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Abstract

Prey-predator models are frequently developed to investigate trophic webs and to predict the population
dynamics of prey and predators. However, the parameters of these models are often implemented without
empirical data and sometimes chosen arbitrarily. Furthermore, when the sensibility of the model to its
parameter values is tested, only a few parameters are tested and different prey-predator models (in terms of
predation function structure, for example) are rarely compared. Here, we propose a method to compare four
prey-predator models for two populations and select the more biologically plausible one to model a simplified
agricultural trophic system, including one predator compartment (the red fox Vulpes vulpes) and one prey
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group compartment (small mammals). These models are based on various Holling functional responses for
the predation interaction and take the prey intrinsic growth into account through a Verhulst logistic function.
Most parameters values (like attack rates or growth rates) were calculated from field data or based on literature
review. Uncertainty quantification is a recent trend that has gained popularity in engineering fields. In this
vein, we used Sobol indices to conduct parameter exploration around mean parameter values to investigate
and compare the model dynamics responses. Our first results showed that under our assumptions, the two
most relevant models for our study case are the saturated Holling I and II models. Furthermore, we were able
to discriminate which were the most sensitive parameters in each model. These first encouraging results open
the way for the next step, which will be to adapt this model construction to more complex prey-predator
systems, with several predator and/or several prey compartments.

1 Introduction

The Lotka-Volterra model ([Lotka, 1920], [Volterra, 1926]) is a well-known model composed of a system of
two differential equations, one for the prey and one for the predator. Each of these equations can be divided
into two terms: an intrinsic term (i.e., the natural growth or decay of the population) and an interaction term
(i.e., the growth or decline due to interspecific interaction such as predation). This model has been histori-
cally used to study population dynamics of prey and predators, such as fish population in the Mediterranean
sea [Volterra, 1926] or lynx-hares dynamics in Canada [Leigh, 1968]. In the original Lotka-Volterra model,
the intrinsic term in each equation was linear with respect to the corresponding population, resulting in its
exponential increase or decrease if the other population was extinct. The prey equation has a positive intrinsic
term to model that the prey population grows thanks to the reproduction of its individuals. On the opposite,
the predator equation has a negative intrinsic term to model predator population starvation in the absence of
prey. Furthermore, the interaction term is proportional to both populations’ product, corresponding to the
Holling type I functional response [Holling, 1959b]. This interaction term is negative in the prey equation and
positive in the predator equation to model prey mortality due to predation and predator production (prey
eaten by predators are turned into new predator individuals).
However, the original Lotka-Volterra has some limitations for modeling the population dynamics of a prey-
predator community with one prey and one predator. Firstly, in a natural ecosystem, if the predator popula-
tion goes extinct, the prey population will not be able to grow indefinitely as, beyond a certain density, the
environment may no longer sustain the prey population because of a shortage of food resources. Thus, the prey
population will tend to a limit value, known as the carrying capacity ([Andrewartha and Browning, 1961],
[Rosenzweig and MacArthur, 1963], [Wangersky, 1978]). To account for that carrying capacity, some studies
made the Lotka-Volterra model more complex by adding a density-dependent function to the intrinsic term of
the prey population ([Wangersky, 1978], [Silvert, 1983], [Kuiper et al., 2022]). One of the most usual density-
dependent functions is the Verhulst one [Verhulst, 1845], also called logistic growth. Secondly, the functional
response of predators to the prey density is not always linear. If the prey population grows to infinity, the
number of prey killed and eaten by a predator cannot increase indefinitely. It will be limited, for example,
by the time necessary to search, capture, handle and digest each prey ([Holling, 1959a], [Holling, 1959b]),
and it will result in a functional response with consumption saturation. Conversely, if the prey population is
low, a predator may switch its efforts to an alternative prey, resulting in a non-linear shape of the functional
response. Several studies thus added to the Lotka-Volterra model alternative functional responses such as
(i) Holling type I with a saturation threshold ([Liu et al., 2004], [Cheng et al., 2012]) corresponding to a pre-
dation pressure that increases proportionally to the prey density, then remains constant above a given prey
density (e.g., because the predator is satiated), (ii) Holling type II ([Sugie et al., 1997], [Liu and Chen, 2003],
[Abadi et al., 2013], [Castellanos and Chan-López, 2017]) corresponding to predation increasing asymptoti-
cally or (iii) Holling type III ([Huang et al., 2006]) corresponding to predation increasing exponentially with
the prey density when it is low, then increasing asymptotically.
Several studies have explored the existence and stability of the equilibria of Lotka -Volterra-like models when
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varying the values of its parameters ([Abadi et al., 2013], [Castellanos and Chan-López, 2017], [Tahara et al., 2018]).
Such studies usually use a system phase plan analysis [Petrovskii and Li, 2005]. However, this method only
provides information on the behaviour of equilibria from a qualitative point of view, for a given set of parame-
ter values and for an unknown vicinity around these values. Moreover, such studies generally focused on one or
a few parameters with varying values, whereas the others are fixed with arbitrary values [Abadi et al., 2013],
which finally gives an incomplete view of the dynamics around the equilibria of those models. In addition,
many studies used arbitrary values for the different parameters and not necessarily biologically consistent
ones [Castellanos and Chan-López, 2017]. Finally and importantly, few studies compared the sensibility to
parameter variations in models with different functional responses, and when they did, they did not use pa-
rameter values estimated from field data [Tahara et al., 2018].

Here, we propose a method to compare qualitatively and quantitatively different Lotka-Volterra-like mod-
els to determine which of them is the most appropriate to model a biological system. Each model has a
different Holling function (Holling I, saturated Holling I, Holling II or Holling III). Furthermore, to simplify
the writing of each model and to get rid of the differences in the unit scales of parameters, we have rescaled
them.
The biological relevance of these models are compared using (i) several biological criteria calculated over
biologically plausible value ranges for each parameter and (ii) a Sobol’s sensitivity analysis on these biolog-
ical criteria. The Sobol sensitivity analysis allows for the quantification of uncertainty [Soize, 2017], which
recently gained popularity in engineering fields, but is also relevant to theoretical research, for example in
ecology where there is uncertainty in field measurements [Reimer et al., 2022]. The combination of biological
criteria and sensitivity analysis represents, to the best of our knowledge, one of our method’s strengths. This
combination allows us (i) to identify the models consistent with biological criteria and (ii) to check if these
criteria are robust to parameter variations.

In this article, we aimed to design a toolbox allowing us to test the relevance of different Holling functional
responses for trophic models with a prey-predator couple. In the first part, we present the construction of
our models as well as the development of our method. In the second part, to test our method, we apply it
to a case study consisting in a simplified and practical trophic system extracted from a real, more complex
system, the Saclay Plateau, in which we collected our data. Finally, in the third and last part, we draw some
concluding remarks and discuss some perspectives.

2 Material & methods

2.1 Model construction

We constructed several Lotka-Volterra-Vehulst-like models. They are deterministic models, so they do not
take into account stochastic variations but allow the user to approximate the average dynamics of a system.
They are continuous rather than discrete because, mathematically, the study is much simpler but still gives
the typical behavior of the model. The model equations are:

{
X ′

1 = −α1 ·X1 + e · c ·X1 · ϕ(X2)

X ′
2 = α2 ·X2(1−K ·X2)−X1 · ϕ(X2)

(1)

with:

• X1: the biomass density of predators;

• X2: the biomass density of prey;

• α1: the net intrinsic decay rate of the predator biomass;
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• α2: the net intrinsic growth rate of the prey biomass;

• K: area of the environment saturated per biomass unit of prey (if K = 0, it means that there is no
carrying capacity for the prey);

• e: the proportion of biomass consumed by the predator on one biomass unit of prey;

• c: the conversion rate of one biomass unit of prey into one biomass unit of predator;

• ϕ(X2): the prey biomass predated per time unit, thereafter named the functional response.

Respect and homogeneisation of the units are required, this crucial step allows the modeler to compare
quantities and transpose field values to mathematical models, because they allow to compare quantities and
to pass from the field values to a mathematical model.

The tested functional responses are of four different types [Holling, 1959b]:

• Holling I: ϕ(X2) = a ·X2 ;

• Holling I with saturation: ϕ(X2) = min
(
a ·X2,

S
e

)
;

• Holling II: ϕ(X2) =
a ·X2

1 + a · b ·X2
;

• Holling III: ϕ(X2) =
a (X2)

2

1 + a · b (X2)
2 .

With:

• a: the successful attack rate of the predator on the prey for Holling I (saturated or not) and II, or the
successful attack rate of the predator on the prey per prey biomass unit for Holling III ;

• S: the ingestion capacity of the predator per time unit ;

• b: the handling and resting time necessary for one biomass unit of predator after catching one biomass
unit of prey, thereafter the handling time.

It should be noted that, from a mathematical point of view, as these are deterministic models and that
prey and predator populations vary according to growth and decay rates, they can become infinitely close to
0 but never reach it. From a simulation perspective, however, it may happen due to numerical errors of the
solver when the system is solved numerically .

The value of the parameter b is difficult to estimate from field data because it would require to assist or
record predation events and prey consumption events. Furthermore, it can also be difficult to find such data
in the literature. Thus, we propose an alternative method under some hypotheses. For the Holling II and III
models, if we hypothesize that the prey density can grow up to infinity, then:

ϕ(X2) =
a(X2)

θ

1 + a · b(X2)θ
X2→+∞−−−−−−→ 1

b
=⇒ e · ϕ(X2) = e · a(X2)

θ

1 + a · b(X2)θ
X2→+∞−−−−−−→ e

b

where θ ∈ {1, 2}. If we make the hypothesis that the asymptote of Holling II and III functional responses
correspond to the predator satiety (i.e., that the handling time of the predator has evolved in such a way
that the predator tends to reach satiety when the disponibility of the prey is unlimited), then we can consider
that:

e · ϕ(X2) = e · a(X2)
θ

1 + a · b(X2)θ
X2→+∞−−−−−−→ S.

Thus, under that hypothesis, we have b =
e

S
and the Holling II and III functional responses become:

ϕ(X2) =
a (X2)

θ

1 + a · e
S
(X2)

θ
.

We consider the system of equations (1) with each of the 4 Holling functions corresponding to the four models
we investigate in this study.
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2.2 Model parameter scaling

Respect and homogenization of the units are required to allow comparing the quantities and to transpose field
values into a mathematical model. We simplify each model by scaling its parameters. The scaling consists in
combining the different parameters to obtain parameters with homogenized units (i.e., parameters that are
dimensionless or homogeneous to a time, thereafter scaled parameters). This eliminates the need to consider
different scales of units when comparing parameters. For this purpose, we define XR1 and XR2 the reference
biomass density of predator and prey, respectively, and Tref a reference time interval. Those reference values
can be chosen according to the modeler’s choice.

Once simplified (see Appendix A for the detail), the different models are written as follows:

Holling I:


X̃1

′
=

[
−Tref

T̃r1

+
Tref

T̃c

· X̃2

]
X̃1

X̃2

′
=

[
Tref

T̃r2

(1− κ̃ · X̃2)−
Tref

T̃a

· X̃1

]
X̃2

Holling I with saturation:


X̃1

′
=

[
−Tref

T̃r1

+
Tref

T̃c

·min

(
X̃2,

1

λ̃

)]
X̃1

X̃2

′
=

[
Tref

T̃r2

(1− κ̃ · X̃2)−
Tref

T̃a

·min

(
X̃2,

1

λ̃

)
X̃1

X̃2

]
X̃2

Holling II:


X̃1

′
=

[
−Tref

T̃r1

+
Tref

T̃c

· X̃2

1 + λ̃ · X̃2

]
X̃1

X̃2

′
=

[
Tref

T̃r2

(1− κ̃ · X̃2)−
Tref

T̃a

· X̃1

1 + λ̃ · X̃2

]
X̃2

Holling III:


X̃1

′
=

[
−Tref

T̃r1

+
Tref

T̃c

· (X̃2)
2

1 + λ̃(X̃2)2

]
X̃1

X̃2

′
=

[
Tref

T̃r2

(1− κ̃ · X̃2)−
Tref

T̃a

· X̃1 · X̃2

1 + λ̃(X̃2)2

]
X̃2

With the scaled parameters:

• X̃1 =
X1

XR1
: quantity of reference biomass density units of the predator;

• X̃2 =
X2

XR2
: quantity of reference biomass density units of the prey;

• κ̃ = K ·XR2: saturation rate of the environment in the presence of the reference biomass density of the
prey;

• T̃r1 =
1

α1
: characteristic intrinsic decay time of the predators;

• T̃r2 =
1

α2
: characteristic intrinsic growth time of the prey;

• T̃c =
1

a · e · c ·XR2

(
or T̃c =

1

a · e · c (XR2)
2 for the Holling III model

)
: characteristic intrinsic growth

time of the predator via the predation on the prey and in the presence of the reference prey density;

• T̃a =
1

a ·XR1

(
or T̃a =

1

a ·XR1 ·XR2
for the Holling III model

)
: characteristic decay time of the prey

due to the predation in the presence of the reference predator density;

• λ̃ =
a ·XR2 · e

S

(
or λ̃ =

a (XR2)
2 · e

S
for the Holling III model

)
: daily saturation rate of a predator’s

stomach in the presence of the reference prey biomass density (which is a constant of reference).
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Summary of all the parameters introduced

X1: biomass density of predators ;

X2: biomass density of prey;

α1: net intrinsic decay rate of the predator biomass ;

α2: net intrinsic growth rate of the prey biomass ;

K: area of the environment saturated per prey biomass unit ;

e: proportion of biomass consumed by the predator for one prey biomass unit ;

c: conversion rate of one prey biomass unit into one predator biomass unit ;

ϕ(X2): functional response ;

a: successful attack rate of predator on prey for the Holling I (saturated or not) and II

models, or successful attack rate of predator on prey per prey biomass unit for the Holling

III models ;

S: ingestion capacity of the predator per time unit ;

b: handling time ;

X̃1: quantity of reference biomass density units of the predator ;

X̃2: quantity of reference biomass density units of the prey ;

κ̃: saturation rate of the environment in the presence of the reference biomass density of

the prey ;

T̃r1: characteristic intrinsic decay time of the predators ;

T̃r2: characteristic intrinsic growth time of the prey ;

T̃c: characteristic growth time of the predator via the predation on the prey and in the

presence of the reference prey density;

T̃a: characteristic decay time of the prey due to the predation in the presence of the reference

predator density;

λ̃: saturation rate of a predator’s stomach per time unit in the presence of the reference

prey biomass density (constant of reference).

