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Abstract

Let U be a Morse function on a compact connected m-dimensional Riemannian manifold, m > 2,
satisfying minU = 0 and let Y = {x € M : U(x) = 0} be the set of global minimizers. Consider the
stochastic algorithm X ) = (X®)(t));>¢ defined on N = M\U, whose generator is UA - —3(VU, V-,
where 3 € R is a real parameter. We show that for 3 > & — 1, X (B) (t) converges a.s. as t — o0,
toward a point p € U and that each p € U has a positive probability to be selected. On the other
hand, for 8 < % — 1, the law of (X®)(t)) converges in total variation (at an exponential rate) toward
the probability measure w3 having density proportional to U (m)*kﬁ with respect to the Riemannian

measure.
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1 Introduction

Stochastic global minimization algorithms taking into account the a priori knowledge of the minimal
value of the objective function U are called fraudulent, since this minimal value is often not available
in practice. Nevertheless some of their interests are presented in [13], where such a procedure was
introduced when U is a Morse function defined on a compact manifold M of dimension m > 2. The
underlying stochastic process X (%) := (X(®)(t));=0, taking values in M, comes with a real parameter /3
which can be tuned to increase the relative importance of U with respect to the injected randomness.
Two quantities 3, = S, € R (depending explicitly on the eigenvalues of the Hessians of U at its global
minima, see Remark 4 below) were introduced so that 3 > 3, implies the a.s. convergence of X %) (¢)
as t — o0, toward the global minima of U (and each of them attracts the algorithm with positive
probability, when X (5)(0) is not a global minima), while for 8 < /3, the probability that X (8) (t) a.s.
converges toward a global minimum of U is zero.

Our goal here is to sharpen these result and describe completely the long term behavior of X ) for
all B # fBo, where fp := 5 — 1 is a universal (i.e independent of U) critical value. We will show that for
B> By, XB)(t) as. converges toward a global minimizer of U and that each global minimizer has a
positive probability to be selected. On the other hand, for 5 < By, the process converges in distribution
toward a (unique) invariant distribution whose density (with respect to the Riemannian measure) is
explicit. This result will be a consequence of the persistence/non-persistence approach presented in [4]
and [2]. The paper is organized as follows. Section 2 sets the notation and presents the main results.
Section 3 considers the situation where M is no longer a compact manifold but the Euclidean space
R™. It allows to introduce the main ingredients of the proof in a simple setting. Section 4 is devoted
to the proof of the main results. Certain additional points are discussed in appendix.

2 Notation and main result

We assume throughout that M is a compact connected Riemannian manifold having dimension m > 2
and U : M — R is a smooth function such that (this is the fraudulent assumption):

minU = 0.
M

The zero set of U,
U = {peM:U(p) =0}

is then the set of global minimizers. We furthermore assume that every p € U is non-degenerate,
meaning that the Hessian of U at p is non-degenerate. This assumption implies that ¢/ is finite. In
particular, N := M\U is a noncompact connected manifold.

Let Lg be the operator on C?(M) defined as

Lg = UA-—B{VU,V-) (1)

where A, (-, -) and V stand for the Laplacian, scalar product and gradient associated to the Riemannian
structure of M, and S € R.

A diffusion process generated by (1), is a continuous-time Feller Markov process on M, X8 =
(X®(t))i=0, with infinitesimal generator £ and domain D(Lg) < CO(M) (see e.g. Le Gall [12],
Section 6.2, for the definitions of Feller processes, domains and generators) such that for all f € C2(M) :

f € D(,Cfg) and ,Cgf = Lﬁf.

Since the mapping VU and /U are Lipschitzian, due to the non-degeneracy assumption of the zeroes
of U for the latter, such a diffusion process exists. More details are given in the appendix. In addition,



given the initial distribution of X (%) (0), say p, the law of X (6)’[@&5)’ is uniquely determined by p
and Lg. As usual, we write P for ]P’gf ), By a mild (but convenient) abuse of notation we may write
P.(X® € .) for IP’(xB)(-). We also let P = (Pt(ﬁ))t>0 denote the semi-group induced by X®). It is
defined, as usual, by

Vi>0,VzeM, PPfx) =E,f(XP)

for every measurable, bounded or nonnegative, map f: M — R.
The next proposition summarizes some basic properties of P(¥). Its proof, which relies on classical
results, is given in the appendix.

Proposition 1 (i) P®) leaves N and U invariant:
- Forallt =0, Pt(ﬂ)lN =1y.
(ii) PP is Feller on M and strong-Feller on N :
- Forallt >0 and f € CO(M), PP (f) e CO(M);
- For allt >0 and f: N — R bounded measurable, Pt(ﬁ)(f) s continuous on N.

Note that P(®) is not strong Feller on M, as it can be seen by considering the indicator function of
N. In order to state our main result we first associate, to each p € U, a certain Lyapunov exponent.
Given a symmetric positive definite m x m real matrix A, and 8 € R, define the probability measure
[A,B ON S™~1 the unit sphere in R™, via

1

~1-5
m<9,A0> =P 5(dh) (2)

VoeS™ ! puag(dd)
where, o is the uniform probability measure on S~ (., .5 the Euclidean dot product (not to be
confused with the Riemannian metric on M) and Z(A,1 + ) is the normalization constant.

