gain medium is characterized here by the presence of the field E, which is coupled
to the electric polarizations Pa and Pb induced by each transition in these equations.
We also assume that at the initial time, all electrons are located at the lowest energy
level with a density of # throughout the gain medium. If we use an external electro-
magnetic wave to pump the electrons from the ground state (⇢0) to the third level
(⇢3), like in [2] we have to consider the following rate equations :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

m#3
mC

= �#3
g32

+ 1
\l1

E · mPb
mC

in ⌦1 ⇥ [0,)],

m#2
mC

=
#3
g32

� #2
g21

+ 1
\l0

E · mPa
mC

in ⌦1 ⇥ [0,)],

m#1
mC

=
#2
g21

� #1
g10

� 1
\l0

E · mPa
mC

in ⌦1 ⇥ [0,)],

m#0
mC

=
#1
g10

� 1
\l1

E · mPb
mC

in ⌦1 ⇥ [0,)].

(2)

The initial conditions for the electronic densities are taken as #8 (x, 0) = 0, for 8 2
{1, 2, 3} and #0 (x, 0) = # . The relaxation time of an electron from ⇢8 to ⇢ 9 is given
by g8 9 . We denote respectively byl0 andl1 the lasing and the pumping frequencies,
such as l0 = (⇢2 � ⇢1)/\ and l1 = (⇢3 � ⇢0)/\. As defined in [2] the constants
W0 and W1 are the line width of the atomic transition l0 and l1, and ^0 and ^1 are
the coupling strength of Pa and Pb to the electric field.
We then performed several transformations of (1) and (2) in order to facilitate
the theoretical study. We use the derivatives of Pa and Pb, denoted as Ja and Jb
respectively, to transform this system into a first-order system. With these new
notations, we have Jp = Ja + Jb. We also homogenized these systems of equations
following the method presented in [4]. The new parameters of the problem are
summarized in table 1.1.
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E H Pa,b Jp,c #8 C g8, 9 l0,1 W0,1 ^0,1 A0,1

Original Unit Vm�1 Am�1 sAm�2 Am�2 m�3 s s s�1 s�1 Fm2s�2 -

Normalized Unit Vm�1 Vm�1 Vm�1 Vm�2 ú m m m�1 m�1 m�2 V�2m2

Table 1.1: Normalized parameters of the problem.

1.3 Energy estimate and stability

To study the stability of the system we are going to rewrite the system with operators,
by adapting the method used in [3] to our problem. Let us consider the following
spaces :

L2 (⌦8) = !2 (⌦8)3, H(curl,⌦2) =
�
v 2 L2 (⌦2), such as r ⇥ { 2 L2 (⌦2)

 
,

and E = L2 (⌦2)2 ⇥ L2 (⌦1)4 ⇥ !2 (⌦1)

Let U be the vector of unknowns, U =
�
E H Ja Jb Pa Pb #3 #2 #1 #0

�
) .

Let us also define by A, the linear operator containing the linear part of the equa-
tions, and by F the non linear application that contain the non linear part of the
equations :

A : D(A) = H(curl,⌦2)2 ⇥ L2 (⌦1)4 ⇥ !2 (⌦1) ⇢ E ! E,
F : D(F ) = H(curl,⌦2) \ L3 (⌦2) ⇥ H(curl,⌦2) ⇥ L3 (⌦1)2 \ L2 (⌦1)2 ⇥ !3 (⌦1)4 ! E.

Using the fact that D(F ) ⇢ D(A), we can write the equations in a system form
such as the problem becomes, with U0 2 D(F ) an initial condition :

Find U 2 D(F ) such as,

8>><
>>:
mU
mC

= AU + F (U),

U (C = 0) = U0.

We define a scalar product on E denoted by <, >E and | |.| | E its associated norm,
such that, 8(U,V) 2 E2 :

< U,V >E=(nAu1, v1)L2 (⌦2 ) + (`Au2, v2)L2 (⌦2 )

+ 1
 0

(u3, v3)L2 (⌦1 ) +
1
 1

(u4, v4)L2 (⌦1 ) +
⌦2
0

 0

(u5, v5)L2 (⌦1 ) +
⌦2
1

 1

(u6, v6)L2 (⌦1 )

+ 1
A1

(D7, {7)!2 (⌦1 ) +
1
A0

(D8, {8)!2 (⌦1 ) +
1
A0

(D9, {9)!2 (⌦1 ) +
1
A1

(D10, {10)!2 (⌦1 ) .