Since we will mostly use parameters and scaled population sizes, we will remove the "∼" to lighten the
notations. In the following sections, and unless otherwise stated, variables and parameters without "∼" will
be scaled.

2.3 Properties of the model dynamics

A preliminary investigation of the models allowed us to identify some properties relating to the equilibrium
and long-term behavior of the models.
Firstly, we verified that for any of the Holling functions, as long as K > 0, all the model solutions are
bounded: species density cannot grow to infinite values. Then, as a consequence of the Poincaré-Bendixson
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theorem ([Poincaré, 1881], [Poincaré, 1882] and [Bendixson, 1901]), we know that there are only two possible
asymptotic behaviors for a trajectory of our model: it can either converge to a stable equilibrium or converge
to a stable limit cycle.

Equilibrium of the system

There are three possible configurations for an equilibrium:

• X1 = 0 and X2 = 0: both species are extinct. This equilibrium can be reached only if both initial
populations are 0.

• X1 = 0 and X2 =
1

κ
. The predator is extinct and the prey is at its maximum capacity.

• X1 = X∗
1 > 0 and X2 = X∗

2 > 0, the unique coexistence equilibrium where X∗
1 and X∗

2 depend
on the parameters and the Holling functional response (see Appendix B for the detailed formula of
the equilibrium). Depending on the parameters, there can be degenerate cases where the coexistence

equilibrium does not exist. If this happens, the solution converges to the second equilibrium
(
0,

1

κ

)
.

Global growth rate of the predator

We define the global predator growth rate as the difference between its intrinsic decay rate and its growth

via predation. The global growth rate at a given time is obtained by computing
X ′

1

X1
. For Holling I without

saturation, the global growth rate is given by −Tref

Tr1
+

Tref

Tc
X2 and is not bounded (in particular, it can

always be positive if X2 is large enough). However, for Holling I with saturation, Holling II and Holling
III, the theoretical maximum (hereafter αMsim) that this global growth rate can reach during simulations is

given by the relation: αMsim = −Tref

Tr1
+

Tref

Tc.λ
. If αMsim < 0, then the global predator growth rate is always

negative: consequently, the predator population will inevitably tend towards 0, even if the prey population
density is high. Thus, for biological relevance, we require αMsim > 0, which is equivalent to the condition
Tr1 > λTc. Hereafter, we will only focus on the case where the condition αMsim > 0 is verified. Also, we will
refer to the coexistence equilibrium simply as "the equilibrium".

Bifurcation and limit cycles

For Holling I without saturation, a limit cycle does not appear: we can show that all solutions converge to
the equilibrium when it exists.
For Holling I with saturation, Holling II and Holling III, the existence of a limit cycle depends on the pa-
rameters κ, λ, Tr1 and Tc. We choose to express this condition as an inequality on κ. For these three models,
there is a critical value for κ (hereafter κcrit) that depends on λ, Tr1 and Tc, such that there is a limit cycle
if and only if κ < κcrit.

The model using Holling I with saturation is quite complex because when the limit cycle exists, not
all the solutions converge to it: if the initial condition is in a stable zone close to the equilibrium, the
trajectory will converge to the equilibrium. Furthermore, there is no exact formula for κcrit, although we can
compute it numerically. We found an empirical estimation for κcrit associated with Holling I with saturation:

κcrit ≈
λ

2 + 2.422
3

√
1−

(
λ · Tc

Tr1

)2

For Holling II and III, κcrit can be calculated exactly:

• κcrit = λ ·
1− λ · Tc

Tr1

1 + λ · Tc

Tr1

for Holling II ;
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• κcrit =
√
λ ·

λ · Tc

Tr1
− 1

2

λ · Tc

Tr1

·

√√√√√√1− λ · Tc

Tr1

λ · Tc

Tr1

for Holling III.

For these two last models, the limit cycle is unique, and when the parameters are fixed all solutions (if the ini-
tial conditions are strictly positive and different from the equilibrium) have the same asymptotical behaviour:
i.e., convergence to the limit cycle when κ < κcrit, and convergence to the equilibrium when κ > κcrit. (see
Theorem 3 in [Ding, 1989])

For Holling I with saturation, Holling II and Holling III, parameter κ, compared with κcrit, has a major
influence on the dynamics of the model. When κ < κcrit, the amplitude of the cycle increases rapidly as κ

decreases. For solutions that converge to the equilibrium, larger values of κ increase the speed of convergence.

2.4 Biological criteria to select the most relevant model

To assess the biological relevance of the different models in the function of their parameter values and vari-
ations, we determine four biological criteria. All these criteria are calculated and averaged from 2,000 time
units (i.e., after the transition dynamics) to 15,000-time units. The four biological criteria are as follows:

(i) mean prey and predator population sizes. The parameter values are estimated from the field data. Thus,
if the initial chosen conditions are equal to the average populations estimated from field data, it can be
expected that the trajectories of the prey and predator populations will remain equal to these initial
conditions on average. This is only valid if the average populations and parameter values estimated
from the field data are estimated over a sufficient number of years. This ensures that there is no peak
or trough in the populations at the time of the field observations.

(ii) minimum prey and predator population sizes. If the minimum tends too close to 0, its dynamics would
probably stop in reality, but since the model is deterministic, the 0 population cannot be reached.

(iii) maximum percentage by which αMbio (i.e., maximum predator growth rate theoretically achievable from
a biological point of view) is exceeded. αMbio is the growth rate of a predator population in which all
individuals live their maximum lifespan and all adults reproduce with the maximum number of young.
It is calculated using Cole’s equation ([Cole, 1954], [Fagan et al., 2010]) whose solution allows us to
estimate the maximum intrinsic growth rate of a population based on its life history traits:

e−rmax +me−rmaxβ −me−rmax(γ+1) = 1

Where rmax is the maximum density-independent value per capita population growth rate, β is the age
at first reproduction, γ is the age at last reproduction, and m is the average number of female offspring
produced per female per year.
Then, the daily net per capita intrinsic growth rate αMbio could be calculated as:

αMbio = rmax − 1

To estimate αMbio, we used Cole’s equation by considering the maximum litter size rather than the mean
litter size of the predator. We considered that if αMbio is exceeded, then the model is less relevant.

(iv) percentage of the simulation time during which αMbio is exceeded. The longer αMbio is exceeded, the
less relevant the model is.

Compared with the third criterion, the fourth criterion allows the modeler to gain a more mitigated view of
the global predator growth rate, as it may exceed αMbio only for a short time and mostly be inferior to it.
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2.5 Sensitivity analysis

We perform Sobol’s analysis [Sobol, 2001] to further explore the sensitivity and robustness of the biological
criteria to the scaled parameters. Sobol’s analysis is a variance-based statistical technique for global sensitivity
analysis that measures the individual importance of each parameter and their combined effect on the model
output, which are our different biological criteria here. The measured importance is expressed as Sobol’s
indices, comprised between 0 and 1. The closer to 1 Sobol’s index is, the more sensitive to the corresponding
parameter or parameter interaction the model output. Here, Sobol’s index allows us to discriminate the most
sensitive parameters in the models and the most robust models to the parameter variations.
To calculate the underlying variances used to calculate Sobol’s indices, we used the Polynomial Chaos
Expansion (PCE) method, since the computational cost is lower than the Monte Carlo (MC) simulation
([Sudret, 2008], [Tosin et al., 2020]).
These analyses were performed with MATLAB (version 2022a, [MATLAB, 2022]), its UQLab tool [Marelli and Sudret, 2014],
which is a toolbox designed to calculate uncertainty quantifications, and the computational library SoBioS
[Tosin et al., 2020].

2.6 Simulation plan

2.6.1 Mean values and value intervals of the parameters

We calculate the values of the different biological criteria over an interval of values for each parameter in
our models. This allows us to explore the variation in the values of these biological criteria with different
parameter values instead of a single value.
To do this, we first estimate the mean values and biologically plausible ranges for each unscaled parameter
using field data or literature data when the former are unavailable.
Then, from these ranges of values, we calculate the biologically plausible intervals of the scaled parameters,
since these are combinations of unscaled parameters.

2.6.2 Drawing of the parameters for the simulations

As mentioned previously, we calculate the different biological criteria for the different parameter values. Each
set corresponds to a simulation of the system. The choice of each set of parameters is made randomly. Each
parameter is drawn randomly according to a uniform distribution in its range of values. Regarding Sobol’s
analysis, each parameter is drawn as random according to a uniform distribution but in a shortened interval
of around 10% of the parameter mean value.

2.6.3 Simulation of trajectories

The system is solved for each set of the parameters over 15,000 time units. The simulations are performed
with MATLAB software (version 2022a, [MATLAB, 2022]) using the ode23s solver. During the simulation, if
a population becomes too close to 0 due to numerical errors, it may take negative values, which is biologically
inconsistent. Thus, if a population becomes negative, we consider it to be extinct and fix it to 0 for the rest
of the simulation.

2.6.4 Calculation of the biological criteria and Sobol’s indices

After simulating the population trajectories, the different biological criteria are calculated for each set of
parameters. Sobol’s index is calculated during the simulations of the trajectories on MATLAB.
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3 Case study

In order to test our methodology, we ran our models on a practical fox-micromammal system inspired by
one study site and its field data (Saclay Plateau agrosystem, France; see Appendix C, D, E and F for more
details). This simple predator-prey system is extracted from a more complex trophic network that includes
two predators of the main predators of the Saclay Plateau (i.e., red fox Vulpes vulpes and domestic cat Felis
silvestris catus) and four prey groups (i.e., large and medium-sized birds, small-sized birds, micromammals
and lagomorphs), hereafter known as main prey groups. These four prey groups have a predominant place in
the fox diet [Castañeda et al., 2020], and their density was estimated from field surveys. In this model, other
secondary food sources (e.g., arthropods, earthworms, fruits, anthropogenic remains) are also available and
consumed by the predators. They are either prey found in low biomass in the fox diet [Castañeda et al., 2020]
or not monitored prey. In our simplified fox-micromammal system, micromammals (Cricetidae, Apodemus
sylvaticus) are the main prey of the fox, while the other main prey groups are considered absent. Therefore,
in our case study, foxes can only consume micromammals and other secondary food sources. We express
biomass in kg and biomass density in kg.Ha-1. We used a time unit of 1 day to consider the fox’s daily diet
and energetic requirements. However, if the data were not available at this degree of precision, larger time
units (e.g., 1 month or year) could also be used. The homogenisation of the units must be respected, because
they allow the comparison of quantities and the transition from field values to a mathematical model.

3.1 Biological model

3.1.1 Parameter estimations

The values of the parameters are mostly estimated based on field data obtained from the Saclay Plateau and
completed with data from the literature. The fox diet is estimated from the analysis of scats collected between
autumn 2014 and summer 2016 and used to estimate A, the mean daily rate of biomass of a fox gained via
the consumption of alternative resources, and a the successful attack rate of a fox on micromammals. Prey
and predator population surveys, performed from autumn 2014 to summer 2016 and from winter 2018 to
spring 2022, are used to estimate mean biomass densities of predator and prey. We take these mean biomass
densities as X̄R1 and X̄R2 (i.e., the reference biomass density units of the predator and prey, respectively).
The first 2 years of the population survey, in combination to diet estimated from scat collected in these same
years, are also used to estimate the successful attack rate of foxes on micro-mammals.
To avoid excessively wide spaces for the scaled parameters, we fix several parameters based on our biological
knowledge of the system: X̄R1, X̄R2 since they are used as reference values, and S, e and c because we assume
that they do not vary much in natura. For the parameters with less certainty regarding the estimation (i.e.,
K) and for parameters unlikely to vary widely (i.e., a since it is based on 2 years of data, cf. below), we fixed
the intervals to around 10% of the average value, which, though arbitrary, is biologically plausible. Finally, for
the other parameters (i.e., α1 and α2), the intervals are estimated based on a biologically plausible hypothesis.

Reference biomass density units of the predator X̄R1 and prey X̄R2 are calculated as the
mean index of density calculated from autumn 2014 to summer 2016 and from winter 2018 to spring 2022,
which respectively correspond to our seasonal night counts of foxes (see Appendix D for a detail description
of the field night count) and to our seasonal capture protocol of small mammals (see Appendix E for a detail
description of the capture protocol of small mammals).