Define the §-average eigenvalue of A as

A4 - |

Sm—

.48 uasldt) = ®

Let \(A) < ... < Ap(A) be the eigenvalues of A. Observe that A(A,3) only depends on these
eigenvalues, because ¢ is invariant by orthogonal transformations and A is orthogonally conjugate to
a diagonal matrix. Observe also that

AM(A) < AA,B) < An(A). (4)

Remark 2 Inequalities (4) are strict, except when A\j(A) = A, (A). Furthermore it can be shown (see
the appendix Section 5.2) that for all numbers A\_ < A < A4, there exists, for m sufficiently large, a
m x m definite positive matrix A such that A\;(A) = A_, A(A,5) = X and A\, (4) = AL o

Given p € U, we let A, denote the diagonal matrix whose entries 0 < Aj(p) < ... < Ay (p) are the
eigenvalues of the Hessian of U at p. Set

ﬂo = — 1.

m
2
Our main result is the following.

Theorem 3 Let x € N and B € R.

(i) If B > Po, then

n B)
pr limsup1 (d(XT(), p)) < —A(A4p,B)(B—PBo)| = 1,

t
peld t—+00

where each term in the above sum is positive.



(ii) If B < Bo, then X ) has, on N, a unique invariant probability distribution given by
1

malde) = G U(@) " P @) e),

where Cg is a normalization constant and £(dx) stands for the Riemannian measure. Further-
more:

(a) X s positive recurrent on N, meaning that for all f € LY(mg), Py a.s.,

1 t
‘m - (B) —
i 4 [ O 6)ds = ms()
(b) There exist positive constants a,b,x (depending on ) with x < By — B, such that for all
f: N — R, measurable,

a —bt

ELFXO )] =Dl < g gy

[ £l

where

[ £l == sup |f () |d(z, U)*.

(iii) If B = Bo, then, for every neighborhood O of U, P, a.s.,

1t

Remark 4 Theorem 3 is an improvement over the results of [13], which showed the a.s. convergence of
X B toward elements of U (each being approached with a positive probability) only for 8 > 8, =
with

ZZG[[m]] Ai(p)

Bu = max SEMCES ©)

and the a.s. non-convergence of X #) toward elements of U for 8 < B, < fo, with

. . Zle[[m]] Ai(p)
Br = géglm_l' (6)

Remark 5 Here we restrict our attention to dimensions m > 2, so that N is connected. The case
m = 1 which corresponds to the circle is already treated in [13]. o

Remark 6 By Theorem 3, the diffusion X (®) on N is transient for 8 > By and positive recurrent
if and only if 8 < fy, due to the fact that SN U1 dl = 40 for B = fy. By standard results (see
e.g. Kliemann [10], Theorem 3.2 applied with C' = N), it is then either null recurrent or transient for
8 = Bo. It would be interesting to investigate this situation. o



3 Euclidean computations

This section considers a situation where the state space M is no longer a compact manifold but the
Euclidean space R™, with m > 2. We state a theorem (Theorem 7 below) analogous to Theorem 3 (i).
This result is interesting in itself, and its proof allows us to explain, in a simple framework, how to
characterize the attractiveness/repulsivity of a global minimum. The main idea is to expand a critical
point to a sphere, using polar decompositions, following [4].

Let U : R™ — R, be a smooth function with min U = 0. We assume that for each p € U = U~1(0),
Hess U(p) is positive definite. In particular, points in U are isolated and U is therefore countable.

For any fixed 8 € R, as in (1), we are interested in the operator Lg defined on C?(R™), via

VeeR™  Lg[fl(z) = U@)Af(x) = BVU, V) (2) (7)

where A, {(-,-) and V, respectively denote, the Euclidean Laplacian, scalar product and gradient.
Throughout all this section ||z|| = 4/{z, ) denotes the Euclidean norm of x.
Associated to (7) is the stochastic differential equation

dXP) () = VU (X (1))dt + /20 (X B)(t))dB; (8)

where B = (By)>0 is a standard Brownian motion on R™.

By local Lipschitz continuity of VU and /U, there exists, for each € R™, a unique solution
X®) :[0,7°) — R™ starting from z, (i.e. X(?(0) = z). Here, 0 < 7° < o0, denotes the explosion
time of X and is characterized by

™ >te | XP@) < .
The set R™\U is invariant, in the sense that for all ¢ > 0,2 € R"™\U,
P (XD (t) e R™U |7 > t) = 1.
The proof of this last point is the same as the proof of Proposition 1 (i) given in the appendix.

Theorem 7 (i) Suppose 8 > [y. Then, for all x € R™U and p € U,

B () —
N (I OR )
t—+00 t

< A4, B)(B=Po)| > O (9)

where Ay, A(Ap, B) are defined as in Section 2.

(i) Suppose B > By, and in addition, that there exist positive constants o, r (possibly depending on
B) such that

260U () = BVU (2),2) < —afaf? (10)

whenever |z| = r. Then, U is finite and for all x € R™U,

n(I1xX B (1) —
Z P, llimsup1 (X2 ) = pl) < —A (4, B)(B — Bo); 7 = oo] = 1. (11)

peU t—>+o0 t
(11i) Suppose < By. Then, for all p e U and x € R™\{p}

P, [tlir{é X (t) = p] = 0.