1 DGTD method for gain media 5

With this scalar product we find, for U 2 D(F ) a solution of the problem with PEC
boundary conditions :

8>>>>>>>>><
>>>>>>>>>:

< F (U),U >E = 0,

< AU,U >E = �((Ja + Jb),E)L2 (⌦1 ) �
�0
 0

| |Ja | |L2 (⌦1 ) �
�1
 1

| |Jb | |L2 (⌦1 )

� 1
A1;32

| |#3 | |!2 (⌦1 ) �
1

A0;21
| |#2 | |!2 (⌦1 ) �

1
A0;10

| |#1 | |!2 (⌦1 )

+ 1
A0;32

(#3, #2)!2 (⌦1 ) +
1

A0;21
(#2, #1)!2 (⌦1 ) +

1
A1;10

(#1, #0)!2 (⌦1 ) .

For U a solution of the problem, we define b the energy associated to the sys-
tem such as, for C > 0 :

b (C) = 1
2
| |U (C) | |2E .

For C > 0, we find by differentiating this expression :

mb

mC

(C) = <

mU
mC

(C),U (C) >E=< AU (C),U (C) >E

= � ((Ja + Jb),E)L2 (⌦1 ) �
�0
 0

| |Ja | |L2 (⌦1 ) �
�1
 1

| |Jb | |L2 (⌦1 )

� 1
A1;32

| |#3 | |!2 (⌦1 ) �
1

A0;21
| |#2 | |!2 (⌦1 ) �

1
A0;10

| |#1 | |!2 (⌦1 )

+ 1
A0;32

(#3, #2)!2 (⌦1 ) +
1

A0;21
(#2, #1)!2 (⌦1 ) +

1
A1;10

(#1, #0)!2 (⌦1 ) .

In order to evaluate the derivative of the energy over time, we also assume that
nA � n� > 0. After some computations, we obtain the following estimate for the
variation of the energy :

mb

mC

(C) 2⇠b (C), with ⇠ =

r
( 0 +  1)

n
� + 1

;32

r
A1

A0

+ 1
;21

+ 1
;10

r
A0

A1

.

Let C 2 [0,)], by integrating the previous inequality over [0, C], we obtain :

b (C)  b (0) exp(2⇠C)  b (0) exp(2⇠)).

Under the assumption that the solution of the problem exists, we have thus shown
that the !2 norm of the solution is bounded on [0,)].
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1.4 Discontinuous Galerkin method and time discretization

1.4.1 Semi-discrete problem in time

For the time integration we adopt a second order leap-frog scheme as in [4]. A
common choice is to split every time step �C in two. E is approximated at even time
stations C= = =�C, while H, Ja, Jb, Pa, Pb and the electronic densities (#8)82»0,3…
are approximated at odd time stations C

=+1/2 = (= + 1
2�C). The temporal scheme

consists in seeking the value of E=+1, H=+3/2, Ja
=+3/2, Jb

=+3/2, Pa
=+3/2, Pb

=+3/2, and
#
=+3/2
8

, knowing E=, H=+1/2, Ja
=+1/2, Jb

=+1/2, Pa
=+1/2, Pb

=+1/2, and #=+1/2
8

. For the
approximation of the ODEs, we drew inspiration from [5] to ensure the stability of
the method. For a vector variable U or a scalar variable + , we define U[=+1/2] and
+

[=+1/2] such as :

U[=+1/2] =
U=+1/2 + U=+3/2

2
and + [=+1/2] =

+
=+1/2 ++=+3/2

2
.

1.4.2 Discretization in space

In this section we are going to set up the space discretization done with the dis-
continuous Galerkin method. We will not provide a detailed explanation of the
implementation of this method, but we will emphasize the approximations used for
handling nonlinear terms. Here we will directly set up the matrix formulation for the
fully discrete scheme.

Let ⌦⌘ be a discretization of ⌦, relying on a quasi-uniform triangulation T⌘ =
()8)»1,#…, where # 2 N⇤. We denote 08 9 = )8 \ )9 , an internal face of the dis-
cretization for (8, 9) 2 »1, #… such as )8 and )9 are adjacent. Let n8 9 be the
unit normal vector of 08: , oriented from )8 to )9 . For 8 2 »1, #…, we denote
V8 = { 9 2 »1, #…, )8 \ )9 < ;}. We introduce the discrete space + :

⌘
= {{ 2

!
2 (⌦1) such as for all 8, { |)8 2 %? ()8)}, %? ()8) beeing the set of polynomials on )8

with degree ?, for ? 2 N⇤. For each cell )8 we define a set of scalar basis functions
(q8 9 )1 938 where 38 is the number of freedom per dimension.