Daily net intrinsic growth rate of the predator biomass α1 is calculated by taking it as a bal-
ance between (i) the losses of predator biomass related to the energy required to maintain the field metabolic
rate (FMR), which include base metabolic rate as well as energy expenditure required to predator activities
like searching and handling prey, (ii) the biomass gained via the consumption of alternative resources and
(iii) the biomass gained due to the production of new foxes via reproduction. The FMR is the total energy
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cost that a wild animal pays during a day, including the costs of basal metabolism (BMR), thermoregulation,
locomotion, feeding, digestion and all other energy-costing activities and physiological processes undertaken
by the predator during the day. The alternative resources are sources of food other than micromammals such
as fruits, arthropods, earthworms and anthropogenic remains.

The FMR is estimated from the allometric relationship given by [Nagy et al., 1999] for species of the Car-
nivora order (see Appendix G for the detailed estimation of the FMR), which gives a rate of M = 0.098 day−1.

We choose to express the gain of biomass R via fox reproduction as a mean daily rate, which gives:
R = 0.0048 day−1 (see Appendix D for the detailed estimation of the biomass gain rate due to reproduction).

The mean daily rate A of biomass of fox gained via the consumption of alternative resources (i.e., fruit,
earthworms, arthropods, anthropogenic remains) is estimated by analyzing the content of scats collected
seasonally for 2 years (from autumn 2014 to summer 2016). We obtain A = 0.0049 day −1 (see Appendix
H for the detailed description of the scat analysis protocol and the predator gains of biomass due to prey
metabolisation).

Finally, we obtain a mean value of −α1 = −M +R+A = −0.088 day −1.

The minimum value of α1 (i.e., minimum decay of the fox population) is calculated by considering a repro-
duction with a maximised litter size equal to the number of young that a female can properly and simultane-
ously breastfeed (i.e., equal to the mean number of teats per female fox, namely, eight teats, [Zimen, 1980]).
We assume that the additional young could not be fed correctly and would die. The maximum value of α1

(i.e., maximum decay of the fox population) is calculated by considering no reproduction or biomass gain
from alternative food, which is equal to the decay rate due to the FMR.

Daily net per capita intrinsic growth rate of the prey biomass α2 is estimated using Cole’s
equation (see Section 2.4 above for more details). The life history traits necessary to resolve the equation are
taken from the PanTheria [Jones et al., 2009] and AnAge databases [De Magalhaes and Costa, 2009].

The minimum value of α2 is taken as half the mean value of α2, thus mimicking a particularly low survival
or reproduction rate due to the unfavourable environmental conditions, among others. The maximum value
of α2 is calculated by solving the Cole equation while considering a reproduction rate with a maximised litter
size for each prey species in the prey group equal to the number of young that a female can properly and
simultaneously breastfeed (i.e., equal to the number of teats on a small female mammal).

Minimum number of hectares in the environment saturated by the presence of 1 kg of
prey K (i.e., inverse of the prey carrying capacity). Here we obtain a time series for a small mammal
population in a site comparable to the Saclay Plateau from the time series database (Global Population
Dynamics Database). From the time series, we estimate the number of hectares saturated by 1 kg of small
mammals and name it KTimeSeries, and the intrinsic growth rate as αTimeSeries. These estimates were
made with RStudio (R version 3.6.3 [R Core Team, 2020]) using the pva function of the package PVAClone
[Nadeem et al., 2016].
However, this is a time series of natural small mammal populations, which are already subject to predation
pressure. So, if K is equal to KTimeSeries in our model, predation would be considered twice. However, it is
not possible to disentangle the impact of predation from other factors. To be able to estimate a value of K,

we assumed that:
1

KTimeSeries
is proportional to αTimeSeries and that

1

K
is proportional to α2.
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Finally, K is calculated with the assumed proportional relation:

K =
KTimeSeries · αTimeSeries

α2

which gives a mean value of 0.034 Ha.kg−1.

Successful attack rate of the predator on prey a is estimated by analysing the content of scats
collected seasonally. We obtain a = 0.086 j−1.(kgPred)−1.Ha for unsaturated and saturated Holling I, a = 0.13

j−1.(kgPred)−1.Ha for Holling II and a = 1.6 j−1.(kgPred)−1.(kgProie)−1.Ha for Holling III (see Appendix F
for a detailed description of the scat analysis protocol and the estimation of a).
The maximum and minimum values of a for each Holling response were taken as the mean value of a, plus or
minus 10%, respectively. Though arbitrary, it is biologically unlikely that successful attack rates varied widely
(as this is an average attack rate based on 2 years of data), although such a variation remains biologically
plausible.

Proportion of biomass consumed by the predator on 1 kg of prey e is taken to be equal to
1, as small mammals are generally swallowed entirely by foxes ([Goszczyński, 1974]).

Conversion rate of 1kg of prey into 1 kg of predator c was estimated using the correction factor
(or the coefficient of digestibility) given by [Lockie, 1959] and [Goszczyński, 1974] for small rodents consumed
by foxes (see Appendix I for a detailed description of the calculation of the conversion rate of small mammals).

Calculation of the scaled parameters and their intervals of values are determined from the biological
parameters (Table 1).

For κ, however, its values taken within this interval are far from the value of κcrit for each of our models
(see Section 2.3 and Table 1). This causes large oscillations in the populations during the simulations (see
Section 3.2.1).
Thus, we decided to carry out the second series of simulations with, for each Holling function, a value of κ
equal to κcrit ± 10% (see Section 2.3 for the detailed formula of κcrit with each Holling function and Table 1
for the values of κcrit).

3.1.2 Choice of the parameters in biologically plausible intervals

For simulations aiming to calculate the biological parameters, we randomly draw each parameter in its plau-
sible biological range following a uniform law. For simulations aiming to use Sobol’s analysis, we restrict the
variation of the parameter to better discriminate which parameters are sensitive with small variations (i.e.,
model sensitivity to each parameter). Thus, for the simulations used for Sobol’s analysis, we randomly draw
each parameter in a range of values equal to its mean plus or minus 10%.

3.1.3 Simulation of trajectories of the study case

The system is solved for each set of parameters over 15,000 time units. The simulations are performed with
MATLAB software (version 2022a, [MATLAB, 2022]) using the ode23s solver. During a simulation, if a
population moves too close to 0 due to numerical errors, it may take negative values, which is biologically
inconsistent. So, if a population becomes negative, we consider it extinct and fix it to 0.
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Name Definition Estimation method Mean
value

Values
interval Units

U
ns

ca
le

d
pa

ra
m

et
er

s

XR1
Reference biomass density units of the
predator

Mean predator density estimated from
population surveys

0.12 fixed kgpred.Ha−1

XR2
Reference biomass density units of the
prey

Mean prey density estimated from population
surveys

0.91 fixed kgpred.Ha−1

S Predator daily ingestion capacity Taken from [Webbon et al., 2004] 0.12 fixed kgprey.kgpred
−1.day−1

α1 Predator daily net intrinsic growth rate
Difference between gains from consumption of
alternative food resources and reproduction, and
losses from metabolism

0.088 0.085–0.098 day−1

α2 Prey daily net intrinsic growth rate Solution of Cole’s equation with life history traits 0.020 0.01–0.022 day−1

K
Environment area saturated by the
presence of a unit of prey Taken proportional to α2 0.034 0.031–0.037 Ha.kgpred

−1

e
Proportion of biomass consumed by the
predator for a unit of prey Taken from literature data ([Goszczyński, 1974]) 1 fixed dimensionless

c
Conversion rate of a unit of prey into a
unit of predator

Estimated from coefficient of digestibility
([Lockie, 1959], [Goszczyński, 1974])

0.96 fixed kgpred.kgprey
−1

a
(HI)

Successful attack rate of the predator on
the prey (HI saturated or not)

Calculated from scat analysis and prey
population survey

0.086 0.077–0.095 day−1.kgpred
−1.Ha

a
(HII)

Successful attack rate of the predator on
the prey (HII)

Calculated from scat analysis and prey
population survey

0.13 0.12–0.14 (day.kgpred)
−1.Ha

a
(HIII)

Successful attack rate of the predator on
the prey (HIII)

Calculated from scat analysis and prey
population survey

1.6 1.4–1.8 (day.kgpred.kgprey)
−1.Ha2

Sc
al

ed
pa

ra
m

et
er

s

Tr1
Predator characteristic intrinsic decay
time Tr1 = 1/α1 11 10–12 day

Tr2 Prey characteristic intrinsic growth time Tr2 = 1α2 50 45–100 day

κ
Environment saturation rate by the
reference biomass density of the prey κ = K.XR2 0.031 0.028–0.034 dimensionless

Kcrit

(HIS) Critical value of K with HIS
Kcrit =

a · e ·XR2

S

(
A

(
1−

( α1

c · S

)2)
+B

√
1−

( α1

c · S

)2
+ C

) 0.17 0.15–0.19 dimensionless

Kcrit

(HII) Critical value of K with HII
Kcrit =

a · e ·XR2

S
·
1− α1

c · S
1 +

α1

c · S

0.13 0.12–0.14 dimensionless

Kcrit

(HIII) Critical value of K with HIII Kcrit =

√
a · e ·XR2

S

(
1− c · S

2α1

)√
c · S
α1

− 1 0.67 0.60–0.74 dimensionless

λ
(HI)

HI (saturated or not) predator’s stomach
daily saturation rate in the presence of
XR2

λ =
a.e.XR2

S
0.65 0.59–0.72 dimensionless

λ
(HII)

HII predator’s stomach daily saturation
rate in the presence of XR2

λ =
a.e.XR2

S
0.98 0.89–1.1 dimensionless

λ
(HIII)

HIII predator’s stomach daily saturation
rate in the presence of XR2 λ =

a.e. (XR2)
2

S
11 9.9–12 dimensionless

Tc

(HI)

Predator HI (saturated or not)
characteristic intrinsic growth time via
predation in the presence of the reference
prey density

Tc =
1

a.e.c.XR2

13 12–15 day

Tc

(HII)

Predator HII characteristic intrinsic
growth time via predation in the presence
of the reference prey density

Tc =
1

a.e.c.XR2

8.8 8.0–9.8 day

Tc

(HIII)

Predator HIII characteristic intrinsic
growth time via predation in the presence
of the reference prey density

Tc =
1

a.e.c. (XR2)
2

0.79 0.71–0.87 day

Ta

(HI)

Prey HI (saturated or not) characteristic
decay time due to predation in the
presence of the reference predator density

Ta =
1

a.XR1

97 88–108 day

Ta

(HII)

Prey HII characteristic decay time due to
predation in the presence of the reference
predator density

Ta =
1

a.XR1

64 58–71 day

Ta

(HIII)

Prey HIII characteristic decay time due
to predation in the presence of the
reference predator density

Ta =
1

a.XR1.XR2

5.7 5.2–6.4 day

Table 1: Mean and interval values of the parameters
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3.1.4 Calculation of the biological criteria and Sobol’s indices

Once the population trajectories have been simulated, the different biological criteria are calculated for each
set of parameters with 2,000 time units corresponding to 2,000 days (i.e., about 5.5 years), which stabilises
the model. Note that micromammals are the only main prey group in our simplified model compared to the
more complex model from which it is extract. We are aware that, if the other main prey groups had been
present, the predator would have divided its hunting time between the different prey groups and its growth
would have relied on more prey. However, as only micromammals are present, we expect the predator to kill
and eat more of them by using the time normally spent hunting the other main prey groups. We are also
aware that our simplified practical model does not take into account the mortality of small mammals due to
cats. We therefore do not know whether the predation in our simplified practical model is higher or lower
than in our study site. Thus, we cannot predict whether the average population sizes of prey and predators
simulated in our model will be higher or lower than those estimated from the field data. Consequently, our
first biological criterion is of limited use in our specific case study.

The calculation of Sobol’s indices is done during the simulations of trajectories, using the PCE method,
the UQLab toolbox [Marelli and Sudret, 2014] and its computational library SoBioS [Tosin et al., 2020]. We
only applied realized Sobol’s analysis to models with κ values around κcrit, because when κ is proportional
to α2, this entails large oscillations in both the population sizes which tend very close to 0, end the global
growth rates of predators, which are much too large compared with αMbio (see Section 3.2.1). Consequently,
the models are less biologically plausible.

3.2 Results of the case study

3.2.1 Using K proportional to α2

Holling I model: For the Holling I model, all simulations (5,000) converge to an equilibrium (Table
2). The mean prey population size is slightly over 1 (i.e., 1.22 ± 8.71e−2 times XR2), which means that on
average the prey population oscillates slightly above its mean field values. The mean predator population size
is 1.49 ± 3.36e−1 times XR1, which means that on average the predator population oscillates around 50%
over its mean field value.
The maximum global growth rate exceeds αMbio in most simulations (percent excess: 1.93e2%±7.67e1; quan-
tile 5: 5.57e1%). This means that on average, the global growth rate always exceeds what is theoretically and
biologically plausible for some time during the simulation. However, this lasts for less than 10% of the time
(7.06% ± 2.66) on average.

Saturated Holling I model: For the saturated Holling I model, 2,980 simulations (59.60%) converge to
the equilibrium and 2,020 (40.40%) to the limit cycle (see Table 2). In 416 simulations (8.32%), the predator
population becomes extinct due to excessively high oscillations.
For solutions converging to the equilibrium, the mean prey population size oscillates slightly over its mean
field value (1.18± 6.61e−2 times XR2 on average), whereas the mean predator population size oscillates 40%
over its mean field value on average (1.37± 2.90e−1 times XR1). The maximum global predator growth rate
exceeds αMbio in more than 95% of simulations (percent of excess: 3.36e2%± 1.27e2 ; quantile 5: 1.03e2%).
So, in each simulation, the predator’s global growth rate is almost always higher than what is biologically
plausible for a short time. However, this excess lasts only 1.06e1%± 3.03 of the simulation time on average,
meaning that during the simulations, the global growth rate mostly remains within the biologically plausible
range of values.