Remark 8 The condition (10) is given for its simplicity. However, the conclusion (11) holds true
under the weaker assumption, implied by (10) (see Lemma 9 below), that X(®) almost surely never
explodes (i.e 7 = o) and eventually enters a ball B(0,r) containing U for some r > 0. o

The remainder of this section is devoted to the proof of Theorem 7. We first recall some classical facts
about diffusion operators, see e.g. Bakry, Gentil and Ledoux [1]. The carré du champ I';, associated
to a Markov generator L defined on an algebra A(L) is the bilinear functional defined on A(L) x A(L)
via

vV geAL),  Tilf,gl = Llfgl - fLIg] — gL[f]

(we will denote I'z[f] =TL[f, f])-
The generator L is said to be of diffusion, if A(L) is stable by composition with smooth functions
and if we have

%))

Lip(f)] = ¢ (AL + 52Tl (12)

for any f € A(L) and any function ¢ smooth on the image of f.
In this situation we also have, with the same notations,

Trle(f)] = (©'(f)TLlf] (13)

The Markov generator given in (7) is of diffusion with A(Lg) = C*(R™). The corresponding carré du
champ is given by

v feC'R™),  Trfl = 20|Vf|* (14)

Our first goal is to show that, under condition (10), X (B never explodes and always enter the ball
B(0,r). For all s > 0, we let

e =inf{t =0 : |[XP @) <s}and 7° = inf{t =0 : [ XP (@) = s}.

Note that these stopping times depend on 3, but to shorten notation we omit this dependance in their
definition.

Lemma 9 Under the condition (10),
P.(7° = w057 < 0) =1

for all x € R™ and r is as in (10).

Proof

Let V : R™ — R be a smooth function coinciding with In(|«|?) for |z|| > r. Using the formulaes (12)
and (14) it comes that, for all |z| > r,

Lg(V)(z) = 3322 (260U (z) — (VU (), 2)) < —2a.

In particular, for all z € R™, Lg(V)(z) < C where C = sup(gepm .|z|<ry [L(V)(2)]. Thus, by Ito’s
formulae, for all £ > 1,

(k2P (7% < t) S E(V(XP(t A 7%) = V(2) + E, U La[V](XB)(s))ds | < V(z) + tC.

This shows that P, (7% <t) — 0, as k — o0. Hence P, (7% < o) = 0.



Now, by Ito formulae again, the process (M;);>o defined as

tATy
M; := V(XO(t A 7)) —In(r?) — f LgV(XP(s))ds = 2a(t A 7,
0
is a nonnegative P, local martingale. A nonnegative local martingale may not be a martingale but is
always a supermartingale (Le Gall [12], Proposition 4.7). Thus 2aE, (t A7) < Ex(M;) < V(z)—In(r?).
Hence E,(71,) < o0. [ |

Our next goal is to investigate the behavior of X(#) around a critical point p € U. Without loss
of generality, we assume that p = {0}. We let A = HessU(0). Fix € € (0,1) small enough so that
U n B(0,¢e) = {0}. Write any x € B(0,¢)\{0} under its polar decomposition x = pf with p € (0, ¢) and
6 € S™1. This decomposition induces the mapping

P : C*(B(0,¢)) 3 f — P[f]eC?(0,¢) x S™ 1)
with
V(8 e 00 xS™  Plfl(n.6) = f(oh) (15)

Endow S™~! with its usual Riemannian structure, inherited from R™, and denote (-, Y9, Va, divg
and /gy the corresponding scalar product, gradient, divergence, and Laplace-Beltrami operator. Note
that (-, - ), is just the restriction of (-, -) to the tangent space of S™~1 at 6.

Classical computations in polar coordinates show that for any f,g € C%(B(0,¢)), we have on
(0,€) x S™ 1,

PV, V)l

8,P[f12,Plg) + pl (VoPLf), VoPl]),

m—1

PIAf] = G;PLfI+

2,PLf] + pleeP[f].

It leads us to introduce the operator Lz on C?((0,€) x S™1) defined by

-1 1 1
Lﬁ' = U (63 : +m76p : +p2A6'> - B <(apu)ap ’ +p2<v9uav0'>6> (16)

where U := P[U]. Indeed, on C%(B(0,¢€)), we have the intertwining relation
LgoP = PolLg.

Lemma 10 The operator Lg extends to a diffusion operator, still denoted Lg, on C*([0,€) x S™71),
whose associated diffusion process X leave {0} x S™1 invariant. On {0} x S™ 1, identified with
sm—1 XB) admits for generator the operator G acting on C2(S™ 1) wia

Vi), Gulf] = U v (Vo) (17)

where ¥ 6 € S"L W 4(0) = {0, AO). Furthermore, G has a unique invariant probability measure on
S™1 . given by pag (see Equation (2)).

Proof
Our assumptions on U imply that, uniformly over § € S™1,
. U(p,0) 1
1 = —{0,A0 18
S = 5 (0, A49), (18)



lim V(. 0)  _ (6, AB), (19)
p—04 p
lim w — A0— (0, A0)9. (20)
p—04 P

Indeed, by the usual expansion of U around 0, we have
1
U() = U(0)+<VU(0),z)+ 5 (x,HessU(0)x) + o({x, z))
1
= §<$,A$>+O(<$,x>)
which translates into
P2 2

leading to the first announced limit (18). Similarly,

VU(z) = VU(0)+HessU(0)z + o(+/{x, x))
= Az +o(4/{(z,x)).

At x = pf with p > 0, J,U(p,0)0 is the radial part of VU(x) and VaU(p,)/p is the tangential part.
It follows that

opU(p,0) = (VU(x),0),

VD) U - 8,000,
and we get
DY) g apy 4 o),
p
VoU(p, 0)
SR = A= (0,400 +0(0)

leading to the wanted second and third results (19) and (20).
It follows that for any F € C%([0,¢) x S™~1), we have, uniformly over § € S,

1
p—04

Denoting Lg[F](0,0) the r.h.s. enables us to see Lz as a diffusion operator on [0,¢) x S™~!, whose
associated diffusion process X#) leaves {0} x S™~! invariant, and such that on {0} x S™~!, identified
with S™~1, its generator coincides with the operator defined by

Galf) = <0, 40) (3 20f(0) — 56 94D,

where

_ A6 — 0,400 1
vVoesSm! b(h) = —— L = —V,yIn({9, A)).

