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Abstract. We extend and consolidate the security justification for the
Dilithium signature scheme. In particular, we identify a subtle but crucial
gap that appears in several ROM and QROM security proofs for signa-
ture schemes that are based on the Fiat-Shamir with aborts paradigm,
including Dilithium. The gap lies in the CMA-to-NMA reduction and was
uncovered when trying to formalize a variant of the QROM security proof
by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was
confirmed by the authors, and there seems to be no simple patch for it.
We provide new, fixed proofs for the affected CMA-to-NMA reduction,
both for the ROM and the QROM, and we perform a concrete secu-
rity analysis for the case of Dilithium to show that the claimed security
level is still valid after addressing the gap. Furthermore, we offer a fully
mechanized ROM proof for the CMA-security of Dilithium in the Easy-
Crypt proof assistant. Our formalization includes several new tools and
techniques of independent interest for future formal verification results.

1 Introduction

Modern cryptographic standards, including AES and SHA3, are often selected
through open, multi-year cryptographic competitions. An important goal of these
competitions is to increase confidence in the schemes selected for standardiza-
tion. To this end, candidate schemes are exposed to scrutiny by the cryptography
community. This scrutiny generally yields a combination of cryptanalytic attacks
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and provable security claims. The former leads to schemes being abandoned, nar-
rowing the choice of candidates, while the latter plays a fundamental role in the
selection of the remaining candidates. Overall, competitions increase confidence
in selected standards. However, competitions are not infallible. In particular,
flaws in candidate designs may go undetected by public scrutiny far into the
standardization process. These “near misses” beg for complementary methods
for validating provable security claims of widely used standards.

PosT-QUANTUM CRYPTOGRAPHY AND DILITHIUM. In 2016, NIST initiated a
competition for standardizing cryptographic algorithms that could withstand
quantum adversaries. The competition recently reached an important milestone
with the selection of four standards: one KEM (Kyber) and three signature al-
gorithms (Dilithium, Falcon, SPHINCS+). These algorithms were chosen out
of 69 candidates, some of which may still be selected during a fourth round.
The selected candidates will form the backbone of quantum-resistant cryptogra-
phy. Given the stakes, there is ample motivation for supporting all the selected
candidates with computer-aided security proofs.

Dilithium [DKL*21,DKL" 18] is a lattice-based digital signature based on the
Fiat-Shamir with aborts (FSwA) paradigm introduced by Lyubashevsky [Lyu09,
Lyul2]. Recall that the classic Fiat-Shamir (FS) paradigm transforms an in-
teractive identification scheme (IDS) based on the standard commit-challenge-
response structure into a digital signature scheme. The FS transform takes an
IDS scheme ID and a hash function H (which is typically modelled as a ran-
dom oracle) and sets the signature key pair to be that of ID. Then, to produce
a signature on message m, the signer generates a first message w, locally sets
the challenge to be ¢ := H(w,m) and completes the signature as ¢ := (w, z),
where z is the response generated by ID upon first message w and challenge c.
A signature 0 = (w, 2) is valid if (w,H(w, m), z) is accepted by ID. The Fiat-
Shamir with aborts (FSwA) paradigm extends the F'S transform to allow for the
response generation procedure to abort! — hence FS with aborts — which means
that the signing algorithm must now execute the IDS repeatedly until a valid
trace (w, ¢, z) is produced. We will denote this transformation by FSwA[ID, H].

The security of FSwA has been analyzed many times. In particular, the
original analysis in [Lyul2] (in the ROM) concludes that the resulting signature
scheme is secure down to the underlying lattice-based assumption. Later, Kiltz,
Lyubashevsky, and Schaffner [KLS18] (KLS) developed a modular framework
that follows the structure of the FSwA transform and used it to extend the
results of the security analysis to quantum attackers in the Quantum-accessible
Random Oracle Model (QROM).

COMPUTER-AIDED CRYPTOGRAPHY (CAC). CAC is an emerging approach
that develops computer tools for building and independently verifying provable
security claims [BBB*21]. CAC formal verification tools have been used to vali-
date the security claims for a number of cryptographic primitives and protocols,

! This is necessary for a large class of lattice-based IDS, to avoid leaking the secret
key via biased responses z.



and they have progressed to a point where they can be used to increase the level
of assurance in standardisation processes. The most outstanding application of
CAC to date is arguably the TLS (Transport Layer Security) protocol: the most
recent version, TLS 1.3, was designed under the coordination of the IETF with
the active involvement of formal verification experts, who used formal tools to
unveil logical flaws in previous versions of TLS and intermediate designs, and to
validate the security arguments [BBK17, DFK*17, CHSvdM16, CHH" 17].

In this paper we focus on EasyCrypt, a tool designed for machine-checking
code-based computational security proofs, and hence ideally suited for formally
verifying the security proofs for low-level primitives such as digital signature
and encryption schemes. EasyCrypt permits stating and proving computational
security goals using the same formalisms adopted in cryptographic papers. We
report the results of our efforts to formally verify the security proof for the
Dilithium signature scheme and provide further evidence that computer-aided
cryptography permits guraranteeing the absence of design flaws in cryptographic
standards to a much higher level of assurance than manual inspection.

Main Contributions. The main contributions of this paper are three-fold.
First, we identify a subtle but crucial gap that appears in several ROM and
QROM security proofs of Dilithium and other schemes based on FSwA, includ-
ing [Lyul2] and [KLS18]. This gap was uncovered when formalizing a variant
of the proof in [KLS18]. Second, we provide fixed proofs, both for the ROM
and the QROM. Third, we fully mechanize the ROM proof in the EasyCrypt
proof assistant. Our formalization includes several new tools and techniques of
independent interest for future formal verification results.

We elaborate on these contributions below, but stress at this point two im-
portant take-aways: 1) our results extend and consolidate the security justifica-
tion for the Dilithium signature scheme and 2) the gap in the proof would have
been found earlier if any of the affected works, most prominently the Dilithium
submission to the NIST post-quantum competition, had been subject to formal
verification in the past.

THE GAP. The gap in the proof of FSwA occurs in the reduction from chosen
message attacks (CMA) to no-message attacks (NMA). In this step, signature
queries made by the considered CMA-attacker AS€™H  which has access to a
singing oracle and the random oracle, must be answered without knowledge of
the secret key, replacing real signatures with fake ones produced by an Honest-
Verifier Zero Knowledge (HVZK) simulator associated with the IDS. To ensure
that the attacker cannot detect that it is being given fake signatures, it is also
necessary to reprogram the random oracle to be consistent with the transcripts
produced by the simulator. The crucial step boils down to replacing the oracle
Sign by the oracle Trans (see Fig. 1 below), where Resp is an algorithm that may
return L.



Sign(m): Trans(m):

1: repeat 1: repeat

2:  (w,st) « Com(sk) 2:  (w,st) < Com(sk)
3 c¢:= H(w,m) 3: ¢« ChSet

4: 2 := Resp(w,c,st) 4: =z = Resp(w, ¢, st)
5: until z # | 5 until 2 # L

6: 6: H(w,m) :=c

7: return (w, 2) 7: return (w, 2)

Fig. 1. Oracles Sign and Trans.

Clearly, the adversary A can attempt to guess w and query H on w be-
fore calling Sign/Trans, and then detect the inconsistency introduced by the
reprogramming in case of Trans. However, even if the adversary makes no prior
H-queries, the distribution of the random oracle changes, and this is where the
gap lies. The reprogramming in Trans only reprograms the random oracle with
accepting transcripts and thereby shifts the random oracle slightly towards pairs
((w,m), c) such that Resp(w, ¢,st) # L. Even though one expects this change in
the distribution of the random oracle to be small, there is still a gap that needs
to be properly bounded.

Both Lyubashevsky [Lyul2] and KLS [KLS18] miss the loss incurred by the
bias in H in their analysis. In [Lyul2] this is missed in the hop from the real
signing oracle to Hybrid 1 in the proof of Lemma 5.3 —note that the bound
in [Lyul2] remains correct due to a loose analysis. In [KLS18] the gap is missed
in the game hop from Gy to G in the proof of Theorem 3.2. Moreover, this
oversight is not a problem limited to [Lyul2] and [KLS18|, and it potentially
affects all F'S-based schemes involving rejection sampling. This includes a long
list of works [LNP22, DKL*18, DFG19, BKP20, BDK"22] on lattice-based and
isogeny-based signature schemes (and non-interactive proof systems) that need
to be re-examined carefully.

BRIGDING THE GAP. Our second contribution is a new, fixed proof for the CMA-
to-NMA reduction for FSwA in general, and for Dilithium in particular. We
address both the ROM and the QROM case; in order to optimize the reduction
loss, we use slightly different (lower level) hybrids for the two cases.?

In order to circumvent the gap (while keeping the reduction loss reasonable),
we follow a rather different (but in some sense also more natural) proof strat-
egy than [KLS18]. We present a high-level outline of the proof (which is the
same for ROM and QROM) in Section 3. The proof requires fine-grained con-
trol of the modifications to the random oracle, which we handle using nested
hybrid arguments. In order to deal with QROM adversaries, we make use of
the compressed-oracle technique [Zhal9]. However, special care has to be taken

2 We note that for simplicity, we consider ordinary unforgeability. It is not too hard
to extend our results to stronmg unforgeability if the considered IDS satisfies the
additional property of having computational unique-responses.



to deal with the potentially unbounded number of random oracle queries done
by the signing procedure, as a result of the unbounded rejection sampling loop;
moreover, this number depends on the choice of the message to be signed, which
is under the adversary’s control.

Result-wise, we note that our CMA-to-NMA reduction differs from the (flawed)
one in [KLS18] in that we can rely on a weaker variant of HVZK than in [KLS18].
On the downside, the bound we obtain for the CMA-to-NMA reduction is worse
than the one claimed in [KLS18]. For this reason, we conclude in Section 7 with
an analysis of the security loss incurred by our proof for concrete parameters —
the analysis is close to that given in [KLS18], but we improve the analysis of
relevant entropy metrics—and confirm that the parameters in the Dilithium
NIST submission [DKL*21] provide sufficient slack to accommodate the addi-
tional loss and still comfortably reach the claimed security for all considered
NIST security levels (2, 3, and 5).

MACHINE-CHECKED PROOF. We mechanize the entire security proof of Dilithium
in the ROM using EasyCrypt.? The formalization covers the fixed CMA-to-NMA
reduction (Section 5), the correctness of an HVZK simulator for the IDS underly-
ing Dilithium, and the reduction from NMA security to MLWE and SelfTargetMSIS.
The latter two proofs largely follow the original proofs in [KLS18] and are de-
scribed in Section 6. These results guarantee the absence of additional gaps in
the ROM proof and, due to their similarity, give high confidence that such gaps
also do not exist in the QROM proof. In fact, in Section 3 we show that the two
proofs have the same overall structure and that the only significant differences
lie in how the probability of bad events is bounded in the ROM and the QROM.

The intricacy of the security proof, particularly the new CMA-to-NMA re-
duction, posed interesting challenges when formalizing the proof in EasyCrypt
(even in the ROM). Indeed, the mechanized proof uses several tools that were
not used in earlier mechanized cryptographic proofs.

— Proving an advantage bound that matches the pen-and-paper proof implies
reasoning about the expected number of iterations of the unbounded rejec-
tion sampling loop in Dilithium. To do this, we make use of an expectation
logic that was recently added to EasyCrypt to reason about the expected
complexity of randomized programs [ABG*23|. The logic is based on the
seminal work by Kozen [Koz83].

— Some hybrid arguments in the proof modify the operation of the rejection
sampling loop one iteration at the time, which means that the total number
of hybrid steps is potentially infinite. In consequence, we need to prove the
convergence of advantage expressions that result from putting together all
the hybrid steps, as the number of hybrid steps goes to infinity.