For solutions converging to a limit cycle, the mean prey and predator population sizes oscillate far over
their mean field value (1.03e1 ± 1.94 times XR2 and 7.55 ± 1.86 times XR1 respectively). Furthermore, the
minimum predator population size goes very close to 0 (6.89e−11 ± 5.79e−10), meaning that the predator
population would probably go extinct in reality. The maximum global growth rate always exceeds αMbio

(percent of excess: 3.78e2% ± 6.38e1 ; minimum: 2.92e2%), which means that in every simulation there is
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H
ol

lin
g

I

5000 simulations (100%) converging to an equilibrium 0 simulations (0%) converging to a limit-cycle
Biological criteria Mean Median q05 q95 Mean Median q05 q95
Mean prey population size 1.22± 8.71e−2 1.22 1.08 1.37

Minimum prey population size 1.06± 4.90e−2 1.07 9.79e−1 1.14

Mean predator population size 1.49± 3.36e−1 1.48 9.77e−1 2.04

Minimum predator population
size 1.05± 2.43e−1 1.07 6.45e−1 1.42

Maximum global predator
intrinsic growth rate 1.29e−2± 3.37e−3 1.31e−2 6.85e−3 1.81e−2

Maximum percent excess of
predator αMbio (%) 1.93e2± 7.67e1 1.98e2 5.57e1 3.11e2

Percent of time exceeding
predator αMbio (%) 7.06± 2.66 6.87 2.67 1.20e1

H
ol

lin
g

I
sa

tu
ra

te
d 2980 simulations (59.86%) converging to an equilibrium 2020 simulations (40.14%) converging to a limit cycle

Mean prey population size 1.18± 6.61e−2 1.18 1.07 1.29 1.03e1± 1.94 1.08e1 5.78 1.25e1

Minimum prey population size 9.53e−1± 5.54e−2 9.73e−1 8.37e−1 1.01 3.43e−3± 2.84e−3 2.62e−3 3.98e−4 9.05e−3

Mean predator population size 1.37± 2.90e−1 1.33 9.54e−1 1.88 7.55± 1.86 7.74 4.02 1.04e1

Minimum predator population
size 7.69e−1± 1.45e−1 7.89e−1 5.12e−1 9.67e−1 6.89e−11± 5.79e−10 9.73e−14 0.00 1.19e−10

Maximum global predator
intrinsic growth rate 1.92e−2± 5.57e−3 1.97e−2 8.92e−3 2.75e−2 2.10e−2± 2.81e−3 2.05e−2 1.75e−2 2.65e−2

Maximum percent excess of
predator αMbio (%) 3.36e2± 1.27e2 3.48e2 1.03e2 5.24e2 3.78e2± 6.38e1 3.66e2 2.98e2 5.03e2

Percent of time exceeding
predator αMbio (%) 1.06e1± 3.03 1.07e1 4.80 1.52e1 6.52e1± 2.38e1 7.62e1 1.24e1 8.09e1

H
ol

lin
g

II

0 simulations (0%) converging to an equilibrium 5000 simulations (100%) converging to a limit cycle
Mean prey population size 1.06e1± 2.10 1.01e1 7.37 1.39e1

Minimum prey population size 7.63e−3± 1.28e−2 2.63e−3 8.24e−5 3.24e−2

Mean predator population size 5.42± 1.35 5.29 3.46 7.81

Minimum predator population
size 1.44e−8± 2.35e−7 0.00 0.00 4.96e−9

Maximum global predator
intrinsic growth rate 1.99e−2± 3.67e−3 1.96e−2 1.43e−2 2.60e−2

Maximum percent excess of
predator αMbio (%) 3.52e2± 8.33e1 3.47e2 2.26e2 4.90e2

Percent of time exceeding
predator αMbio (%) 3.42e1± 3.27e1 1.34e1 1.99 7.88e1

H
ol

lin
g

II
I

5000 simulations (100%) converging to an equilibrium 0 simulations (0%) converging to a limit-cycle
Mean prey population size 1.09e1± 1.10 1.09e1 9.07 1.27e1

Minimum prey population size 1.22e−2± 2.19e−3 1.19e−2 9.13e−3 1.61e−2

Mean predator population size 1.25e1± 2.49 1.24e1 8.55 1.66e1

Minimum predator population
size 2.37e−6± 4.65e−6 1.11e−7 2.84e−12 1.30e−5

Maximum global predator
intrinsic growth rate 2.37e−2± 3.75e−3 2.38e−2 1.78e−2 2.95e−2

Maximum percent excess of
predator αMbio (%) 4.39e2± 8.53e1 4.40e2 3.05e2 5.71e2

Percent of time exceeding
predator αMbio (%) 7.53e1± 3.50 7.52e1 7.02e1 8.09e1

Table 2: Results of biological criteria for simulations with K proportional to α2 and Holling I, I saturated, II
and III
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always a moment when αMbio is exceeded. More precisely, αMbio is exceeded 6.52e1% ± 2.38e1 of the time,
on average.

Holling II model: For the Holling II model, all simulations (i.e., 5,000) converge to a limit cycle (Table
2). In most cases (i.e., 3,216 cases or 64.32%), the extreme values of the limit cycle lead to the extinction
of the predator population. The mean prey and predator population sizes are far over 1 (i.e., 1.06e1 ± 2.10

times XR2 and 5.42± 1.35 times XR1, respectively). On average the populations oscillate far over their mean
field values.
Furthermore, in the vast majority of cases, the minimum predator population size is less than 4.96e−9 times
XR1 (mean: 1.44e−8 ± 2.35e−7 times XR1). This means that the predator population would probably go
extinct in reality, which occurs in most simulations.
The maximum global growth rate exceeds αMbio in all simulations (percent excess: 3.52e2%± 8.33e1 ; mini-
mum: 1.98e2%). There is always an amount of time when the global growth rate exceeds what is theoretically
and biologically plausible, lasting 3.42e1%± 3.27e1 of the time on average.

Holling III model: For this model, 100% of the simulations converge to a limit cycle (Table 2). The
mean population sizes oscillate far above their mean field values (i.e., 1.09e1±1.10 times XR2 and 1.25e1±2.49

times XR1, respectively).
Furthermore, in the vast majority of cases, the minimum predator population size is less than 1.30e−5 times
XR1 (mean: 2.37e−6 ± 4.65e−6 times of XR1). Consequently, the predator population would probably go
extinct.
The maximum global growth rate exceeds αMbio in all simulations (percent excess: 4.39e2%± 8.53e1 ; mini-
mum: 329.8%). This means that the global growth rate sometimes exceeds what is theoretically and biologi-
cally plausible in the simulations, with this excess lasting 7.53e+01%±3.50 of the time.

When using the biological criteria to compare the different Holling functions, the Holling I model (i.e.,
the classical Lotka-Volterra-Verhulst model) showed plausible biological simulations. Nevertheless, it incon-
veniently fails to take into account the satiation of the predator when the prey population size becomes very
high. It would also seem that with κ proportional to α2, the saturated Holling I model is plausible when the
system converges to the equilibrium. However, it is inconsistent when the system converges to a limit cycle
due to the high oscillations in the population sizes. The Holling II and III models are biologically inconsistent
due to the large oscillations in the population sizes, going very close to 0 and resulting in overly high values
for both growth rates. These excessively large oscillations can be explained by κ being much smaller than
κcrit for each Holling functional responses (i.e., 0.17, 0.13 and 0.67 for the saturated Holling I, Holling II and
Holling III models, respectively, compared with 0.031). We thus perform parameter exploration and Sobol’s
analysis by taking κ around the mean value of κcrit to test wether this results in more biologically consistent
dynamics with κ in the vicinity of κcrit (see Section 2.3 for the detailed formula of Kcrit with each Holling
function).

3.2.2 Using κ near κcrit

Holling I model: For the Holling I model, 100% (i.e., 5,000, Table 3) of the simulations converge to the
equilibrium. The mean population sizes are slightly over 1 (i.e., 1.22±8.81e−2 times XR2 and 1.24±2.71e−1

times XR1 for prey and predator respectively). On average, the populations oscillate slightly over the mean
field values. The global growth rate never exceeds αMbio (percent of the excess of the maximum growth rate:
−8.25e+ 01%± 1.22e+ 01; maximum: 1.69e−1% ; percent of the time of excess: 0.0%± 0.0), which means
that it always stays within a biologically plausible range.

Saturated Holling I model: The results of the saturated Holling I model are very similar to those
without saturation (Table 3), 100% of the simulations converge to the equilibrium. The mean population
sizes are slightly over 1 (i.e., 1.22± 8.73e−2 times XR2 and 1.24± 2.75e−1 times XR1 for prey and predator,
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H
ol

lin
g

I

5000 simulations (100%) converging to an equilibrium 0 simulations (0%) converging to a limit-cycle
Biological criteria Mean Median q05 q95 Mean Median q05 q95
Mean prey population size 1.22± 8.81e−2 1.22 1.08 1.37

Minimum prey population size 1.21± 8.66e−2 1.21 1.07 1.36

Mean predator population size 1.24± 2.71e−1 1.24 8.16e−1 1.66

Minimum predator population
size 1.21± 2.82e−1 1.22 7.65e−1 1.65

Maximum global predator
intrinsic growth rate 7.71e−4± 5.36e−4 5.88e−4 2.30e−4 1.91e−3

Maximum percent excess of
predator αMbio (%) −8.25e1± 1.22e1 −8.66e1 −9.48e1 −5.65e1

Percent of time exceeding
predator αMbio (%) 0.00± 0.00 0.00 0.00 0.00

H
ol

lin
g

I
sa

tu
ra

te
d 5000 simulations (100%) converging to an equilibrium 0 simulations (0%) converging to a limit-cycle

Mean prey population size 1.22± 8.73e−2 1.22 1.08 1.37

Minimum prey population size 1.21± 8.51e−2 1.20 1.08 1.37

Mean predator population size 1.24± 2.75e−1 1.25 8.11e−1 1.67

Minimum predator population
size 1.21± 2.86e−1 1.22 7.59e−1 1.66

Maximum global predator
intrinsic growth rate 8.09e−4± 5.74e−4 6.15e−4 2.44e−4 1.99e−3

Maximum percent excess of
predator αMbio (%) −8.16e1± 1.31e1 −8.60e1 −9.45e1 −5.49e1

Percent of time exceeding
predator αMbio (%) 0.00± 0.00 0.00 0.00 0.00

H
ol

lin
g

II

3808 simulations (76.56%) converging to an equilibrium 1192 simulations (23.44%) converging to a limit-cycle
Mean prey population size 4.37± 7.60e−1 4.29 3.27 5.69 3.28± 1.98e−1 3.29 2.94 3.57

Minimum prey population size 4.07± 1.03 4.14 2.36 5.65 1.47± 4.46e−1 1.47 7.45e−1 2.19

Mean predator population size 2.24± 5.85e−1 2.23 1.35 3.19 2.35± 4.82e−1 2.35 1.60 3.14

Minimum predator population
size 1.95± 6.34e−1 1.94 9.34e−1 2.96 6.41e−1± 4.31e−1 5.42e−1 1.04e−1 1.52

Maximum global predator
intrinsic growth rate 1.57e−3± 1.94e−3 6.15e−4 1.18e−5 5.90e−3 1.09e−2± 2.61e−3 1.06e−2 6.98e−3 1.55e−2

Maximum percent excess of
predator αMbio (%) −6.44e1± 4.42e1 −8.60e1 −9.97e1 3.42e1 1.47e2± 5.93e1 1.41e2 5.87e1 2.52e2

Percent of time exceeding
predator αMbio (%) 3.50e−1± 1.37 0.00 0.00 2.44 4.29e1± 1.23e1 4.63e1 1.39e1 5.67e1

H
ol

lin
g

II
I

4180 simulations (70.52%) converging to an equilibrium 820 simulations (29.48%) converging to a limit-cycle
Mean prey population size 6.09e−1± 6.29e−2 6.08 5.13 7.12 5.53e−1± 3.94e−1 5.47e−1 4.98e−1 6.23e−1

Minimum prey population size 5.13e−1± 9.11e−2 5.01e−1 3.80e−1 6.72e−1 3.65e−1± 4.28e−2 3.60e−1 2.99e−1 4.41e−1

Mean predator population size 4.48e−1± 9.91e−2 4.45e−1 2.960e−1 6.04e−1 4.81e−1± 1.00e−1 4.74e−1 3.29e−1 6.40e−1

Minimum predator population
size 3.11e−1± 1.18e−1 3.07e−1 1.30e−1 5.11e−1 1.88e−1± 8.06e−2 1.84e−1 7.30e−2 3.23e−1

Maximum global predator
intrinsic growth rate 6.02e−3± 3.24e−3 5.95e−3 1.11e−3 1.16e−2 1.30e−2± 2.23e−3 1.30e−2 9.28e−3 1.66e−2

Maximum percent excess of
predator αMbio (%) 3.69e1± 7.37e1 3.52e1 −7.48e1 1.63e2 1.95e2± 5.07e1 1.96e2 1.11e2 2.78e2

Percent of period exceeding
predator αMbio (%) 4.41± 6.95 1.34 0.00 2.06e1 4.12e1± 5.93 4.20e1 3.03e1 4.94e1

Table 3: Results of biological criteria for simulations with K taken around Kcrit and Holling I, I saturated, II
and III
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respectively). On average, the populations oscillate slightly over their mean field values.
The maximum global growth rate exceeds αMbio in less than 5% of simulations (percent of excess: −77.2%±
13.7; quantile 95: -49.2%). Thus, in most simulations, the global predator growth rate remains within a
biologically plausible range. On average, αMbio is never exceeded (0.0%± 0.0 per period ; maximum: 0.6%).
Consequently, the global predator growth rate exceeds the biologically plausible values in very few simulations
and only for a very short time.

