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GABOR PHASE RETRIEVAL VIA SEMIDEFINITE
PROGRAMMING

PHILIPPE JAMING AND MARTIN RATHMAIR

Abstract. We consider the problem of reconstructing a function f ∈
L2(R) given phase-less samples of its Gabor transform, which is defined
by

Gf(x, ω) := 2
1
4

∫
R

f(t)e−π(t−x)2
e−2πiyt dt, (x, y) ∈ R2.

More precisely, given sampling positions Ω ⊆ R2 the task is to re-
construct f (up to global phase) from measurements {|Gf(ω)| : ω ∈
Ω}. This non-linear inverse problem is known to suffer from severe
ill-posedness. As for any other phase retrieval problem, constructive re-
covery is a notoriously delicate affair due to the lack of convexity. One of
the fundamental insights in this line of research is that the connectivity
of the measurements is both necessary and sufficient for reconstruction
of phase information to be theoretically possible.
In this article we propose a reconstruction algorithm which is based
on solving two convex problems and, as such, amenable to numerical
analysis. We show, empirically as well as analytically, that the scheme
accurately reconstructs from noisy data within the connected regime.
Moreover, to emphasize the practicability of the algorithm we argue that
both convex problems can actually be reformulated as semi-definite pro-
grams for which efficient solvers are readily available.
The approach is based on ideas from complex analysis, Gabor frame
theory as well as matrix completion.

Keywords. phase retrieval, phase-less sampling, semi-definite pro-
gramming, matrix completion
AMS subject classifications. 65R10, 42A38, 30H20, 46N10, 15A83

1. Introduction

Phase retrieval problems are an important and common class of problems
in the physical sciences with applications ranging from diffraction imaging
[36] over audio [19] to quantum mechanics [32]. In mathematical terms,
phase retrieval is concerned with the reconstruction from phaseless linear
measurements. More formally, given T : X → X ′ a linear operator between
two complex function spaces X and X ′, consider the map

A : f 7→ |Tf |2, f ∈ X
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2 GABOR PHASE RETRIEVAL VIA SEMIDEFINITE PROGRAMMING

where |Tf | denotes the pointwise modulus of Tf , i.e. |Tf |(ω) = |Tf(ω)|.
Solving the phase retrieval problem amounts to solving the inverse problem
associated with the forward operator A. Clearly, Af = Ah if h = cf
with |c| = 1. To remove this obvious source of ambiguity one does not
distinguish between functions which coincide up to a multiplicative factor
of unit modulus,

f ∼ h ⇐⇒ ∃c ∈ C, |c| = 1 : h = cf.

In a nutshell, the reconstruction task is to come up with the left inverse L
of A, that is, a map satisfying

∀f ∈ X : L(|Tf |2) ∼ f.

It is important to note that it is by no means clear that the left inverse
exists. For many instances of phase retrieval problems it is already difficult
to decide the question of uniqueness, i.e., whether A is injective on X/ ∼ or
not. Typically, there are three fundamental aspects studied within the scope
of phase retrieval: uniqueness, stability and actual reconstruction. In terms
of the left inverse, these categories correspond to existence of L, continuity
of L and construction of L, respectively.

Ideally, given a concrete phase retrieval problem one would like to have
a good understanding of all three aspects. Uniqueness and stability address
the issue of well-posedness. Algorithmic methods to reconstruct are of fun-
damental importance for practical applications. In addition – as for any
other numerical method – performance guarantees and a-priori estimates
for the error are highly desirable, as is the capability of the method to deal
with noisy input data.

Generally speaking, the algorithmic solution of phase retrieval problems
is a notoriously delicate matter. Different variations of algorithms based
on alternating projections have been around for decades, such as the meth-
ods by Gerchberg-Saxton [18] and by Fienup [17] to name just two. These
schemes have the advantage of being uncomplicated to implement. However,
the absence of convexity makes them difficult to analyse, which is a major
drawback when it comes to establishing convergence guarantees. A rather
recent trend is based on the idea of lifting the problem into a higher dimen-
sional space and solving a convex reformulation (or relaxation) there. For a
number of algorithms of this type, results have been established which guar-
antee the accuracy of the method in a sufficiently randomized setting. We
mention the ’PhaseLift’ algorithm (Candès, Strohmer and Voroninski [7])
and the ’PhaseCut’ algorithm (Waldspurger, d’Aspremont and Mallat [38])
as two of the earliest contributions into this direction. For a comprehen-
sive discussion of numerical aspects of phase retrieval as well as a detailed
overview of the literature we refer to the recent survey [16].

1.1. Aim of this paper & related results. In this paper we consider a
particular instance of a phase retrieval problem, namely where the linear op-
erator is the short-time Fourier transform with Gaussian window. Precisely,
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this means that T = G, the Gabor transform defined by

Gf(x, y) = 21/4
∫
R
f(t)e−π(t−x)2

e−2πiyt dt, f ∈ L2(R), (x, y) ∈ Ω,

with Ω ⊆ R2. Evaluations of the Gabor transform correspond to correlation
between f and time-frequency shifts of a Gaussian

Gf(x, y) = 〈f, π(λ)ϕ〉L2(R), λ = (x, y)

where ϕ := 21/4e−π·
2 and π(λ) denotes a time-frequency shift, i.e.,

(π(λ)g)(t) = e2πiytg(t− x).

The squared modulus of the Gabor transform is called the (Gabor) spectro-
gram and denoted by Sf = |Gf |2. The set Ω represents the locations where
phaseless information is given. If Ω = R2 (in fact, Ω open suffices) it is well
known that any f ∈ L2(R)/ ∼ is uniquely determined by {Sf(ω), ω ∈ Ω}.
Contrary to that, the uniqueness question for discrete sets Ω is already
quite subtle. While sampling on a lattice (irrespective of its density!) is
not enough [3,23], the union of three suitable perturbations of a sufficiently
dense lattice yields uniqueness [25].
Phase retrieval is inherently unstable in infinite dimensions [1, 5] which ag-
gravates matters even more. In the above setting this means that the left
inverse of f 7→ Sf (presuming that it exists) cannot be a well-behaved
smooth function. Sources of instabilities are functions f = f1 + f2 consist-
ing of two (or more) components: we say that f1 and f2 are components if
their respective Gabor transforms are essentially supported on disjoint do-
mains (in particular, Gf1Gf2 ≈ 0). In this case we can flip the sign in front
of either component and get similar phaseless observations:

|G(f1 − f2)|2 = |Gf1|2 − 2 Re(Gf1Gf2) + |Gf2|2

≈ |Gf1|2 + 2 Re(Gf1Gf2) + |Gf2|2 = |Gf |2.

On a positive note, functions of aforementioned type are the only source of
instability; that is, if the spectrogram is connected, then phase information
is stably determined by the phase-less observation [26,27].

In terms of reconstruction from phaseless Gabor measurements, to the
best of our knowledge there is only one result into this direction at this mo-
ment in time. For signals residing in the shift-invariant space generated by
a Gaussian, Grohs and Liehr [24] establish an explicit inversion formula and
prove that its discretization leads to a stable reconstruction method under
suitable connectedness conditions.
Escudero et al. [15] consider the problem of locating the positions of the
zeros of the Bargmann transform, which is closely related to our problem
as Gabor and Bargmann transform coincide up to normalization (and due
to the fact that the Bargmann transform is an entire function, and thus
essentially determined by its roots).
Finite-dimensional variants of the STFT phase retrieval problem have also
been investigated extensively [2, 4, 14,28,33].
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As outlined above absence of uniqueness and uniform stability is a real
issue for the problem at hand. Furthermore, any practical implementation is
restricted to process a finite amount of data (in particular, Ω finite) while the
problem itself is infinite dimensional. Thus, it is inevitable to compromise
on the original objective of actually constructing the left inverse L of

A : f 7→ Sf = |Gf |2.

It is therefore the aim of this article to identify a map L̃ : RΩ → L2(R)
which serves as an approximate left inverse of A.

1.2. Contribution. In this paper we propose an algorithmic solution to
compute an approximate left inverse L̃. More specifically, the algorithm
takes spectrogram samples as input, i.e.,

Sf(ω) = |Gf(ω)|2, ω ∈ Ω

with Ω ⊆ R2 finite, and aims to reconstruct f up to a multiplicative constant
of unit modulus. Our method is based on solving two convex programs (CP)
both of which can actually be formulated as semidefinite programs (SDP).
For the reader who is not so familiar with convex optimization, the prototype
of a SDP has the form

min 〈X,A0〉F
s.t. 〈X,Ak〉F = bk, k = 1, . . . ,M

X � 0

with (Ak)Mk=0 a family of Hermitian matrices, 〈A,B〉F = tr(BHA) is the
Frobenius inner product and (bk)Mk=1 ⊆ R. We refer to the survey article by
Vandenberghe and Boyd [37] on semidefinite programming and highlight the
following snippet from the abstract of the aforementioned article to partly
explain the popularity of SDP.

”Although semidefinite programs are much more general than
linear programs, they are not much harder to solve.”

Further, the case where the constraints are inequalities 〈X,Ak〉F ≥ bk
also fits in this framework. We point out that it often makes sense to
soften the constraints by replacing 〈X,Ak〉F = bk by |〈X,Ak〉F − bk| ≤ ε
with ε a positive tolerance parameter, for example when the system is over-
determined or in the presence of noise. A SDP of the above type can be
easily set up and solved using the CVXPY package in Python.

The reconstruction scheme is accompanied by numerical analysis. Our
results guarantee that the proposed method is accurate within the stable
regime (that is, if the spectrogram exhibits sufficient connectivity) and in
the presence of noise, presuming that sufficient data is provided (i.e., Ω
is rich enough). Thus, our algorithm joins the rank of provably convergent
semi-definite programming-based methods for phase retrieval problems such
as the famous ’PhaseLift’ and ’PhaseCut’ algorithms. We point out that –
in contrast to the aforementioned contributions – our results hold in a purely
deterministic context.
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1.3. Main ideas. Before providing some explanation of our approach we
introduce the number

a := 1√
2

= 0.7071 . . . .

The square lattice with mesh size a will be denoted by Λ = aZ2. It is
important to keep in mind that in practice Λ needs to be finite so we deal
with finite dimensional objects. In this introductory part this aspect will
however be neglected for the sake of simplicity of the argument as will be
the potential influence of noise.

Reduction to discrete phase recovery problem. Given f ∈ L2(R) we introduce
a sequence v = (vλ)λ∈Λ ∈ CΛ by virtue of

vλ := Gf(λ), λ ∈ Λ.
Even though the index set Λ ⊆ R2 has a two-dimensional appearance we
think of it as a one-dimensional vector. As it is well-known from Gabor
frame theory, the infinite vector v carries all the relevant information of the
function f to be reconstructed [12, 31, 34, 35]. More explicitly, the relation-
ship between v and f can be described in terms of an expansion formula
involiving the so-called dual window ψ ∈ L2(R):

(1) f =
∑

λ=(a,b)∈Λ
vλπ(λ)ψ

Thus, it suffices to recover the vector v up to a global phase factor.

Lifting. The term ’lifting’ refers to the idea of embedding the vector space
CΛ into the matrix space CΛ×Λ. We consider the infinite matrix v ⊗ v ∈
CΛ×Λ, which is defined by

(v ⊗ v)λ,λ′ := vλvλ′ = Gf(λ)Gf(λ′), λ, λ′ ∈ Λ.
as an alternative representation of the vector v. The matrix entry (v⊗v)λ,λ′
contains the information of relative phase change between the locations λ
and λ′. Note that v⊗v determines v uniquely up to a multiplicative constant
of unit modulus – span {v} is the solitary nontrivial eigenspace of the matrix
v⊗ v. Thus, this approach neatly fits into the scope of phase retrieval. The
lifting trick is well-known within the phase retrieval community and has
proven to be quite useful, for instance to turn a given phase retrieval problem
(which is non-convex by nature) into a convex problem by considering a
relaxation in the matrix space.

Matrix estimator. We are left with the problem of determining the entries
of the matrix v ⊗ v given spectrogram data (Sf(ω))ω∈Ω. In the best case
(that is, if Ω ⊇ Λ) we can directly observe the diagonal entries of the matrix
as

(v ⊗ v)λ,λ = Sf(λ),
while no off-diagonal entries are provided. To go beyond the diagonal we
construct a predictor function V based on holomorphically extending the
spectrogram. In Section 6.1 we prove that there exist L : R2×R2 → C2 and
Q : R2 × R2 → C such that
(2) Gf(p+ u)Gf(p) = F (L(p, u)) · eQ(p,u), p, u ∈ R2
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f ∈ L2(R) Sf ∈ [0,∞)Ω

v ∈ CΛ v ⊗ v ∈ CΛ×Λ

dual window

A

leading eigenvector

estimator & completion

Figure 1. Schematic decomposition into the respective sub-
steps in the construction of the approximate left inverse L̃ of
A.

where F : C2 → C is the unique entire extension of Sf (that is, F ∈ O(C2)
and F

∣∣
R2 = Sf). Assuming that F is known, it follows from (2) that

V (λ, λ′) = F (L(λ′, λ− λ′)) · eQ(λ′,λ−λ′)

correctly predicts the entries of the matrix v ⊗ v. In practice it is not
viable to identify F exactly. To obtain a feasible variant of the idea we
will pick a finite-dimensional Ansatz space {FA, A � 0} whose members
are parameterized by positive definite matrices of a fixed size. Further, we
formulate a semi-definite program over {A � 0}, the convex cone of positive
definite matrices such that its solution A∗ gives rise to an entire function
FA∗ which serves as an approximation for F . The resulting predictor is then

Ṽ (λ, λ′) = FA∗(L(λ′, λ− λ′)) · eQ(λ′,λ−λ′)

Analyzing the accuracy of the estimator reveals that Ṽ (λ, λ′) is a reliable
approximation for (v ⊗ v)λ,λ′ if

(λ, λ′) ∈ P := {(λ, λ′) ∈ Λ× Λ, |λ− λ′| ≤ r},

with r > 0 a suitable threshold parameter, whereas accuracy cannot be
guaranteed when |λ−λ′| > r. Hence, Ṽ can only be used to predict relatively
few matrix entries.