It is easily checked that Gg can be rewritten under the divergence form given by (17). This divergence

form implies that the probability measure j14 g defined in (2) is invariant. By ellipticity of Gjg there

is no other invariant probability measure.



Lemma 11 Suppose 8 > 5y and 0 < A < A(A, B). There ezists 0 < €y < € with the property that for
all 0 < n < 1, there exists 0 < €1 < €y such that for all |z| < e,

8
o [l sup ROX V0D

< =\B = Bo); T = OO] =P, [t =] =1—1. (22)
t—+400 t

If now, B < Bo, then for all x € R™\{0},

M[hm|X@@H=O]=O
t——+0o0

Proof

The proof follows from the stochastic persistence approach used in [4], [2]. Let V be the function
defined on (0,¢) x S™~! via

V(p,0) = —Inp). (23)

We claim that:
[a] Lg[V] can be extended into a continuous function Hg on [0,€) x S™1;
[b] T, [V] is bounded on (0,€) x S™~!; and
le] 1a,5Hs(0, )] = A(A, B)(B = Po).
Using the form of Lg (equation (16)) and the equalities (18), (19), (a) holds true with

H(0,0) = (8~ Bo) (9, A6) (24)

and (c) directly follows from the definition of A(A, 8). For (b), the definition of Lg and I, lead to

VFe((0,0xS™ Y, LI = 2u ((5pf)2+p12|Vaf\2>~

Thus,
U(p, )
2
which is bounded in view of (18). This concludes the proof of the claim.
If B> Bo,pap[Hp(0,-)] > 0 and the first assertion of the lemma follows from Theorem 5.4 in [4]
(to be more precise, this follows from the proof of Theorem 5.4 in [4], because the formulation of Theo-
rem 5.4 in [4] doesn’t specify that 1 can be chosen arbitrary close to one). If 8 < By, a g[Hg(0,-)] <0

and (see e.g. [2|, Proposition 8.1 or the proof of Theorem 3.2 (iii) in [4]) there exist positive constants
€1 < ¢,C such that E,(79) < C|In(||z]|])| < o for = € B(0,€1)\{0}.

T, V] =2

We can now conclude the proof of Theorem 7. We start with assertion (i¢). Fix f > fy. For n € N
sufficiently large (so that A(A4,,8) > 1) and p € U, let &,(p) be the event defined as

) In(llxX® (¢) —
5”(p>:{lim.§&p UX ) — )

< ~(A(Ap. )~ )6 - m)} ,

and let



The set U is finite, since (10) cannot be satisfied by a point € U and by consequence U is included
into the compact ball centered at 0 and of radius . Thus there exists, by Lemma 11, ¢; > 0 such that

N |

P, (En(p)) =

for all x € B(p,€e1) and all p e U. Let
Ue, = U B(p,e1)
peUd
and 7y, = inf{t > 0 : XP)(t) e U, }. By ellipticity of Lg on R™U, U, is open and accessible from
all z € R™, in the sense that P,(X®)(t,) € U,) > 0 for some t, > 0. Thus, by Feller continuity and
compactness of B(0,r), there exists § > 0 such that

Py(my, <o0) =6

for all z € B(0,7). Combined with Lemma 9, this proves that Py (7, < o0) > ¢ for all z € R™. Thus,
P.(&,) = 0/2

for all x € R™. The strong Markov property, implies that P,(&,) = 1. Hence
Po(()&n) = 1.

This concludes the proof of (ii).

We now pass to the proof of (i). Fix 8 > [y and assume without loss of generality that p = {0}.
Let U : R™ — R* be a smooth function which coincides with « — U (x) on a neighborhood of 0, with
z — |z|? for |z = 1, and such that U~'(0) = {0}. Let X be solution to the stochastic differential
equation given by (8) with U instead of U and (B;)¢>o the Brownian motion governing X (). The
process X (%) satisfies (11) because U satisfies (10). Thus, by Theorem 7 (i) (applied to X)) and
Lemma 11 (applied to X (), there exist 0 < €; < € < € such that whenever |z| < ey,

Y (8)
LB [ = 0] = Py [hmsupmuwtw < A B) (B — fo)ir® OO]
t—+00
(8)
= Pm []imsuplnﬂ‘xf(t)u) < _A(A75)(5 _ 50);750 — OO] .
t—+00

Here P, stands for the law of (X®) X)) starting from (z,z). Since Py(7, < ) > 0 for all
z € R™\{0}, the proof of (9) follows.

Finally (iii) is an immediate consequence of the second part of Lemma 11 (recall that 0 was an
arbitrary point of U, up to a translation).

4 Proof of Theorem 3

4.1 Proof of Theorem 3 (i)

The proof is similar to that of Theorem 7. We begin by proving a Riemannian version of Lemma
11. The proof of Theorem 3 (i) will then follow by an argument similar to that given at the end of
Section 3.

Let y € U and let Bjs(y,€) be the Riemannian ball with center y and radius e, where € > 0 is
sufficiently small so that

10



e the only critical point for U in By (y,€) is y,

e the exponential mapping exp,, : T, M — M is a diffeomorphism between the tangent ball B(0, ¢)
of T, M and Bj(y, ).

Recall that the exponential mapping exp, : Ty, M — M associates to any tangent vector v € T, M
the point # € M which is the position at time 1 of the (constant speed) geodesic starting at time 0
from y with speed v.