Holling II model: For this model, 3,828 solutions (76.16%) converge to the equilibrium and 1,172
(23.84%) to a limit cycle (Table 3). For solutions converging to the equilibrium, the mean population size is
over their mean field values (i.e., 4.37±7.60e−1 times XR2 and 2.24±5.85e−1 times XR1 for prey and preda-
tor, respectively). The maximum global predator growth rate remains less than αMbio in most simulations
(percent of excess: −6.44e1%± 4.42e1; median: −8.60e1%). In most simulations, the global predator growth
rate remains within a biologically plausible range and, on average, the excess only lasts 3.50e−1% ± 1.37 of
the time (quantile 95: 2.44%).

When solutions converge to a limit cycle, the mean population sizes oscillate over their mean field values
(i.e., 3.28 ± 1.98e−1 times XR2 and 2.35 ± 4.82e−1 times XR1 for prey and predator, respectively). The
maximum global predator growth rate is always above αMbio (percent of excess: 1.47e2%±5.93e1 ; minimum:
3.22e1%). In all simulations, there is a time when the global predator growth rate exceeds what is biologically
plausible (on average almost half the time: i.e., 4.29e1± 1.23e1).

Holling III model: For this model, 4,180 solutions (83.60%) converge to the equilibrium and 820 (16.40%)
to a limit cycle (Table 3). For solutions converging to the equilibrium, the mean population sizes oscillate
around a value less than their mean field values (i.e., 6.09e−1 ± 6.29e−2 times XR2 and 4.48e−1 ± 9.91e−2

times XR1 for prey and predator, respectively). The maximum global predator growth rate is higher than
αMbio in most simulations (percent of excess: 3.69e1% ± 7.37e1 ; median: 3.52e1%). In most simulations,
there is a time when the global predator growth rate exceeds what is biologically plausible. However, this
excess lasts less than 10% of the time (i.e., 4.41%± 6.95) on average.

When the solutions converge to a limit cycle, the mean population size oscillates over their mean field values
(i.e., 5.53e−1 ± 3.94e−1 times XR2 and 4.81e−1 ± 1.00e−1 times XR1 for prey and predator, respectively).
The maximum global predator growth rate is always higher than αMbio (percent of excess: 1.95e2%±5.07e1 ;
minimum: 8.03e1%). So, in all simulations, there is a moment when the global predator growth rate exceeds
what is biologically plausible, lasting on average almost half the time (i.e., 4.12e1%± 5.93).

3.2.3 Sobol’s analysis using κ taken near κcrit

We perform Sobol’s analysis to test the sensitivity of the biological criteria to the parameters. We focus on
the total and first-order Sobol’s indices, because they indicate which parameters are important in our case
study. The values of the second- and higher-order Sobol’s indices provide information about the parameter
interactions, but in our case, their values are too small (i.e., always less than 0.6) to indicate that the parameter
interactions are sensitive.
We do not conduct Sobol’s analysis on the Holling I model, as we prefer to focus on the functional response,
which considers the predator’s saturation when the prey population is large. We consider a parameter sensitive
if its total and/or first-order Sobol’s indices are higher than 0.6. Below this level, we consider the parameter
to be less sensitive, even if it is the most sensitive one compared with other parameters with lower Sobol’s
indices.

Saturated Holling I model: The minimum prey population size is sensitive to the parameters Tr1 and
Tc (values of total Sobol’s indices: 0.61 and 0.60, respectively; see Figure 1 and Table 4). Furthermore, the
maximum excess of αMbio and the percentage of the simulation duration during which αMbio is exceeded are
sensitive to Tr1 (values of total Sobol’s indices: 0.76 and 0.80 respectively), Tc (0.73 and 0.76, respectively)
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Figure 1: Total (a) and first order (b) Sobol’s indices of the biological criteria for the saturated Holling I model

and λ (0.71 and 0.75 respectively). At the first order, Tr1 and Tc are the most sensitive parameters for the
mean prey population size, but the values of Sobol’s indices are not high (values of first order Sobol’s indices:
0.37 and 0.36 ; respectively, see Figure 1 and Table 4). We observed the same for Tr2 and Ta for the mean
predator population size (values of first order Sobol’s indices: 0.37 and 0.36, respectively).
As the values of the Sobol’s indices are low, except for Tr1, Tc and λ, we can conclude that our model with
the saturated Holling I function is globally robust, except for these three parameters.

Holling II model: For the total and first order Sobol’s indices, Tr1, Tc and λ are the most sensitive
parameters, although the values of Sobol’s indices are generally low, except for the sensitivity of the minimum
prey population size to Tc (value of total Sobol’s indices: 0.61 ; see Figure 2, and Tables 5). For the mean prey
population size, the values of total Sobol’s indices are 0.41, 0.40, and 0.27, respectively, whereas for the mean
predator population size, they are 0.49, 0.48, and 0.29, respectively. For the minimum prey population size,
the values of total Sobol’s indices are 0.58, 0.61, and 0.46, respectively. For the minimum predator population
size, they are 0.58, 0.47, and 0.32, respectively. For the percent of the excess of αMbio, they are 0.32, 0.39,
and 0.31, respectively, whereas for the percent of excess time, they are 0.49, 0.52, and 0.31, respectively. As
the values of Sobol’s indices are low, we can conclude that our model with the Holling II function is robust.
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Parameters
Mean prey
population
size

Mean
predator
population
size

Minimum
prey
population
size

Minimum
predator
population
size

αMbio excess
by predator
global growth
rate

Percentage of
simulation
duration with
αMbio

exceeded

To
ta

l

Tr1 0.59 0.18 0.61 0.42 0.76 0.80
Tr2 0.01 0.39 0.02 0.25 0.04 0.05
Tc 0.57 0.17 0.60 0.40 0.73 0.76
Ta 0.01 0.37 0.01 0.23 0.02 0.02
κ 0.05 0.06 0.59 0.07 0.13 0.13
λ 0.21 0.17 0.30 0.36 0.71 0.75

F
ir

st
or

de
r

Tr1 0.37 0.01 0.31 0.05 0.04 0.03
Tr2 0.00 0.37 0.00 0.22 0.00 0.00
Tc 0.36 0.01 0.31 0.05 0.03 0.03
Ta 0.0 0.36 0.00 0.21 0.00 0.00
κ 0.00 0.03 0.00 0.00 0.02 0.00
λ 0.01 0.01 0.01 0.01 0.03 0.03

Table 4: Values of total and first order Sobol’s indices for the saturated Holling I model

Parameters
Mean prey
population
size

Mean
predator
population
size

Minimum
prey
population
size

Minimum
predator
population
size

αMbio excess
by predator
global growth
rate

Percentage of
simulation
duration with
αMbio

exceeded

To
ta

l

Tr1 0.41 0.49 0.58 0.58 0.32 0.49
Tr2 0.00 0.01 0.11 0.09 0.00 0.00
Tc 0.40 0.48 0.61 0.47 0.39 0.52
Ta 0.00 0.01 0.10 0.08 0.00 0.00
κ 0.01 0.03 0.16 0.10 0.01 0.05
λ 0.27 0.29 0.46 0.32 0.31 0.31

F
ir

st
or

de
r

Tr1 0.35 0.28 0.12 0.32 0.30 0.28
Tr2 0.00 0.01 0.00 0.02 0.00 0.00
Tc 0.35 0.27 0.14 0.19 0.38 0.30
Ta 0.00 0.01 0.00 0.00 0.00 0.00
κ 0.00 0.02 0.01 0.00 0.01 0.02
λ 0.22 0.13 0.07 0.07 0.30 0.15

Table 5: Values of total and first order Sobol’s indices for the Holling II model
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Figure 2: Total (a) and first order (b) Sobol’s indices of the biological criteria for the Holling II
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Figure 3: Total (a) and first order (b) Sobol’s indices of the biological criteria for the Holling III

Holling III model: The parameter κ is quite sensitive to the percent time of excess of αMbio (0.60 for
total Sobol’s index ; see Figure 3 and Table 6). Although not highly sensitive (because the values of their
Sobol’s indices are always less than 0.6 and often under 0.4 ; see Tables 6 and Figure 3), the four parameters
that seem to be the most sensitive are Tr1, Tc, κ and λ. As the values of the total and first-order Sobol’s
indices are quite low, except for κ we can conclude that our model with the Holling III function is robust.

3.3 Discussion of the study case

3.3.1 Biological criteria and choice of the best Holling function

To determine which model is best suited to our case of study, we will begin by discussing the models with κ

taken proportional to α2 before turning to the models with κ taken around the value of κcrit.

Models with κ proportional to α2 The different biological criteria explored for the Holling I model
are mitigated. The global predator growth rate exceeds its theoretical biological maximum in almost all
simulations, although this is generally for less than 10% of the simulation duration. Nevertheless, despite
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Parameters
Mean prey
population
size

Mean
predator
population
size

Minimum
prey
population
size

Minimum
predator
population
size

αMbio excess
by predator
global growth
rate

Percentage of
simulation
duration with
αMbio

exceeded

To
ta

l

Tr1 0.40 0.04 0.42 0.33 0.32 0.31
Tr2 0.00 0.32 0.00 0.05 0.00 0.00
Tc 0.39 0.04 0.41 0.35 0.38 0.33
Ta 0.00 0.33 0.00 0.03 0.00 0.00
κ 0.00 0.16 0.05 0.18 0.18 0.61
λ 0.27 0.15 0.23 0.23 0.18 0.12

F
ir

st
or

de
r

Tr1 0.36 0.02 0.35 0.24 0.28 0.13
Tr2 0.00 0.32 0.00 0.05 0.00 0.00
Tc 0.35 0.02 0.34 0.26 0.35 0.16
Ta 0.00 0.32 0.00 0.02 0.00 0.00
κ 0.00 0.16 0.05 0.15 0.17 0.44
λ 0.23 0.13 0.16 0.14 0.14 0.01

Table 6: Values of total and first order Sobol’s indices for the Holling III model

these positive points, the structure of this model does not take into account predator satiation.

When the simulations converge to the equilibrium for the saturated Holling I model, the observations
are the same as for the Holling I model. This is because the predator rarely reaches satiation, during the
simulations except during the first few time steps. When satiation is not reached, the saturated Holling I
model behaves similarly to the Holling I model. The other parameters of the saturated Holling I model are
the same as for the Holling I model, so it is normal to obtain similar results. The main difference is that
the saturated Holling I model also incorporates predator satiation, which is advantageous. By contrast, for
simulations converging to a limit cycle, the predator population moves very close to 0, and the global predator
growth rate often exceeds its theoretical biological maximum. Consequently, for the same set of parameters,
the simulations can converge towards an equilibrium or limit cycle. Depending on the initial conditions, the
simulation may converge from a moderately biologically coherent model to a biologically irrelevant model (see
Section 2.3 and Figure 4).

The values obtained for the Holling II model seem inconsistent with the biological criteria. The high
oscillations simulated regularly lead to the extinction of predators in the simulations. In addition, the theo-
retical biological maximum of the predator growth rate is exceeded in all simulations 3.42e1%± 3.27e1 of the
simulation duration.

For the Holling III model, overall, the same simulations are obtained as with the Holling II model. The
predator population never goes extinct, although in most simulations, it is so close to 0 that it would probably
go extinct.

In general, when taking κ proportional to α2, none of the models is satisfactory, notably because of the
large oscillations in the populations when the simulations converge towards a limit cycle, thus causing the
population sizes to move very close to 0 and with αMbio often being exceeded. This can be explained by the
"biological" κ not being close to κcrit (0.031 compared with 0.17, 0.13, and 0.67 for saturated Holling I, II,
and III models, respectively). The lower κ is relative to κcrit, the larger the oscillations (see Section 2.3).
The results of this type of model after it has converged are therefore strongly dependent on κ and, thus on
the carrying capacity of the prey. The value of κ must be estimated carefully when running the model. For
example, we might prefer to take it close to κcrit to avoid either large oscillations or an overly rapid return to
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Figure 4: Plot phase of the saturated Holling I model with delimitations of the limit cycle and equilibrium zones
(κ = 0.03)

the equilibrium compared with what is biologically possible and observed. Nevertheless, if this model needs
to be close to κcrit, the modeller must ensure that it remains biologically consistent (i.e., that κcrit remains
within the possible range of the expected biological value). Ideally, κ should be estimated directly from
the empirical data of the modelled biological system. However, κ is a theoretical parameter and a phantom
quantity [Terborgh, 2015] that is virtually impossible to obtain from field data, as it usually involves a system
with various unknown and uncontrolled sources of mortality for the prey. Thus, using this type of model with
parameter K and parameter values estimated using biological data from the field is difficult.