Matrix completion. That matrix completion techniques can be quite useful
in the context of solving phase retrieval problems is well documented [6].
For the problem at hand, to infer the remaining entries of the matrix v ⊗ v
we exploit the structural knowledge we have on that matrix: v⊗ v has rank
one and is positive semi-definite. We attack the matrix completion problem
by solving the convex relaxation

Find Y � 0 s.t. |Yλ,λ′ − Ṽ (λ, λ′)| ≤ τ , for all (λ, λ′) ∈ P,
with τ > 0 a suitable threshold. Quite conveniently, the relaxation can be
formulated in terms of a SDP. We pick up a result due to Demanet and
Jugnon [13] (and establish a slight modification) to show that the convex
relaxation is guaranteed to yield an accurate result provided that the data
exhibit sufficient connectivity. The precise quantitative concept to measure
connectivity is the spectral gap of the (vertex-weighted) graph Laplacian
associated to f (see Definition 2.4).
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1.4. Outline. The remainder of this article is organized as follows. Sec-
tion 2 contains the precise definition of the reconstruction scheme as well
as statements concerning the accuracy of the algorithm, which constitute
the main results of this article. In Section 3 we present some numerical
experiments in order to verify the capabilities of the proposed algorithmic
solution empirically. Section 4 forms a collection of required preliminary
material. In Section 5 we discuss an inexact version of the dual window
reconstruction formula (25). Section 6 is concerned with a detailed analysis
of the estimator Ṽ . Finally, Section 7 contains the proof of the first main
theorem, Theorem 2.8.

2. Algorithm and Results

2.1. The reconstruction scheme. This section is concerned with present-
ing the algorithmic solution of the phase retrieval problem at hand. As the
method is quite involved we need to introduce a few objects and quantities
first.
Throughout a = 1√

2 . The signal to be reconstructed is represented by f ∈
L2(R). Γ ⊆ aZ2 denotes a finite subset of the lattice. Furthermore, we de-
note the cone of positive definite matrices by A+(Γ) = {A ∈ CΓ×Γ : A � 0}.

Definition 2.1 (Ansatz function). Let J =
( 0 1
−1 0

)
. Given λ, µ ∈ R2, let

Φλ,µ(z) := C(λ, µ)eiπzTJ (λ−µ) · e−π
(
z−λ+µ

2

)2

, z ∈ C2,

where C(λ, µ) := exp
{
−π

4
∣∣λ− µ∣∣2 + πi(λ1λ2 − µ1µ2)

}
. To every A ∈ CΓ×Γ

we associate the entire Ansatz function FA defined by

FA(z) :=
∑
λ,µ∈Γ

Aλ,µ · Φλ,µ(z), z ∈ C2.

The prediction process involves evaluating a certain entire function of two
complex variables.

Definition 2.2 (Evaluation operator). Let

L :
{
R2 × R2 → C2

(p, u) 7→ p+ 1
2
( 1 −i
i 1

)
u

Q :
{
R2 × R2 → C
(p, u) 7→ −π

2 |u|
2 − πi(2p1 + u1)u2

Given G ∈ O(C2), the evaluation of G is then defined by

E [G](p, u) := G(L(p, u)) · eQ(p,u).

We shall denote the canonical dual window of the Gabor frame (π(λ)ϕ)λ∈aZ2

by ψ. Further, we point out that an explicit formula for ψ is available, see
equation 4.3.
With this we are ready to formulate the reconstruction scheme which is
handed noisy spectrogram samples σω ≈ Sf(ω), ω ∈ Ω with Ω ⊆ R2 finite
and aims to reconstruct f up to a global phase factor.
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Algorithm 1: Reconstruction procedure
Parameters: r, ε, ε′ > 0 and Λ,Γ ⊆ aZ2 finite
Input: σ ∈ RΩ

Output: f∗ ∈ L2(R)
Step 1: Solve the CP

(3)
min

A∈A+(Γ)
max
λ∈Γ

Aλ,λ

s.t. |FA(λ)− σλ| ≤ ε, λ ∈ Ω,
and denote its solution by A∗.

Step 2: Set P := {(λ, λ′) ∈ Λ× Λ : |λ− λ′| ≤ r} and define
coefficients

Tλ′,λ := E [FA∗ ](λ, λ′ − λ), (λ, λ′) ∈ P.
Solve the CP

(4) find Y ∈ A+(Λ), s.t. |Yp − Tp| ≤ ε′, p ∈ P.
Step 3: Extract v ∈ CΛ an eigenvector corresponding to the largest
eigenvalue of Y , and set

f∗ :=
√

tr(Y )
∑
λ∈Λ

vλ · π(λ)ψ.

Remark 2.3 (CPs are SDPs). Both, the CP in step 1 as well as the CP in
step 2 can actually be recast into a SDP.

Indeed, to see this for the CP in step 1 we refer to Lemma 6.7, where we
explicitly construct for any given point z = (x, y) ∈ R2, a hermitian matrix
Wz ∈ A+(Γ) with the property

FA(z) = 〈A,Wz〉F , A ∈ A+(Γ).

Furthermore, we add a single element ’∞’ to the index set Γ and denote
Γ̃ = Γ∪{∞}. With this, we introduce a slack variable µ ∈ R by considering

Ã =
(
A ∗
∗ µ

)
∈ A+(Γ̃).

It is not difficult to see that A is a solution of (3) if and only if Ã is a
solution of the SDP

min
Ã∈A+(Γ̃)

µ = min
Ã∈A+(Γ̃)

〈
Ã,

( 0 0
0 1

)〉
F

s.t.
∣∣∣∣〈Ã,( Wλ 0

0 0

)〉
F
− σλ

∣∣∣∣ ≤ ε, λ ∈ Ω

〈Ã,Dγ〉 ≤ 0, γ ∈ Γ

where the diagonal matrix Dγ is given by

Dγ(α, β) =


−1, α = β =∞
1, α = β = γ

0, otw.
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For the corresponding statement with regards to the CP in step 2, we refer to
Lemma 4.1, where we explicitly construct, given an arbitrary point p ∈ Λ×Λ,
a pair of hermitian matrices Erp and Eip with the property that for each
A ∈ A+(Λ),

〈A,Erp〉F = Re(Ap), and 〈A,Eip〉F = Im(Ap).

Therefore, every solution of the SDP
min

Y ∈A+(Λ)
〈Y, 0〉F

s.t. |〈Y,Erp〉F − ReTp| ≤
ε′

2 , p ∈ P

|〈Y,Eip〉F − ImTp| ≤
ε′

2 , p ∈ P

is also a solution of the CP (4). Finally, we point out that off-the-shelf
solvers (in particular, the CVXPY package which was used to produce the ex-
periments carried out in Section 3) deal with these aspects automatically and
internally. For example, to solve the CP (3) we simply declared maxλ∈ΓAλ,λ
as the objective function to be minimized.

2.2. Reconstruction of Gabor coefficients. The intermediate objective
of the algorithm is concerned with the reconstruction of the coefficients
{Gf(λ), λ ∈ Λ}. Before we present the result which guarantees the accuracy
of this first component of the method we again have to settle some termi-
nology.

First we attach a graph to the provided spectrogram samples in order to
specify the relevant quantity of connectivity.

Definition 2.4 (Signal associated graph and spectral gap). Given a triple
consisting of f ∈ L2(R), a finite set Λ ⊆ aZ2 and r > 0, the signal associated
graph G = (V,E, α) is the vertex weighted graph with vertex set V = Λ, edge
set E defined by

(u, v) ∈ E ⇔ 0 < |u− v| < r,

and vertex weights αv = Sf(v), v ∈ V . Let 0 = λ1 ≤ λ2 ≤ . . . denote the
eigenvalues of the Laplacian 1 of G. The spectral gap is defined as

λ2(f,Λ, r) := λ2.

Remark 2.5 (Spectral gap and connectivity). We recall in Lemma 4.15
that G is connected if and only if there is an actual spectral gap, i.e. if λ2 is
strictly positive. This suggests to conceive the spectral gap λ2 as a concept to
quantify the connectivity of G: the larger the spectral gap of the Laplacian,
the more connected is G.
A formal approval of this intuition has been established by Cheeger [8] in the
context of Riemannian geometry by relating the spectral gap to a geometric
invariant coined the Cheeger constant. Subsequently, respective results have
also been encountered in the world of graph theory [10].

1we recall the definition of the Laplacian of a vertex weighted graph in Section 4.6
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In the remainder we will stick to index sets Λ,Γ,Ω of a rather simple form.
Namely, we assume that these sets arise as the intersection between a cen-
tered rectangle with a square lattice. Precisely, given numbers T, S,R, s > 0
we set

Λ = ([−T, T ]× [−S, S]) ∩ aZ2,(5)
Ω = ([−T −R, T +R]× [−S −R,S +R]) ∩ sZ2,(6)
Γ = ([−T − 2R, T + 2R]× [−S − 2R,S + 2R]) ∩ aZ2.(7)

The parameters need to be chosen reasonably for the reconstruction method
to succeed. For this purpose we introduce the following technical notion.
Definition 2.6. Let f ∈ L2(R). Given parameters T, S,R, r, s, ε, ε > 0 let
Λ,Γ,Ω be defined as in (5), (6) and (7), respectively.
We say that the parameters are well calibrated if all of the following relations
hold true:

ε ≤
[
e−

17π
32 r

2

1.33× 105 ×min
{‖Gf‖2`2(Λ)

|Λ|2 ,
λ2(f,Λ, r)

192r2

}]2

,(8)

ε′ = (3.1× 104)
√
εe

17π
32 r

2
,(9)

s ≤ 0.3√
ln
(

2
3ε

) ,(10)

R ≥ max
{

2.1 + 0.9
√

ln
(1
ε

)
,
r + s−1

2

}
(11)

Remark 2.7 (Number of required samples). The parameters T, S, r are
considered to be fixed numbers. Typically r ∈ [0, 2], and expressions involving
r in (8) - (11) may just be regarded to be constants. The parameter ε plays the
role of the desired error margin. From a qualitative perspective (neglecting
numerical constants) we get that the required number of samples in the “well-
calibrated regime” is roughly (asymptotically for ε close to 0)

|Ω| =
∣∣∣sZ2 ∩ ([−T −R, T +R] ∩ [−S −R,S +R])

∣∣∣
� (T +R)(S +R)

s2

� ln
( 2

3ε

)
·
(
T +

√
ln
(1
ε

))
·
(
S +

√
ln
(1
ε

))
Hence, |Ω| = O(ln2 1

ε ) as ε→ 0.
The first main result states that the proposed method recovers the samples

(Gf(λ))λ∈Λ accurately under appropriate assumptions and reads as follows.
Theorem 2.8. Let f ∈ L2(R) be such that ‖Sf‖L∞ ≤ 1.2 Suppose that
T, S,R, r, s, ε, ε′ are well calibrated. Let σ ∈ RΩ be such that

‖σ − Sf‖`∞(Ω) ≤
ε

2 .

2the assumption that ‖Sf‖L∞ ≤ 1 is purely there for aesthetic reasons in order to keep
bounds and implicit constants as simple as possible
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Then it holds that both convex problems in Algorithm 1 are feasible. More-
over, the top eigenvector v ∈ CΛ satisfies that

(12) min
θ∈R

∣∣∣∣√tr(Y )v − eiθ(Gf(λ))λ∈Λ

∣∣∣∣
≤ 177e0.84r2 ·

1 + 20r

√√√√ ‖Gf‖2`2(Λ)
λ2(f,Λ, r)

 · 4√ε.

The proof of Theorem 2.8 can be found in Section 7.

Remark 2.9 (On the choice of r). According to Theorem 2.8 the accuracy
of the prediction is driven by the quantity

Cstab(f, r) := e0.84r2

1 + 20r

√√√√ ‖Gf‖2`2(Λ)
λ2(f,Λ, r)


The statement is empty if λ2(f,Λ, r) = 0, i.e., if the associated graph is not
connected. For a generic f ∈ L2(R), we have that Gf does not vanish on
the finite set Λ. Thus – provided that r ≥ a – in general (for generic f) we
have that the graph is indeed connected.
Furthermore, the performance of the reconstruction method may crucially
depend on the choice of r. Given f , the optimal3 choice is

r = r∗(f) := argminr>0Cstab(f, r).
It is important to note that r∗(f) can be computed if samples (Sf(λ))λ∈Λ are
given: the Laplacian (and therefore also the spectral gap λ2(f,Λ, r)) depends
solely on (Sf(λ))λ∈Λ and moreover as r 7→ λ2(f,Λ, r) is piecewise constant,
it suffices to check a finite number of candidates r (cf. Figure 2 for the three
smallest choices).

Figure 2. Three different choices for the parameter r. For
the values r = a = 1√

2 (left), r = 1 (center) and r =
√

2
(right) the blue vertex in the middle has 4, 8 and 12 neigh-
bors, respectively.