Consider (e1, e, ...,en) an orthonormal basis of T),M consisting of eigenvectors associated to the
eigenvalues (A1, Ag, ..., Ay, ) of the Hessian of U at the critical point y. A priori this Hessian is a bilinear
form on T, M, but the Euclidean structure of 7T}, M enables us to see it as a symmetric endomorphism
on TyM, and (A1, A2, ..., A\p,) and (e, €2, ..., €y,) correspond to its spectral decomposition.

Let (v1,v2, ..., vm) be the coordinate system associated to (eq, e, ..., €,,) on B(0,€). Such a coor-
dinate system based on the exponential mapping is said to be a normal. From now on and until the
end of this section, we identify a map f : By(y,e) — R with foexp, : B(0,¢) — R, and write f(v)
for fo expy(v). Under this identification, the matrix corresponding to the Hessian at y admits the
classical form

(kU (0)) kte[m]

where 0), is a shorthand for & The introduction of the lecture notes of Pennec [14] is a convenient
reference for these assertions (a more thorough exposition can be found in the book of Gallot, Hulin
and Lafontaine [7]).

A first interest of the normal coordinate system (v1, va, ..., Uy, ) on B(0, €) is that we can consider the
corresponding polar decomposition as in the previous section: each v = (v1,vg,...,vy,) € B(0,€)\{0}
can be uniquely written under the form pf with p € (0,€) and # € S™~!, where the basis (e1, €2, ..., €m)
enables us to identify T, M with R™.

Before going further, let us recall some other traditional notations and facts from Riemannian
geometry. For any v € B(0,¢), denote g(v) = (gk1(v))k,e[m) the matrix of the pull-back of the

Riemannian metric: for any vectors b and b from T, expy(v)M , identified with their coordinates (bx)ke[m]

and (Zk) ke[m] in the basis (Ok)gem], we have

<b b> i1 (V) by

k le[[m]]

The determinant of g(v) and the inverse matrix ¢g~!(v) are respectively denoted |g|(v) and
(g (v)) k,le[m]- For any smooth function f, the expressions of its gradient and Laplacian are given by

Vi) = Z g" (v)af(v)
lefml ke[m]
Af(v) = FklZﬂﬂak( |ggkl51f)()

Z gk’l(v) Ok f (v Z Fkl (v)

k,le[m] jelm]

where Fi ,(v) are the Christoffel symbols at v, see for instance the listing [16] (again we abuse notation
in the r.h.s by identifying f with its formulation in the coordinate system v = (v1, va, ..., Up)).

A second interest of the normal coordinate system is that at 0, we recover the usual notions: g(0)
is the identity matrix and the Christoffel symbols all vanishes at 0.
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The above expressions lead to the following formulation of the generator Lg defined in (1):

Lg- = U > g™ |-~ D 10 | =68 ) d™ava- (25)

k,le[m] je[m] k,le[m]

Again we are slightly abusing notations by calling it Lg too, especially as we see it as only defined on
C%(B(0,¢)).
The associate carré du champ is given as

Tr,- = 2U > g™op- o (26)
k,le[m]

(this is a consequence of the algebraic relation I'g, 5, - = 20, - 0; -, even if J50; is not a Markov generator,
i.e. when k #1).

Consider the mapping P associated in (15) to the polar decomposition. Since P is invertible from
C2(B(0,¢€)) to C%((0,€) x S™1), there is a unique diffusion generator Lg acting on C?((0,¢€) x S™~1)
such that

LgoP = Polg

To compute Lg, let us write that for any v € B(0, €)\{0},

p o= | D> v
ke[m]

vy
V1 e [m], 0 = —
[m] p
It follows that for any k € [m],
o = = = g,
P
5kl (¥ 1
Vie|[m], oL, = = — —0kp = —(0p; — 010
[m] ) p( : )
where 0, ; is the Kronecker symbol.
It follows that
1
O = Okdp+— > (Ops— Ok01)d, (27)

le[m]

and by composition, for any k,l € [m], we can also write dx; in terms of d,, 52, Jg; and 0y, g,, for
i,j € [m]. Replacing these expressions in (25), we get the formula for Lg in terms of differentiations
of order 1 and 2, with respect to p and the 6, I € [m].

In order to apply the general method of [4] as in Section 3, we need to check the three facts
respectively listed in the following lemmas.

Lemma 12 For any F € C([0,¢€) x S™™1), we have, uniformly over § € S"~1,

lim Ls[Fl(p.6) = GH[F(0,)](0)

p—0+

where Gg is given in (17).

12



Proof
For any v € B(0, ¢€), define

Vi ilem],  §"() O
Vi klelm], Ti,(v) = 0

and in analogy with (25),

Ly = U 3 3w -~ 2 Tho- | -8 X d"ava-

k,le[m] je[m] k,le[m]

This operator coincides with the restriction of (7) to B(0,€). It follows from (21) that uniformly
over § e S™1,

lim Ls[F1(p,0) = GalF(0.)](0)

p—0+

where the operator Eg is such that Eﬁ oP=Po Eﬁ.
Thus to get the wanted result, it is sufficient to show that

lim (L ~L)[Fl(p.0) = 0 (28)

This convergence is a consequence of the writing

(Ls—Lp)[F] = U > (g™ =3 | awF — > TL,0F |-U > g*ir), - 1Y )o;F
k,le[m] je[m] kL je[m]
-8 >, (g NopUoF
k,le[m]

and of the following facts, valid uniformly in § € S™~! as p goes to 0,:
e According to (27), for any k,l € [m], 0xF is of order 1/p and 0k F is of order 1/,02

e Due to the regularity of g and of the Christoffel symbols, for any k,[ € [m], ¢%' — g% and
Pkl — F ko are of order p.

e By the assumption that y is a global minimal, U is of order p? and d,U is of order p, for any
ke [m].