— In addition to various minor additions to existing EasyCrypt libraries (e.g.,
for limits of sequences and sums, or for conditional sampling) we developed a
new matrix library supporting variable-width matrices and vectors as well as

3 Support for QROM in EasyCrypt is still under active development [BBF*21], and
the existing features do not yet allow to formally verify the QROM proof.



block matrices.* For the application to Dilithium, we created a new library
that refines the existing EasyCrypt support for abstract polynomial rings
modulo an ideal. This was necessary to express and prove low-level properties
that justify some of the optimizations in Dilithium.

Altogether, the machine-checked security proof is about 6000 lines long. In ad-
dition, the generic library extensions also amount to several thousand lines. The
EasyCrypt development, along with documentation on where to find the vari-
ous theorem statements and how to automatically machine-check the proofs, is
available at https://github.com/formosa-crypto/dilithium.

CONCURRENT WORK. Concurrent and independent work [DFPS23] partially
overlaps with the results we present in this paper. Both our work and [DFPS23]
identify the same gap in the CMA-to-NMA reduction that is present in prior
works on Fiat-Shamir with aborts. Furthermore, both [DFPS23] and our work
offer new, corrected CMA-to-NMA reductions (both in the ROM and QROM),
where the high-level strategy to fix the previous proofs involves reprogramming
the random oracle both on accepted and rejected transcripts. But then, the
two works proceed differently. [DFPS23] considers an HVZK simulator for the
underlying IDS that can be used simultaneously for reprogramming accepted
and rejected transcripts; such a simulator is then constructed for a particular
class of signatures. On the other hand, in this paper we introduce an additional
hybrid step that removes the reprogrammings of the rejected transcripts, which
allows us to rely on a weaker HVZK simulator that only needs to simulate
accepting transcripts. Finally, beyond the above, [DFPS23| and our work include
the following respective disjoint contributions: [DFPS23] identifies and discusses
some further difficulties with the Fiat-Shamir with aborts paradigm, e.g., with
the history-free approach from [KLS18], and with termination and correctness
in the unbounded case. On the other hand, we offer a fully mechanized security
proof for Dilithium (for the classical ROM setting) using the EasyCrypt formal-
verification platform.

2 Preliminaries

We consider a signature scheme obtained by applying Fiat-Shamir with aborts
(FSwA) to an interactive identification scheme (IDS) that follows the standard
commit-challenge-response structure. The latter means that for a public/secret
key pair (pk, sk), the scheme works in three flows: 1) the Prover generates a first
message (w,st) «— Com(sk) (sometimes also called the commitment), and sends
w to the Verifier; 2) the Verifier choses a random challenge ¢ < C and sends
it back to the Prover; 3) the Prover computes a response z := Resp(sk, w, ¢, st),
which the Verifier checks using Verify(pk, w, c, z).> We write KeyGen for the al-
gorithm that generates the key pair (pk, sk).

4 This was done in collaboration with Oskar Goldhahn and has now been merged into
the EasyCrypt standard library

5 Throughout the paper, when clear from the context, we often omit the dependence
on pk and sk in our notation.
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The Fiat-Shamir transformation turns such an IDS into a signature scheme
by computing the challenge ¢ as the hash of w and the to-be-singed message m.
We stress that by considering FSwA, we allow the IDS to abort, i.e., Resp to
output z = L; in this case, the signing procedure will simply retry with a fresh
new first message w until it succeeds (see Sign in Fig. 1 or 2). For a given key
pair (pk, sk), we let the abort probability for w generated by Com and a random
challenge ¢ be

P(pk,sk) = (w,st)EcI;m(sk) [Resp(w, C, St) = J—] .
c—C
The entropy of w will be an important parameter, implicitly captured by the
guessing probability

Clok,sk) = O8N (w,st)fCrom(sk)[w = wo]. (1)

where W is the support set for IDS commitments. Finally, we require the IDS
to satisfy the following honest-verifier zero-knowledge variant, which admits to
simulate accepted transcripts.b

Definition 1. (Accepting Honest-verifier Zero-knowledge) An IDS as above is
said to be acHVZK with simulation error (. if there exists a poly-time algorithm
ZKSim that, when given the public key pk, outputs (w, ¢, z) with a distribution
that has statistical distance at most (,; from the distribution of a transcript
(w, ¢, z) produced by an honest execution of the protocol conditioned on z # L.

We note that this is a different flavor of HVZK than naHVZK considered in
[KLS18], and it is weaker (at least in spirit). In [KLS18] the simulator must match
the full distribution of traces, which means that a (strict or expected) poly-time
naHVZK simulator implies an expected poly-time simulator as we require it: the
acHVZK simulator repeatedly runs the naHVZK simulator until a good trace is
generated. Whether the acHVZK simulator is strict or expected poly-time will
determine whether we require the computational hardness assumption to hold for
strict or expected poly-time algorithms.” E.g., the scheme considered in [Lyul2)]
admits a strict poly-time acHVZK simulator, while for Dilithium we only know
how to simulate accepted transcripts in expected poly-time.

3 Outline of the Proof

In this section, we provide a detailed account of how we closed the gap in the
proof described in the introduction. We first give some intuition about the gen-
eral proof strategy, and we pinpoint the main two technical steps of the proof,

5 For simplicity, and since this is sufficient for out main application (Dilithium), we
consider statistical indistinguishability of the simulated transcript. Our results ex-
tend to a computational variant in the obvious way.

7 Also note that, at the cost of an increased simulation error, an expected poly-time
simulator can always be turned into a strict poly-time one by cutting the runtime.



i.e., we isolate two quantities (corresponding to two distinguishing advantages
for some game hops) that remain to be bounded. We then discuss the challenges
in bounding these quantities, and we provide some intuition on how we solve
them. The rigorous analyses of these quantities are then done in subsequent
sections, separately for the QROM and the mechanized ROM proof.

Below, we consider an IDS as considered above, which satisfies Def. 1, and the
goal is to show that EF-NMA security implies EF-CMA security for the signature
scheme that is obtained from the IDS via FSwA.

3.1 Proof Skeleton

We follow the common approach, which is to show that for any CMA attacker
ASiEnH wwhich has access to a signing oracle Sign and the random oracle H, one
can replace the signing oracle Sign by an oracle Sim that does not have the secret
key, but instead produces a valid transcript by using the acHVZK-simulator and
reprograms H to be consistent with the transcript (see the description of Sim
in Fig. 2 below). Turning A>™# into an NMA attacker B¥ that does not ask
signature queries (and does not reprogram H and produces forgeries consistent
with H) is then a standard argument (discussed in more detail further down).
In order to show that replacing Sign by Sim has little effect, we introduce
two hybrid oracles Prog and Trans, as specified in Fig. 2, and we show that

ASign,H ~ AProg,H N.ATrans,H N.ASim,H

The oracle Prog samples transcripts (w, ¢, z) of the IDS for randomly chosen chal-
lenges ¢ and then reprograms H consistently (denoted H(w, m) := ¢ < C), both
for rejected and accepted transcripts. We emphasize that, since the reprogram-
ming happens independently of whether the transcript is accepted or not, there is
no dependency between w and ¢, circumventing the issue in [KLS18]. Intuitively,
in order to notice the difference, A must have queried H on one of the points
(w, m) before H gets reprogrammed on it; this is unlikely if w has high entropy.

The oracle Trans is as Prog, except that it only reprograms H on the final ac-
cepted transcript. This modification to the game introduces a bias in H towards
accepting transcripts. However, this should remain unnoticed unless A queries
such a pair (w, m) where Trans reprograms H yet Prog does not. Because w is
chosen with high-entropy and not revealed to A, this this is unlikely to happen.

Finally, closeness of AT"H and AS™H follows by definition of the acHVZK
property: for each of the calls A makes to Trans, replacing it by a call to Sim
changes the output distribution of A by at most (..

The key part of the proof is bounding the loss incurred by the hops to APr&
and AT which we will do separately for the QROM proof (Section 4) and
the mechanized ROM proof (Section 5). Here, we rigorously define those quan-
tities and explain the arguments that are common to both proofs.

For any 0 < € and p < 1, for any key pair (pk, sk) with p(,, ) < p and
€(pk,sk) < €, and for any choice of gs,qm € N, let the quantities A% ~"*(qs, qrr)



Sign(m): Prog(m): Trans(m):

1: repeat 1: repeat 1: repeat
2:  (w,st) « Com(sk) 2:  (w,st) « Com(sk) 2:  (w,st) « Com(sk)
3: c¢:= H(w,m) 3:  H(w,m):=c«C 3 e« C
4: 2z := Resp(w,c,st) 4:  z:= Resp(w,c,st) 4z = Resp(w, ¢, st)
5: until z # L 5: until z # L 5: until z # L
6: return (w, z) 6: return (w, z) 6: H(w,m) :=c

7: return (w, z)

Sim(m):

1: (w, ¢, z) « ZKSim(pk)
2: H(w,m):=c
3: return (w, z)

Fig. 2. Overview of the different oracles used for the hybrid proof.

and AP~ ™"(gs, qzr) be monotone in p and in ¢, bounded from above by 1, and
so that

A;fg_’%g(qs, qy) = !Pr[l — ASig”’H] — Pr[l — Apmg’H“ and
A;r:)egﬂTrans(qS’ QH) > |Pr[1 - APFOg’H] _ Pr[l - ATrans,H:H

for any (classical or quantum) oracle algorithm A5&™# that makes at most ¢g
classical calls to Sign and gy (classical or quantum) calls to the random oracle
H, and outputs a single bit at the end. We take it as understood here that Sign
uses the considered fixed secret key sk for the public key pk given to A, and the
same for Prog and Trans.

Having control over these two parameters, we obtain the desired CMA-to-
NMA reduction via the following result. We note that the statement holds both
for classical and quantum A, where the latter can make quantum queries to
H (but still only classical queries to Sign), with B then also being classical or
quantum, respectively. In order to deal with unlikely “bad” keys that give rise
to values of p(,i sk) and € sy close to 1, which we need to avoid, the formal
statement has a precondition that bounds these two quantities (in some ways)
except with small probability.

Lemma 1. Let € =2 0 and p < 1, and let § := Pr[—I"] for an event I' for which
Pr[p(pk’sk) <P A Ephsk) S € | =1 (2)

where the randomness is over (pk, sk) < KeyGen. Let AS€H be o CMA attacker
against FSWA[ID, H] that makes qs queries to the signing oracle Sign and qg
queries to the random oracle H. Then, there exists an NMA attacker B against
FSwA[ID, H] so that

AdVEF—CMA(A) < AdVEF—NMA(B)
+qsCor + A" (g, qu + 1) + AJE" " (gs,qm + 1) + 9,



and with running time TIME(BY) ~ TIME(A) + qsTIME(ZKSim). If ASeg=rre

and Ap%~"" are concave as functions in €, then (2) can be relaxed to
E[€(pk,sk)\F] <€ and Pr[p(pkwsk) <p|l=1.

Proof. Let A be a CMA attacker against the considered scheme. For any possible
choice pk of the public key, let A be the query algorithm that given a public
key pk first runs AS€"H (pk) and then verifies the correctness of the produced
forgery and outputs 1 if and only if it is a valid forgery, i.e., it is a valid signature
and for a message on which Sign has not been queried. Note that

AdVEF—CMA(A) = E,k [Pr[l — /{Sign’H(pk;)]] .