For a vectorial semi-discrete variable by U= and a scalar semi-discrete variable
+
= we respectively denote by U=

⌘
and +=

⌘
the discrete in space and times variables.

Their restriction on each cell )8 are denoted respectively U=
8

and +=
8

. We will de-
note their coordinates, for a cell )8 , 8 2 »1, 38…, in the polynomial basis as follows,
respectively :

+8

=

=
�
+81, . . . , +838

�
) and Ui

=

=
⇣
*
G

8

=

,*H
8

=

,*I
8

=

⌘
)

.
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For Maxwell’s equation, we use the same method as in [4]. We introduce the three
matrices defined in [4], the mass matrixM8 , the stiffness matrix K8 , the flux matrix
S8 . With the previous notations, we obtain directly the following matrix formulation
for the Maxwell’s equations :

(ME)

8>>>>>>>>>><
>>>>>>>>>>:

nAM8
E=+1
8

� E=
8

�C
= K8 ⇥ H=+1/2

8
�M8

⇣
Ja

[=+1/2]
8

+ Jb
[=+1/2]
8

⌘
�

’
;2V8

S8;
⇣
H=+1/2

⇤ ⇥ n8;
⌘

,

`AM8
H=+3/2
8

� H=+1/2
8

�C
= �K8 ⇥ E=+1/2

8
+

’
;2V8

S8;
⇣
E=+1
⇤ ⇥ n8;

⌘
.

The presence of nonlinear terms complicates the task. Indeed, if we project the
variables onto the polynomial basis as usual, we end up having to compute integrals
involving a triple product of elements. For example, the integral on )8 of the product
of two scalar variables +8 and,8 and a basis function q8: , : 2 »1, 38… is :

π
)8

+8,8q8: =
38’
9=1

38’
;=1

✓
+8 9,8;

π
)8

q8 9q8;q8:

◆
.

In the matrix formulation, this would result in the presence of a tensor of size
3

3
8
. However, this is too complex and computationally demanding, we will make

an approximation. We have decided to simply project the nonlinear term onto the
function basis. With the notations from the previous example, we would thus obtain :

π
)8

+8,8q8: '
π
)8

©≠
´
38’
A=1

266664
38’
9=1

38’
;=1
+8 9,8;q8 9q8;

377775

�����
xr

q8A

™Æ
¨
q8: '

38’
A=1

✓
+8A,8A

π
)8

q8Aq8:

◆
.

We can see that it will then be a matter of calculating the integral, which results
in the presence of the mass matrix in the matrix formulation, which ultimately
simplifies along with the matrix in front of the other terms. We can directly applied
this method of approximation to the non-linear terms of the rate equations and
polarization equations. We obtain the following system of discrete equations :

(PE)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Pa
=+3/2
8

� Pa
=+1/2
8

�C
= Ja

[=+1/2]
8

,

Pb
=+3/2
8

� Pb
=+1/2
8

�C
= Jb

[=+1/2]
8

,

Ja
=+3/2
8

� Ja
=+1/2
8

�C
= ��0Ja

[=+1/2]
8

�⌦2
0
Pa

[=+1/2]
8

�  0EN21
=+1
8

,

Jb
=+3/2
8

� Jb
=+1/2
8

�C
= ��1Jb

[=+1/2]
8

�⌦2
1
Pa8

[=+1/2] �  1EN30
=+1
8

,
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with 8{ 2 {G, H, I}, ⇢#21
{,=+1
8

=
⇣⇣
#2

[=+1/2]
8 9

� #1
[=+1/2]
8 9

⌘
⇢
{,=+1
8 9

⌘
1 938

and ⇢#30
{,=+1
8

=
⇣⇣
#3

[=+1/2]
8 9

� #0
[=+1/2]
8 9

⌘
⇢
{,=+1
8 9

⌘
1 938

.