We have seen in the previous section that G is reversible with respect to the probability measure
pa,p defined in (2), where here A := A, is the diagonal matrix whose entries are the eigenvalues of the
Hessian of U at y € U. To continue the method of [4], we also need the two following ingredients.

Lemma 13 Consider the function V defined on (0,€) x S™~! wia

V(p,0) = —In(p).

The function T [V] is bounded on (0,€) x S and the function Lg[V] can be extended into a con-
tinuous function Hz on [0,€) x S™! satisfying (24) and thus pa g[Hs(0,-)] = A(4, B)(B8 — Bo).

13



Proof

We have I'j[V] = P[T',[V]] with V(v) = —3 (e v7), so it is sufficient to see that 'z, [V] is
bounded on By (y,€)\{y}. Expanding U(v) near 0 in the normal coordinate system v = (v, va, ..., vq),
we get for v small

1 2
U(’U) ~ 5 le%n]] Al’l)l

Hence, using (26),

Diefm] MVL Diefm] NUL
T, [VIw) ~ =l S B0y = S L

(Xiegm vi)? kle[m] Diefm] vp

(see also [13]).

This proves the wanted boundedness.

For the wanted convergence, in view of the computations of the previous section, it is sufficient to
see that (28) holds with F' replaced by V. Note that when applied to a function only depending on
p, as V, (27) reduce to 0y = 010,. It follows that d;V is of order 1/p and J;V is of order 1/p%. This
observation enables us to use the same arguments as in the end of the proof of Lemma 12 to conclude
that (28) holds with F replaced by V. [ |

A Riemannian version of Lemma 11 follows directly from the preceding lemma, the proof being exactly
the same as the proof of Lemma 11. The proof of Theorem 3 (7) then follows (almost) verbatim along
the lines of the arguments given in the preceding section just after the proof of Lemma 11.

4.2 Proof of Theorem 3 (i7)
Let V: N — R,z + In(U(x)~"). Observe that for all f e C?(N),
div(eVVf) = Y (VV, V) + Af) = U P 1Lgf.
Let C2(N) be the set of f € C?(N) having compact support. Then, for all f € C2(N),

J Lgfdlg =0,
N
where /g is the measure on N defined as
lg(dx) = U(x)~HP(dx).

Let p € U. By Morse’s lemma, there is a smooth chart at p such that, in this chart system, U writes
x — ||lz|? = 3, 22, Since the map 2 — [z ~20%*1) is locally integrable (i.e. in a neighborhood of
Ogm) if and only if 2(8 + 1) < m, it comes that {, U(z)~*#¢(dz) < o0 if and only if 2(8 + 1) < m,
that is 8 < .

Assuming 8 < g, the probability measure

1
ﬂf@(dl’) = @Eﬁ(dx)
(where Cj3 is a normalization constant) satisfies
JN Lgfdrg =0 (29)

for all f € C2(N). Observe that there is no evidence that the set C?(N) is a core for Lg, so that we
cannot immediately deduce from (29) that 73 is an invariant probability measure of X (8). However,
by Theorem 9.17 page 248 in Ethier and Kurtz [6] (originally due to Echeverria [5]) the following
properties (a) — (d) below ensure that 74 is invariant:
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(a) The space N is a separable locally compact metric space (for which the space C (N) of continuous
function "vanishing at infinity" coincide with {f € CO(M) : fl = 0});

(b) The set C2(N) is an algebra dense in C'(N);
(c) The operator Lg : C2(N) — C(N), satisfies the positive maximum principle;

(d) The martingale problem for (Lg, C?(N)) is well-posed: for all z € N, P2 (the law of X ()
starting from X (0) = z) is the unique probability on D([0,0), N) such that f(X(t)) —
Sé Lgf(X(s))ds is a P -martingale and ]P’f[X(O) = z] = 1, where (X (¢))¢>0 is the canonical
process on D([0,0), N).

Properties (a) — (c) are easy to verify. Property (d) follows from, on one hand, that for any € > 0
sufficiently small, the stopped martingale problem on N, = {z € M : U(x) > €} is well-posed by
uniform ellipticity of L¥) on N., and on the other hand, that these localized martingale problems
can next be extended to the whole state space N. For instance, corresponding precise statements are
found in Ethier and Kurtz [6], see Theorem 5.4 page 199, providing the existence of a solution of the
stopped martingale problem on the N, but also of the martingale problem on N, Theorem 4.1 page
182 for the uniqueness of stopped martingale problems on the N, and Theorem 6.2 page 217, for the
deduction of the uniqueness of the solution of the martingale problem on N by localization.

e(ii)(a) : follows from the fact that a strong Feller process on a connected space having an invariant
probability measure with full support, is positive recurrent (see e.g. [3], Corollary 7.10 for a statement
on discrete time Markov chains and Proposition 4.58 (ii) for the application in continuous time). In
particular, it is uniquely ergodic (i.e. its invariant probability measure is unique). Here the strong
Feller property of X(#) on N follows from Proposition 1.

(ii)(b) : The following lemma is a consequence of Lemma 13 and the stochastic persistence approach
exposed in [2], [4].