Moreover, due to the verification, A(pk) makes up to qm + 1 queries to H. By
choice of the quantities A%~ Pt and AP~ ™" and by definition of the simulation
error (., we have that for every choice of key pair k = (pk, sk)

Pr[l - A5|gn’H(pk):| < Pr[l - ASIm,H(pk)] + ASignaProg + AProgﬂTrans + quZk:7

Pk€k Pk€k

where we write A>e"Fee for A% >Fe5(gg, gy + 1) to simplify the notation, and

Pk>€k
the same for AP ™", Averaging over the choice of k = (pk, sk), using that
E I:A;iin7;Prog F:I < A;)ijgzﬂProg and E [A;r:%;Trans F:I < A;:oegﬂTrans (3)

we obtain that
AdvEFMA(4) < Epk [Pr[l — ASim’H(pk)]] FAZE TP ATETPOE g G+ 6
If A% =P8 is concave as functions in ¢, then (3) can be improved to

E [ASign — Prog

Pkr€k

F] < ]E[ASignﬁ Prog

Y

I} < AVt
by using Jensen’s inequality, and the same for AP~ T showing that the relaxed
requirement suffices in that case.

Recall that for a random key pair (pk, sk), a run of AS™¥H (pk) coincides
with a run of the CMA game with the original attacker A, but where the signing
queries are answered by Sim instead of Sign. This implies the existence of a NMA
attacker B with the same success probability, using standard reasoning.

Indeed, one can consider the adversary B (pk) that given a public key pk
runs AS™H (pk) and simply outputs whatever A returns. However, for this, B
has to implement the programming of H. For this, B can simply keep a look-up
table, which stores the programmed values, and then, for every query, B first
checks the look-up table and answers with the value in there if one exists, and
otherwise it queries H and forwards the result. This is straightforward in the
case of classical queries, but can also be made to work for quantum queries. For
every call of A to H, B makes no more than one call to H itself, and so it makes
at most qg queries to H.
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Moreover, for B to succeed we require that the forgery (m*,o*) that A
returns is consistent with H, i.e., the validity of it is not depending on any
reprogrammed points. This is guaranteed by the EF-CMA notion that requires
that the forgery is on a fresh message: We only program H on points (w,m)
where m is a message of a signing query and therefore m # m*. We thus get
that

AdVEFNVA(B) |, [Pr[l - .,ZlSim’H(pk)]]

which then proves the claim.

3.2 Challenges, and How We Solve Them

The challenges that arise in bounding Ai‘;g"ﬁpmg and AP~™—and also our
solutions — apply independently of whether A is classmal or quantum. The case
of a classical A is conceptually simpler in that we can see the random oracle as
using standard lazy sampling and the elementary steps in the proof are argued
using up-to-bad reasoning: we define a series of hybrids, where two consecutive
games are identical until a bad event is triggered. This bad event typically corre-
sponds to the adversary being able to observe a change in the distribution of a
single value sampled by the random oracle. The proof then follows from proving
an upper-bound on the probability of each bad event occurring and aggregating
these bounds into a global advantage term.

In the case of a quantum A, we resort to the compressed oracle technique,
which can be understood as a quantum version of lazy sampling. In this setting,
a bad event as above may then be defined via a measurement (we expand on this
analogy in Section 4). Such a measurement typically disturbs the state, and thus
the continuation of the experiment. However, thanks to the gentle-measurement
lemma, if the probability of the event occurring is small (which follows from
pretty much the same argument as classically) we immediately know that this
disturbance is small as well. Thus, conceptually, there is no big difference in the
argument for a classical and for a quantum A. However, and interestingly, it
turns out that in order to optimize the respective bounds on A%~ ™"™, we have
to use slightly different approaches in the ROM and in the QROM proofs.

We outline the proofs of the two non trivial hops next.

THE ‘PROGRAM ALWAYS’ GAME HOP. To bound AJ#~", the game hop from
ASienH o AProg:H s hroken down into multiple steps and substeps At the top
level, the gg calls to Sign are replaced by calls to Prog one by one. For each
such replacement, the challenge lies in the fact that there is no fixed upper
bound on the number of loop iterations executed by the modified Sign oracle
query, and thus on the number of reprogrammings that must be dealt with.
Even worse, per-se, A could potentially affect the number of loop iterations by
choosing m dependent on responses to prior H-queries. To deal with this, for
each replacement of Sign by Prog, we do the replacement gradually by replacing
the loop body in the query to Sign by the content of the loop body in Prog one
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iteration at a time. l.e., we consider the hybrid Hybk, which programs H(w,m)
to a fresh random c for the first k iterations of the loop and sets ¢ := H(w, m) for
the remaining ones (see Fig. 3, middle). Thus, Hyb® = Sign and Hyb® = Prog.

Sign(m): Hyb* (m): Prog(m):
1: repeat 1: 2:=0 1: repeat
2:  (w,st) < Com(sk)  2: repeat 2:  (w,st) < Com(sk)
3: c¢:=H(w,m) 3: (w,st) « Com(sk) 3: H(w,m):=c<C
4:  z:= Resp(w,c,st) 4: __if i <k then 4:  z:= Resp(w,c,st)
5: until 2 ~ | b Hwm)=c=C 5 yntil 2~ |
6: return (w, z) 6: else 6: return (w, z)
7 c:= H(w,m)
8:  z:= Resp(w,c,st)

9 di=44+1
10: until z # L
11: return (w,z2)

Fig. 3. The oracles Sign (left) and Prog (right), and Hyb" in-between (middle).

An important observation at this point is that we can exploit that the prob-
ability of remaining in the loop becomes exponentially smaller for increasing
k—i.e., Hyb’C and Hykarl become harder to distinguish — because the iteration
where they could differ is less likely to be reached. In particular, the probabil-
ity that round k (counting from 0) is reached, which is the round where Hybk
and Hyka’1 differ, is p* — we stress that we crucially exploit here that in the
previous rounds the challenge ¢ was chosen at random (and not computed via
H); this ensures that A cannot influence this probability by choosing m one or
another way. Furthermore, if this round is reached then A can notice the differ-
ence between the two hybrids only if it has made a prior H-query to the point
(w, m) where HyblH'1 reprograms H while Hybk does not.® However, since w has
high min-entropy, this is unlikely to have occurred. Altogether, one replacement
of Sign by Prog thus incurs an error that is bounded by an infinite geometric
series, for which there is the high-school closed formula. Multiplying the result
with gg, to account for the ¢g times we replace Sign by Prog, we then get the
desired bound on A7~ P

The quantum case is slightly trickier in that we cannot directly “inspect”
prior H-queries to see if the point (w,m), where Hyb’H'1 reprograms H while
Hybk does not, has been queried before by .A. However, one can mimic this line
of reasoning using the compressed oracle technique and doing a certain measure-
ment, which is likely to give the desired outcome again due to the high entropy of
w; furthermore, the gentle measurement lemma then ensures that the measure-
ment introduces little disturbance. The quantitative difference to the classical
case is that conditioned on reaching iteration k, the distinguishing advantage
(essentially) gets a square-root, but of course the probability of reaching that

8 Or, if H got reprogrammed on (m,w) already during a prior call to Prog.
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iteration remains to be p¥, and so we end up with a similar, though slightly
worse, infinite geometric series.

THE ‘PROGRAM ONCE’ GAME HOP. The bounding of A7%~ ™" is handled differ-
ently in the QROM and the ROM, in order to optimize the respective bounds.
For the classical proof, the structure of the hybrids is the same as in the previous
hop, in that we replace Prog by Trans one by one, and for each replacement we do
it gradually one iteration at a time. This will then give rise to a similar infinite
geometric series. The main difference to before is that if the crucial iteration
(where one hybrid reprograms H at the point (m,w) and the other does not)
is reached, then the reasoning for why the distinguishing advantage is small is
different. Here, we rely on the fact that in order to notice the difference, A must
make a future H-query to (m,w), but since w has high min-entropy and is not
revealed to A, this is unlikely to happen.

In principle, a similar strategy can be applied in the QROM setting. However,
the “inspection” of future H-queries will require a measurement for every future
H-query, which will lead to a unnecessarily large loss. Instead, we will do a slight
detour involving a “clone” H’ of H, and a variant of Prog (see Fig. 4) that also
reprograms H', but only on the accepted (m,w), and then the hybrid works by
replacing A’s calls to H by calls to H' one by one.

The detailed bounds and proofs are given in Sections 4 and 5.

4 Proof in the Quantum Random Oracle Model

Here, we provide the technical details of the CMA-to-NMA reduction for the con-
sidered signature scheme obtained via Fiat-Shamir with aborts, in the QROM.
As explained in Sect. 3, this boils down to bounding AJ% ™" and Aj¢~ ™", and
applying Lemma 1.

We start by introducing some notation and recalling a couple of elementary
concepts in the context of quantum information (Sect. 4.1), and by introducing
an abstract distance measure for oracles (Def. 2 in Sect. 4.2) that captures the
indistinguishability of two oracles in the QROM.

4.1 Preliminaries

Let pe be a density operator. We can speak of a (classical) event I, if pg decom-
poses into pg = Pr[I"]pgr + Pr[—=I"]pg~r for probabilities Pr[I"] and Pr[—I]
that add up to 1, and density operators pgr and pg—p. In typical cases pg
is part of a bigger state pxg, where X is classical, and I is then obtained by
requiring X to satisfy some property.

We will also consider events that are obtained by applying a measurement.
Let pg be a density operator and {Pr, P-r} a binary projective measurement,
labeled by I and —I". By default, we then write I" (and correspondingly for —1I7)
for the event of observing the measurement outcome associated with P, i.e.,
Pr[I'] = tr(Prpe), and we let pgp = ﬁPppEPp be the corresponding post-
measurement state.
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We use §(pg, pe/) 1= %Hpg —per||l1 to denote the trace distance between density

operators pg and pg/. The trace distance forms an upper bound to the advantage
of any quantum algorithm in distinguishing pg from pg.

Lemma 2 (Gentle Measurement Lemma). Let pg be a density operator and
{Pr, P-r} a binary projective measurement. Then (pg, pgr) < /Pr[—1T.

4.2 Setting Up the Stage

As explained in Sect. 3, in order to control AZ% =" and Aj%~ ™", we consider a
hybrid argument where we repeatedly replace one oracle call to a certain oracle
by another one. To smoothen the exposition, we introduce first an abstraction
of this core problem, together with a metric that captures the figure of merit.

Replacing One Oracle by Another. We consider a quantum oracle algorithm
AH:01:::0.0 that makes oracle calls to a random function H (i.e., a random
oracle) and to arbitrary but specified oracles Oq,...,O,, and it makes one call
to an unspecified oracle O (though with a specified set M of possible inputs),
and the goal will be to show that for two particular specifications O and O’, the
algorithm A will not notice the difference whether O is instantiated with O or
with O’, i.e., that Pr[1 « A#:01-0rnC x Pr[1 « AH’Ol"“’O“O/] .

Considering that A is a quantum algorithm, we allow the queries to the
random oracle H to be in superposition; for the purpose of this work, the queries
to all the other oracles are classical though.

Furthermore, we note that we allow the oracle instantiations O1,...,O,., as
well as O and O’, to also have oracle (read) access to H, and even to have oracle
write access, i.e., they may reprogram H at a chosen point to a chosen value.
Formally, O1,...,0,,0,0" are classical, stateless, possibly randomized oracle
algorithms, with oracle read and write access to H. °

Closeness of Oracles In order to show indistinguishability of answering A’s
O-query by O or O, it is sufficient to show that the output produced by O(m)
or O'(m), together with H (which may also look different in one and the other
case, due to possible different reprogramming), look alike to A.

Using the compressed oracle technique, we can consider H to be obtained by
measuring a certain quantum system D (the “compressed oracle”); namely, H(x)
can be obtained by measuring register D, of D in the computational basis. Indeed
the technique ensures existence of a system D, the state of which evolves (and
gets entangled) upon random-oracle (superposition) queries, and that satisfies:

1. The random-oracle queries commute with measuring any of the registers of
D in the computational basis. This includes reprogramming queries, which,
on input (z,y) replaces the state of register D, by |y).

