%0 Journal Article %T Soft Matter Roadmap %+ Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ) %+ Georgetown University [Washington] (GU) %+ Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf] %+ University of Michigan [Flint] (UMFlint) %+ Universiteit Utrecht / Utrecht University [Utrecht] %+ State University of New York (SUNY) %+ Columbia University [New York] %+ Technische Universität Munchen - Technical University Munich - Université Technique de Munich (TUM) %+ University of Patras %+ University of Colorado [Boulder] %+ Institut Charles Sadron (ICS) %+ University of Delaware [Newark] %+ National Institute of Standards and Technology [Gaithersburg] (NIST) %+ Emory University [Atlanta, GA] %+ University of Vienna [Vienna] %+ Hong Kong University of Science and Technology (HKUST) %+ Laboratoire Charles Coulomb (L2C) %+ Institut universitaire de France (IUF) %+ University of Edinburgh (Edin.) %+ Cornell University [New York] %+ University of Washington [Seattle] %+ Duke University [Durham] %+ Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) %+ Indian Institute of Science (IISc) %+ Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] (UNIROMA) %+ University of Cologne %+ Universität Bonn = University of Bonn %+ James Franck Institute %+ University of Chicago %+ University of Pennsylvania %+ CSIR Indian Institute of Chemical Biology Kolkata (IICB) %+ City University of Hong Kong [Hong Kong] (CUHK) %+ Flatiron Institute %+ The University of Queensland (UQ [All campuses : Brisbane, Dutton Park Gatton, Herston, St Lucia and other locations]) %+ Centre de Physique Théorique - UMR 7332 (CPT) %+ CPT - E5 Physique statistique et systèmes complexes %+ Turing Centre for Living Systems [Marseille] (TCLS) %+ Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) %+ Institut Laue-Langevin (ILL) %+ University of Tübingen %+ Malmö Högskola = Malmö University %+ Delft University of Technology (TU Delft) %+ University of Illinois at Urbana-Champaign [Urbana] (UIUC) %A Barrat, Jean-Louis %A del Gado, Emanuela %A Egelhaaf, Stefan %A Mao, Xiaoming %A Dijkstra, Marjolein %A Pine, David %A Kumar, Sanat %A Bishop, Kyle %A Gang, Oleg %A Obermeyer, Allie %A Papadakis, Christine %A Tsitsilianis, Costantinos %A Smalyukh, Ivan %A Hourlier-Fargette, Aurelie %A Andrieux, Sebastien %A Drenckhan, Wiebke %A Wagner, Norman %A Murphy, Ryan %A Weeks, Eric %A Cerbino, Roberto %A Han, Yilong %A Cipelletti, Luca %A Ramos, Laurence %A Poon, Wilson %A Richards, James %A Cohen, Itai %A Furst, Eric %A Nelson, Alshakim %A Craig, Stephen %A Ganapathy, Rajesh %A Sood, Ajay Kumar %A Sciortino, Francesco %A Mungan, Muhittin %A Sastry, Srikanth %A Scheibner, Colin %A Fruchart, Michel %A Vitelli, Vincenzo %A Ridout, S. %A Stern, M. %A Tah, I. %A Zhang, G. %A Liu, Andrea %A Osuji, Chinedum %A Xu, Yuan %A Shewan, Heather %A Stokes, Jason %A Merkel, Matthias %A Ronceray, Pierre %A Rupprecht, Jean-François %A Matsarskaia, Olga %A Schreiber, Frank %A Roosen-Runge, Felix %A Aubin-Tam, Marie-Eve %A Koenderink, Gijsje %A Espinosa-Marzal, Rosa %A Yus, Joaquin %A Kwon, Jiheon %< avec comité de lecture %J Journal of Physics: Materials %I IOP Science %8 2023-10-25 %D 2023 %R 10.1088/2515-7639/ad06cc %Z Physics [physics]Journal articles %X Soft materials are usually defined as materials made of mesoscopic entities, often self-organized, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is enormous, and controlling or improving their properties is the focus of many efforts. From a fundamental perspective, the possibility of manipulating soft material properties, by tuning interactions between constituents and by applying external perturbations, gives rise to an almost unlimited variety in physical properties. Together with the relative ease to observe and characterize them, this renders soft matter systems powerful model systems to investigate statistical physics phenomena, many of them relevant as well to hard condensed matter systems. Understanding the emerging properties from mesoscale constituents still poses enormous challenges, which have stimulated a wealth of new experimental approaches, including the synthesis of new systems with, e.g., tailored self-assembling properties, or novel experimental techniques in imaging, scattering or rheology. Theoretical and numerical methods, and coarse-grained models, have become central to predict physical properties of soft materials, while computational approaches that also use machine learning tools are playing a progressively major role in many investigations. This roadmap paper intends to give a broad overview of recent and possible future activities in the field of soft materials, with experts covering various developments and challenges in material synthesis and characterization, instrumental, simulation and theoretical methods as well as general concepts. %G English %2 https://hal.science/hal-04260533/document %2 https://hal.science/hal-04260533/file/Barrat%2Bet%2Bal_2023_J._Phys._Mater._10.1088_2515-7639_ad06cc.pdf %L hal-04260533 %U https://hal.science/hal-04260533 %~ UGA %~ UNIV-TLN %~ CNRS %~ UNIV-AMU %~ INPG %~ CPT %~ UNIV-STRASBG %~ L2C %~ INSA-STRASBOURG %~ LIPHY %~ INC-CNRS %~ CINAM %~ UNIV-MONTPELLIER %~ SITE-ALSACE %~ CPT-PHYS-STAT %~ INSA-GROUPE %~ UGA-EPE %~ UM-2015-2021 %~ UM-EPE