Remark 2.10 (Comparison with existing stability results). Next we put the
above result into perspective with earlier stability results for the Gabor phase
retrieval problem. More specifically, with the outcomes of [26, 27], where
it has been shown that on a domain Ω ⊆ R2 on which |Gf | is connected,
phase information is stably encoded in the phase-less data |Gf |. Even though
inequality (12) is of discrete type, qualitatively it is very much reminiscent of

3in the sense that the upper bound provided by Theorem 2.8 is then the tightest possible
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Figure 3. We compare two different functions: one having
a spectrogram which is connected (left) and the other one
consisting of two connected components (right). The white
points indicate the finite lattice Λ ⊆ aZ2. The graph in the
center shows the dependence of Cstab(f, r) on the parameter
r for each of the functions. These computations suggest that
the performance of the algorithm will benefit from choosing
the parameter r to be relatively large (r =

√
5/2) in the

disconnected case, while it is favorable to pick r = 1 in the
connected case.

the aforementioned results: While the results on the continuous level quantify
connectivity in terms of the Poincaré constant (which is known to coincide
with the spectral gap of the Laplacian if objects are correctly defined), we
here employ the spectral gap of the corresponding graph Laplacian. To state
the obvious, the substantial advantage of the novel results of this article is
that we have a mean to actually recover phase information.

2.3. Reconstruction from incomplete Gabor coefficients. Given Λ ⊆
aZ2 we formally define an operator RΛ : CΛ → L2(R) by

(13) RΛ(c) =
∑
λ∈Λ

cλπ(λ)ψ, c = (cλ)λ∈Λ

where ψ denotes the dual window of the Gabor frame (π(λ)ϕ)λ∈aZ2 . If
Λ = aZ2 and c = (Gf(λ))λ∈Λ the sum in (13) converges unconditionally in
L2(R) and exactly reconstructs f , that is, f = RΛ(c), cf. Section 4.3.

In practice, one only has a finite number of possibly noisy samples at one’s
disposal. It is the purpose of the next result to control the reconstruction
error in this inexact setting. As before, given T, S > 0 let us denote

Λ = ([−T, T ]× [−S, S]) ∩ aZ2.

Given the fact that only a limited amount of samples is available (par-
ticularly, Λ ⊆ [−T, T ] × R) one cannot expect that f is to be accurately
reconstructed outside the interval [−T, T ]. Moreover, given that there is no
information about large frequencies (> S) it is to be expected that the re-
construction is accurate only if the function to be reconstructed is relatively
smooth.
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Before we state the result we introduce two quantities. Given f ∈ L2(R)
we use

η(f) := sup
x∈R
‖f · Txϕ

1
2 ‖L2 = 2

1
8 sup
x∈R

(∫
R
|f(t)|2e−π(t−x)2 dt

)1/2
,

to capture the maximal local L2-energy of f . Given S > 0, let

κS(f) := sup
x∈R

(∫
|ω|>S

|Gf(x, ω)|2 dω
)1/2

= sup
x∈R
‖F{fe−π(·−x)2}‖L2([−S,S]c).

The quantity κS(f) may be understood as a measure of smoothness of f : If
κS(f) is negligibly small, then all Gaussian localizations {fe−π(·−x)2

, x ∈ R}
are close to bandlimited (with bandwidth 2S), and vice versa.

The second main result reads as follows.

Theorem 2.11. Let T, S ∈ aN, let 0 < τ < T . For all f ∈ L2(R) and for
all c ∈ CΓ it holds that

‖f −RΛ(c)‖L2(−τ,τ) ≤

6.82
(
‖Gf − c‖`2(Λ) +

√
T + 1 · κS(f) +

√
τ + 1e−

π√
2

(T−τ) · η(f)
)
.

For the proof of Theorem 2.11 we refer to Section 5. There are three
different terms contributing to the upper bound on the reconstruction error.

– The first term is simply the noise on the provided samples.
– Recall that Λ ⊆ [−T, T ] × [−S, S]. This means that the reconstruction

method only draws on Gabor samples located in the strip R × [−S, S]
while neglecting information from samples outside the strip. Morally, if
there is only little contribution from samples outside the strip (that is, if
κS(f) is small) then neglecting these samples does not affect the accuracy
too much.

– The decisive factor in the third term is the exponential e−
π
2 (T−τ). Since we

want to accurately reconstruct on the interval (−τ, τ) we require that T >
τ ; clearly, the reconstruction accuracy will benefit from being fed more
information (i.e., increasing T ). The estimate shows that the improvement
on the corresponding error term is exponential with respect to the offset
T − τ .

2.4. Reconstruction from spectrogram samples. The content of the
main result is to clarify under which conditions and in which sense f∗, the
output of Algorithm 1 is a useful estimate for f .

Theorem 2.12. Let T, S ∈ aN and let 0 < τ < T . Furthermore, suppose the
assumptions of Theorem 2.8. Then it holds that f∗, the output of Algorithm
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1 satisfies that

(14) min
θ∈R
‖f∗ − eiθf‖L2(−τ,τ)

≤ 18
[
177e0.84r2 ·

1 + 20r

√√√√ ‖Gf‖2`2(Λ)
λ2(f,Λ, r)

 · 4√ε

+ (2T + 2)κS(f) + 2
√
S(τ + 1)e−

π
2 (T−τ)

]
.

The result is essentially a direct consequence of Theorem 2.8 and Theorem
2.11 and the proof will be provided right away at this stage.

Proof. Let c ∈ CΛ be defined by

cλ :=
√

tr(Y )vλ, λ ∈ Λ.
As per Theorem 2.8 there exists θ0 ∈ R such that

(15) |c− eiθ0(Gf(λ))λ∈Λ| ≤ 177e0.84r2 ·

1 + 20r

√√√√ ‖Gf‖2`2(Λ)
λ2(f,Λ, r)

 · 4√ε.

We continue by estimating
min
θ∈R
‖f∗ − eiθf‖2L(−τ, τ) = min

θ∈R
‖RΛ(c)− eiθf‖L2(−τ,τ)

≤ ‖RΛ(c)− eiθ0f‖L2(−τ,τ)

= ‖RΛ(e−iθ0c)− f‖L2(−τ,τ).

As per Theorem 2.11 we have that the right hand side is bounded from
above by

18
(
‖Gf − e−iθ0c‖`2(Λ) +

√
T + 1 · κS(f) + (τ + 1)e−

π
2 (T−τ) · η(f)

)
.

We claim that
(16) η(f) ≤ 2

√
S + κS(f).

With this and with (15) we then get that

min
θ∈R
‖f∗ − eiθf‖L2(−τ,τ) ≤ 18

[
177e0.84r2 ·

1 + 20r

√√√√ ‖Gf‖2`2(Λ)
λ2(f,Λ, r)

 · 4√ε

+ (
√
T + 1 + (τ + 1)e−

π
2 (T−τ)) · κS(f) + 2

√
S(τ + 1)e−

π
2 (T−τ)

]
Notice that √

T + 1 + (τ + 1)e−
π
2 (T−τ) ≤ 2T + 2,

which implies the desired estimate (14).

To establish (16) let v ∈ R arbitrary. Since Gf(v, ·) = F{fe−π(·−v)2} it
follows from Plancherel’s formula that
(17) ‖fe−π(·−v)2‖2L2 = ‖Gf(x, ·)‖2L2 ≤ 2S + κS(f)2,
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where we used that ‖Gf‖L∞ ≤ 1 by assumption. Since∫
R
e−2π(t−u)2

e−2πu2 du = 1
2e
−πt2 ,

we then get for any x ∈ R (by applying (17) to v = x+ u) that∫
R
|f(t)|2e−π(t−x)2 dt = 2

∫
R
|f(t)|2

(∫
R
e−2π(t−x−u)2−2πu2 du

)
dt

= 2
∫
R

(∫
R
|f(t)|2e−2π(t−x−u)2 dt

)
e−2πu2 du

≤ (2S + κS(f)2) · 2
∫
R
e−2πu2 du

=
√

2(2S + κS(f)2)

As x was arbitrary, taking square roots implies (16), and we are done. �

3. Numerical simulations

First of all, the purpose of the present section is to demonstrate empiri-
cally the aptitude of the proposed reconstruction algorithm. Furthermore,
we aim to develop some sense for the choice of parameters of the scheme.

We consider the reconstruction of certain random signals. The precise
random model is the following: Given a > 0 and Ξ ⊆ aZ2 finite, we pick a
vector (cλ)λ∈Ξ ∈ CΞ at random, with each component chosen independently
and according to the uniform distribution on the complex unit disk D ⊆ C.
The resulting function is then given by

f =
∑
λ∈Ξ

cλ · π(λ)ϕ.

The algorithm takes noisy spectrogram measures as input. Given a noise
level ν ≥ 0, the noisy sampled data fed into the algorithm are given by

σλ = Sf(λ) + ηλ, λ ∈ Ω,
where (ηλ)λ∈Ω are independently and identically distributed random vari-
ables according to uniform distribution on the interval [−ν, ν].

Ξ
Λ

Figure 4. In order to make sure that the reconstructed co-
efficients (Gf(λ)λ∈Λ carry all the relevant information of f
in an interval around zero, Ξ is chosen in such a way that
in the vertical direction it does not exceed the zone occupied
by Λ. This means if Ξ = aZ2 ∩ ([−T ′, T ′] × [−S′, S′]) and
Λ = aZ2 ∩ ([−T, T ]× [−S, S]), then S ≥ S′.
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Figure 5. The top plot shows |Gf | for a randomly generated
f . The white points indicate the set Ω, i.e., the position of
the samples fed into the scheme. The red rectangle indicates
the zone in which samples of Gf will be reconstructed: all
points of aZ2 \Λ are on the red dashed line or outside of the
rectangle. The two plots below compare real and imaginary
part of f and its reconstruction f∗, respectively. In order
to make these two functions comparable f is multiplied by
an appropriate constant phase factor first. The table at the
bottom summarizes a couple of relevant specifications of the
experiment carried out.

The main difference between the two experiments (Figure 5 is the interval
on which f is reconstructed. On the left, reconstruction is fairly accurate
on [−3, 3], while on the right hand side, we obtain a good approximation for
the larger interval [−4.5, 4.5]. This comes at the price of having to solve a
problem of higher complexity. The bottleneck of the reconstruction scheme
lies in identifying A∗, the parametrizing matrix of the (approximate) entire
extension of the spectrogram Sf (step 1 of Algorithm 1). In this step, one
needs to solve a SDP where the variable is a matrix of dimension |Γ| × |Γ|.
Hence, a moderate enlargement of the set Λ results in substantial extra
computational expenses. Comparing the two present examples we register
roughly a quadruplication of computation time.
Remark 3.1 (Infeasibility issues). The experimental results displayed in this
section are very much a product of a trial and error process regarding the
selection of suitable parameters. For several instances the algorithm would
terminate early as either of the convex problems handed to the solver is found
to be infeasible. From a practical viewpoint it would be highly desirable to
have a variant of the scheme which is robust w.r.t. such infeasibility issues.
For example, a viable pathway could be to incorporate the constraints into
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the objective function instead of using hard constraints. As the focal point
of this paper lies on the numerical analysis of the scheme we do not aim to
further expand on this topic at this stage.

4. Terminology and Prerequisites

4.1. General notation. Throughout we will understand Rd as a subspace
of Cd. Given a vector p ∈ Cd its euclidean length is denoted by |p| and we
use the notation p2 = p · p =

∑d
k=1 p

2
k. Real and imaginary parts are taken

componentwise, i.e.,

Re(p) = (Re(p1), . . . ,Re(pd))T , Im(p) = (Im(p1), . . . , Im(pd))T .

Given a function F : Rd → C, we use the tensor notation

Tu[F ](p) = F (p+ u)F (p), p, u ∈ Rd.

Given a matrix A we denote

‖A‖max = max
k,`
|Ak,`|.

If Λ is a finite index set with N = |Λ| its cardinality, we can identify CΛ×Λ

with CN×N , the vector space of N×N square matrices. Linear algebra con-
cepts such as matrix products, matrix-vector multiplication, trace, positive
(semi)-definiteness, eigenvalues and eigenvectors are well-defined in CΛ×Λ

and will be denoted by the common notation. Moreover, we introduce the
Frobenius inner product on CΛ×Λ by

〈X,Y 〉F =
∑

λ,λ′∈Λ
Xλ,λ′Yλ,λ′ = tr(Y HX).

Recall that 〈X,Y 〉F is real-valued (resp. non-negative) if X,Y are hermitian
(resp. positive definite). Given vectors a, b ∈ CΛ, we use tensor notation
a⊗ b to denote the outer vector product, that is,

(a⊗ b)λ,λ′ = aλbλ′ , λ, λ′ ∈ Λ.

The following simple lemma will be handy:

Lemma 4.1. Let k, ` ∈ {1, . . . , N}. and let ek, e` denote the k-th and `-th
canonical basis vector in CN . Then, for every X ∈ CN×N hermitian,

Re(Xk,`) = 〈X, 1
2(ek ⊗ e` + e` ⊗ ek)〉F ,

and
Im(Xk,`) = 〈X, 1

2i(e` ⊗ ek − ek ⊗ e`)〉F .

Proof. Using that X is hermitian implies that

Re(Xk,`) = 1
2(Xk,` +Xk,`) = 1

2(Xk,` +X`,k) = 1
2(eTkXe` + eT` Xek)

= 1
2
(
tr([e` ⊗ ek]X) + tr([ek ⊗ e`]X)

)
The second identity is similar. �
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For F ∈ O(C) an entire function we will employ the notation F ∗ to
denote the function defined by F ∗(z) = F (z̄). Note that F ∗ ∈ O(C). Given
G ∈ O(Cd), we define the maximum modulus function by

MG(r) := sup
z∈Cd
| Im z|=r

|G(z)|, r ≥ 0.