9 We may actually allow Oy, . .., O, to be stateful, all having access to the same state,
but for the propose of “switching” from O to O’ for any A, this state can always be
maintained and provided by \A.
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2. After ¢ (read or write) random-oracle queries, measuring all of D in the
Fourier basis produces a function table that is 0 (sometimes denoted 1)
everywhere, except for up to ¢ points. In particular, measuring all of D before
any random-oracle query in the computational basis produces a uniformly

random function (table) H.

The above considerations motivate to define the (parameterized) following met-
ric, which then gives rise to the subsequent Theorem 1 .

Definition 2. For oracle instantiations O and O’ of O, and for q € N,

dg(O, 0'):= nIB%;(E 5(p0(m)HE7 pO’(m)HE)
where the mazimum is over all possible m € M and over all states ppe with the
property that D behaves as in 2. above (for the considered q) upon measuring in
the Fourier basis; furthermore, po(m)me s obtained from m and ppe by running
O on input m, and by measuring all of D in the computational basis to obtain
H, and the same for po:(m)HE-

It is not too hard to argue that the maximum is indeed attained in the
definition of d4. Furthermore, ¢' > ¢ = dy > d,, and d, satisfies the triangle
inequality.

To help to understand the intuition for this metric, we point out that in the
corresponding classical counter part, we would maximize over all query inputs
m and over all possible lazy-sampled databases D that have at most ¢ entries,
and then compare the respective distributions of (O(m), H) and (O'(m), H),
obtained by running O, respectively O, on m, and obtaining H by filling in all
the empty places in (the possibly reprogrammed) database D by random values.

The following is straightforward to prove.

Theorem 1. Consider a quantum oracle algorithm A™01:--0r0O for arbitrary
but fized oracle instantiations O1,...,0,., and let O and O' be two possible in-
stantiations for O, as specified above. Recall that A is restricted to making one
query to O. Let Q be the number of oracle calls to H, made by A and O1,...,0O,,
prior to A’s oracle call to O.'° Then,

’Pr[l — AHO10n0 _Pr1 AH»OM-wOMO’]‘ < Egldg(0,0)].

As a toy example application, consider a quantum oracle algorithm AM©
that makes at most ¢y queries to a random oracle H and go» queries to a non-
instantiated oracle O. Let us assume that O and O’ are instantiations of O that
make no queries to H, and it holds that d,(O,0’) < gge for any ¢. Then, by
repeated application of Theorem 1 in order to switch from O to O’ one by one,
we immediately obtain that ’Pr[l — AH’O] — Pr[l — AH’O']’ < quqoc .-

10 This includes calls to reprogram H.
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Typical Strategies There are two generic approaches to prove that dq(O,0’)
is small:

Strategy 1. Show the existence of a (classical) event I' (I" for “good” event)
with the property that, for any m and ppg, (1) the event I' has the same prob-
ability Pr[I'] of occurrence when running O and O’, and (2) O and O’ act
identically conditioned on I', and thus the two states po(n)me|r and por(m)ue|r
are identical. Indeed, in that case, by basic properties of the trace distance,

§(po(myme: porimyme) < Pr[I16(po(m) e rs Por (m)HE|T) (4)
+ Pr[—=I"10(po (m) HE|~Is PO (m) HE|~T") (5)
<Pr[-1]. (6)

Strategy 2. Show the existence of a binary projective measurement {Pr, P_}
on D and the internal state of the respective oracles, so that when applied dur-
ing the run of the oracle, similarly to above, (i) the event I" (of observing the
measurement outcome associated with Pr) has the same probability Pr[I’] of
occurrence when running O and O’, and (ii) O and O’ act identically conditioned
on I', and thus the two states po(m)me|r and por(m)mer are identical. Indeed,
in that case, by triangle inequality,

8(po(myme: Por(myHE) < 6(PO(m)HE> PO(m)HE|T) (7)
+ 6(Po(m)HE| > PO (m) HE|I") (8)

+ 6(Por (m)HE|T's PO (m) HE) (9)

)

< 2¢/Pr[~T] (10

where the final inequality is by applying the gentle measurement lemma twice.

This extends in the obvious way to a classically-controlled measurement, i.e.,
to a measurement that is only applied if a particular classical bit b is set, and
such that (o) the classical bit b is set with the same probability when running
O and O’, (i) conditioned on b being set, the event I' has the same probability
Pr[I"] of occurrence when running O and O, and (ii) O and O’ act identically
conditioned on b not being set, or conditioned on b set and I'. The above bound
then becomes

6(p0(m)HE7pO/(m)HE) < 2Pr[b: 1] V Pr[ﬁr|b: 1] . (11)

4.3 Core of the Proof

We need to bound the quantities AY5~"%(gs,qpr) and AF%E~™"(gs,qm). For
that purpose, we consider a fixed key (pk, sk) for which p(, sk) < p and €pp, o1y <
¢, and we consider a quantum oracle algorithm A with a binary output, and
which makes gg classical queries to Sign and gy quantum queries to the random

oracle H. Our goal then is to bound the respective closeness of A5 and
AProe:H and of APr&H and ATers:H. we do this below.
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Closeness of AS&"H and A4P8:H For the purpose of showing closeness of Sign
and Prog, we introduce the following hybrid oracles. For every k € N, the oracle
Hyb" replaces the first k evaluations ¢ := H(w,m) in the loop of Sign to freshly
reprogramming H(w,m) := ¢ < C, with the convention that Hyb? := Sign. In
other words, Hyb® acts like Prog for the first k iterations of the loop, and then
like Sign for the remaining ones (if it is still looping then).

Lemma 3. dq(Hybk_l, Hybk) < 21\ /(q + k)e for every k > 1.

The claim here is closely related to the adaptive reprogramming in [GHHM21];
however, there are some subtle technical differences (with the crucial reprogram-
ming step being reached only with a certain probability, and with prior repro-
grammings taking place). For this reason, and for consistency with the other
parts of the proof, we prove Lemma 3 from scratch.

Proof. The oracle Hyb*~! and Hyb* only differ at the kth iteration, in which the
former performs an evaluation ¢ := H(w,m), while the latter performs a fresh
reprogramming H (w, m) := ¢ « C. We call this the crucial iteration.

We follow Strategy 2. and consider a binary projective measurement per-
formed right before ¢ is determined in the crucial iteration, classically controlled
by the bit b that is set if the crucial iteration is executed (i.e., the loop has
not stopped before). The measurement checks whether or not the sampled w
in the crucial iteration is such that measuring Dy, ) in the Fourier basis pro-
duces 0, and I is satisfied if this is the case (i.e., if (w, m) is not recorded in the
database). Recall that in case the loop terminates prior to the crucial iteration,
no measurement is performed.

Clearly, (o) b is set with the same probability when running Hybk_1 and
Hyb", (i) if the crucial iteration is reached then Pr[I] is the same when running
Hyb®~' and Hyb*, and (i) if the crucial iteration is reached and I is satisfied
then, in both cases, ¢ is uniformly random and H(w,m) becomes ¢— in case
of Hybk by construction, and in case of Hybk_1 since c¢ is then obtained by
measuring the state \0> of D(4,m) in the computational basis— and thus Hybk’_1
and Hybk act identially. Hybk_1 and Hybk obviously also behave the same if
the crucial iteration is not reached. Thus, by (11), d,(Hyb* ™' Hyb") < 2Pr[b=

1]4/Pr[—I"|b=1]. It remains to control this latter term.

For b = 1 to happen, the loop must have entered the kth iteration, which
happens with probability Pr[b=1] = p*~! because every previous transcript is
freshly sampled.

Conditioned on b = 1 where the loop enters the kth iteration, the database
records no more than ¢ + k non-0 entries, and « is freshly sampled, and thus by
(1) and union bound, we obtain Pr[—I'|b = 1] < (¢ + k)e. This concludes the
proof. O
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Now applying Lemma 3 k times, together with the triangle inequality for d, we
obtain

dy(Sign, Hyb*) < Y 2p" /(g + i)e < 12*_/2(1 —p) 20 V(g +i)

1<i<k i>1
2\/e 4 2k 1
<—— [1=p)) plg+(1—p) )y pli< q-+ , (12

where the third inequality is Jensen’s inequality (exploiting that, by the standard
formula for a geometric series, (1 —p) Y., p*~! = 1), and the last one follows by
again applying the standard formula for a geometric series (noting that the
second term is the derivative of a geometric series).

Next, we argue closeness of Hyb]C to Prog. Recall that Prog is obtained from
Sign by replacing every evaluation ¢ := H (w, m) in the loop to a fresh reprogram-
ming H(w,m) := ¢ «— C, whereas Hyb" does so only for the first k iterations.

Lemma 4. d,(Hyb*, Prog) < p* for every k e N.

Proof. We follow Stragtegy 1 and define the good event I" where a non-abort
response z # 1 is output within the first k& iterations in a call to Hybk/Prog.
Indeed, (i) the probability Pr[—1"] depends only on the first k iterations, hence
it is the same in both oracles, and (ii) conditioned on I', the loop terminates
within k iterations, so that both oracles behave identically. Since within each
iteration the transcript (w,c,z) is freshly sampled, the probability that all &
iterations yield z = L is bounded by Pr[—=I"] < p*. Thus, by (4) we conclude
that d,(Hyb*, Prog) < Pr[—I"] < p". o

By combining (12) and Lemma 4, and letting & go to infinity, we obtain

2,/e 1

d,(Sign, Prog) < - q+ s

Replacing every invocation of Sign in A58"# by Prog from left to right, and
further taking into account that the expected number of read/write queries to H
prior to every replacement is E[Q] < ¢ + (¢s —1)/(1 —p), we apply Theorem 1
qs times and obtain

Pr[1 « A3EH] — Pr[1 « AP8H]| < ¢g - Eg[dg(Sign, Prog)]

€ 2gs+/€ / 1
2
< qsv/€ ot 9
I—p I—p

where the third inequality is by Jensen’s inequality. This proves Corollary 1.

Corollary 1. }Pr[l — ASEg”’H] — Pr[l — APr"g’H]’ < 2‘{%‘54 lqm + flfsp .
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Closeness of AP°&H and ATasH_ For the purpose of showing closeness
of AP&H and AT"s:H e introduce a second instantiation H’ of the random
oracle, which is set to be equal to H at the beginning, and we modify Prog to
Prog’ so as to also reprogram H’, but only on the accepted transcript (see Fig. 4
middle). Looking ahead, we notice that this detour via Prog’ and H' is not done
in the ROM proof; there, we have a (more) direct argument to go from APre.H
to ATs:H  yery similar to the one going from AS€™H to AP™&H The reason
we do it this way here is that we obtain a better bound than when trying to
mimic the reasoning that is used in the ROM proof.

Prog(m): Prog’(m): Trans(m):
1: repeat 1: repeat 1: repeat
2:  (w,st) « Com(sk) 2:  (w,st) « Com(sk) 2:  (w,st) « Com(sk)
3:  H(w,m):=c«C 3: H(w,m):=c<C 3 c—C
4:  z:= Resp(w,c,st) 4:  z:= Resp(w,c,st) 4:  z:= Resp(w,c,st)
5: until z # L 5: until z # L 5: until z # L
6: return (w, z) 6: H'(w,m) :=c 6: H(w,m) :=c
7: return (w, z) 7: return (w, 2)

Fig. 4. The oracles Prog, Prog’ and Trans.