(RE)

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

#3
=+3/2
8

� #3
=+1/2
8

�C
= �#3

[=+1/2]
8

;32
+ A1

’
{2{G,H,I}

⇢1

{,=+1
8

,

#2
=+3/2
8

� #2
=+1/2
8

�C
=
#3

[=+1/2]
8

;32
� #2

[=+1/2]
8

;21
+ A0

’
{2{G,H,I}

⇢0

{,=+1
8

,

#1
=+3/2
8

� #1
=+1/2
8

�C
=
#2

[=+1/2]
8

;21
� #1

[=+1/2]
8

;10
� A0

’
{2{G,H,I}

⇢0

{,=+1
8

,

#0
=+3/2
8

� #0
=+1/2
8

�C
=
#1

[=+1/2]
8

;10
� A1

’
{2{G,H,I}

⇢1

{,=+1
8

,

with ⇢0{,=
8

=
⇣
⇢
{,=+1
8 9

�0

{,[=+1/2]
8 9

⌘
1 938

and ⇢1{,=
8

=
⇣
⇢
{,=+1
8 9

�1

{, [=+1/2]
8 9

⌘
1 938

.

1.4.3 Fully discrete energy

In order to study the stability of the scheme we define the fully discrete energy :

E=⌦⌘
=

1
2

π
⌦⌘

✓
nA

���E=
⌘

���2 + `AH=+1/2
⌘

· H=�1/2
◆

+ 1
2

π
⌦⌘

 
1
 0

���Ja
=+1/2
⌘

���2 + 1
 1

���Jb
=+1/2
⌘

���2 + ⌦2
0

 0

���Pa
=+1/2
⌘

���2 + ⌦2
1

 1

���Pb
=+1/2
⌘

���2
!

+ 1
2

π
⌦⌘

✓
1
A1

���#3
=+1/2
⌘

���2 + 1
A0

���#2
=+1/2
⌘

���2 + 1
A0

���#1
=+1/2
⌘

���2 + 1
A1

���#0
=+1/2
⌘

���2
◆

.

To complete the definition of the fully discrete energy we discretize the boundary
conditions as in [3], for 08; ⇢ m⌦⌘ we use, E=

8 |08; = �E=
; |08; , H=+1/2

8 |08; = H=+1/2
; |08; .

Then, by introducing d =
✓

1
A0;32

+ 1
A1;10

◆
(A1 + A0) +

2
;21

,

we can show that under the assumption �C <
1r

2
 0 +  1
nA

+ d
,

the fully discrete energy satisfies the following bound :

E=⌦⌘


 
1 +

 
4
r

2
 0 +  1
nA

+ 2d

!
�C

!
=

E0
⌦⌘

.



1 DGTD method for gain media 9

Thus the fully discrete energy is bounded for a finite time.

1.5 Results

To validate our solvers we built an artificial case with manufactured solutions. We
present here the convergence order results obtained for simulations carried out with
) = 1. in a cubic cavity of length ! = 1., with PEC condition. The simulations were
conducted using elements ranging from P1 to P2. The set of parameters for the gain
medium model is presented in table 1.2.

Constants ⌦0 ⌦1 �0 �1  0  1 A0 A1 ;10 ;21 ;32

Values 0.5 4 4. 1. 1. 3. 4. 1.5 0.6 0.2 0.4

Table 1.2: Set of parameters for the following test.

We present in figure 1.2 the variation of the total error with respect to the mesh sizes
# 2 {11, 21, 31, 41} at the logarithmic scale for P1 and P2 Lagrange elements. In
figure 1.3 we can observe the evolution of the energy for both elements. As excepted,
we see in table 1.3 an order of convergence of 1 for P1 and 2 for P2.

Fig. 1.2: Logarithmic errors for DGTD P1 and
DGTD P2 methods.

Fig. 1.3: Evolution of total energy for) = 1 and
# = 41 for DGTD P1 and DGTD P2 methods.
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P1 P2

# Error Order Error Order
11 2.522 ⇥ 10�2 - 1.993 ⇥ 10�3 -
21 1.048 ⇥ 10�2 1.36 4.542 ⇥ 10�4 2.29
31 6.765 ⇥ 10�3 1.28 1.984 ⇥ 10�4 1.28
41 5.030 ⇥ 10�3 1.23 1.110 ⇥ 10�4 2.20

Table 1.3: Evolution of errors and convergence orders for DGTD P1 and DGTD P2 methods.

1.6 Conclusion

The work carried out up to this point and presented in this article includes a theoretical
study and the development of the DGTD method of a 4-level model of a gain medium.
The next objective is to adapt this scheme to an upwind flux DG scheme in space
coupled to a Low Storage Runge-Kutta scheme for the time integration, with the goal
of achieving higher numerical convergence order.
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