The Fourier transform of f ∈ L1(Rd) is defined via the integral

Ff(ω) = f̂(ω) =
∫
Rd

f(t)e−2πiω·t dt,

and extended to L2(Rd) in the usual way. We denote the shift and the
modulation operator by T and M , respectively. That is

Txf(t) = f(t− x), Mωf(t) = e2πiω·tf(t), f ∈ L2(Rd).
Time-frequency shifts are denoted by π(z)f = MωTxf , where z = (x, ω).

The Jacobi ϑ3 function which is defined by

ϑ3(z, q) =
∑
k∈Z

qk
2
e2ikz, q ∈ (0, 1), z ∈ C

will be useful on a number of occasions. All values of this function used
here have been computed using the EllipticTheta[3,z,q] function on
www.wolframalpha.com, in particular, we will use

ϑ3(0, e−π) = 1.08643... , ϑ3(0, e−π/2) = 1.41949...
and ϑ3(0, e−π/4)2 = 4.00005... One application is estimating the sum of
equidistant shifts of Gaussians.

Lemma 4.2. Let b > 0. For all t ∈ R it holds that∑
k∈Z

e−
π
b

(t−k)2 ≤
√
bϑ3(0, e−bπ).

Proof. We denote g(x) = e−
π
b
x2 and note that ĝ(ω) =

√
be−bπω

2 . Applying
Poisson summation formula allows us to rewrite∑

k∈Z
e−

π
b

(t−k)2 =
∑
k∈Z

Ttg(k) =
∑
k∈Z

M−tĝ(k) =
√
b
∑
k∈Z

e−2πitke−bπk
2
.

The triangle inequality then gives∑
k∈Z

e−
π
b

(t−k)2 ≤
√
b
∑
k∈Z

e−bπk
2 =
√
bϑ3(0, e−bπ),

as claimed. �

4.2. Time frequency analysis. The central object of this paper is the
following.

Definition 4.3 (Short-time Fourier transform). The short-time Fourier
transform(STFT) of f ∈ L2(Rd) with window function g ∈ L2(Rd) is defined
by

Vgf(x, ω) = 〈f,MωTxg〉L2(Rd).

Moreover, if
g = ϕ := 2d/4e−π·2 ,
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the Gaussian, we use the notation Gf = Vϕf and call Gf the Gabor trans-
form. The squared modulus of the Gabor transform is called the spectrogram
and will be denoted by Sf , that is, Sf(x, ω) = |Gf(x, ω)|2.

We devote the remainder of this section to collect a couple of properties
and statements involving the STFT and refer to Gröchenig’s textbook [20]
for more details.
Note that, from Cauchy-Schwarz, we get ‖Sf‖L∞ ≤ ‖f‖2L2 . Given λ = (a, b),

G[π(λ)f ](x, ω) = e−2πia(ω−b) · Gf(x− a, ω − b),

in particular, |G[π(λ)f ](p)| = |Gf(p − λ)|. The Gabor transform of the
Gaussian ϕ is given by

(18) Gϕ(x, ω) = e−
π
2 (x2+ω2+2ixω)

so that, for z = (x, ω),

(19) G[π(λ)ϕ](x, ω) = e−πi(x+a)(ω−b)e−
π
2 |z−λ|

2
.

Later on, we will require the formula

(20) F
(
VgfVγh

)
(s, t) = Vhf(−t, s)Vγg(−t, s), f, g, h, γ ∈ L2(Rd).

which may be found in [29] and in [21].
The Bargmann transform denoted by B is defined as

Bf(z) = 21/4
∫
R
f(t)e2πtz−πt2−π2 z

2 dt.

It is an isometry from L2(R) to the Fock space of entire functions,

F2 = {f : C→ C entire s.t. ‖f‖2F2 :=
∫
C
|f(z)|2e−π|z|2 dz < +∞}.

Bargmann and Gabor transforms are intimitely related by virtue of the
identity

(21) Gf(x,−y) = eπixyBf(z)e−
π
2 |z|

2
, z = x+ iy ∈ C.

The Hermite functions are defined by

hk(t) = ck(−1)keπt2
( d

dt

)k (
e−2πt2

)
, k ∈ N,

where ck > 0 is chosen in such a way that ‖hk‖L2 = 1. Then, (hk)k∈N forms
an orthonormal basis of L2(R). The Bargmann transform maps the Hermite
functions to monomials of the corresponding degree, that is,

(22) Bhk(z) =

√
πk

k! z
k, k ∈ N.

Equation (20) implies that Fourier transform of the spectrogram has Gauss-
ian decay. The following lemma reveals that this is still the case after ap-
plying a Gaussian cut-off to the spectrogram.

Lemma 4.4. Let f ∈ L2(R), then it holds for all τ ∈ R2 that∣∣F(Sf · e−π8 |·−τ |2)(ξ)∣∣ ≤ 8‖Sf‖L∞(R2) · e−
38π
81 ξ

2
, ξ ∈ R2.
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Proof. Since we can always consider π(−τ)f instead of f we may assume
w.l.o.g. that τ = 0. First we write f in the Hermite basis f =

∑
k≥0〈f, hk〉hk

so that

Sf(z) =
∣∣∣Bf(z)e−

π
2 |z|

2
∣∣∣2 =

∣∣∣∣∣∣
∑
k≥0
〈f, hk〉Bhke−

π
2 |z|

2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
k≥0
〈f, hk〉

√
πk

k! z
ke−

π
2 |z|

2

∣∣∣∣∣∣
2

with (22). With q = 2
√

2
3 < 1, let us denote γ =

∑
k≥0 q

k〈f, hk〉hk and
rewrite

Sf(z)e−
π
8 |z|

2 =

∣∣∣∣∣∣
∞∑
k=0
〈f, hk〉

√
πk

k! z
ke−

9π
16 |z|

2

∣∣∣∣∣∣
2

(23)

=

∣∣∣∣∣∣
∞∑
k=0
〈f, hk〉

√
πk

k! z
ke−

π
2 |z/q|

2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∞∑
k=0

qk〈f, hk〉

√
πk

k! (z/q)ke−
π
2 |z/q|

2

∣∣∣∣∣∣
2

= Sγ(z/q).

Thus, we get with ξ′ = (−ξ2, ξ1) that the Fourier transform of the product
is equal to

F
(
Sf · e−

π
8 |·|

2)(ξ) = q2Ŝγ(qξ) = q2 · Vγγ(qξ′) · Vϕϕ(qξ′),
where we made use of (20) to derive the last equality. Since Vϕϕ is a Gauss-
ian (see (18)) it follows that

(24) |F
(
Sf · e−

π
8 |·|

2)(ξ)| ≤ |Vγγ(qξ′)| · 8
9e
− 4π

9 |ξ|
2
.

It remains to establish a pointwise bound for Vγγ. Note that it follows from
(23) (replace z by qz and take roots on both sides) that

|Gγ(z)| = |Gf(qz)|e−
π
18 |z|

2
.

Since the Gabor transform is unitary we can use this to estimate for p ∈ R2

|Vγγ(p)| = |〈γ, π(p)γ〉| = |〈Gγ,G[π(p)γ]〉L2(R2)|

≤
∫
R2
|Gγ(z)| · |Gγ(z − p)|dz ≤ ‖Sf‖L∞

∫
R2
e−

π
18 (|z|2+|z−p|2) dz.

Since the integral expression

ρ(p) :=
∫
R2
e−

π
18 (|z|2+|z−p|2) dz

only depends on |p| we can assume that p = (|p|, 0)T and compute

ρ(p) =
(∫

R
e−

π
18 (x2+(x−|p|)2

)
·
(∫

R
e−

π
9 ω

2 dω
)

= 9e−
π
36 |p|

2
.

In particular, we get that

|Vγγ(qξ′)| ≤ 9‖Sf‖L∞e−
2π
81 |ξ|

2
,
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which together with (24) implies the claim. �

We will need the following localization property of Gabor transforms:

Lemma 4.5. It holds for all r > 0, z ∈ R2 and f ∈ L2(R) that

|Gf(z)| ≤
√
eπr2 − 1
πr2 ‖Gf‖L2(Br(z)).

Proof. We may assume w.l.o.g. that z = 0. Using the mean value property
for the Bargmann transform we get that

Gf(0) = Bf(0) = 1
πr2

∫
{|z|<r}

Bf(z) dz

= 1
πr2

∫∫
Br(0)

Gf(x,−y)e
π
2 (x2+ω2)e−πixy dxdy.

Cauchy-Schwarz implies that

|Gf(0)| ≤ 1
πr2 ‖Gf‖L2(Br(0)) ·

√
eπr2 − 1,

and we are done. �

4.3. Gaussian Gabor frames. This paragraph is concerned with discreti-
zation properties of the STFT. We refer to textbooks of Gröchenig [20] and
Christensen [9] for a comprehensive account of this topic including the col-
lection of statements below.

A family of vectors (fi)i∈I ⊆ H with H a Hilbert space is called a frame
if there exist constants 0 < A ≤ B such that

A‖f‖2H ≤
∑
i∈I
|〈f, fi〉H|2 ≤ B‖f‖2H, f ∈ H.

The maximal A and the minimal B to satisfy the above condition are called
frame constants. Given a frame (fi)i∈I the frame operator defined by

S : H → H, Sf =
∑
i∈I
〈f, fi〉Hfi

is well-defined, bounded, invertible, self-adjoint and positive. Moreover, the
family (S−1fi)i∈I forms a frame with frame constants B−1, A−1. The frame
(S−1fi)i∈I is called the dual frame.

We consider function systems of the form Φ = (π(λ)ϕ)λ∈Λa,b , with ϕ the
Gaussian, ϕ(x) = 21/4e−πx

2 , Λa,b = aZ× bZ a lattice, a, b > 0 discretization
parameters. In this case, Φ forms a frame for L2(R) if and only if ab < 1. By
the definition of the Gabor transform the frame inequality can be written
in the following way

A‖f‖2L2(R) ≤
∑
λ∈Λ
|Gf(λ)|2 ≤ B‖f‖2L2(R), f ∈ L2(R).
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The canonical dual of the frame Φ has Gabor structure as well and is given
by (π(λ)γ)λ∈Λa,b with γ = S−1ϕ and the reconstruction identity

(25) f =
∑
λ∈Λ
〈f, π(λ)ϕ〉L2(R)π(λ)γ =

∑
λ∈Λ
Gf(λ)π(λ)γ, f ∈ L2(R),

holds true, where the sum converges unconditionally in L2(R).
For the case of integer redundancy – which means that the parameters of

the underlying lattice aZ × bZ satisfy that (ab)−1 ∈ {2, 3, 4, . . .} – Janssen
computed several Gabor frame related quantities explicitly [30, section 6].
In the sequel, we will only consider the case

a = b = a = 1√
2
, Λ = Λa = 1√

2
Z2

which falls in this setting. In principle, other configurations could also be
used in our approach. However, the above is somehow the canonical choice
in the sense that Λa is the sparsest possible square lattice within the setting
of Janssen’s results.

For the present situation, Janssens’s results imply the following. The
lower and upper frame bound of (π(λ)ϕ)λ∈Λ are given by

A = 2

∑
k∈Z

(−1)ke−πk2

2

= 2ϑ3(π2 , e
−π)2 = 1.66 . . .

B = 2

∑
k∈Z

e−πk
2

2

= 2ϑ3(0, e−π)2 = 2.36 . . .

respectively. The dual window is given by the formula

ψ(t) = 1
2ϑ3(
√

2πt, e−π)
∑
k∈Z

ckϕ(t−
√

2k)

with the coefficients given by

(26) ck =
∑∞
m=0(−1)k+me−π(m+ 1

2 )(2|k|+m+ 1
2 )∑∞

n=−∞(−1)n(n+ 1
2)e−π(n+ 1

2 )2 .

We will require several explicit bounds on the dual window function.

Lemma 4.6. The canonical dual ψ satisfies the bounds

‖ψ‖L2(R) ≤ 0.6 and |ψ(t)| ≤ e−
π|t|√

2 , t ∈ R

while ‖Gψ‖L1(R2) ≤ 1.23.

Remark 4.7. Recall that ‖Gψ‖L1(R2) is the norm of ψ in the so-called Fe-
ichtinger algebra S0 which is also the modulation space M1. The fact that
‖Gψ‖L1(R2) < +∞ follows from [22, Theorem 1.2]. We here compute an
explicit bound.

Proof. Since the operator norm of the inverse of the frame operator S−1 is
bounded from above by the reciprocal of the lower frame bound, we get

‖ψ‖L2(R) = ‖S−1ϕ‖L2(R) ≤
1
A
‖ϕ‖L2(R) = 1

A
< 0.6.
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For the pointwise bound we first estimate for x ∈ R

ϑ3(x, e−π) = 1 + 2
∞∑
k=1

e−πk
2 cos(2kx) ≥ 1− 2

∞∑
k=1

e−πk
2

= 2−
∑
k∈Z

e−πk
2 = 2− ϑ3(0, e−π) = 0.913 . . .

With this we get that the first factor in the formula for ψ is bounded by
1

2ϑ3
(√

2πt, e−π
) < 0.55

Next, we deal with the sum in the denominator of ck. Note that if (an)n∈N is
a non-increasing sequence of positive numbers, then

∑∞
n=0(−1)nan ≥ a0−a1.

Since n 7→ (n+ 1
2)e−π(n+ 1

2 )2 is monotonically decreasing for n ≥ 0 we get a
lower bound for the denominator in (26):

κ :=
∞∑

n=−∞
(−1)n(n+ 1

2)e−π(n+ 1
2 )2 = 2

∞∑
n=0

(−1)n(n+ 1
2)e−π(n+ 1

2 )2

≥ 2
(
e−

π
4

2 − 3e−
9π
4

2

)
> 0.45.