Lemma 14 Assume 3 < f8y. Then, there exist a continuous map W : N - Rt 0 < p < 1, x >
0, k=0 and T > 0 such that
(i) W(z) =d(x,U)™X on a neighborhood of U,

(i) PPOW < oW + k.

Proof
For y € U, and € > 0 sufficiently small, let V,, : M\{y} — R be a smooth map such that

P[Vy o exp,](p,0) = V(p,0) := —In(p)

whenever p < €, where, using the notation of Section 4.1, V : (0,€) x ™! — R is as in Lemma 13
and P is the mapping induced by the polar decomposition as in (15). Because I' ,[V] is bounded on
(0,€) x S™ 1 and pag[Hp(0,-)] = A(A, B)(B — Bo) < 0, it is possible, for € sufficiently small, to find
numbers x,7T > 0,k and 0 < p < 1 such that

P}’B) (V) < peXVv + K

on M\{y} (see [2], Proposition 8.2). The mapping W : N — R", defined as W(z) = el XV
satisfies the conditions of the lemma. [ |

By ellipticity of L(®) on N, every point p € N is an accessible Doeblin point for Pj(ﬁ ). Combined with
the preceding lemma this proves assertion (i¢)(b) of Theorem 3 (see e.g. Theorem 8.15 in [3]).
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4.3 Proof of Theorem 3 (i)

It follows from compactness of M and Feller continuity of X(® that, with P, probability one, every
limit point (for the weak™ topology) of the family

1 t
-9 (B)dS}
{t fO Xa t=0

is an invariant probability of X (see e.g. [3], Theorem 4.20 combined with Propositions 4.57 and
4.58). It then suffices to show that for 5 = (5, every invariant probability of X (Bo) i supported by U,
or equivalently, that every ergodic probability measure of X (%) is a Dirac measure dp for some pe U.
We proceed by contradiction. Suppose that there exists an ergodic probability measure of X (%) I
with () > 0. Then p(N) = 1 (by invariance of N) and, by ellipticity of X (%) on N, y is absolutely
continuous with respect to ¢(dx), hence also with respect to ¢g,(dx). That is pu(dz) = f(x)ls,(dx)
with f > 0 measurable and ¢3,[f] = 1. We claim that f is almost surely constant. This is in
contradiction with the fact that ¢5,(IN) = oo. It remains to prove the claim. First assume that
£l = Supsen | f(@)] < 0. Then, f € L2(€g,) because £3,[2] = ulf] < | f]- Thus,

Cso[ (P f = )°] = s, [(P 1) + ]
where g = f2 = 2f P f € L'({s,) and £5,[g] = —u[f]. Thus,

U [P — £)%1 = L, [(P° 1)2] = ulf) = € [(P F)? = f2] <0

where the last inequality follows from Jensen’s inequality. This shows that £g,-almost surely, Ptﬂ °f = f,
and also p-almost surely. By ergodicity f is p-almost surely constant. Suppose now that | f| = oo.
Set f, = min{f,n} and p,(dx) = fn(x)lg,(dz). For every Borel set A < N,

(1nP°)(A) = pn PP (AN{f < n})+(un PPOYAN{F > n}) < (uPP)YAN{f < n})+n(ls, PPO)(AN{f > n})

— (A {F <)) +nlay (A {F > n}) = jn(A).

This shows that pu, is excessive, hence invariant because every finite excessive measure is invariant (see
e.g. [3], Lemma 4.25). By what precedes, f, is p-almost surely constant. Thus f is p-almost surely
constant. This concludes the proof of the claim.

5 Appendix

5.1 The diffusion process generated by Lz and Proposition 1

Here we briefly explain how the diffusion X can be constructed and give a proof of Proposition 1.

By Nash’s embedding theorem, we can assume without loss of generality that M is a Riemannian
submanifold of R™ (equipped with its Euclidean scalar product {, )) for some n sufficiently large. For
reasons that will become clear shortly, we write V 57, Aar, divys the gradient, Laplacian, and divergence
on M, and V,div, the gradient and divergence on R™. If F is a smooth vector field on M and F a
smooth globally integrable vector field on R™ such that F |pmr = F, then F and F, induce operators on
CH(R™) and C*(M) respectively defined by:

F(f)(w) = (V@) )y = W22

for all f e C1(R"), and x € R™;

F(P)@) = (T f (@), Fla)y = L2
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for all f € C1(M), and z € M. In both formulae, (¥!),cg denotes the flow on R” induced by F.
A direct consequence of the right hand side equalities is that

F(f)lm = F(f) (30)

for every f e C'(M) and f e C'(R") such that f = f|.

Let (eq,...,en) be the canonical basis of R™. For i = 1,...,n and z € M, let E;(z) € T, M be the
orthogonal projection of e; onto T, M. Let E; be a smooth vector field on R"™, having compact support,
such that E’Z| v = FE;. It is not hard to show that such a vector field exists. One can, for example,
proceed as follows. Let M < R™ be a normal tubular neighborhood of M. Every point y € M writes
uniquely y = z + v with z € M and v € T,M+. The map r : M 3 2 + v — x € M, is a smooth
retraction. It suffices to set E;(z) = n(z)E;(r(z)) if z € M and E;(z) = 0 otherwise, where 0 < n < 1
is a smooth function with compact support in M such that n|y = 1.

The following, key property, is proved in Stroock [15], Section 4.2.1. For the reader’s convenience
we provide an alternative short proof.