Models with κ close to κcrit The values obtained for the biological criteria are consistent for the
Holling I model when κ isclose to α2. However, the predator growth rate never exceeds its theoretical biolog-
ical maximum. The main drawback here is that predator satiation is not considered.

For the model with the saturated Holling I, the criteria values are biologically consistent and very close to
those of the Holling I model. The global predator growth rate rarely exceeds its theoretical biological maxi-
mum and only for a short duration (i.e., 0.00 ± 0.00 on average). With our initial conditions, no simulation
converged to a limit cycle with the saturated Holling I. However, we cannot exclude that with different initial
conditions but the same set of parameters (and their attributed variations), a limit cycle could be obtained.
Nevertheless we cannot determine if this limit cycle is biologically consistent.

For the Holling II model, when the simulations converge to the equilibrium, the global predator growth
rate rarely exceeds its theoretical biological maximum. By contrast, when the simulations converge to a limit
cycle, the global predator growth rate always exceeds its theoretical biological maximum by 1.47e2%± 5.93e1

and for 4.29e1% ± 1.23e1 of the simulation duration on average, which is important. The Holling II model
seems to be suitable if it converges to the equilibrium, but less suitable if it converges to a limit cycle.
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For the Holling III model, when the simulations converge to the equilibrium, the global predator growth
rate exceeds its theoretical biological maximum in most simulations. Nevertheless, on average, this excess does
not occur during a large part of the simulation (4.41% ± 6.95 of the simulation duration). When the model
converges to a limit cycle, the values of the biological criteria are less consistent. The global predator growth
rate exceeds its theoretical biological maximum in all simulations and for 4.12e1% ± 5.93 of the simulation
duration on average. The Holling III model seems to be suitable when it converges to the equilibrium, but
not when it converges to a limit cycle because of the frequent exceeding of αMbio.

The two most relevant models with κ taken close to κcrit correspond to the saturated Holling I and
Holling II, provided that they do not converge towards a limit cycle. Indeed, when they do converge to a
limit cycle, the values of their biological criteria are less consistent: αMbio is exceeded in many simulations
(e.g., 1.47e2% ± 5.93e1 for the Holling II model). From this perspective, only the saturated Holling I only
converged towards equilibrium during our simulations, although its properties mean that a change in the
initial conditions could result in its convergence towards a limit cycle. In terms of the sensitivity of these two
models to the parameters, the Holling II model is the most robust.

3.3.2 Sobol’s analysis and identification of the most sensitive parameters

The Holling II and III models have parameters with low Sobol indices, so they are quite robust to parameter
variations. On the contrary, of the three models on which Sobol’s analysis was performed, the saturated
Holling I model was the most sensitive, indicating less robustness.
In general, the parameters whose variations most influenced the biological criteria are Tr1, Tc, and λ. In the
model with saturated Holling I, their variations significantly changed the maximum predator growth rate and
the percentage of time when αMbio was exceeded. Although these three parameters do not have high values
for the total Sobol’s indices for Holling II and III, they are still among the most sensitive parameters for all
the criteria (except for the average predator population with Holling III). These are also the three parameters
on which αMsim = −Tref

Tr1
+

Tref

Tc.λ
depends. It seems consistent that the maximum global rate reached by the

predator population is related to the highest mathematical value of this growth rate: i.e., αmax is constrained
by αMsim. Similarly, since αMsim determines how fast the predator population can grow, it seems consistent
that it influences the percentage of time during which αMsim is exceeded by the global growth rate.

The κ parameter has the greatest influence on the Holling III model, which is not the case with Holling II.

These two models differ only when predation is implemented as a function of X̃2 in Holling II and
(
X̃2

)2
in

Holling III. Consequently, the quadratic relationship of Holling III along with the influence of kappa on the
shape of the prey growth curve could explain why κ is the most sensitive parameter in the dynamics of the
Holling III model. A second hypothesis would be that this is a bias due to the higher value of κ used with
the Holling III model compared with the other models. Indeed, for each model, we took values of κ around
κcrit. However, the value of κ for the Holling III model is greater than that for the Holling II. Consequently,
in the Sobol analysis, the variations of κ for the Holling III model exceed those of the model with Holling
II. We can therefore question whether these larger variations in the absolute value could explain the greater
sensitivity of the Holling III model to the κ parameter.

More generally, regarding all the parameters tested in Sobol’s analysis, it should be noted that their
sensitivity was only tested on variations of 10% around their mean values, which are quite plausible variations
in nature. However, greater variations can also be encountered in nature. If we had tested our model’s
sensitivity to larger parameter variations, it would have been possible to obtain larger Sobol’s indices.

3.3.3 Most discriminating biological criteria

The minimal populations discriminated strongly, allowing us to identify the models driving the populations
too close to 0 because of large oscillations. The maximum percentage of αMbio and the percentage of simula-
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tion duration during which αMbio was exceeded are complementary parameters to discriminate the models in
terms of the predator growth rate. Average populations should be good indicators to compare with average
field estimates. Unfortunately, as we used a practical, simplified model for our case study, they were not of
much use here. Furthermore, they should be handled with care. Indeed, if the populations observed in the
field are subject to disturbances over a longer period of time than the duration of the corresponding field
surveys, then the simulated average populations will not necessarily correspond to those in the field.

4 Concluding remarks and perspectives

Here, we design a toolbox allowing us to test the relevance of different Holling functional responses for trophic
models with a prey-predator couple. One strength of the approach is its use of realistic theoretical math-
ematical models based on data collected in the field or retrieved from the literature. We then aimed to
discriminate between candidate models and identify the most suitable and biologically relevant one for our
trophic system of interest. This approach can easily be adapted or extended to other ecosystem types and
problems depending on the research topic.

Here, with our method, we compared different Holling functional responses to choose which one would
best fit our model and describe our study system most plausibly. We are aware that the models tested in our
case study do not fit all prey-predator systems, however the proposed method can be adapted to other types
of ecosystems. For our case study, the two most suitable models are the saturated Holling I and Holling II
models. Provided that the model converges to the equilibrium, for the saturated Holling I model, the global
predator growth rate never exceeds αMbio, while for the Holling II model, αMbio is exceeded in just a few sim-
ulations and only for a very limited time (3.50e−1%±1.37). Nevertheless, when the model converges towards
a limit cycle, in the Holling II model, αMbio is exceeded in all simulations and during a significant part of the
simulation duration. For the saturated Holling I model, no simulation converges to a limit cycle. However,
given the simulation results when κ is chosen proportional to α2 and comparing them to those obtained for the
Holling II and III models, we suspect that the results would have been no better than for the Holling III model.

We can classify the parameters of our models into three (non-exclusive) categories according to whether
they were tested for sensitivity and the contribution of this sensitivity.

(i) Firstly, the parameters that we decided to fix: namely, the non-scaled parameters, XR1, XR2, S, e and
c. We chose S, e, and c because we assumed that they do not vary much in nature.

(ii) Secondly, the parameters to which the models are not very sensitive and whose estimation can be less
precise : namely, the scaled parameters Tr2 and Ta. Consequently, this also includes the non-scaled
parameters α2 (on which Tr2 depends) as well as XR1 (on which Ta depends). It is, therefore, of
little importance if the estimation of these last two parameters is not extremely precise. Care should
nevertheless be taken, as seen previously (see Section 3.3.3), if XR1 is used as an initial condition for the
predator population size, as an overly imprecise estimation impact the convergence for the saturated
Holling I model. Ta also depends on the unscaled parameter a, although this is also used in the
calculation of other scaled parameters to which the models are sensitive (cf. below). The estimation of
a should therefore remain accurate.

(iii) Finally, the parameters to which models are more sensitive, and whose estimation must be more pre-
cise, namely the scaled parameters κ, Tr1, Tc and λ. Consequently, this also includes the non-scaled
parameters K (on which κ depends), XR2 (on which κ, Tc and λ depend), α1 (on which Tr1 depends),
a, e (on which Tc and λ depend), S (on which λ depends) and c (on which Tc depends). Regarding
the parameter K (via the parameter κ), only the Holling III model is sensitive to it when κ is close to
κcrit. Nevertheless, as previously seen (see Section 3.3.1), all the models are generally sensitive to κ,
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and thus to K, as its variations can easily change the dynamics of our model. Unfortunately, it is a very
difficult value to estimate in the field, as many different mechanisms, including predation, can influence
the carrying capacity of prey. Ideally, we should make a field estimate of this kind of parameter, which
can cause a bifurcation in the dynamics of the model. If this is not possible, we suggest either looking
for another model without this kind of problem or arbitrarily choosing a value with behaviour that is
more consistent with the system under study from a biological point of view, while keeping in mind the
implied limits in terms of bias. Regarding α1 in our particular case, this parameter is estimated from
both the diet data collected in the field and the FMR and reproduction data found in the literature. One
way to improve the accuracy of this parameter would be to estimate the FMR and reproduction of our
predator directly at our study site, although we were unable to do this. Indeed, the FMR can be compli-
cated to estimate outside of a very controlled experimental device, as it requires specific equipment that
we did not have. As for reproduction, we could not estimate it directly in the field, as foxes are a very
discreet species, and we could not search for breeding dens ourselves. In our case study, the parameter
a is directly estimated from the field data, which makes it a very interesting parameter. However, due
to the models’ sensitivity to this parameter, we recommend estimating it based on data collected over a
sufficiently long timescale (ideally over several years and several times during the year) to avoid seasonal
and annual variations in the predator’s diet. For example, at our study site, we observed a significant
change in the a values calculated with data from 2014-2016 and those calculated with additional data
from 2019-2020 (a successful attack rate of 0.086, and 0.13 in 2014–2016 and 2019–2020, respectively,
compared with 0.025, 0.026 and 0.27 in Holling I, II, and III, respectively). This is probably due to the
landscape changes caused by the intense urbanisation of the Saclay Plateau in recent years. In our case
study, the parameter e is estimated from the literature. We are confident regarding the consistency of
this estimation in the case of micro-mammals. The parameter S is also estimated from the literature.
We are also fairly confident about it. One way to improve the estimation of this parameter would be
to carry out feeding experiments with foxes captured directly at our study site. Finally, the parame-
ter c is also estimated from the literature, based on the digestibility coefficients of [Lockie, 1959] and
[Goszczyński, 1974], which are calculated from the difference between the consumed or ingested biomass
and the (dry) biomass of the undigested remains in the scats. However, the ingested biomass is weighed
fresh, while the undigested remains found in the scats are weighed dry. Although we can assume that
the undigested remains (hair, bones, teeth) contain little water (our initial assumption when calculating
c from these digestibility coefficients), this proportion of water may not be so negligible. Moreover, the
calculation of the digestibility coefficients (and then c) is based only on the "identifiable" undigested
remains. Thus c is probably overestimated. Since αMsim = −α1 + c ·S, taking a smaller value of c than
in our study case could help limit the excess of αMbio as the global predator growth rate.

Overall, this shows the value, where possible, of conducting the experiments and observations necessary to
estimate the various parameters at one’s own study site. Nevertheless, this also highlights the importance of
having complete and accessible databases of life-history traits and diet (according to season and ecosystem
type). In this way, they can be used when it is not possible to carry out these experiments or field observations.

We used several biological criteria to determine which model best suited our system. Among these criteria,
the minimum simulated population sizes of predators and prey are particularly useful for identifying the
simulations in which, if the models are not deterministic, the populations would become extinct. Secondly,
the maximum percentage of αMbio excess allows us to identify the simulations in which predators have
abnormally high growth periods to be biologically consistent. However, in our particular case, we considered
αMbio to be constant over the year, which is not necessarily true in reality. The percentage of the simulation
duration during which αMbio is exceeded makes it possible to refine our observations regarding a possible
excess of αMbio. We can therefore determine whether the excess is rare or whether it lasts for a large part of
the simulation duration. Regarding the average simulated population sizes of predators and prey, they can
be useful criteria to compare with the expected values obtained from field observations, even if this was not
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the case in our study case. Nevertheless, these criteria should be used with caution. Indeed, we are aware
that not all the parameters impacting the population dynamics of a trophic system can always be taken into
account or are simply not known. For example, in the trophic system of the Saclay plateau, from which
we extracted our simplified model, we are aware that foxes and cats are not the only predators of micro
mammals. Mustelids and raptors are also present, but we do not have the data to estimate their predation
on small mammals. Similarly, we are aware that the reproduction and mortality of foxes probably depends
on parameters other than their predation on small mammals (e.g. climate, diseases, road traffic mortality)
but we do not have these data either. Nevertheless, if we had such data, we could easily integrate them into
our model.