Let us denote the numerator of ck by

γk := (−1)k
∞∑
m=0

(−1)me−π(m+ 1
2 )(2|k|+m+ 1

2 ).

A similar argument as above implies that

0 < (−1)kγk =
∞∑
m=0

(−1)me−π(m+ 1
2 )(2|k|+m+ 1

2 ) ≤ e−π(|k|+ 1
4 ).

With this we get that

|ψ(t)| ≤ 0.55 ·
∑
k∈Z
|ck|ϕ(t−

√
2k) ≤ 0.55

0.45e
−π4 2

1
4 ·
∑
k∈Z

e−π|k|e−π(t−
√

2k)2
.

The product of the constants in front of the sum is bounded above by 0.67.
Clearly, the sum is even with respect to t. Therefore, we can replace t by |t|
and further estimate∑
k∈Z

e−π|k|e−π(t−
√

2k)2 = e
−π|t|√

2 ·
∑
k∈Z

exp
{
−π

(
|k| − |t|√

2
+ (|t| −

√
2k)2

)}

≤ e−
π|t|√

2 ·
∑
k∈Z

exp
{
−π

(
k − |t|√

2
+ (|t| −

√
2k)2

)}

= e
−π|t|√

2 ·
∑
k∈Z

e
−πp

(
|t|√

2
−k
)
,

where p(x) = 2x2 − x = 2
(
x− 1

4

)2
− 1

8 . The function
∑
k∈Z e

−πp(·−k) coin-
cides up to a translation with

g(x) = e
π
8
∑
k∈Z

e−2π(k−x)2
.
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Using Poisson summation formula we get that

g(x) = e
π
8
√

2
∑
`∈Z

e−2πi`xe−
π
2 `

2 ≤ e
π
8
√

2
∑
`∈Z

e−
π
2 `

2 = e
π
8
√

2
ϑ3(0, e−

π
2 ) = 1.48 . . .

Since 1.49 · 0.67 < 1 we arrive at the desired bound.
It remains to prove the L1-bound of Gψ. First note that, as

|G[π(λ)ϕ]| = e−
π
2 |·−λ|

2
,

we get ‖G[π(λ)ϕ]‖L1(R2) = ‖Gϕ‖L1(R2) = 2. It follows from [30, formulas
(6.10) and (6.11)] that

1
ϑ3(
√

2πt, e−π)
= 1
κ

∞∑
`=−∞

γ`e
2
√

2πi`t.

Thus, we have that

ψ(t) = 1
ϑ3(
√

2πt, e−π)
∑
k∈Z

ckϕ(t−
√

2k) = 1
2ν2

∑
`∈Z

∑
k∈Z

γ`γk π

(√
2k

23/2`

)
ϕ

and applying G gives

Gψ = 1
2ν2

∑
`∈Z

∑
k∈Z

γ`γk G
[
π

(√
2k

23/2`

)
ϕ

]
.

Making use of the above estimates we get that

‖Gψ‖L1(R2) ≤
1

2 · 0.452

∑
`∈Z

∑
k∈Z

2e−π(|k|+|`|+ 1
2 ) = e−

π
2

0.452 ·
(

1 + 2e−π

1− e−π

)2

which is < 1.23, and we are done. �

Finally, we will also need two simple lemmas. The first one deals with
Bessel-bounds for the systems {π(λ)ψ}λ∈Λ and {π(λ)ϕ}λ∈Λ.

Lemma 4.8. For all c = (cλ)λ∈Λ ∈ `2(Λ) it holds that∥∥∥∥∥∥
∑
λ∈Λ

cλπ(λ)ϕ

∥∥∥∥∥∥
L2(R)

≤ 4.25‖c‖`2(Λ) and

∥∥∥∥∥∥
∑
λ∈Λ

cλπ(λ)ψ

∥∥∥∥∥∥
L2(R)

≤ 3.1‖c‖`2(Λ).

Proof. As we will not use the first inequality, we will only give full detail for
the second one. We define the quantity

B′ := 2
√

2

∑
k∈Z
‖ψ‖L∞([ka,(k+1)a))

2

.

With the help of Lemma 4.6 we get that the expression inside the brackets
is bounded by

−1∑
k=−∞

e
− π√

2
|(k+1)a| +

∞∑
k=0

e
− π√

2
|ka| = 2

∞∑
k=0

e−
π
2 k = 2

1− e−
π
2

= 2.52 . . . ,
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which implies that B′ ≤ 18.04. It follows from [9, Proposition 11.5.2] that
B′ is an upper frame bound for (π(λ)ψ)λ∈Λ. Moreover, [9, Theorem 3.2.3]
implies that

‖
∑
λ∈Λ

cλπ(λ)ψ‖L2(R) ≤
√
B′‖c‖`2(Λ),

which finishes the proof of the second inequality.
To prove the first inequality, recall that the upper frame bound for the

original frame (π(λ)ϕ)λ∈Λ is given by
B = 2ϑ3(0, e−π)2 < 1.542,

so that we can proceed as above. �

Finally, we also have:

Lemma 4.9. Let s > 0 and let g(x) := e−2πx2. Then it holds that (Ts`g)`∈Z
forms a Bessel sequence with∑

`∈Z

∣∣〈f, Ts`g〉∣∣2 ≤ ϑ3(0, e−πs2)
2 ‖f‖2L2 , f ∈ L2(R).

Proof. By [9, Proposition 3.5.4], it suffices to show that for all k ∈ Z it holds
that ∑

`∈Z
|〈Ts`g, Tskg〉| ≤

ϑ3(0, e−πs2)
2 .

Since for all a, b ∈ R we have that

〈Tag, Tbg〉 = 〈g, Tb−ag〉 =
∫
R
e−2πt2e−2π(t−b+a)2 dt = 1

2e
−π(b−a)2

,

we indeed get that∑
`∈Z
|〈Ts`g, Tskg〉| =

1
2
∑
`∈Z

e−πs
2(k−`)2 = 1

2
∑
`∈Z

e−πs
2`2 = ϑ3(0, e−πs2)

2

as claimed. �

4.4. Oversampling formula. We denote the space of functions of band-
width (at most) b > 0 by PWb(Rd), that is,

PWb(Rd) =
{
f ∈ L2(Rd) : supp(f̂) ⊆ [− b2 ,

b

2]d
}
.

The cardinal sine is defined by

sinc(x) =
{ sin(πx)

πx , x 6= 0
1, x = 0.

For several variables the sinc function is defined by tensorization, i.e.,
sinc(x) = sinc(x1) · . . . · sinc(xd), x = (x1, . . . , xd) ∈ Rd.

The famous sampling theorem attributed to Shannon, Whittaker and Kotel-
nikov asserts that a bandlimited function can be reconstructed given samples
on the lattice 1

bZ
d by virtue of the formula

f(x) =
∑
k∈Zd

f

(
k

b

)
sinc

(
b

(
x− k

b

))
, f ∈ PWb(Rd).
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The series converges rather slowly due to the slow decay of the sinc, which
can be a disadvantage especially for numerical purposes. By oversampling
the function one can get an improvement on the convergence.

Lemma 4.10. Let b > 0 and 0 < h < 1/b. Moreover, let η ∈ L1(Rd) be a
non-negative function such that

supp(η) ⊆ [−1, 1]d and
∫
Rd
η(ξ) dξ = 1.

Then it holds for all f ∈ PWb(Rd) that

f(x) =
(1 + hb

2

)d
·
∑
k∈Zd

f(hk)η̂ (q(hk − x)) sinc (2c(hk − x))

where c = 1
4( 1
h + b) and q = 1

4( 1
h − b).

We prove this lemma, both for the sake of completeness, and since some
of its ingredients are useful in the proof of the next lemma.

Proof. Since supp(f̂) ⊆ [− b
2 ,

b
2 ]d ⊆ [− 1

2h ,
1

2h ]d we have that

f̂(ξ) = hd
∑
k∈Z

f(hk)e−2πihkξ.

Suppose that ψ ∈ C(Rd) is such that ψ(ξ) = 1 for ξ ∈ [− b
2 ,

b
2 ]d and ψ(ξ) = 0

for ξ /∈ [− 1
2h ,

1
2h ]d, then it further holds that

(27) f̂(ξ) = f̂(ξ) · ψ(ξ) = hd
∑
k∈Zd

f(hk)e−2πihkξψ(ξ), ξ ∈ Rd

where we used that f̂ is supported in [− b
2 ,

b
2 ]d.

Next, we specify ψ. With ηq = 1
qd
η(x/q) we define

ψ(ξ) := (ηq ∗ χ[−c,c]d)(ξ) =
∫

[−c,c]d
ηq(t− ξ) dt,

and observe that
– ψ ∈ C(Rd) and non-negative,
– since supp(ηq) ⊆ [−q, q]d and since q + c ≤ 1

2h we have that

supp(ψ) ⊆ [−q, q]d + [−c, c]d = [−(q + c), q + c]d ⊆ [− 1
2h,

1
2h ]d;

in particular, it holds that ψ(ξ) = 0 for ξ /∈ [− 1
2h ,

1
2h ]d.

– since c = b
2 + q it holds for all ξ ∈ [− b

2 ,
b
2 ]d that

[−c, c]d + ξ ⊇ [−q, q]d ⊇ supp(ηq),
which implies that

ψ(ξ) =
∫

[−c,c]d
ηq(t− ξ) dt =

∫
[−c,c]d+ξ

ηq(t) dt =
∫
Rd
ηq(t) dt = 1

for all ξ ∈ [− b
2 ,

b
2 ]d.

– the Fourier transform of ψ is given by

ψ̂(x) = η̂q(x)χ̂[−c,c]d(x) = η̂(qx) · (2c)d sinc(2cx).
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We have therefore verified the conditions from above, and applying the in-
verse Fourier transform to (27) gives that

f(x) = hd
∑
k∈Zd

f(hk)
(∫

Rd
ψ(ξ)e2πi(x−hk)ξ dξ

)
= hd

∑
k∈Zd

f(hk)ψ̂(hk − x)

= (2ch)d ·
∑
k∈Zd

f(hk)η̂ (q(hk − x)) sinc (2c(hk − x)) .

The statement follows now from 2ch = 1
2(1 + hb). �

We will also need an approximate sampling result for almost bandlimited
functions.

Lemma 4.11. Let s > 0, let F ∈ L2(R2) and suppose that there exist
K,C > 0 such that |F̂ (ξ)| ≤ Ke−C|ξ|2, ξ ∈ R2. Then it holds that

‖F‖L∞(R2) ≤ 73 · ‖F‖`∞(sZ2) + 233 · K
C
e−

C
16s2 .

Proof. With b = 1
2s , we introduce the function

Fb := F−1(F̂ · χ[− b2 ,
b
2 ]2),

which is the projection of F onto PWb(R2). Furthermore, let h = 1
2b = s

and η = χ[− 1
2 ,

1
2 ]2 ∗ χ[− 1

2 ,
1
2 ]2 . Notice that η ∈ C(R2) is non-negative and∫

R2
η(x)dx = 1. We apply Lemma 4.10 to Fb: By taking into account that

c = 1
4

(1
h

+ b

)
= 3

4b and q = 1
4

(1
h
− b
)

= 1
4b

it follows – since 1 + hb = 3
2 – that

Fb(x) = 9
16

∑
k∈Z2

Fb

(
k

2b

)
· η̂
(
k

8 −
bx

4

)
· sinc

(3
4k −

3bx
2

)
.

Since η̂(ξ) = sinc2(ξ) and s = 1
2b we can further rewrite the above identity

as

Fb(x) = 9
16

∑
k∈Z2

Fb (sk) · sinc2
(
x− sk

4s

)
· sinc

(3(x− sk)
4s

)
=
∑
k∈Z2

Fb(sk)ρ(x− sk),

where ρ(x) := 9
16 ·sinc2 ( x

4s
)
·sinc

(
3x
4s

)
. We apply the triangle inequality and

get
‖F‖L∞ ≤ ‖Fb‖L∞ + ‖F − Fb‖L∞ .

We make use of the assumption on the Fourier decay and get that the
approximation error is bounded by

‖F − Fb‖L∞ ≤ ‖F(F − Fb)‖L1 =
∫
R2\[− b2 ,

b
2 ]2
|F̂ (ξ)| dξ

≤ K
∫
R2\[− b2 ,

b
2 ]2
e−C|ξ|

2 dξ ≤ K
∫ ∞
b
2

e−Cr
22πr dr = πK

C
e−

Cb2
4 .
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Thus, we can bound

‖Fb‖L∞ ≤ ‖
∑
k∈Z2

F (sk)ρ(· − sk)‖L∞ + ‖
∑
k∈Z2

[F (sk)− Fb(sk)]ρ(· − sk)‖L∞

≤
(
‖F‖`∞(sZ2) + πK

C
e−

Cb2
4

)
· ‖
∑
k∈Z2

Tsk|ρ|‖L∞ .

It remains to bound the last term involving ρ. To do this note that the
univariate sinc satisfies the pointwise bound | sinc(x)| ≤ 1.2

1+|x| . As a conse-
quence,

|ρ(x)| ≤ 9
16 ·

1.23(
1 + |x1|

4s

)3 ·
1.23(

1 + |x2|
4s

)3 ≤
(4.4 · s)6

(4s+ |x1|)3(4s+ |x2|)3 .

This implies that

sup
x∈R2

∑
k∈Z2

|ρ(x− sk)|

 ≤ (4.4 · s)6 · sup
x∈R

∑
k∈Z

1
(4s+ |x− sk|)3

2

.