Since the adverary A in an execution of AP™&# has its random-oracle queries
answered by H, and A has no access to H', we obviously have that A4ProgH —
AProg . H GQimilarly, AP H — ATansH Thyg it remains to show closeness of
AProg . H and AProg’ . H' Towards this goal, we first settle the following properties
of an execution of Prog’.

Proposition 1. For an arbitrary but fized message my, let (w,c, z) be the first
non-L transcript produced in an invocation of Prog'(mg), and let S’ be the set
of w’s sampled in the loop for which z = 1. Then the following holds.

— The distribution of (S, w, ¢, z) is invariant to the choice of my. (13)
— S’ is statistically independent of (w, ¢, z). (14)
— For every w® € A, Pr[u’ e §'] < T (15)

Proof. Let t; = (w;,¢;,2;) be the transcript sampled in the i-th iteration of
the loop. For the purpose of the analysis, we assume that ¢; is sampled for
every i € Z~g, even if the loop stops before. Then, the ¢;’s are i.i.d. distributed,
and S’ equals {wi,...,wx_1}, with K being minimal such that zx # 1 and
(w,c,z) = tg. As the sampling of (S, w,c,z) does not involve mq at all, (13)
follows immediately.

For the analysis of (14), we consider the list L := [t1,...,tx—1]; clearly
showing independence of L and (w, ¢, z) implies independence of S’ and (w, ¢, z).
Further consider an arbitrary but fixed list L0 = [¢7,...,¢? ;] of transcripts
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9 = (W, ?,29), and an arbitrary but fixed transcript t° = (w,c?,2%). With

the goal to show that

Pr[L = L% and (w,c,z) = t°] = Pr[L = L°] - Pr[(w,c, 2) = t°] (16)
we may assume z? =... = 22_1 = 1 and 20 # 1, because otherwise both sides

of (16) vanish trivially. But then, by definition of L and (w,¢, z),
Pr[L =L° and (w,c,2) =t°] =Pr[Vi<k:t; =t] andtk:to]

:Pr[Vi<k‘:ti:t?andtk=toandzk;éL]

2 # L 2r # L
g o - Prlte=1° g
Vz<k:t7;=ti

Vi <k:t; =1t)
2 # L
Vz<k:ti:t?

1 - Pr [tk = to‘zk # J_]

=Pr[L=L"] Pr(tp =tz # 1],

where the fourth equality is due to independence between (t1,...,t;—1) and t.
Furthermore, summing up both sides of the above equality over all choices of LY,
noting that Pr [tk = t0|zk # J_] does not depend on k (since the ¢;’s are i.i.d.),
we immediately get that Pr [ty = t°|z, # L] = Pr[(w,c, 2) = t°], which shows
(16) and thus (14).

Next, notice that |L| = ¢ implies z; = --- = zp = L. Thus,

Pr[a’ e §'] < Z Pr[w, = w° and |L| > ¢]

=1
< ZPr[wg=wo and 21 =+ = 2y =L]
=1
_ _ _ —1 €
—ZPr Pr[ —--~—zg_1—J_]<Zp e<1_p,
=1 =1
where the equality holds due to the independence between ay and (21, ..., z¢—1)-
This concludes (15). o

For this purpose, for every 0 < ¢ < gy we let G; be the hybrid between
AProg . H and AProg’ . H' that has the first i queries to the random oracle answered
by H’, and the remaining ones by H. Obviously, Gy = AP H  while Gou =
AProg . H' Thus, considering an arbitrary but fixed 1 < i < ¢y and setting
G :=G;_1 and G’ := G;, it is sufficient to show that G and G’ are close. This is
indeed the case:

Lemma 5. |Pr[l1 <« G] — Pr[l < ¢']| < 2\/%~

Proof. Below, we refer to the i-th query of A to the random oracle, i.e., the
query on which G and G’ differ, as the crucial query.
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In the respective executions of G and G’, we define S as the set of all the w’s
that Prog’ sampled but for which Resp(w,c,st) = L, in all the invocations of
Prog’ before the crucial query. Thus, by construction, at the time of the crucial
query, H and H’ differ at most at the points in S. (They might agree on a point
in S, if the freshly sampled value for H at this point equals the old value.)

For the sake of analysis, consider a binary projective measurement on the
input query register for the crucial query, which measures whether or not the
input (w,m) is such that w € S. Let I" be satisfied if w ¢ S, and let G and G’
be the two respective games obtained by performing this measurement. Since H
and H' only differ at the places (w, m) where w € S, conditioned on I', the two
oracles behave identically, and thus do G and G’. Furthermore, the probability
Pr[I] is the same in both games.

Thus by a double application of the gentle measurement lemma, we have

|Pr[1 — G] — Pr[1 — G]| < |Pr[l — G] —Pr[l — G| I
+ | Pr[l « G| — Pr[1 — G|| I
+|Pr[l < G|I'] = Pr[l < G|
< 24/Pr[—17].

Hence, it remains to bound the probability Pr[—I"]. The intuition is that S
collects those w’s that Prog dismisses; thus, A does not get to see them, so it is
hard for him to find an element in S, hence I' is satisfied most likely. However,
turning this intuition into a rigorous argument is not fully straightforward, since
the set S, as a random variable, has a somewhat odd distribution.

Let @ be the random variable indicating the number of queries made to Prog
prior to the crucial query; we have with certainty that @ < gs.

A crucial observation that holds for both G, G’ is that, conditioned on @ = ¢
for an arbitrary but fixed ¢, the set S equals S7 U- - -US] where every 57 is the set
S’ that was produced in the jth query of Prog’ as specified in Proposition 1. We
note that, at the time the adversary A makes the crucial query, H has not been
queried, and (w, ¢, z) in Proposition 1 is the only information that is dissipated
to the adversary for every prior query to Prog’. It follows from (13) and (14)
that every S;- is independent from the view of adversary, and hence so is S.

Due to the independence, it suffices to bound Pr[w® € S|Q = q] for every
w® € W. Then it follows from the union bound and (15) that

Pr[wo eS|Q =q] < Z Pr[wo IS S;] < 1QS€ .
jela] P
Putting things together, the proof is concluded. m]

Corollary 2. |[Pr[1 « APeeH]| — Pr[1 « ATersH]| < 2gp, 15
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4.4 Wrapping Up
From the above it follows that

gse€
I-p

ign — Pro, 2qs € QS ien — Pro,
A;i ! E(QS,QH < 1_\/> qH + ﬂ and A;ge P g(q57qH) <2qH

and thus by Lemma 1, we obtain the following.

Theorem 2. Let €,p,0 < 1 be so that there exists an event I" with Pr[—I"] <
8, Prpeprsky <p | Il =1 and Elepor) | I'] < € for (pk,sk) < KeyGen. Let
ASeH be g quantum CMA attacker against FSWA[ID, H| that makes qs queries
to the signing oracle Sign and qy quantum queries to the random oracle H.
Then, there exists a quantum NMA attacker B so that

AdVEF—CMA(A) < AdVEF—NMA(B)
2
+ gsv/e qr + 1+ a3 +2(qu + 1) g5t +qsCop + 0
1-p 1-p Vi—»p

and with running time TIME(BH) ~ TIME(A) + ¢gsTIME(ZKSim).

5 The Mechanized ROM Proof

We now describe the mechanized proof of the CMA-to-NMA reduction in the
ROM. As argued in Section 3, the high-level structure is the same as in the
QROM proof. We again want to instantiate Lemma 1. We assume query bounds
qs for signature queries and qg for random oracle queries. In order to obtain
the bound for the CMA-to-NMA reduction, we need to provide A=< and
Apeg= T and prove these bounds for an arbitrary (but fixed) key palr (pk, sk)
such that pp sk) < p and €pp k) < €. We set:

; gs +1 qu
N\Sign—Prog . _
e qs€<2(1—p)2 ' 1—p>

AProgﬁTrans . quHE
p,€ : 1— D
Applying some simplifications, this allows us to prove the following bound.
Theorem 3. Let €,p,8 < 1 be as in Theorem 2. Let AS€H be a classical CMA
attacker against FSWA[ID, H] that makes qs queries to the signing oracle Sign

and qg queries to the random oracle H. Then, there exists a classical NMA
attacker B against FSWA[ID, H] so that

AdVEFVA(4) < AdvEFNMA(B) 4 2qs(qm +1)e | qse(gs +1)

(1-p) 2(1-p)?
and with running time TIME(BH) ~ TIME(A) + qsTIME(ZKSim).

+ qSCzk +0
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Proof. 1t suffices to show that the bounds for A7 =" and AP%~ ™" are indeed
correct; the theorem then follows with Lemma 1 For As'g"ﬁ"“’g, as outlined in
Sectlon 3.2, we successively replace the individual loop iterations of the Sign or-
acle with iterations from the Prog oracle (cf. Hyb in Fig. 3). That is, we have ¢g
sequences of hybrid arguments (one for each query), each replacing one-by-one
k loop iterations (cf. Hyb in Fig. 3). After k steps, we cut off the remaining
loop for a loss of p*. This yields an intermediate game where A interacts with
H and Prog”, the latter behaving like Prog but aborting after » iterations. The
final bound is then obtained as the limit when & is increased to infinity (causing
Prog”™ to become Prog). Consider the hybrid step where the queries 0 to ¢ — 1 are
answered by Prog™, query i is answered by Hyb’ and all remaining queries are
answered by Sign. We bound the loss of answering query i with Hyb’ ™! instead.
Assuming a lazy implementation of the random oracle, both games behave the
same unless iteration j on query 7 is reached and the pair (w, m) is already in the
(previously queried) domain of H. The probability of this “bad” event occurring
can be bounded by

bij i=ple (1 +qu +J>
-p

where the term in parentheses is an upper bound on the expected size of the
(previously queried) domain of H at the point where the bad event might occur
(i.e., iteration j of query 7). In there, the term ﬁ is the expected number of
iterations of the i preceding calls. Summing the total loss over ¢ and j we have

gs—1

k—1
> (”K + 2 %) Sgs- Pt AT
7=0

=0

which converges to AJ% ™" as  is increased to infinity. For Aj¢~ ™" the struc-
ture of the hybrid argument is exactly the same, the difference lies in how the bad
event is bounded. Let Hyb, be the analog to Hyb, replacing iterations of Prog with
those of Trans, and consider the replacement of Hyb), with Hbe 1 on query ¢. The
two games behave the same, unless (a) iteration j of query 7 is reached and un-
successful and (b) the adversary queries H using the pair (w, m) at some (later)
point in the game. The probability of (a) is bounded by p’ and the probability
of b is at most gge. Summing and taking the limit as above yields Ape~ ™" o

Remark 1. The theorem we formalized in EasyCrypt is slightly less general
than Theorem 3. We only consider the case of a perfect simulator (i.e, (. = 0),
and we restrict to the case where the simulator is obtained by wrapping a simu-
lator for a single run of the IDS in a while loop. These simplifications naturally
match our application to Dilithium.

Mechanizing the proof of the aforementioned variant of Theorem 3 turned out
to be challenging for a number of reasons. In the following, we briefly comment
on the most important ones.

First and foremost, the analysis of the bad event used to establish the bound
AZee—Pree crucially relies on the ability to take into account the expected size of
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the domain of the random oracle at the point where the bad event can (poten-
tially) occur. Even with the intermediate oracle Prog”, a worst-case assumption
on the i preceding queries would give a term of 7 - k instead of 1ip, causing the
sum to no longer converge as k is increased to infinity. The expected-size analysis
for the domain of the random oracle H is carried out using an expectation logic.
This expectation logic is an adaptation of the seminal work by Kozen [Koz83]
and was recently added to EasyCrypt to reason about the expected complexity
of randomized programs. [ABG*23] Our work provides the first application of
this logic to cryptographic proofs.