Lemma 15 For every f € C2(M) and f € C2(R"), such that f = f|ar, one has
Z B (Pl = Am(f)

Proof

Let F be a C' vector field on M, and F a C' vector field on R” such that F|y, = F. For all z € R”
divF (z) equals the trace of the Jacobian matrix DE(z), while for all z € M, divy F(z) equals the
trace of the d x d matrix ((DF(z)u;,u;));; where ui,...,uq is an (arbitrary) orthonormal basis of
T, M. This has the interesting consequence that

divas(F) = div(F or)|y
where r : M — M is the retraction defined above. Let f € C?2(M). Then,

Varf = Y (Vaufrepei = Y (Varf, Epes = Y Ei(f)ei
=1 i=1

i=1
Thus,
Aprf = divag(Varf) = div(Var(f) o) |ar = Zdw Horellm
= YXV(Ei(f) o r) |, ) = Z<VMEi<f>,ei> = Z E}(f)
i=1 i=1 i=1
Here we have used the fact that V(f or)|ys = Vs f for all f e CH(M). [ |

Now, let U : R — R, be a smooth function such that INJ‘M = U, \/5 is Lipschitz and VU has
compact support. For instance U(z) = n(z)U(r(z)) + 1 — n(x) for z € M and U(z) = 1 otherwise,
where 7, r are as above. Here, the Lipschitz continuity of \/5 follows from the fact that r is smooth
and that, by assumption, the zeroes of U are non-degenerate.

Consider the stochastic differential equation on R” defined by

AX(t) = (=B VO(X(0)dr
53 (§<v0<x<t>>, EUXEDEX() + DX O)DEX(0) - BX(O) dr



where B = (B(t),..., B"(t))i=0 is a n-dimensional Brownian motion with B(0) = 0.

Since the coefficients of (31) are globally Lipschitz and bounded, the following properties (a), (b), (¢)
are classical (see e.g. Le Gall [12], Theorems 8.3 and 8.7 for (a) and (b), and Kunita [11], Theorem
4.5.1 for (¢)) :

(a) Forall z € R™, there is a unique strong solution Ry 3 ¢ — X&) (¢) to (31) such that X 32)(0) = x,

(b) The process X := (X(B2)) pn is a Feller Markov process on R” whose generator /:'5 contains
C2(R™), the set of compactly supported C? functions, in its domain and such that for all f e

C2(R™),
Ls(f) = —p(VU,VF)— ,<VU V) + ZE E[fl+U ) E
=1
= VO = VO + 5 X BIOVELT + 0 X B 32)
=1 i=1

(c) The map z — X#®)(t) is an homeomorphism. In particular,

Ve =0, XB2) () e RMNU < 3t = 0, XP2) (1) e RM\U.

Set S;(x) = 4/2U (x)E;(x). On R™\U, (31) can be rewritten, using Stratonovich formalism, as
1 ¢ ;
dX(t) = (( ﬁ—f)VU 52} )dt+ZS ))dB(t)
= (f-5)V 2 ) o dB'(t). (33)

The vector fields VU and S;’s being tangent to N, this latter expression shows that N (hence M) is
invariant for X(®. That is:

vt =0, XP2)(t) e N(resp. M) < 3t >0, XB?)(t) e N( resp. M).

It then follows that X () := (X (5’9”)):,3e M is a Feller Markov process on M, leaving N invariant, whose
generator Lg contains C?(M) in its domain and such that Lgf = Lsf|am = Lgf for all f e C*(M) and
f € C?(R") such that f|y; = f. The last equalities follows from Lemma 15 and (32), since on M we
have

§OVE ~ BT
i=1

The strong Feller property on N follows from the ellipticity of Lg on N (see e.g. Ichihara and
Kunita [8, 9], Lemma 5.1).

5.2 On Remark 2

Given 0 < A_ < Ay, and m > 2, let D(A_, Ay, m) be the set of diagonal matrices with entries
A=A <X <...< A1 < A = Ap. The set {A(A4,5) : Ae D(A_, A+, m)} is a compact interval
[A—(m, B), A+ (m, B)] (as the image by a continuous map of the compact connected set D(A_, A1, m))
contained in [A_, Ay].

Let Ae D(A_, A\;,m) be the matrix with entries A\; = ... A\j,—1 = A_ and A\, = A\4. Then

N X2 A (D! X3>> -

Z(B,A) = J[Mefn +A_(1-62)] Po(dd) =E ( STxe
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where Xi,...,X,, are i.i.d. AN(0,1) random variables. By the strong law of large numbers and
dominated convergence, this quantity converges, as m — o0, toward A=?. Thus limym_m A (m,B) =
A_. Similarly, lim, o Ay (m, ) = A4.

5.3 On spherical integrals

In (23) we could have considered another function V. Indeed, our first choice was
V = —In(U)

since it seemed somewhat more “intrinsic” with respect to U. It can be shown similarly that the points
[a] and [b] following (23) equally hold, with V replaced by V and Hg by Hg given on {0} x S™~1 by

2
Voesm ! I?IB(O,H) = —tr(A)+2(1+ ﬁ)w

where we recall that A := Hess U (0).
he sign of the quantity 4 3[Hg(0,-)] can then be used to discriminate between the attractiveness

and repulsivity of 0. In particular 14 5[Hg(0,-)] and pa g [IZIL;(O7 -)] must have the same sign. We tried
to prove directly (without success!) that

m

20+ Buasloal > e(4) = B> 1 (34)
201+ Buagloal <tr(4) & B<Z -1 (35)
with
met _ <0,4%)
VoeS", pa(l) = (0,46

A by-product of our computations is thus to show the validity of (34) and (35), which look as
natural bounds on the corresponding spherical integrals for any given definite positive matrix A.
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