By periodicity the function inside the brackets attains its maximum in the
interval x ∈ [0, s]. For such x we have that∑

k∈Z

1
(4s+ |x− sk|)3 ≤ 1

43s3 + 2
∞∑
k=1

1
(3 + k)3s3

= 1
s3

(
4−3 + 2

∞∑
k=4

k−3
)
< 0.1 · s−3.

With this we obtain that∥∥∥∥∥∥
∑
k∈Z2

Tsk|ρ|

∥∥∥∥∥∥
L∞

≤ 4.46 · 0.01 < 73.

Finally, collecting the estimates leads to

‖F‖L∞ ≤ 73‖F‖`∞(sZ2) + 74πK
C
e−

Cb2
4 ,

which implies the claim. �

4.5. Controlling holomorphic functions in terms of their boundary
values. We begin with recalling a classical result from complex analysis.

Theorem 4.12 (Hadamard’s three line theorem). Suppose that f is bounded
on the strip {x + iy : 0 ≤ y ≤ b} and holomorphic in the interior. Let
mf (t) := supx∈R |f(x+ it)|. Then it holds for all t ∈ [0, b] that

mf (t) ≤ mf (0)1− t
b ·mf (b)

t
b .

Recall that for F holomorphic on Cd (or only on a tube {| Im(y)| ≤ b})
we have defined

MF (t) = sup
{
|F (z)| : z ∈ Cd, |Im (z)| = t

}
.

When d = 1, i.e. F is a function of one complex variable, MF (t) =
max

(
mF (t),mF (−t)

)
and Hadamard’s three line theorem is easily seen to be



GABOR PHASE RETRIEVAL VIA SEMIDEFINITE PROGRAMMING 29

also valid with MF replacing mF . We will require a version of this fact for
several complex variables for which we did not find a convenient reference:

Lemma 4.13. Suppose that F (z) is bounded on {x+ iy ∈ Cd : | Im(y)| ≤ b}
and holomorphic in the interior. It holds for all t ∈ [0, b] that

MF (t) ≤MF (0)1− t
b MF (b)

t
b .

Remark 4.14. We are going to use this inequality in the following way: the
function F we will consider belongs to some class of holomorphic functions
for which an upper bound of MF (t) is known. Then if MF (0) is small,
MF (0) ≤ ε, we obtain that MF (t) ≤ MF (b)

t
b ε1− t

b which shows propagation
of smallness away from Rd.

Proof. The statement is trivial if t ∈ {0, b} is one of the endpoints. Let us fix
t ∈ (0, b) and pick an arbitrary ζ ∈ Cd with the property that |Im (ζ)| = t.
It suffices to show that

|F (ζ)| ≤MF (0)1− t
b ·MF (b)

t
b .

Consider the function f defined by

f(z) = F

( Im (ζ)
t

z + Re (ζ)
)
, z ∈ C

which is bounded on the strip {z : 0 ≤ Im (z) ≤ b}, holomorphic in the
interior and satisfies f(it) = F (ζ). Moreover, if z = x+ i0 is real-valued we
have that |f(z)| ≤ M(0) and if z = x + ib lies on the top boundary of the
strip then ∣∣∣∣Im ( Im (ζ)

t
z + Re (ζ)

)∣∣∣∣ = b,

which implies that |f(x+ ib)| ≤MF (b). Thus, applying Theorem 4.12 on f
gives that

|F (ζ)| = |f(it)| ≤MF (0)1− t
b ·MF (b)

t
b ,

as announced. �

4.6. Vertex weighted graphs. As opposed to the standard notion of a
weighted graph where the edges are furnished with weights, the case where
vertices are weighted seems to be scarcely considered. One exception in
the literature is the paper by Chung and Langlands [11]. We follow the
introductory part of their paper to get familiar with the concept of vertex-
weighted graphs.

We begin with an undirected graph G = (V,E) which we assume to have
no self-loops. If vertices u, v are neighbors (that is, if (u, v) ∈ E) we will
simply write u ∼ v. Let us further assume that to each vertex v ∈ V there
is an associated weight denoted by αv ≥ 0. The Laplacian of the vertex-
weighted graph G = (V,E, α) will be denoted by LG and is defined by the
matrix

LG(u, v) =


∑
z∼u αz, u = v

−√αuαv, u ∼ v
0, otherwise.
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To G one then associates an unweighted graph G′ = (V,E′) with E′ defined
by

(u, v) ∈ E′ if and only if (u, v) ∈ E and αuαv > 0.
We will say that the vertex weighted-graph G = (V,E, α) is connected if the
unweighted graph G′ = (V,E′) is connected in the usual sense.

Lemma 4.15. Let G = (V,E, α) be a vertex-weighted graph, let LG be its
Laplacian, and let N = |V |. Then it holds that LG is positive semi-definite
with eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . Furthermore, it holds that

λ2 = min
g∈CN∑
j
gjαj=0

1
2
N∑
i=1

∑
k∼i

αiαk|gi − gk|2

N∑
i=1

αi|gi|2
.

In particular, G is connected if and only if λ2 > 0.

Proof. The proof is mainly a reproduction of arguments from [11]. We as-
sume w.l.o.g. that V = {1, . . . , N}. Further, define a matrix B on V × E
by

B(j, e) =


√
αi, e = (i, j), i ≤ j
−√αi, e = (i, j), i > j

0 otherwise.
We claim that BB∗ = LG. For entries in the diagonal we have that

(BB∗)j,j =
∑

i∼j,i≤j

√
αi

2 +
∑

i∼j,i>j
(−
√
αi)2 = LGj,j .

For off-diagonal entries (BB∗)j,k =
∑
e∈E B(j, e)B(k, e) note that by defini-

tion
e ∈ E : B(j, e)B(k, e) 6= 0 ⇒ e = (k, j).

As a consequence, when j 6= k

(BB∗)j,k =
{
−√αjαk, j ∼ k
0, otherwise.

and it follows that indeed BB∗ = LG, which implies that LG � 0. In par-
ticular, LG has an orthonormal basis of eigenvectors and the corresponding
eigenvalues are all non-negative, 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λN .

Next consider the vector ψ = (√α1, . . . ,
√
αN )T and notice that, for k ∈

{1, . . . , N} we have that

(LGψ)k = √αk

(∑
i∼k

αi

)
−
∑
i∼k

√
αiαk ·

√
αi = 0.

So ψ is an eigenvector for the eigenvalue λ1 = 0.
To prove the last part, let us assume that all the weights αi are strictly

positive for now. Let us denote W = diag(αi) and, let L be defined by virtue
of

Li,j =


∑
k∼i αk, j = i

−αj , i ∼ j
0 otherwise.
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For f ∈ CN and i ∈ {1, . . . , N} it holds that

(Lf)i = (
∑
k∼i

αk)fi −
∑
j∼i

αjfj =
∑
k∼i

αk(fi − fk).

Furthermore, it is easy to see that L = W−1/2LGW 1/2.
By expressing the spectral gap in terms of the Rayleigh coefficient, and

by substituting g = W−1/2f we get that

λ2 = min
f∈CN
〈f,ψ〉=0

〈f,LGf〉
〈f, f〉

= min
g∈CN∑
j
gjαj=0

〈Wg,Lg〉
〈Wg, g〉

We further rewrite the numerator

〈Wg,Lg〉 =
N∑
i=1

αigi ·
(∑
k∼i

αk(ḡi − ḡk)
)

=
N∑
i=1

∑
k∼i

αiαk|gi − gk|2 +
N∑
i=1

∑
k∼i

αiαkgk(ḡi − ḡk)

= 1
2

N∑
i=1

∑
k∼i

αiαk|gi − gk|2

+1
2

N∑
i=1

∑
k∼i

αiαk
(
|gi|2 − 2Re (ḡigk) + |gk|2 + 2gkḡi − 2|gk|2

)
Let us denote the double sum in the last line by S. Since we know that the
whole expression is non-negative, and thus in particular real-valued we get
that

S = S + S

2 = 1
2

N∑
i=1

∑
k∼i

αiαk(|gi|2 − |gk|2).

Since each edge e = (i, k) appears precisely twice, and with opposite orien-
tation in the sum, it follows that S = 0. With this we get that indeed

λ2 = min
g∈CN∑
j
gjαj=0

1
2
N∑
j=1

∑
k∼j

αjαk|gj − gk|2

N∑
j=1

αj |gj |2

= min

1
2

N∑
j=1

∑
k∼j

αjαk|gj − gk|2 :

g ∈ CN with
N∑
j=1

αj |gj |2 = 1 and
N∑
i=1

gjαj = 0


The general case, where some of the weights are allowed to vanish then fol-
lows from a continuity argument.

Let G be connected so that αjαk > 0 when j ∼ k and assume towards a
contradiction that λ2 = 0. Then it follows that a minimizer g of the above
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problem satisfies ∑
k∼j

αk|gj − gk|2 = 0, j ∈ {1, . . . , N}

and must thus be a multiple of (1, . . . , 1)T . This contradicts the constraint∑
j gjαj = 0. Hence connectedness of G implies λ2 > 0.

On the other hand, if G is disconnected, then there exists a non-trivial
component ∅ ( A ( V and one can construct an admissible g by setting
gi = 1 for i ∈ A and gj = −b for j ∈ V \A where b satisfies∑

i∈A
αi = b

∑
i∈V \A

αi,

which achieves that the ratio vanishes and therefore, that λ2 = 0. �

4.7. Rank one matrix completion. Matrix completion is concerned with
determining a matrix X given only some of its entries. Clearly, this requires
some prior knowledge on the structure of the matrix to be recovered. We
consider here the case where X � 0 is positive semi-definite and has rank
(at most) one. That is, X is of the form

X = x⊗ x̄ = xxH ,

with x ∈ Cd the generating vector. Note that X(i, i) = |xi|2 so we as-
sume that we know the diagonal of X. Let E ( {1, . . . , d}2 \ D (D =
{(1, 1), . . . , (d, d)}) denote the index set of the off-diagonal information on
the matrix that is available. The problem we are interested in is the follow-
ing:

Given {Xk,`, (k, `) ∈ E ∪D}, find X (or x up to a phase factor).

The purpose of this section is to present (a slight modification of) a result
due to Demanet and Jugnon [13], which relates the matrix recovery problem
to a vertex weighted graph associated with the restriction of X to D ∪ E,
and reveals that any positive semidefinite matrix Y � 0 with

Yk,` ≈ Xk,`, (k, `) ∈ E

is already a good approximation for X provided that the respective graph
has good connectivity as quantified by its spectral gap.

Theorem 4.16. Let V = {1, . . . , d}, D = {(1, 1), . . . , (d, d)} and E ⊂ (V ×
V ) \D so that (V,E) is an undirected graph with no self loops.

For x ∈ Cd \ {0}, let α = (|xi|2)di=1, let (V,E, α) be the resulting vertex
weighted graph and let λ2 denote the spectral gap of (V,E, α), which we
assume to be > 0.

Let B =
∑

(k,`)∈V 2 |LGk,`|, and let ε > 0 such that

(28) ε ≤ min
{
|x|2

d2 ,
|x|2λ2
12B

}
.

Further, let Y ∈ Cd×d, Y � 0 that satisfies

(29) |Yk,` − xkx`| ≤ ε, (k, `) ∈ D ∪ E.
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Then it holds that

‖Y − x⊗ x‖F ≤

√
3|x|2B
λ2

·
√
ε.

Furthermore, Y has a unique top eigenpair (η, v) and

min
θ∈R
|
√

tr(Y )v − eiθx| ≤
(

1 + 2
√

6
√
B

λ2

)
·
√
ε.

Note that the hypothesis of this theorem do not require to know x, only
to know xkx` for (k, `) ∈ D∪E. The theorem states that if we find a matrix
Y ∈ Cd×d, Y � 0 whose (k, `) entries with (k, `) ∈ D ∪ E approximate well
the data, then the top eigenvector provides a good approximation of x, up
to a rescaling factor.

The result as well as its proof is a variation of Theorem 4 in [13]. The
modification consists in how we measure certain error terms. While we use
`∞-norm in assumption (29), the original statement employs `1-norm at this
point.

Proof. Throughout we denote X = xx∗. We introduce a matrix L ∈ Cd×d
by

Lk,` =


∑
j∼k |xj |2, (k, `) ∈ D
−xkx`, (k, `) ∈ E
0 otherwise.

Let φk ∈ R be such that xk = |xk|eiφk , k ∈ V and let ∆ = diag(eiφ1 , . . . , eiφd).
Note that ∆LG∆∗ = L, that L � 0 with same eigenvalues as the Laplacian
LG, which we denote by 0 = λ1 < λ2 ≤ . . . ≤ λd. Let v1, . . . , vd be the
corresponding orthonormal basis of eigenvectors of L, so that

L =
d∑

k=1
λkvk ⊗ vk.

We define for k = 1, . . . , d numbers ck := 〈Y, vk ⊗ vk〉F ≥ 0 and notice that,
〈Y, L〉F =

∑d
k=1 λkck, and as (vk)nk=1 is an o.n.b., that

d∑
k=1

ck = 〈Y,
d∑

k=1
vk ⊗ vk〉F = 〈Y, I〉F = tr(Y ).

For all k we have that

(Lx)k =

∑
j∼k
|xj |2

xk −∑
`∼k

xkx`x` = 0,

i.e. Lx = 0. Since by assumption λ2 > 0 we conclude that x = eiθ|x|v1 for
suitable θ ∈ R.

The idea of the proof is now to show that (ck)dk=1 is ’front-heavy’ in the
sense that c1 ≈ tr(Y ) and c2, . . . , cd ≈ 0, and deduce from this that Y ≈ X.
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On the one hand we have with (29) that
d∑

k=1
λkck = 〈Y,L〉F = 〈Y −X,L〉F ≤

∑
(k,`)∈V 2

|Yk,` − xkx`| · |Lk,`|

=
∑

(k,`)∈D∪E
|Yk,` − xkx`| · |Lk,`| ≤ ε

∑
(k,`)∈V 2

|Lk,`|

= ε
∑

(k,`)∈V 2

|LGk,`| = εB.