Moreover, while the argument for AP =™ is intuitively much simpler than
the argument for AZ% ™", the proof in EasyCrypt is almost as complex. Unlike
for AP ~"°¢, the bad event is not necessarily triggered during the critical itera-
tion; it can be triggered whenever H is queried. In order to bound the probability
of the bad event occurring, we exploit that—assuming that iteration j of query
1 is unsuccessful—the commitment w is never used. This allows us to bound
the bad event by transforming the game into one where w is sampled after the
adversary is finished. This is called an eager/lazy argument in EasyCrypt.

Lastly, the hybrid arguments for bounding AJ% ™" and AZ¢~™"™ involve a
complex interplay of up-to-bad reasoning, hybrid steps, and a limit construction
that ultimately lets the number of hybrid steps approach infinity. To the best of
our knowledge, such a construction has not been formalized in EasyCrypt before.

6 A Machine-Checked Security Proof for Dilithium

We now describe the machine-checked security proof for Dilithium. More pre-
cisely, we prove EF-CMA security of the “template scheme” from the specifica-
tion document [DKL*21, Figure 1] extended with public key compression. This
is equivalent to Dilithium-QROM [KLS18, Figure 17] with A and y sampled ran-
domly (i.e., not generated from a seed) and with an unbounded loop for the
signing procedure.

The overall structure of the machine-checked proof largely follows [KLS18].
We first prove EF-NMA security by a reduction from MLWE and SelfTargetMSIS.
We then express Dilithium as the FSwA transform of an IDS and provide an
HVZK simulator for this IDS. This allows us to instantiate Theorem 3 and con-
clude EF-CMA security of Dilithium.

6.1 Dilithium Specification

Most of the operations in Dilithium operate on vectors and matrices over the
rings R := Z[X]/(X"+1) and R, := F,[X]/(X"+1). The specification [DKL*21]
sets n to 256 and ¢ to the prime 8380417 = 223 — 213 1 1. In addition, there are
a number of supporting algorithms (e.g., highBits or makeHint) that deal with
certain kinds of rounding.

While the specification is written for one (parametric) mathematical struc-
ture, the security proof of Dilithium only makes use of a select few properties
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of this structure. For the machine-checked security proof, we insert an extra
layer of abstraction. We define an abstract theory defining an abstract ring type
R, together with the various (abstract) supporting algorithms and the prop-
erties relating them. We then carry out the entire security proof with respect
to these abstract operations. We also prove that the polynomial ring from the
specification can be used to implement all operations such that all axioms are
satisfied. While this extra layer of abstraction does not remove any proof bur-
den, it allows us to make explicit the minimal structure required to carry out the
security proof and cleanly separate the arithmetic reasoning required to build
the required structure from the more high-level parts of the security proof.

The supporting algorithms are as follows. In addition to L; and the L,
norms, written ||_||; and ||_||,, respectively, we have two rounding functions. In-
tuitively, power2round(r,d) rounds to the nearest multiple of 2¢ and removes
trailing zeros. Similarly, highBits(r, @) round into « buckets of (roughly) equal
size. We treat the result of highBits as an (abstract) bucket designation while
lowBits(r, ) can be seen as the difference between r and the center of its desig-
nated bucket. Lastly, h := makeHint(z, 7, «) creates a “hint” for useHint(h,r, «)
to compute the high bits of r + z without knowing z, provided z is small. All
operations, except |||, and ||| ,, are generalized pointwise to vectors RF. The
former is only used on R, while for the latter the vector version is defined as
|||, := max; [|r;||,,. Further, we write S,ly for the uniform distribution over R!
conditioned on |||, <. With the supporting algorithms in place, the Dilithium
signature scheme is defined in Fig. 5.

While we present our results using a conventional mathematical presentation,
the scheme and the security proof are completely formalized in EasyCrypt (cf.
Fig. 13). Note that, in contrast to [KLS18], we are working in a typed setting. In
particular, the hash function (or random oracle) H takes pairs (wq, m), where m is
amessage and w : high,,,, as arguments and outputs a uniformly random c € B;:

B :={ce R, | |c|, =1 and |c|, = 7}

In addition to the parameters n and ¢ internal to R,, the scheme has a
number of additional parameters: the size of A (i.e., k x [) the coeflicient ranges
for s1, 8o (the interval [—n,n]) and y (the interval [—y; +1,v; —1]), the low-order
rounding range (« := 27,), the number d of bits dropped from t, and the number
7 of £1’s in ¢ (cf. B, above). Further, there is the derived parameter 3 := 7-n.1!

We now give some of the properties of R, and the supporting algorithms that
we require for the security proof. Let ¢ and « be integers such that 2a < ¢, ¢ =1

mod « and « is even. Further let r and z be vectors over R, where ||z||, < /2

' See [DKL21] for a discussion on how these parameters are set in practice.
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keygen(): verify(pk,m, o):

1: A<—R§Xl L (A, t1) := pk

2 (s1,82) — 8! x S % (¢, (2 h)) i— o

3: t:= As; + s 3: wi := useHint(h, Az — ct; - 24, 272)
4: t1 := power2round(t, d) 4: ¢ = H(w1,m)

5 tg:=1t—ty 2% 5: return [[ |z[|, <m1 —BArc=C"].
6: pk:= (A, t1)

7. sk = (A,ShSQ,to)

8: return (pk, sk)

sign(sk, m):

1: (A, s1,s82,t0) := sk

2: r:=1

3: while r = 1 do

4: y < S'lyl—l

5. w:= Ay

6:  wi := highBits(w, 272)

7. c€ B;:= H(wi,m)

8 z:=y+cst

9: if ||z]|,, <1 — B A ||lowBits(w — ¢s2,272)||, < 72 — 3 then

10: h := makeHint(—cto, w — cs2 + cto, 2y2)

11: r:= (z,h)

12: return (c,r)

Fig. 5. The Dilithium signature scheme

and let h be a vector of hints. We require:

useHint(makeHint(z, r, a),r, ) = highBits(r + z, ) (17)
||r — shift, (useHint(h,r, a))||, < a+1 (18)
|r — power2round(r, d) - 24|| , < 247! (19)
shift,, is injective (20)

There are, of course, a number of additional properties we require (e.g., 0 < [|r||,,
llctll, < llelly - [It]l,, or the triangle inequality ||u + v||, < |lul,, + |[v|l,,)- For
the complete list we refer to the DRing theory (for the properties of R, and the
supporting algorithms) and the DVect theory for the lifting to vectors.

Even though verify only uses A and ti, the security proofs assume that
the adversary knows t, allowing it to derive both t; and ty. In particular, the
entirety of t is needed to define the HVZK simulator for the EF-CMA to EF-NMA
reduction. Hence, the first step of the proof is to change the public key to (A, t),
the secret key to (A, s1,s2), and adapt sign and verify to compute t; and tg as
necessary. We call this scheme Simplified Dilithium (DilithiumS) and prove the
following lemma showing that it is sufficient to establish security for this variant
of the construction.
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Lemma 6. Let ASEg_”’H be a CMA attacker against Dilithium. Then there ex-
ists an adversary B€“H such that: AdvE:SMA(A) < AdvELSMA (B) Further,
Time(A) ~ Time(B).

6.2 Reduction to MLWE and SelfTargetMSIS

We now prove EF-NMA security of the simplified scheme. The reduction to MLWE
and SelfTargetMSIS closely follows [KLS18, DKL *21]. We first sketch the math-
ematical proof for the sake of completeness— we correct minor points wrt the
statements in [KLS18] and [DKL*21] that became clear in the formal proof—
and then comment on the formalization in EasyCrypt. We begin by recalling
the MLWE and SelfTargetMSIS security assumptions for the ring R, used by
Dilithium.

Definition 3 (MLWE Assumption). Let m and k be integers and let D :
R, — [0,1] be a distribution. The advantage of an algorithm A for solving the
decisional MLWE,,, , p problem over the ring R, is:

Advm%\{g (A) =

Pr [A(A,t) =1 ‘ A RVt RZ”]—
Pr [A(A,Asl tsg) =1 ‘ A — R sy DFisy D’"]‘

Definition 4 (Self-target MSIS Assumption). Let m and k be integers and
let H : R;" x M — B, be a random oracle.

SelfTargetMSIS |
ANVHmky =

Il <o et (e
Pr[H([Im|A]-r,u)—r[m+k—1]’A Ry (r, 1) AH(A)]

The goal of this section is then to prove the following lemma.

Lemma 7. For every adversary AS&“H breaking NMA security of simplified
Dilithium, we can construct an MLWE adversary B and a SelfTargetMSIS adver-
sary C such that:
3 SelfTargetMSIS
AdvGiitrioms (A) < Advi'T'§E(B) + Advey EEHS(C)
where ¢ := max {’yl —06,2v9+ 1+ 72(1_1} and G : Ry x Msg — B, is a random
oracle. Further Time(A) ~ Time(B) ~ Time(C).

Proof (Sketch). The proof consists of three steps. The first step is to replace key-
gen with a keygen’, sampling t uniformly at random and returning an undefined
(and unused) secret key (cf. Fig. 6). Taking B to be the remainder of the EF-
NMA security game after key generation, the difference between the two games is
exactly Adv,’i’!'j}%ﬁ (B). Next, we define an oracle H'(wy,m) := G(shifty(wy), m).

Since shift,, is injective and both H (used by our scheme) and G (the random
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keygen’(): C(A': RExIH1y:
1: A « REX 1: (A)t) = A’
2:1:<—quC 2: t:=—t

3: return ((A,t), witness) 3: (m, (c, (z,h))) — AT (A, t)

4: t1 := power2round(d, t)

5: r:= Az —cty - 2¢

6: uy :=r — shiftq (useHint(h, r, o)

7 ug i=c(t —t1 ~2d)

8: return ((u; —u2)|z|[c])

Fig. 6. Randomized keygen and reduction to SelfTargetMSIS

oracle from the SelfTargetMSIS assumption) have as output distribution the uni-
form distribution over B,, replacing H by H’ incurs no loss.

It remains to construct the reduction C that returns a valid solution for
the SelfTargetMSIS problem whenever AH/(A, t) successfully forges a signature
(for some (A, t) derived from the SelfTargetMSIS instance). Writing | for vector
concatenation, the reduction is given in Fig. 6. Given a SelfTargetMSIS instance
A’ with dimensions k x [ + 1, C splits off the last column, negates it, and passes
the parts to the EF-NMA adversary. We have that the distribution of (A,t) is
identical to the EF-NMA game (using keygen’ for key generation). Now assume
that (m, (¢, (z,h))) passes verification with respect to H’. That is, we have:

1. H'(useHint(h, Az — ct; - 2%, a),m) = c
2. ||zl <m =8

Now with r' := ((uy —up) |z ] [c]) € RFF'*! as defined in C, we have:

G([Ix|A']-¥';m) = G([Ig]A| — t] - ', m)
= G(Az —ct + (u; —ug),m)
= H'(useHint(h, Az — ct; - 24, &), m)
=r1'[k +1]

Hence, r’ satisfies the “self-target” condition and it remains to show [[r'[|,, <
max {’yl — 3,2y + 1+ 7'2‘171}. For z this follows by assumption, and for ¢ we

have ||[c]||,, = 1. For (u; — uy), recalling that we set a = 273, we have:

ug — g, < [Juilly,+ sl < 22 +1+]ell, - [t —t1 2%, < 272 +1+72971

lloo

where the bound for u; follows with (18) and the bound for us follows with (19).
=

The main technical difficulty when formalizing the results in this section was
to develop a matrix library that would support all the required operations. This
was done in collaboration and is shared between several developments. In the
mathematical presentation we have assumed tacitly that all matrix operations
are carried out on matrices and vectors of compatible dimensions. In EasyCrypt,
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we use a matrix theory where operations are defined even if the dimensions do
not match, with “undefined” behaviors chosen to simplify the equational theory.
This does not cause any problems for matrices and vectors provided by the
schemes or games. However, vectors given by the adversary (i.e., the z and h
component of a signature) need to be checked for the correct length by the verify
procedure (cf. Fig 13).