Finally, we used our method to test the relevance of different Holling functions in a simple Lotka-Volterra-
like trophic system involving one prey and one predator. This method allowed us to compare the relevance
of different density-dependent functional response for the prey and predator. An ultimate aim would be
to extend and complexify these models to trophic networks involving more than one prey and/or predator.
However, this would exponentially increase the number of parameters to be tested in the analyses.
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Appendices

A Model simplification

A.1 General equation and change of variable in t

Let X(t) be a population of predators or prey at time t. Let the equation giving the variation of X in t be:

X ′(t) = f(X(t)) (2)

Let f be any function. A change of variable in t is performed such that:

t = Tref · t̄ ⇔ t̄ =
t

Tref
(3)

where Tref is the reference time interval and t̄ is the number of reference time intervals considered.
We note X̄ : t̄ 7→ X(Tref · t̄) (i.e., X̄(t̄) = X(Tref · t̄) = X(t)).
We look for the equation satisfied by X̄. Recall that the derivative in t̄ of the compound f ◦g : t̄ 7→ f(g(t̄))

is:
g′(t̄)f ′(g(t̄)) (4)

We note h : t̄ 7→ Tref · t̄. We therefore have X̄(t̄) = X(h(t̄)) et h′(t̄) = Tref .
Therefore, if we derive X̄(t̄):

X̄ ′(t̄) = d
dt (X̄(t̄))

⇔ X̄ ′(t̄) = d
dt (X(h(t̄))

⇔ X̄ ′(t̄) = h′(t̄)X ′(h(t̄))

⇔ X̄ ′(t̄) = TrefX
′(Tref · t̄)

⇔ X̄ ′(t̄) = Treff(X(Tref · t̄))
⇔ X̄ ′(t̄) = Treff(X̄(t̄))

(5)

Therefore, by multiplying equation (2) by Tref , we obtain the equation in X̄. This amounts to a change
of variable in t.

In the following sections, to simplify the writing, we will note X for X(t) and X̄ for X̄(t̄).

A.2 Simplification of the Lotka-Volterra-Verhulst model with a Holling I func-
tional response

{
X ′

1 = −X1 · α1 + a · e · c ·X1 ·X2

X ′
2 = X2 · α2(1−K ·X2)− a ·X1 ·X2

where α1 is the net per capita intrinsic death rate of predators, α2 is the net per capita intrinsic growth
rate of prey, K is the area of the environment saturated per unit of prey (≃ size of the territory of a prey),
a is the average successful attack rate (= capture rate) per unit of a predator, e is the proportion of biomass
consumed by the predator on one unit of prey and c is the conversion rate of one prey unit into predator unit.

We pose t = Tref · t̄ ⇔ t̄ = t
Tref

(change of variable), with Tref is a time unit of reference and t̄ is a
quantity of reference time units.
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{
X̄1

′
= Tref

[
−α1 + a · e · c · X̄2

]
X̄1

X̄2
′

= Tref

[
α2(1−K · X̄2)− a · X̄1

]
X̄2


X̄1

′

X̄R1
= Tref

[
−α1 + a · e · c · X̄2

X̄R2
X̄R2

]
X̄1

X̄R1

X̄2

X̄R2

′

= Tref

[
α2(1−K · X̄R2

X̄2

X̄R2
)− a · X̄1

X̄R1
X̄R1

]
X̄2

X̄R2

Where XR1 is a predator biomass density of reference and XR2 is a prey biomass density of reference.
We pose:

• X̃1 =
X̄1

X̄R1
: the quantity of reference biomass density units of the predator;

• X̃2 =
X̄2

X̄R2
: the quantity of reference biomass density units of the prey;

• κ = K · X̄R2: the saturation rate of the environment in the presence of the reference biomass density of
the prey;

• Tr1 =
1

α1
: the characteristic intrinsic decay time of the predators ;

• Tr2 =
1

α2
: the characteristic intrinsic growth time of the prey ;

• Tc =
1

a · e · c · X̄R2
: the characteristic intrinsic growth time of the predator via the predation on the

prey and in the presence of the reference prey density ;

• Ta =
1

a · X̄R1
: the characteristic decay time of the prey due to the predation in the presence of the

reference predator density.


X̃1

′
=

[
−Tref

Tr1
+

Tref

Tc
X̃2

]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)−

Tref

Ta
X̃1

]
X̃2

A.3 Simplification of the Lotka-Volterra-Verhulst model with a saturating Holling
I functional response

{
X ′

1 = −X1 · α1 +min
(
a ·X2,

S
e

)
e · c ·X1

X ′
2 = X2 · α2(1−K ·X2)−min

(
a ·X2,

S
e

)
X1

Where α1 is the net per capita intrinsic death rate of the predator, α2 is the net per capita intrinsic growth
rate of the prey, K is the area of the environment saturated per prey unit, a is the average successful attack
rate (= capture rate) per predator unit, e is the proportion of biomass consumed by the predator on 1 kg
of prey, c is the conversion rate of one prey unit into one predator unit and S is the maximum amount of
biomass that one unit of a predator can ingest per time unit before reaching satiation (≃ predator stomach
capacity).

We pose t = Tref · t̄ ⇔ t̄ = t
Tref

(change of variable), where Tref is a time unit of reference and t̄ is a
quantity of reference time units.

33



{
X̄1

′
= Tref

[
−α1 +min

(
a · X̄2,

S
e

)
e · c

]
X̄1

X̄2
′

= Tref

[
α2(1−K · X̄2)−min

(
a, S

e·X̄2

)
X̄1

]
X̄2

⇔


X̄1

′

¯XR1
= Tref

[
−α1 +min

(
a · X̄R2 · X̄2

¯XR2
, S
e

)
e · c

]
X̄1
¯XR1

X̄2
′

¯XR2
= Tref

[
α2(1−K · X̄R2 · X̄2

¯XR2
)−min

(
a, S· ¯XR2

e·X̄2· ¯XR2

)
X̄R1 · X̄1

¯XR1

]
X̄2
¯XR2

Where XR1 is the predator biomass density of reference and XR2 is the prey biomass density of reference.
We pose:

• X̃1 = X̄1
¯XR1

: the quantity of reference biomass density units for the predator ;

• X̃2 = X̄2
¯XR2

: the quantity of reference biomass density units for the prey ;

• κ = K · X̄R2: the saturation rate of the environment in the presence of the reference prey biomass
density;

• Tr1 =
1

α1
: the characteristic intrinsic decay time of the predator;

• Tr2 =
1

α2
: the characteristic intrinsic growth time of the prey.

⇐⇒

 X̃1

′
=

[
Tref

Tr1
+min

(
a · X̃2.X̄R2,

S
e

)
e · c

]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)−min

(
a, S

e·X̃2· ¯XR2

)
X̃1 · X̄R1

]
X̃2

⇐⇒

 X̃1

′
=

[
Tref

Tr1
+min

(
X̃2,

S
a·e· ¯XR2

)
a · e · c · X̄R2

]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)−min

(
1, S

a·e·X̃2· ¯XR2

)
a · X̃1 · X̄R1

]
X̃2

We pose:

• λ = a· ¯XR2·e
S : the saturation rate of a predator’s stomach in the presence of the reference prey biomass

density ;

• Tc =
1

a· ¯XR2·e·c
: the characteristic growth time of the predator via the predation on the prey and in the

presence of the reference prey biomass density ;

• Ta = 1
a· ¯XR1

: the characteristic decay time of the prey due to the predation in the presence of the
reference predator biomass density.

 X̃1

′
=

[
−Tref

Tr1
+

Tref

Tc
·min

(
X̃2,

1
λ

)]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)− Tref

Ta
·min

(
1, 1

λ·X̃2

)
X̃1

]
X̃2

⇔

 X̃1

′
=

[
−Tref

Tr1
+

Tref

Tc
·min

(
X̃2,

1
λ

)]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)− Tref

Ta
·min

(
X̃2,

1
λ

)
X̃1

X̃2

]
X̃2

Where X̃1 = X̄1
¯XR1

is the number of reference biomass density units for the predator, X̃2 = X̄2
¯XR2

is the
number of reference biomass density units for the prey, κ = K · X̄R2: the saturation rate of the environment
in the presence of the reference prey biomass density, λ = a· ¯XR2·e

S is the daily saturation rate of the predator’s
stomach in the presence of the reference prey biomass density, Tr1 = 1

α1
is the characteristic intrinsic decay
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time of the predator, Tr2 = 1
α2

is the characteristic intrinsic growth time of the prey, Tc = 1
a· ¯XR2·e·c

is the
characteristic growth time of the predator via the predation on the prey and in the presence of the reference
prey biomass density and Ta = 1

a· ¯XR1
is the characteristic decay time of the prey due to predation in the

presence of the reference predator biomass density.

A.4 Simplification of the Lotka-Volterra-Verhulst model with a Holling II func-
tional response

{
X ′

1 = −X1 · α1 +
a·X2

1+a· e
S ·X2

e · c ·X1

X ′
2 = X2 · α2(1−K ·X2)− a·X2

1+a· e
S ·X2

·X1

Where α1 is the net per capita intrinsic decay rate of the predator, α2 is the net per capita intrinsic growth
rate of the prey, K is the number of hectares of the environment saturated per prey unit, a is the average
successful attack rate (= capture rate) of the predator on the prey per predator unit, e is the proportion
of biomass consumed by the predator on one prey unit, c is the conversion rate of one prey unit into one
predator unit and S is the maximum amount of biomass that one predator unit can ingest before reaching
satiety (≃ stomach capacity).

We pose t = Tref · t̄ ⇔ t̄ = t
Tref

(change of variable), where Tref is the time unit of reference and t̄ is a
quantity of reference time units.

 X̄ ′
1 = Tref

[
−α1 +

a·X̄2

1+a· e
S ·X̄2

e · c
]
X̄1

X̄ ′
2 = Tref

[
α2(1−K · X̄2)− a

1+a· e
S ·X̄2

· X̄1

]
X̄2

⇔


X̄′

1
¯XR1

= Tref

[
−α1 +

a· X̄′
2

¯XR2
· ¯XR2

1+a· e
S · X̄′

2
¯XR2

· ¯XR2

e · c

]
X̄′

1
¯XR1

X̄′
2

XR2
= Tref

[
α2(1−K · X̄′

2
¯XR2

· X̄R2)− a

1+a· e
S · X̄′

2
¯XR2

· ¯XR2

· X̄′
1
¯XR1

· X̄R1

]
X̄′

2
¯XR2

Where XR1 is the predator biomass density of reference and XR2 is the prey biomass density of reference.
We pose:

• X̃1 = X̄1
¯XR1

: the number of reference biomass density units of predator ;

• X̃2 = X̄2
¯XR2

: the number of reference biomass density units of the prey;

• κ = K · X̄R2: the saturation rate of the environment in the presence of the reference biomass density of
prey ;

• λ = a· ¯XR2·e
S : the daily saturation rate of a predator’s stomach in the presence of the reference prey

biomass density;

• Tr1 = 1
α1

: the characteristic intrinsic decay time of the predator;

• Tr2 = 1
α2

: the characteristic intrinsic growth time of the prey;

• Tc =
1

a· ¯XR2·e·c
: the characteristic growth time of the predator via the predation on the prey and in the

presence of the reference prey biomass density;

• Ta = 1
a· ¯XR1

: the characteristic decay time of the prey due to the predation in the presence of the
reference predator biomass density.

 X̃1

′
=

[
−Tref

Tr1
+

Tref

Tc
· X̃2

1+λ·X̃2

]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)− Tref

Ta
· X̃1

1+λ·X̃2

]
X̃2
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A.5 Simplification of the Lotka-Volterra-Verhulst model with a Holling III func-
tional response

 X ′
1 = −X1 · α1 +

a·(X2)
2

1+a· e
S ·(X2)2

e · c ·X1

X ′
2 = X2 · α2(1−K.X2)− a·(X2)

2

1+a· e
S ·(X2)2

·X1

Where α1 is the net per capita intrinsic decay rate of the predator, α2 is the net per capita intrinsic growth
rate of the prey, K is the area of the environment saturated per prey unit, a is the average successful attack
rate (= capture rate) of the predator on the prey per predator unit and per prey unit, e is the proportion
of biomass consumed by the predator on one prey unit, c is the conversion rate of one prey unit into one
predator unit and S is the maximum amount of biomass that one predator unit can ingest before reaching
satiety (≃ stomach capacity).

We pose t = Tref · t̄ ⇔ t̄ = t
Tref

(change of variable), where Tref is the time unit of reference and t̄ is a
quantity of reference time units.

 X̄ ′
1 = Tref

[
−α1(1−K1 · X̄1) +

a·(X̄2)
2

1+a· e
S ·(X̄2)2

e · c
]
X̄1

X̄ ′
2 = Tref

[
α2(1−K · X̄2)− a·X̄2

1+a· e
S ·(X̄2)2

· X̄1

]
X̄2

⇔



X̄′
1
¯XR1

= Tref

−α1(1−K1 · X̄′
1
¯XR1

· X̄R1) +
a·
(

X̄′
2

¯XR2

)2

·( ¯XR2)
2

1+a· e
S ·

(
X̄′

2
¯XR2

)2

·( ¯XR2)
2
e · c

 X̄′
1
¯XR1

X̄′
2

XR2
= Tref

α2(1−K · X̄′
2
¯XR2

· X̄R2)−
a· X̄′

2
¯XR2

· ¯XR2

1+a· e
S ·

(
X̄′

2
¯XR2

)2

·( ¯XR2)
2
· X̄′

1
¯XR1

· X̄R1

 X̄′
2
¯XR2

Where XR1 is the predator biomass density of reference and XR2 is the prey biomass density of reference.
We pose:

• X̃1 = X̄1
¯XR1

: the number of reference biomass density units of the predator ;

• X̃2 = X̄2
¯XR2

: the number of reference biomass density units of the prey ;

• κ = K · X̄R2: the saturation rate of the environment in the presence of the biomass density of reference
prey ;

• λ = a·( ¯XR2)
2·e

S : the daily saturation rate of the daily stomach of a predator in the presence of the
reference biomass density of the prey ;

• Tr1 = 1
α1

: the characteristic intrinsic decay time of the predator ;

• Tr2 = 1
α2

: the characteristic intrinsic growth time of the prey ;

• Tc = 1
a·( ¯XR2)2·e·c

: the characteristic growth time of the predator via the predation on the prey and in
the presence of the reference prey biomass density ;

• Ta = 1
a· ¯XR1· ¯XR2

: the characteristic decay time of the prey due to the predation in the presence of the
reference predator and prey biomass densities.