Since λ1 = 0 and 0 < λ2 ≤ λ3 ≤ . . . this implies that
d∑

k=2
ck ≤

∑d
k=2 λkck
λ2

≤ Bε

λ2
.

Therefore, we have that

c1 ≥ tr(Y )− Bε

λ2
.

Recall that, since Y � 0, 〈Y, Y 〉F = tr(Y 2) ≤ tr(Y )2. With this,

‖Y −X‖2F = ‖Y − |x|2v1 ⊗ v1‖2F = 〈Y, Y 〉F − 2|x|2c1 + |x|4

≤ tr(Y )2 − 2 tr(X)c1 + tr(X)2 ≤ (tr(Y )− tr(X))2 + 2|x|2B
λ2

ε.

It follows from (29) that tr(Y −X)2 ≤ d2ε2. Hence, we further have that

‖Y −X‖2F ≤
(
d2ε+ 2|x|2B

λ2

)
ε ≤ 3|x|2B

λ2
,

where the final inequality follows from (28).

To prove the second statement we will make use of [13, Lemma 2], which
implies that the top eigenpair is unique and that

(30) min
θ∈R

∣∣|x|v − eiθx∣∣ ≤ 2
√

2
|x|
‖Y − xx∗‖2

provided that ‖Y −xx∗‖2 < |x|2
2 . By part one and assumption (28), we have

that
‖Y − xx∗‖22 ≤ ‖Y − xx∗‖2F ≤

3|x|2B
λ2

ε ≤ |x|
4

4 ,

and therefore, that (30) holds. In particular, there exists θ ∈ R such that

∣∣|x|v − eiθx∣∣ ≤ 2
√

6Bε
λ2

.

With this we get that∣∣∣∣√tr(Y )v − eiθx
∣∣∣∣ ≤ ∣∣∣∣√tr(Y )v − |x|v

∣∣∣∣+ ∣∣∣|x|v − eiθx∣∣∣
≤
∣∣∣∣√tr(Y )− |x|

∣∣∣∣+ 2
√

6Bε
λ2
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Since the first term on the right hand side can be bounded by∣∣∣∣√tr(Y )− |x|
∣∣∣∣ =

∣∣tr(Y )− |x|2
∣∣√

tr(Y ) + |x|
≤ |tr(Y −X)|

|x|
≤ dε

|x|
,

we further get – by making use of (28) – that∣∣∣∣√tr(Y )v − eiθx
∣∣∣∣ ≤ dε

|x|
+ 2

√
6Bε
λ2
≤
(

1 + 2
√

6
√
B

λ2

)
√
ε,

and we are done. �

Finally, we translate the above result into the context of our de-lifting
task.

Corollary 4.17. Let f ∈ L2(R), let Λ ⊆ aZ2 finite and let r > 0. Let L
denote the Laplacian of the signal associated graph, let B =

∑
(u,v)∈Λ2 |Lu,v|,

and let D = {(v, v), v ∈ Λ}. Further, suppose the following two assump-
tions:

i) ε > 0 is such that

ε ≤ min
{ 1
|Λ|2 ,

λ2(f,Λ, r)
12B

}
· ‖Gf‖2`2(Λ)

ii) Y ∈ CΛ×Λ, Y � 0 satisfies

|Yu,v − Gf(u)Gf(v)| ≤ ε, (u, v) ∈ D ∪ E.

Then, Y has a unique top eigenvector v ∈ CΛ and it holds that

min
θ∈R

∑
λ∈Λ

∣∣√tr(Y )vλ − eiθGf(λ)
∣∣2 ≤ (1 + 2

√
6
√

B

λ2(f,Λ, r)

)2

ε.

5. An error estimate for the reconstruction from incomplete
and noisy Gabor coefficients

5.1. The error estimate. Recall that given T, S > 0 we denote Λ =
([−T, T ]× [−S, S]) ∩ aZ2, and that RΛ : CΛ → L2(R) is defined by

RΛ(c) =
∑
λ∈Λ

cλπ(λ)ψ,

where ψ is the canonical dual of (π(λ)ϕ)λ∈aZ2 .
In Section 5.2 we establish the following estimate.

Proposition 5.1. Let T, S ∈ aN, let 0 < τ < T and let
Λ′ := ([−T, T ]× [−S, S]c) ∩ aZ2.

For all f ∈ L2(R) and for all c ∈ CΛ it holds that

‖f −RΛ(c)‖L2(−τ,τ) ≤ 3.1
(
‖Gf − c‖`2(Λ) + ‖Gf‖`2(Λ′)

+
√
τ + 1 · e−

π√
2

(T−τ) · ‖f · Txϕ
1
2 ‖L2(R)

)
.

As a consequence we obtain Theorem 2.11.
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Proof of Theorem 2.11. We just need to show that

(31) ‖Gf‖`2(Λ′) ≤ 2.2
√
T + 1 · κS(f),

which together with Proposition 5.1 implies the result. Let K,L ∈ N be
given by T = aK and S = aL. Note that by applying Lemma 4.5 with
r = a

2 we get that, for all λ ∈ Λ′,

|Gf(λ)| ≤ 1.79‖Gf‖L2(Br(λ)).

As a consequence,

‖Gf‖2`2(Λ′) =
K∑

k=−K

∑
`∈Z
|`|≥L+1

|Gf(ak, a`)|2

≤ 1.792
K∑

k=−K

∑
`∈Z
|`|≥L+1

‖Gf‖2L2(Br(ak,a`)).

For fixed k, for every |`| ≥ L+ 1 we have that

Br(ak, a`) ⊆ [ka− r, ka + r]× [−S, S]c

while for `′ 6= `

Br(ak, a`) ∩Br(ak, a`′) = ∅.
Therefore, for all k the inner sum is bounded according to∑

`∈Z
|`|≥L+1

‖Gf‖2L2(Br(ak,a`)) ≤ 2rκS(f)2 = a · κS(f)2,

and we get that

‖Gf‖`2(Λ′) ≤ 1.79 ·
√

2K + 1 ·
√
aκS(f)b

which implies (31). �

We now turn to the proof of Theorem 5.1.

5.2. Proof of Proposition 5.1. We will denote I = (−τ, τ). Recalling the
reconstruction formula involving the dual window ψ, we decompose

f =
∑
λ∈Λ
Gf(λ) · π(λ)ψ

=
∑
λ∈Λ
Gf(λ) · π(λ)ψ +

∑
λ∈Λ′
Gf(λ) · π(λ)ψ +

∑
k∈Z
|k|>T

a

gk,

where gk :=
∑
`∈Z Gf(ak, a`)Ma`Takψ. Notice that each of the series con-

verges unconditionally since it is a sub-series of an unconditionally conver-
gent one. With this, we can write

f −RΛ(c) = RΛ((Gf(λ)− cλ)λ∈Λ) +
∑
λ∈Λ′
Gf(λ) · π(λ)ψ +

∑
k∈Z

|k|≥
√

2T+1

gk,
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which implies that

‖f −RΛ(c)‖L2(I) ≤
∥∥RΛ

(
(Gf(λ)− cλ)λ∈Λ

)∥∥
L2(I)

+

∥∥∥∥∥∥
∑
λ∈Λ′
Gf(λ) · π(λ)ψ

∥∥∥∥∥∥
L2(I)

+
∑
k∈Z

|k|≥
√

2T+1

‖gk‖L2(I).

We estimate each term on the right hand side separately.
It follows from Lemma 4.8 that the first term is bounded by

∥∥RΛ
(
(Gf(λ)− cλ)λ∈Λ

)∥∥
L2(I) =

∥∥∥∥∥∥
∑
λ∈Λ

(Gf(λ)− cλ)π(λ)ψ

∥∥∥∥∥∥
L2(R)

≤ 3.1

∑
λ∈Λ
|Gf(λ)− cλ|2

 1
2

.(32)

For the second term, Lemma 4.8 directly gives

(33)

∥∥∥∥∥∥
∑
λ∈Λ′
Gf(λ) · π(λ)ψ

∥∥∥∥∥∥
L2(I)

≤ 3.1‖Gf‖`2(Λ′).

Let k ∈ Z be arbitrary but fixed, and let γ` := Gf(ka, `a) so that

gk =
∑
`∈Z

γ`M`aTkaψ = m · Tkaψ,

where m is the 1
a

-periodic Fourier-series defined by

m(t) =
∑
`∈Z

γ`e
2πia`t.

In particular, covering I with da|I|e translates of [0, 1/a], we obtain
‖gk‖2L2(I) ≤ ‖m‖

2
L2(I)‖Tkaψ‖

2
L∞(I)

≤ da|I|e‖m‖2L2([0,1/a])‖Tkaψ‖
2
L∞(I)

= da|I|e
a

∑
`∈Z
|γ`|2 · ‖Tkaψ‖2L∞(I)

≤ 2(τ + 1)
∑
`∈Z
|γ`|2 · ‖Tkaψ‖2L∞(I)(34)

where we have used Parseval’s relation for the L2-norm of m and the fact
that da|I|e

a
≤ |I|+ 1

a
= 2τ +

√
2.

We will now estimate the `2-sum over γ`. To that end note that,

γ` = 〈f,M`aTkaϕ〉L2 = 〈f, e2πia2k`TkaM`aϕ〉L2

= e−πik`〈T−kaf,M`aϕ〉L2 = e−πik`〈ϕ
1
2 · T−kaf,M`aϕ

1
2 〉L2

= e−πik`〈F(ϕ
1
2 · T−kaf),F(M`aϕ

1
2 )〉L2 .

Now, since F(ϕ
1
2 ) = 2

1
8ϕ2, we obtain F(M`aϕ

1
2 ) = 2

1
8T`aϕ

2 thus

γ` = 2
1
8 e−πik`〈F(ϕ

1
2T−kaf), T`aϕ2〉L2 .
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Since ϕ2(x) = 2
1
2 e−2πx2 , it follows from Lemma 4.9 that

(35)

∑
`∈Z
|γ`|2 ≤ 2

5
4
ϑ3(0, e−

π
2 )

2
∥∥F(ϕ

1
2T−kaf)

∥∥2
L2

= 2
1
4ϑ3(0, e−

π
2 )‖f · Tkaϕ

1
2 ‖2L2

≤ 1.69 · sup
x∈R
‖f · Txϕ

1
2 ‖2L2 .

On the other hand, by Lemma 4.6 we have that |ψ(t)| ≤ e
−π|t|√

2 . Thus, if
a|k| > T > τ

‖Tkaψ‖L∞(I) ≤ exp{− π√
2

(a|k| − τ)}.

Putting this inequality together with (35) into (34), we obtain

(36) ‖gk‖L2(I) ≤
√

2(τ + 1) · e−
π√

2
(a|k|−τ) ·

√
1.69 sup

x∈R
‖f · Txϕ

1
2 ‖L2 .

Further, we have that

∑
k∈Z

|k|≥
√

2T+1

e
− π√

2
(a|k|−τ) = 2e

πτ√
2

∞∑
k=
√

2T+1

e−
π
2 k = 2e

πτ√
2 · e

−π2 (
√

2T+1)

1− e−
π
2

= 0.52 . . . · e−
π√

2
(T−τ)

.

Thus, summing (36), we get the upper bound

(37)
∑
k∈Z

|k|≥
√

2T+1

‖gk‖L2(I) ≤
√
τ + 1 · e−

π√
2

(T−τ) · sup
x∈R
‖f · Txϕ

1
2 ‖L2

By adding up the three error terms (32), (33) and (37) we obtain the result.

6. Determining relative phase changes

Suppose we are given (possibly noisy) samples of the spectrogram, that
is (Sf(λ))λ∈Ω with Ω ⊆ R2 a set of sampling positions. The objective of the
present section is to find a way to evaluate the tensor

Tu[Gf ](p) = Gf(p+ u)Gf(p).

If u = 0, we again find the spectrogram, that is, T0[Gf ](p) = Sf(p). How-
ever, the relevant case is to go beyond u = 0 as this is where the information
of relative phase changes between points p and p+ u is stored.

We dedicate Section 6.1 to shed some light on why E is defined the way
it is and to outline the further strategy. In Section 6.2 we analyze certain
aspects regarding the continuity of E w.r.t. the argument G. In Section 6.3
we discuss implications for the task of estimating relative phase changes.
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6.1. Motivation and strategy. The purpose of this paragraph is to clarify
the role of the evaluation operator E . First we show that the spectrogram
extends to an entire function of two variables.

Lemma 6.1. For f ∈ L2(R) let F be defined by

F (z) = Bf(z1 − iz2)(Bf)∗(z1 + iz2)e−πz2
, z =

(
z1
z2

)
∈ C2.

Then F is the entire extension of the spectrogram of f . That is to say,
F ∈ O(C2) and F

∣∣
R2 = Sf .

In the sequel, we will simply write Sf instead of F .

Proof. That F is entire is obvious as it is a product of entire functions. From
the relation between Gabor and Bargmann transform (21), it follows that
for all (x, y) ∈ R2

Gf(x, y) = e−πixyBf(x− iy)e−
π
2 (x2+y2),(38)

Gf(x, y) = eπixy(Bf)∗(x+ iy)e−
π
2 (x2+y2).(39)

Thus, multiplying the two functions gives that

Sf(x, y) = Bf(x− iy)(Bf)∗(x+ iy)e−π(x2+y2).

This implies that F
∣∣
R2 = Sf , and we are done. �

The next result describes how evaluations of the function Sf relate to the
Gabor transform.