6.3 The HVZK Simulator and EF-CMA Security

We now extend the security proof from EF-NMA to EF-CMA. This mainly amounts
to instantiating Theorem 3. In order to do so, we need to express the simplified
Dilithium scheme as the FSwA transform of an IDS and provide a HVZK simu-
lator for this IDS. There are two minor technical complications. The first is that,
in order to simplify the mechanization of the proof of Theorem 3, we restricted
ourselves to IDS where Com, Resp, and Verify were given as operators (i.e., math-
ematical functions) rather than procedures (i.e., imperative code such as that
given in Fig. 5. Now we have to “pay” for this simplification and show that
our scheme can indeed be seen as the FS transform of such an operator-based
IDS. The second complication is that Dilithium is actually based on a variant
of the F'S transform that is specific to commitment recoverable IDS, allowing to
replace the commitment w with the (in practice much smaller) challenge ¢ in
the signature. The difference is mainly in verification as shown below (generic
on the left, commitment recoverable on the right):

verify(pk,m,o = (w, 2)): verify(pk,m,o = (¢, 2)):

1: ¢:=H(w,m) 1: w := Recover(pk, ¢, 2)
2: return [[Verify(pk,w,c, 2)]] 2: return [[Verify(pk,w, ¢, z)]| A[lc = H(w, m)]

The Recover function for Dilithium is
Recover((A,t), ¢, (z,h)) := useHint(h, Az — ¢ - power2round(t, d) - 2¢)

For Sign (cf. Fig. 5), Lines 4-6 correspond to Com while Lines 8-11 correspond
to Resp. Defining the remaining operators and proving that no context can dis-
tinguish the original scheme from the FSwA transform of the IDS is routine.

Proving EF-CMA security of the scheme obtained using the FSwA transform
for commitment-recoverable IDS can trivially be reduced to proving EF-CMA
security of the standard FSwA transform. However, the reduction requires an
additional gg random oracle queries to turn the signatures of the form (w, z),
returned by the signing oracle, into signatures of the form (¢, z) as expected by
the adversary.

Now we define the HVZK Simulator for the IDS sketched above. We let D,
be the distribution that with probability |Sl%7ﬁ71| /ISL, 1| returns true and
otherwise returns false. The Sim in Fig. 7 is a minor variation of the one in
[KLS18, Figure 14]. The main difference is that we make explicit the use of
Recover to satisfy the interface of Theorem 3. As mentioned earlier, executing
Sim in a while loop until z # 1 yields an acHVZK simulator.
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Sim(pk = (A, t)):

1:r:=1

2: b— D,

3: if b then

4:  to :=t — power2round(t, d) - 2¢

5: c«— B,

6: z«— SLI,B,I

7 if ||lowBits(Az — ct,a)||, < v2 — S then
8: h := makeHint(—cto, Az — ct + cto))

9: r := (Recover(pk,c,z),c, (z,h))

10: return r.

Fig.7. HVZK simulator

Putting everything together, we obtain the security theorem for Dilithium as
we have formalized it in EasyCrypt:

Theorem 4. Let I', §, € and po < 1 be such that Pr, _ pra[—1"] <9,

E max Pr [highBits(Ay, 2v2) = w]

kxl
A—Ry w y<_s’l”_l

F]<e, and

Pr, s [[[lowBits(Az — ct,2v2)||, = v2 — B] < po for all A satisfying I,

all c € By and all t € Rfl. Then for every classical adversary ASH making
at most qg signing queries and at most qg random oracle queries and for the
adversaries B (against MLWE ) and the C¢ (against SelfTargetMSIS) constructed
in the proof of Lemma 7 we have:

EF-CMA MLWE SelfTargetMSIS
AdVEiichium (A) < Advys-(B) + Advery 15 (C)

2qs(qr +qs +1)e | qse(qs + 1)
1-p 2(1 —p)?

+9

l 1
where p := |S;151|p0+(1 - |S“B|l|> and ¢ := max {y; — 3,272 + 1+ 72971}

l L
~y1—1 v1—1

We remark that we do not show in EasyCrypt that the execution times of B and
C are close to the execution time of A, but this can be checked by inspection.
As a consequence, the formal statement needs to be with respect to specific
reductions rather than existentially quantified adversaries (cf. Fig. 14).

7 Concrete Security Analysis
In the following, we quantify the security loss of our proof to analyze the impact

on the concrete security of Dilithium. Our proof of security for Dilithium has
the same overall structure as the one given in [KLS18] regarding the reductions
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from the underlying computational assumptions MLWE and SelfTargetMSIS. In-
deed, the bounds we establish for the advantage of both classical and quantum
attackers differ from the original proofs only in the additive terms, which in our
case are larger due to additional (Q)ROM reprogramming steps.

In the NIST submission [DKL*21, Section 6.2] the authors simplify the addi-
tive security loss as 27254 — a conservative value — and claim that this bound is
achieved for all of the parameter sets considered, based on the analysis performed
in [KLS18]. In what follows, we give more precise bounds for this additive loss
according to our corrected proofs. We show that it is still low enough to com-
fortably meet the requirements of the relevant NIST security levels.

We recall the expressions for the security loss L in the ROM from Theorem 4,
and its quantum counter part L* obtained from Theorem 2, i.e.

I 2qs(qm +qs +1)e | qse(qgs +1)
' 1—p 2(1 —p)?

2
L* = M,/qH+1+ 95 4 o(qy + 1), - < 445
1-p I1-p 1-p

We present an extended analysis of the bounds on € and § for the different
parameter settings for Dilithium (for the different NIST levels) in Appendix A,
using a computer-aided analysis of the distribution of the rank of (the upper
square part of) the matrix A. We note that J and e are related and allow for
different tradeoffs for fixed parameters which we did not fully exploit, yet. For the
rejection probability p, we use the heuristic from [KLS18] to treat lowBits(Az —
ct) as uniformly random in S,’jrl. This gives rise to the following table.

+4

p qs | qu J € loss

27209 27403 L < 27206

128 =
2 2764 27446 L* < 2758
NIST2 - 49 264 264 27265 27390 L < 27257
= 64 2—117 2—428 L* < 2—113
2—265 2—390 L< 2—257
1 27117 27428 L* < 27113
NIST3 < 108 264 2192 2—867 2—1108 L< 2—847
=128 2—362 2—1180 L* < 2—360

1268 | 5—1584 1260
2 2 L<2

759 64 256
NIST5 S To24 2 2 9—540 | 9—1664 | [ %  9—538

Fig. 8. Concrete security loss of Dilithium from Theorems 2 (L*) and 4 (L).

The take-away from our analysis is that the statistical additive loss remains
sufficiently small for all scenarios and therefore the dominant terms for the se-
curity level will remain the bounds for MLWE and SelfTargetMSIS. To be more
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precise, the table says that an attacker doing ¢y hash computations only gains
an additive advantage of 2758 in the worst case (quantum attack against level 2).
For reference, NIST security level 2 corresponds to a setting where the expected
cost of a successful attack should match that of a collision search in a generic
256-bit hash function. This is often estimated to be 256/3 ~ 86. So, after 28
quantum queries, we would expect to find a collision. In our case, even after 2122
quantum queries, the success probability is bounded by 278, Actually, one num-
ber that may appear debatable (in the sense of really guaranteeing the claimed
security) is the bound for level 2 after a single query of a success probability
of 27113, This number is caused by the number of signing queries which domi-
nates in this case. This implies that for this attack, the cost is also dominated
by the signing queries (here 264). What the number says is that, if one could
ignore the cost of the signing queries, then there would exist an attack with an
expected cost of about 2''3 which is just the number of hash queries. However,
given that the cost of each of these attacks is at least 264 the total attack cost is
2177 Hence, for all the parameters there is a comfortable margin regarding the
security loss induced by the reduction. Thereby the full security of Dilithium is
still determined by the hardness of solving MLWE and SelfTargetMSIS.
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A  Bounding the Min-Entropy

Below, we show, partly computer aided, a lower bound on the min-entropy, i.e.,
an upper bound on the guessing probability, of the first message highBits(Ay, 272)
in the IDS underlying Dilithium for some relevant choices of the parameters.
In more detail, as specified in Dilithium, let R, = F,[X]/(X™ + 1) where
X™ +1 splits completely in Fg, i.e. there exist pair-wise distinct ay,..., o, € Fy
such that X" +1 = (X —a1)--- (X —ay), and let k = [. Then, we will show that,
with overwhelming probability over the choice of A «— R’;Xl, the min-entropy of

highBits(Ay, 27,) is large over the choice of y «— S,l“_l. We denote Hpin(x) as
the min-entropy of a random variable x.
A.1 Controlling the Min-Entropy via the Rank of A
First, note that, for the top-most square A® € RL*! of A e REX!,
Hpin (highBits(Ay, 2v2)) = Hupin (highBits(A"y, 27v2)) = Hpin(A%y) — nllg(2y2 + 1).
Furthermore,

Hunin(A"Y) = Humin(y) — (nl — rank(A%))lg(q) ,

where rank(A”) is the rank of A" acting on Ré as a [Fg-linear space. Finally, by
the choice of y, Huyin(y) = nllg(2y1 — 1). Thus, altogether,

2’)/1—1
270 + 1

Hin (highBits(Ay, 2792)) = nllg ( ) — (nl — rank(A")) lg(q) . (21)

Therefore, it suffices to have good enough control over rank(A%).
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A.2 Controlling the Rank of A

The following is a consequence of the requirement that X" + 1 splits completely
in IF,.

Lemma 8. There is a Fq-algebra isomorphism between

. plxl _~ Ix1
¢: RIS @D F
1<igsn
Furthermore, ¢ is Fq-rank-preserving, i.e. for every A°, with $(A°) = @, D;,
we have rank(A®) = rank(¢(A”)) = 3, rank(D;).

From Lemma 8, we now know that the distribution of rank(A”) equals the
distribution of )}, rank(D;) for random and independent Dy, ..., D,, < IFfJXl.

The Rank of a Random Matrix Below, we thus consider a uniformly random
D« IFfZXl, and we work out the distribution of rank(D). For this purpose, let

D= (D'...DY),

where each D7 ¢ Ffl is the jth column of D. Define the rank sequence r1,...,1m;
given by

rj:=rank (D' ... DY) .
With the convention that rg := 0, define their difference sequence di,...,d; as
d; :=r; —rj_1 € {0,1}. In other words, d; indicates whether the j-th column
increases the rank or not.

Lemma 9 below gives the distribution of the difference sequence (ds,...,d,)
for a random D.

Lemma 9. The probability that a random matriz D € Féxz has a given difference
sequence (dy,...,d;) € {0,1}! is

m(q,dy, ... dy) = 1—[ (dj + (_1)d_7‘q—(l—rj_1)) 7

1<j<!
where 71, ...,7 is naturally defined as r; = dy + --- + dj, with ro = 0.
Proof. For any j € {1,...,1}, conditioned on the columns D!,..., D=1, the ma-

trix D has d; = 0 if and only if the j-th column D7 lies in spang, {D!,..., D/ 1}
which happens with probability

. . #spang {D',..., Di7!