 X̃1

′
=

[
−Tref

Tr1
+

Tref

Tc
· (X̃2)

2

1+λ·(X̃2)2

]
X̃1

X̃2

′
=

[
Tref

Tr2
(1− κ · X̃2)− Tref

Ta
· X̃1·X̃2

1+λ·(X̃2)2

]
X̃2

B Expression of the coexistence equilibrium of each model
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C Study site

The study site was the Saclay Plateau (centroid : 48°42’32.18"N, 2°10’33.00"E). It is an agroecosystem of
about 70 km² located around 20 km south from the Paris metropolitan area. This fertile agricultural land
has a long agricultural tradition with primary crops of colza, wheat, and barley. Currently, this area is facing
urbanisation pressure due to the development of Paris-Saclay University, a laboratory, and a high school.

D Field night counts

Each season, night counts of foxes and lagomorphs were performed along six transects. In total, night counts
were conducted during 26 seasons from autumn 2014 to spring 2022: 7 winters and 7 springs (2015, 2016, 2018,
2019, 2020, 2021 and 2022), 6 summers (2015, 2016, 2018, 2019, 2020 and 2021) and 6 autumns (2014, 2015,
2018, 2019, 2020 and 2021). The night counts were realized in a car travelling by 10-15 km/h, by 2-3 observers
who used halogen spotlights (Striker LightForce 170 100W halogen handheld light, 600 meters range) to spot
foxes and lagomorphs on each side of the road. Thanks to those spotlights, a total area of 1,319 km² was
investigated per night count. For each observation, the number of individuals and time was recorded. We
conduct two night counts per season. These two counts were only a few days apart (mean: 9.5 days, minimum:
2 days, maximum: 26 days) in order to consider that the fox and lagomorph populations were closed. In
automn 2018, only a single count was conducted due to issues with human resources. Only the maximum
number of foxes and lagomorphs spotted was used to calculate their index of density for the season. Indeed,
the populations being considered as closed between the two counts of the season, we considered that during the
counts with the less spotted individuals, we missed individuals which were however present on the study site.
The indexes of density were calculated as follow: Density of foxes/lagomorphs = Total number of individuals

Total surveyed area .
We then calculated the average densities over a year by taking the average of all seasons.

E Protocol of small mammals capture

Each season, micro-mammals trapping sessions were performed on several sites on the plateau of Saclay for
4 consecutive days. In total, micro-mammals trapping sessions were conducted during during 26 seasons
from autumn 2014 to spring 2022: 7 winters and 7 springs (2015, 2016, 2018, 2019, 2020, 2021 and 2022), 6
summers (2015, 2016, 2018, 2019, 2020 and 2021) and 6 autumns (2014, 2015, 2018, 2019, 2020 and 2021).
We used trapping grids composed of INRA traps regularly interspaced by 5 meters, baited with peanut butter
and equipped with a wooden nest box filled with cotton. The total number of sites as well as the number of
traps used and the area surveyed on each site varied according to the year (Table 7).

Sessions Number of Sites Number of Surveyed Total surveyed
sites traps on area per area per

each site site session
From 3 Réserve, 6x5 = 30 750 m2 2250 m2

autumn 2014 Orsigny,
to Saint-Aubin
winter 2015
From 3 Réserve, 8x8 = 64 1600 m2 4800 m2

spring 2015 Orsigny,
to Saint-Aubin
summer 2016
From 4 Réserve, 7x7 = 49 1225 m2 4500 m2

winter 2018 Saint-Aubin,
to Vandame,
spring 2022 La Martinière

Table 7: Sites, number of traps and surveyed area during small mammals captures
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The traps were activated during 4 consecutive evenings and checked on the morning. The species of each
captured micro-mammals was identified, or its genus or family if the field workers were not able to identify the
species. Each micro-mammals was also weighed at first capture and the sex of each rodent was determined.
Then, it was released at the point of capture. The total abundance of micro-mammals on the surveyed area
was estimated with the Fitzgerald index [Fitzgerald et al., 2004] as it was shown in [Castañeda et al., 2018]
that Fitzgerald’s indices estimated over 4 consecutive nights with a 7x7 trap grid are close to spatially
explicit density estimates from capture-mark-recapture. The indexes of density were calculated as follow:
Density of small mammals = Total number of individuals estimated with the Fitzgerald index

Total surveyed area

F Scat analysis protocol

Predator scats were seasonally collected during 2 years (from fall 2014 to summer 2016) on the Plateau of
Saclay. The sampling was performed once a season. The scats collected were macro-and microscopically
analyzed in order to determine the minimum number of prey individuals (MNI) in each scat, as described in
[Castañeda et al., 2020].

Then, to determine the quantity of consumed biomass of each prey kind, we multiply the MNI by the
mean individual biomass of this prey mprey and by the proportion of biomass e consumed by the predator on
one item of this kind of prey. We then determine the expected number of scats from prey biomass consumed,
using the method of [Monroy-Vilchis and Frieven, 2006]. Then, we compare this expected number of scats
to the mean number of scats produced by a fox each day (i.e., 8 scats per day, [Webbon et al., 2004]). If
the expected number of scats is inferior to 8, we assume that 1) the fox ate enough prey to make 8 scats
per day and 2) what was found in one scat is representative of the rest of its meal for the day. Thus, we
multiplied the biomass of all consumed prey types by a factor allowing us to reach the biomass required
to expect 8 scats. Thereafter, this correction is called "scat correction". After that, we checked that the
primary corrected consumed biomass does not exceed the biomass that a fox is able to ingest a day, thereafter
the stomach capacity (i.e., 0.850 kg.day−1, [Webbon et al., 2004]) and calculated the percentage of excess
P (P = 0 if no excess). Then, we checked if the total biomass of the food items ingested as a whole (e.g.,
the small mammals, the small-sized birds, the fruits, the invertebrates, and meat refuses), thereafter "small
prey", exceed the biomass that a fox is able to ingest a day. If so, we applied the following correction to all
kinds of small prey:

BM2 =
BM1

1 + P

With BM2 the biomass secondary corrected by the stomach capacity of the fox and BM1 the biomass
primarily corrected by the scat correction. The remaining capacity of the stomach for food items partially
consumed (i.e., medium and large-sized birds and lagomorphs, hereafter large prey) was calculated as well as
the percentage of excess Q of the total ingested biomass of large prey compared to this remaining capacity
(Q = 0 if no excess). If so, we applied the following correction to all kinds of large prey:

BM2 =
BM1

1 +Q

With BM2 the biomass secondary is corrected by the stomach capacity of the fox and BM1 the biomass is
primarily corrected by the scat correction.

For each kind of prey, we calculated the corrected minimum number of prey individuals (MNIcorr) eaten,
following the relation:

MNIcorr =
BM2

mprey

We then keep the maximum between MNI and MNIcorr (hereafter MNImax). The aim is to ensure that
the two previous corrections did not reduce the MNI of each scat, which, by definition cannot be lower.
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We determine 4 main groups of fox prey as the prey categories being an important part of the ingested
biomass in fox diet [Castañeda et al., 2020] and whose density is known: the large and medium-sized birds,
small-sized birds, the small mammals (excepting rats, because we were unable to estimate their density),
and the lagomorphs. The other kind of food, whose the biomass ingested by fox is low or whose we cannot
estimate the density, were considered as an alternative food. For each scat k, the rate of biomass gain due to
alternative food was calculated with the following relation:

Ak =
BMinv.Cinv.RFD

Cmeat.RFD
+

BMfruit.Cfruit.RFD

Cmeat.RFD
+

BMmeat.Cmeat.RFD

Cmeat.RFD

With BMinv the corrected ingested biomass of invertebrate (i.e., insects and spiders), BMfruit the corrected
ingested biomass of fruit, BMmeat the corrected ingested biomass of meat other than main prey groups (i.e.,
rats, earthworms, crayfish, and meat refuses), Cinv the mean metabolizable energy content of invertebrates,
Cfruit the mean metabolizable energy content of fruits, Cmeat the mean metabolizable energy content of meat
[Nagy, 1987] and RFD the ratio between fresh biomass and dry biomass [Roemer et al., 2002]. For each season
s (autumn, winter, spring, and summer), we calculated a mean seasonal daily rate As of biomass gained by
fox via the consumption of alternatives food as the mean of Ak of the scats collected during season s. We
finally calculated the mean daily rate A of biomass of fox gained via the consumption of alternative resources
as the mean of the As.

Furthermore, for each scat, we calculated the remaining capacity of the fox stomach Scorr after the
consumption of alternative food, as the difference of the stomach capacity [Webbon et al., 2004] and the total
biomass of ingested alternative food.

For each scat k and each main group of fox prey j, we calculated the biomass caught per fox kilogram
Φkj as: Φ =

MNImax.mj

mfox
, with mj the mean individual biomass of main prey group j and mfox the mean

individual biomass of fox. For each main prey group j, the mean daily biomass caught per fox kilogram Φsj

was calculated for each season s (autumn, winter, spring, and summer) as the mean of each Φkj of the scats
collected during season s.

For each main prey group j we calculated the handling time bj of 1kg of prey per kg of a predator as
b =

ej .mfox

Scorr
, with ej the proportion of biomass consumed by the predator on 1 kg of prey group j.

For each scat k, we then calculated the following factor, called Dk, as: Dk = 1 −
∑

j [Φsj .bj ], with s the
season during which scat k was collected.

Finally, we calculated the attack rate akj of the fox on main group prey j for each scat k.
For Holling I, the formula was:

akj =
Φkj

Psj

With Psj the density of biomass of main prey group j during season s, s being the collect season of the scat
k.
For Holling II, the formula was:

akj =
Φkj

Psj .Dk

For Holling II, the formula was:

akj =
Φkj

(Psj)
2
.Dk

For each main prey group j, the mean daily attack rate asj of a fox in the main prey group j was calculated
for each season s (autumn, winter, spring, and summer) as the mean of each akj of the scats collected during
season s. Finally, the mean daily attack rate aj of a fox on main prey group j was calculated as the mean
of asj . It should be noted that for our case study, we reinjected the attack rate of foxes on small mammals,
calculated in the presence of the other main prey, in a system containing no other main prey than small
mammals. This is why we call the system in our case study a practical and simplified system, even though
we use data from the field.
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All calculations were done on R version 3.6.3 (2020-02-29) ([R Core Team, 2020]).

G Estimation of the red fox Field Metabolic Rate

The FMR was estimated from the allometric relationship given by [Nagy et al., 1999] for species of Carnivora
order:

FMR = 1.67× (m0.869)

Where the FMR is expressed in kJ.day−1.predator−1 and m is the mean adult biomass of a preda-
tor individual expressed in grams. The biomass lost FMRBM by a Carnivora due to its FMR in a day
(in kg.day−1.predator−1) can therefore be approximated by converting this energy into meat biomass, us-
ing the conversion coefficient the mean metabolizable energy contents of meat (18.0 kJ.g−1, [Nagy, 1987],
[Keitt et al., 2002]) and biomass ratio between fresh animal matter (FM) and dry animal matter (DM) (3.33
g FM/1 g DM, [Roemer et al., 2002]):

FMRBM = 1.67× (m0.869)× 3.33

18

We can finally obtain the proportion of biomass of predators lost daily due to the field metabolic rate M

by dividing the latter expression by the average mass of a predator:

M = 1.67× (m0.869)

m
× 3.33

18
=

1.67

m0.131
× 3.33

18

Which gives, for the red fox with an average mass of 6.5 kg ([Artois and Le Gall, 1988]):

M =
1.67

65000.131
× 3.33

18
= 0.098 day−1

H Estimation of the biomass gain rate due to reproduction

We chose to express the gain of biomass R via the fox reproduction as a mean daily rate. On a year, the rate
of gained biomass thanks to the reproduction can be expressed as:

R =
SR× LS ×NL

ND

With SR the sex-ratio of the fox, LS the mean litter size of the fox, NL the mean number of litter per year
and ND the number of days per year. We consider a sex ratio SR = 0.5, an average litter size LS = 3.5

[Artois and Le Gall, 1988], a unique reproduction per year [Meia, 2016] and 365 days per year:

R =
0.5× 3.5× 1

365
= 0.0048 day−1

I Conversion rate calculation

[Lockie, 1959] calculated correction factor F (named coefficient of digestibility in [Goszczyński, 1974]) with
the following relation:

BMND × F = BMI ⇔ BMND =
BMI

F

With BMI the fresh ingested biomass and BMND the dried biomass of non-digested remains in the feces.
Moreover, assuming that the non-digested parts are essentially hard and dry parts (bones, hair, etc.), we

have the following relation with the digested biomass BMD:

BMD = BMI −BMND = BMI .

(
1− 1

F

)
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In our model, we consider the rate of conversion c of prey biomass to predator biomass:

BMD = BMI .c

(
RFD.CM

CM .RFD

)
= BMI .c

With RFD the ratio between fresh biomass and dry biomass [Roemer et al., 2002] and CM the mean metab-
olizable energy content of meat [Nagy, 1987]. Thus:

c = 1− 1

F

[Lockie, 1959] give a coefficient of digestibility F of 23 for voles and mices (confirmed by [Goszczyński, 1974]),
which corresponds to c = 0.96.
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