Pr [D] € spanFq{Dl, . 7Djfl}] = A 7 } = ¢ Ummimn) |
and it has d; = 1 with complementary probability 1 —q~(=7-1)_ The probability
of a particular difference sequence dy, ..., d; is then the product of the respective
probabilities above, which matches the claim. O
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Since rank(D) = dy + - -+ + d;, we have

Prlrank(D) = 7] = | m(q.d) (22)
deSL

where S' := {(dq,...,d;) € {0,1}' | d1 + --- + d; = r}. Note that, by using
Lemma 9, one can show that Pr[rank(D) =r] = p,.(1/q) for a (I-dependent)
integer polynomial p, of degree at most 2.

The equality (22) gives rise to an algorithm that computes the distribution
of Pr[rank(D) = 7] (as polynomials in 1/¢) in time 2°W. For [ = 5 (which is in
line with the NIST3 parameters of Dilithium) one obtains the polynomials given
in Fig. 9.12

po(1/q) = q %

prlfg) = —q B g B R g 0 0 I 1T

pa(1/q) = ¢ 2 + ¢ + 2072 4 2¢72 20 _ g719 L gp18 g1 g 16
B Ly g 104 g9

pg(l/q) — _q—22 _ q—21 _ 2q—20 _ q—19 + 3q—17 + 4q—16 + 5q—15 + 3q
32 g g0 300 g T 42 g D4 q

pa(l/q) = ¢71% 4 g8 — g716 _9q15 _3g71¢ _ 9713 4 o712 | 3071 | 4y
+ 3q—9 + q—S _ 2q—7 _ 3q—6 _ 2q—5 _ q—4 + q—2 + q—l

ps(l/q) = —q P +q

16

1 + q*
12 + 2q71
—14
4

—10

R T

Fig. 9. The polynomials p,(1/q) = Pr[rank(D) = r] for [ = 5.

The Rank of a Random Block-Diagonal Matrix Towards controlling the
distribution of rank(A"), we consider the generating function for the distribution
of rank(D), given by

f(z):= )] Prrank(D) =7]-z" = > pr(1/q)-2". (23)

o<sr<li o<sr<li

Then, the nth power f™(z) of the above generating function generates the dis-
tribution of rank(A®) = rank(Dy) + - - - 4+ rank(D,, ), i.e.

fr(z)= ), Prlrank(A%) =r] 2" .

o<r<in

12 For such a small choice of [ the exponential run time is no issue. As a matter of fact,
this could still be worked out by hand.
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On input f(z), as a polynomial in z with degree [, with coefficient being poly-
nomials in 1/q with degree (at most) 2, the n-th power f™(z) can be computed
in time polynomial in n and [. Pr[rank(A”) = r] can then be obtained by read-
ing out the coefficient of the degree-r term of f™(z), which is again an integer
polynomial in 1/q, and evaluating it (as a rational number) for the considered
choice of g € Z.

For any bound B, we can then compute

Prrank(A%) < B] = Z Pr[rank(A”) = r]

r<B

as a rational number 7 with a < b € Z, which we can then upper bound by

writing b = ad + e for e € {0,...,a — 1}, and noting that

a a 1
= — <

Pr[rank(A”) < B] b - adieSd

Finally, counting the number of bits in the bit representation of d excluding the
most significant bit gives us § € Z with 2° < d, and thus Pr[rank(A”) < B] <
279,

A.3 Plugging in the Numbers

n q Y1 Y2

1

NIST2 | 256 | 4 | 8380417 | 27 | (¢ —1)/88
5
7

NIST3 | 256 8380417 | 2'% | (¢ —1)/32
NIST5 | 256 8380417 | 2'° | (¢ — 1)/32

Fig. 10. NIST: parameters for Dilithium, ¢ € {2, 3, 5}

For the NIST3 parameters as described in Fig. 10, we present the relevant
quantities, obtained by following the above computation steps using Sage. Recall
that the rank distribution of D, and thus the generating function f(z), is already
given above in Fig. 9. In Fig. 11 below are the obtained upper bounds §; such
that Pr[rank(A®) < nl —i] < §; for selective choices of #’s, together with the
resulting bounds Hy,i, (highBits(Ay, 2y2)) = n; obtained via (21).

In particular, we see that except with probability at most 272%9 the matrix
A” has corank at most 11, and then

Hpin (highBits(Ay, 27v2)) > 1028,
which means that the guessing probability is at most

Guess(highBits(Ay’ 272)) < 91028 ’
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1 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | 19 | 28 [ 44| 63
—lgéd;| 14 | 31 | 47 | 64 | 81 | 99 |117| 135|153 | 172|190 | 209 | 362 | 540 [867(1268
7 1471448425402 [ 379|356 [ 333 (310287 [264 [241]218] 34 [ 0 [0 ] O
' 11281[1258[1235[1212[1189[1166(1143[1120[1097[1074[1051[1028] 844 | 637 [269] 0
) 11794[1771[1748(1725[1702]1679|1656]1633|1610[1587]1564|1541[1357|1150(782[ 345

Fig. 11. Pr [ Huin(highBits(Ay,272)) > nl@] < 0; for NIST. parameters, ¢ € {2, 3,5}

where the randomness is over the choice of y.
We can obtain a slightly better bound by considering the average guessing

probability over the choice of A, averaged over the non-normalized distribution
of A conditioned on A" having corank at most 11. Concretely, letting I'7; be the
event that A has corank at most 11, where we know that Pr[—171] < 272% we

obtain

E 4[Guess(highBits(Ay, 272)) | I'1]

= E 4 [Guess(highBits(Ay, 272)) | rank(A%) > ni — 11]

. G 0i_1 @ o
P k(A”) =nl—i | Iy1]-27% " < d L9 < 91213
r[rank(A®) = nl —i | I4] ] ,

0<i<11

N

0<i<l11

with the convention that d_; = 1.
Similarly, one can work out the entropy bounds for other NIST: parameters

where ¢ € {2,3,5}. In Fig. 12, for each event I'y that A” has corank at most I we
provide an upperbound for Pr[—I7], a lowerbound for Hmin(highBits(Ay, 2’72))
conditiond on I'; happening, and an upperbound on E 4[Guess (highBits(Ay, 2v2)) | I'7].

v | I | Pr[~I7] | Huin(highBits(Ay,2v2)) | Ea[Guess(highBits(Ay,2v2)) | 1]
3| <27% > 402 < 2 16

2 11| <2729 > 218 < 27408
19 S 2—362 2 844 < 271180

3 44| < 9—867 > 269 < 9—1108
28 | < 27%40 > 1150 g 21664

5 63 S 271268 2 345 < 271584

Fig. 12. Entropy bounds for NIST: parameters, ¢ € {2, 3, 5}

B EasyCrypt Code

Here we give two examples of code from the formal development accompanying
this paper. Fig. 13 shows how we formalize the Dilithium signature scheme as
a module in EasyCrypt. The scheme is parameterized by a hash function which
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will be provided by a random oracle in the security proof. Fig. 14 shows the
formalization of the statement of Theorem 4. We only show the most important
assumptions, i.e., those dealing with query bounds, entropy, and abort probabil-
ity. For the remaining assumptions (e.g., the conditions on the parameters for
the scheme) see the formal development.
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module type Hash = {
proc get(x : high list x M) : challenge_t

module Dilithium (H: Hash) = {
proc keygen() : PK * SK = {

mA <& dmatrix dRq k I
s1 << dvector (dRg- eta_) I;

s2 << dvector (dRq- eta_) k;
t <« mA %" sl + s2;

tl « base2highbitsV t;

t0 <« base2lowbitsV t;

pk « (mA, tl);

sk «— (mA, sl, s2, t0);
return (pk, sk);

proc sign(sk: SK, m: M) : Sig = {
(mA, sl, s2, t0) « sk;
response < None;

while(response = None) {

y &£ dvector (dRq- (gammal — 1)) |;

w<«— mA %" y;

wl < highBitsV w;

c < H.get((wl, m));

Z <y + C %% sl;

if(inf_normv z < gammal — beta_ A
inf_normv (lowBitsV (mA %~ y — c %% s2)) < gamma2 — beta_) {
h < makeHintV (— c #* t0) (w — c ** s2 + c *x t0);
response «— Some(z,h);

}

}

return (c, oget response);

}

proc verify(pk: PK, m : M, sig : Sig) = {
(mA, t1) « pk;

(c, response) « sig;

(z, h) < response;

wl « useHintV h (mA %~ z — c %% base2shiftV tl);

c' « H.get((wl, m));

return size z = | A size h = k A inf_normv z < gammal — beta_ A c =c;

}
}.
We write base2highbits for power2round and base2lowbits for t — power2round(t, d) - 2°.
Further, we omit the fixed arguments (i.e., 27> for highBits, lowBits, etc. and d for the
aforementioned base2 operations).

Fig. 13. Specification of Dilitihium in EasyCrypt.
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(*#* Query Bounds #x)
const qS: {int | 0 < qS } as qS_ge0. (* number of queries to "sign” *)
const qH : { int | 0 < qH } as qH_ge0. (* number of queries to "H.get" x)

(*#% Entropy Bounds *xx)

(* Abbreviations for the way A, y, and z are sampled x)
op dA = dmatrix dRq k I.

op dy = dvector (dRq- (gammal — 1)) I.

op dz = dvector (dRq- (gammal — beta_ — 1)) I.

(* The check on the matrix component of the keys *)
(* This is just predicate used in the proofs, we never compute with it *)
op check_mx : matrix — bool.

(* upper bound on the mass of the matrices not passing check *)
const delta_ : { real | 0%r < delta_ } as delta_gt0.
axiom check_mx_most : mu dA (predC check-mx) < delta_.

(* upper bound on the expected probability mass
of the most likely commitment for a good key )
const eps_.comm : { real | 0%r < eps_.comm } as eps_.comm_gt0.
axiom check_mx_entropy :
E (dcond dA check-mx) (fun mA =
p-max (dmap dy (fun y = highBitsV (mA %" y)))) < eps_comm.

(* bound on the probability that he low—bis check in the Sim fails )
const eps_low : { real | eps_low < 1%r } as eps_low_It1.
axiom bound_low c (t : vector) (mA : matrix) :
cedC 7 = t € dvector dRq k = check-mx mA =
mu dz (fun z = gamma2 — beta_ < inf_normv (lowBitsV (mA x~ z — c ** t)) ) < eps_low.

section PROOF.
(* We assume some adversary A *)
declare module A <: Adv.EFCMA_RO{ --- }
(* A makes no more than qH random oracle (i.e., hash) queries
and no more than qS many signing queries *)
declare axiom A_bound
(H' <: Hash{—SD.CountS, —SD.CountH, —A} )
(SO' <: SOracle_.CMA{—SD.CountS, —SD.CountH, —A} ) :
hoare[ A(SD.CountH(H'), SD.CountS(S0O")).forge :
SD.CountH.gh = 0 A SD.CountS.qs = 0 => SD.CountH.qgh < qH A SD.CountS.qs < qS].

op p0 = (size (to_seq (support dz)))%r / (size (to_seq (support dy)))%r.
op p-rej : real = (p0 * eps_low) + (1.0 — p0).

lemma Dilithium_secure &m :
Pr[EF_CMA_RO(Dilithium, A, H, O_CMA_Default).main() @ &m : res] <
* |Pr[MLWE_L(RedMLWE(A)).main() @ &m : res] —
Pr[MLWE_R(RedMLWE(A)).main() @ &m : res]| +
Pr[SelfTargetMSIS(RedStMSIS(A), SD.RqStMSIS.PRO.RO).main () @ &m : res] +
(2%r * qS%r * (qH + qS + 1)%r * eps_.comm / (1%r — p_rej) +
qS%r * eps.comm % (qS%r + 1%r) / (2%r * (1%r — p-rej) ~ 2)) + delta_.

end section PROOF.

Fig. 14. The formalized security statement (with the most important assumptions)
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