Lemma 6.2. Let f ∈ L2(R) and let Sf be the holomorphic extension of the
spectrogram of f as given in Lemma 6.1. For all p, u ∈ R2 it holds that

Tu[Gf ](p) = E [Sf ](p, u).

Proof. Let L and Q be defined as in Definition 2.2. With p =
(
x
y

)
, u =

(
a
b

)
we introduce ζ := L(p, u) ∈ C2. Notice that

ζ1 − iζ2 = (x− iy) + (a− ib), ζ1 + iζ2 = x+ iy

and that
ζ2

1 + ζ2
2 = (ζ1 − iζ2)(ζ1 + iζ2) = |p|2 + (x+ iy)(a− ib).

We use the identities (38) and (39) to evaluate

Sf(ζ1, ζ2) = Bf(ζ1 − iζ2)(Bf)∗(ζ1 + iζ2)e−π(ζ2
1 +ζ2

2 )

= Bf((x+ a)− i(y + b))(Bf)∗(x− iy)e−π(|p|2+(x+iy)(a−ib))

= Gf(p+ u)Gf(p) · eQ(p,u).

This implies the claim. �

Recall that the objective is to determine (or estimate) values of Tu[Gf ](z).
Assume for a moment we were given Sf , the holomorphic extension of the
spectrogram, on all of C2. In this case, one simply has to plug in Sf into E
according to the preceding result.

In our situation however, the provided information is significantly weaker.
First, we do not have direct access to Sf outside of R2. While in theory, it
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is enough to know Sf on R2 (or any open subset thereof) to determine it
on all of C2, to perform this extension in practice is already a challenging
task. To make things worse, we do not have access to Sf on all of R2, but
only to samples (Sf(λ))λ∈Ω with Ω ⊆ R2 finite. An additional difficulty is
that those samples are corrupted by noise, but let us neglect this aspect for
the moment.

As it turns out, Sf not only extends holomorphically to C2, but this
extension has also moderate growth with respect to the distance of a point
z ∈ C2 to R2. The following example demonstrates the importance of such
growth in a one-dimensional setting.

Example 6.1. Let us define a family of entire functions Fε ∈ O(C), ε > 0
by virtue of

Fε(z) = εe−
iz
ε , z ∈ C.

Then, each Fε is ε-close to the zero function on R ⊆ C, that is ‖Fε −
0‖L∞(R) = ε. However, if z = a+ ib with b > 0 we have that

|Fε(z)− 0| = εe
b
ε ,

which blows up if ε → 0. If we consider Fε to be an estimator for the
holomorphic extension of the zero function, we find that while approximation
of the given data improves for ε → 0 the performance of the estimator
degenerates.

Instead, we may look for F ∈ O(C) such that MF is finite on [0, 2b]. If F
is ε close to 0 on R, i.e., MF (0) ≤ ε it follows from Hadamard’s three line
theorem that

|F (a+ ib)− 0| ≤MF (b) ≤
√
MF (0)MF (2b) ≤

√
ε ·
√
MF (2b).

This suggests that for F to be a reliable estimator it is the combination
of both, i) an approximation of the zero function well on R and ii) it has
moderate growth behaviour as quantified by MF .

We can now outline the approach we take for the problem at hand. First
we are going to construct a set of Ansatz functions A ⊂ O(C2) obeying the
following conditions
– we want A to be a convex set as we want to formulate a convex problem.

Furthermore, to make such a problem practically feasible, A must by pa-
rameterized by finite dimensional objects; in our case the cone of positive
semi-definite matrices of a certain size will play the role of the parameter
space.

– we need to make sure that A has sufficient expressive capabilities; that is,
that it contains at least one function F which meets both requirements.
Namely, i) approximating Sf well on Ω ⊆ R2 and ii) possessing beneficial
growth behaviour of the type discussed above.

– we need to set up the convex problem in a way to guarantee that its
solution does satisfy both of these requirements.



GABOR PHASE RETRIEVAL VIA SEMIDEFINITE PROGRAMMING 41

Once we have identified F ∈ A with moderate growth and which approxi-
mates the samples well, say

sup
λ∈Ω
|Sf(λ)− F (λ)| ≤ ε

we want to use E [F ](p, u) (an object which we can access) to estimate
E [Sf ](p, u) = Tu[Gf ](p) (an object which we want to access but cannot).
As E is linear, the resulting estimation error is given by |E [Sf − F ](p, u)|.
An application of Hadamard’s three line theorem (Lemma 4.13) would then
imply that

(40) |E [Sf − F ](p, u)| ≤ C(p, u)‖Sf − F‖1/2L∞(R2)

with C(p, u) also depending on the growth behaviour of Sf − F . Unfortu-
nately, we have no direct way to make sure that F is close to Sf on all of
R2, since we only have access to the values of the latter on a finite subset
Ω ∈ R2. In the subsequent part, Section 6.2 we will employ sampling and
cut-off arguments in order to establish an approximate version of (40). That
is, an estimate of the form

|E [G](p, u)| ≤ C(p, u)
(
‖G‖1/2`∞(Ω) + ε(Ω)

)
with the error term ε(Ω) rapidly decaying as Ω becomes richer.

6.2. Approximate continuity of the functional E. Throughout this
section we shall employ the notation γ(z) = e−

π
8 z

2 , z ∈ C2. Moreover, we
introduce the following subspace of entire functions

O∞(Cd) := {G ∈ O(Cd) : MG(r) <∞, ∀r ≥ 0}.

In other words, O∞(Cd) is the set of holomorphic functions that are in
H∞(Tr) for every tube Tr = {x+ iy ∈ Cd : | Im(y)| < r}. For G ∈ O∞(C2),
we define a Gaussian cut-off at τ ∈ R2 by

Gτ (z) := G(z)γ(z − τ), z ∈ C2.

The term “Gaussian cut-off” of course refers to the restriction of Gτ to R2.
Note that this restriction is in L1(R2) so that its Fourier transform Ĝτ makes
sense. We are interested in functions with controlled smoothness of cut-off
Gτ and introduce

V(C,K) := {G ∈ O∞(C2) : |Ĝτ | ≤ Ke−C|·|
2
, ∀τ ∈ R2}.

The main result of the present section is the following continuity estimate
for the evaluation operator E .

Proposition 6.3. Let s, C,K > 0 and let Ω ⊆ sZ2. Suppose that p, u ∈ R2

are such that

dist
(
p+ 1

2u, sZ
2 \ Ω

)
≥

√
C

2πs
−1.



42 GABOR PHASE RETRIEVAL VIA SEMIDEFINITE PROGRAMMING

Then it holds for all G ∈ V(C,K) that

|E [G](p, u)| ≤ 8.6

‖G‖1/2`∞(Ω) +

√MG(0) + 1.8

√
K

C

 e− C
32s2


×
√
MG(|u|)e−

15π
32 u

2
.

Proof. Let τ = p+ 1
2u and consider Gτ (z) = G(z)γ(z − τ).

First we rewrite E [G](p, u) in terms of Gτ : Let L,Q be defined as in
Definition 2.2. Note that ReQ(p, u) = −π

2u
2 and set

ζ∗ := L(p, u) = p+ 1
2

(
1 −i
i 1

)
u.

Note that ζ∗ − τ = i
2

(
0 −1
1 0

)
u. Thus,

|E [G](p, u)| = |G(ζ∗)|e−
π
2 u

2(41)

= |Gτ (ζ∗)| · exp
{
π

8 Re{(ζ∗ − τ)2} − π

2u
2
}

= |Gτ (ζ∗)| · exp
{
−17π

32 u2
}
.

Next, we apply Hadamard’s three line theorem (Lemma 4.13, to be precise)
to Gτ . To that end, note that Gτ ∈ O∞(C2) since G ∈ O∞(C2). As
| Im ζ∗| = |u|

2 , we get that

|Gτ (ζ∗)| ≤MGτ (|u|/2) ≤
√
MGτ (0)MGτ (|u|) ≤ ‖Gτ‖1/2L∞(R2)

√
MGτ (|u|).

Moreover, as |γ(ζ − τ)| = exp
{
−π

8 (Re(ζ)− τ)2 + π
8 (Im ζ)2} we find that

(42) MGτ (r) = sup
| Im ζ|=r

|G(ζ)γ(ζ − τ)| ≤ e
π
8 r

2 ·MG(r).

Next we want to replace the term ‖Gτ‖L∞(R2) by its discrete variant.
Applying Lemma 4.11 gives that

‖Gτ‖L∞(R2) ≤ 73‖Gτ‖`∞(sZ2) + 233K
C
e−

C
16s2 .

Suppose that λ0 ∈ Ωc := sZ2 \ Ω. By assumption we have that

|τ − λ0| ≥

√
C

2πs
−1,

which implies that

|Gτ (λ0)| = |G(λ0)|e−
π
8 |λ0−τ |2 ≤MG(0) · e−

C
16s2 .

In particular, as ‖Gτ‖`∞(sZ2) ≤ ‖Gτ‖`∞(Ω) + ‖Gτ‖`∞(Ωc), we have that

(43) ‖Gτ‖L∞(R2) ≤ 73
(
‖Gτ‖`∞(Ω) +

(
MG(0) + 233K

73C

)
e−

C
16s2

)
.
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It remains to combine the estimates:
|E [G](p, u)|
(41)
≤ |Gτ (ζ∗)| · exp

{
−17π

32 u2
}

(42)
≤
√
MG(|u|) · ‖Gτ‖1/2L∞(R2) · exp

{
−15π

32 u2
}

(43)
≤
√

73
√
MG(|u|)

(
‖Gτ‖`∞(Ω) +

(
MG(0) + 233K

73C

)
e−

C
16s2

)1/2
· e−

15π
32 u

2

≤ 8.6

‖G‖1/2`∞(Ω) +

√MG(0) + 1.8

√
K

C

 e− C
32s2

 ·√MG(|u|)e−
15π
32 u

2

This finishes the proof. �

6.3. Implications. Recall the objective from the beginning of the section.
Given samples (Sf(λ))λ∈Ω we want to estimate relative phase changes

Gf(p+ u)Gf(p) = E [Sf ](p, u).

The basic idea is – since Sf is not directly available – to identify a suit-
able dummy F ∈ O(C2) in place of Sf , and use E [F ] as an estimator for
relative phase changes. This raises several questions. Most importantly,
how to actually identify F and how accurate is the resulting estimator? The
remainder of this paragraph is aimed at resolving these questions. To do
that we first introduce a finite-dimensional cone of Ansatz functions, then
formulate an associated convex problem (CP) and finally argue that the
solution of this CP gives rise to an accurate estimator.

Throughout, let Γ ⊆ aZ2 denote a finite set. The following lemma clarifies
the relation between FA and the Gabor transform.

Lemma 6.4. Let N = |Γ| and let a = (aλ)λ∈Γ ∈ CΓ. The following proper-
ties hold:

i) Φλ,µ is the entire extension of G[π(λ)ϕ]G[π(µ)ϕ]. That is, for all p =
(x, ω) ∈ R2 ⊆ C2 it holds that

Φλ,µ(p) = G[π(λ)ϕ](x, ω) · G[π(µ)ϕ](x, ω).
ii) With A = a⊗ ā and f =

∑
λ∈Γ aλπ(λ)ϕ, we have that FA is the entire

extension of Sf . That is, for all p = (x, ω) ∈ R2 ⊆ C2 it holds that
FA(p) = Sf(x, ω).

iii) Suppose A ∈ A+(Γ) with eigenvalues α1, . . . , αN ≥ 0 and with corre-
sponding orthonormal basis of eigenvectors u1, . . . , uN ∈ CΓ. Let

fk :=
∑
λ∈Γ

uk(λ)π(λ)ϕ, k ∈ {1, . . . , N}.

Then, FA is the entire extension of
∑N
k=1 αkSfk. That is, for all p =

(x, ω) ∈ R2 ⊆ C2 it holds that

FA(p) =
N∑
k=1

αkSfk(x, ω).
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Proof. First note that the first statement implies the second one. For this,
one simply writes Sf = Gf · Gf and uses linearity of f 7→ Gf . The second
statement then implies the third one by linearity of A 7→ FA once one writes

A =
N∑
k=1

αkuk ⊗ uk. Recalling (19), for λ = (a, b) we have that

G[π(λ)ϕ](x, ω) = eπiabe−πixωeπi(xb−ωa)e−
π
2 |z−λ|

2
.

An elementary computation shows that

|z − λ|2 + |z − µ|2 = 2
∣∣∣∣z − λ+ µ

2

∣∣∣∣2 + |λ− µ|
2

2 .

Hence, with µ = (a′, b′) we get that(
G[π(λ)ϕ] · G[π(µ)ϕ]

)
(z) = eπi(ab−a

′b′)eπi[x(b−b′)−ω(a−a′)]e−
π
2 (|z−λ|2+|z−µ|2)

= eπi(ab−a
′b′)eπiz·J (λ−µ)e

π
4 |λ−µ|

2
e−π|z−

λ+µ
2 |

2

which coincides with Φλ,µ(z). �

Later on we want to apply Proposition 6.3 to G = FA − Sf . Before that
we show how in this case the relevant quantities appearing in the right hand
side can be controlled in terms of the parameterizing matrix A.

Lemma 6.5. Let A ∈ A+(Γ). Moreover, let

C = 8π
17 and K = 272 ·max

λ∈Γ
Aλ,λ

Then it holds that FA ∈ V(C,K) and moreover that

MFA(r) ≤ 64.1e2πr2 ·max
λ∈Γ

Aλ,λ, r ≥ 0.

Proof. Committing a slight abuse of notation we denote the restrictions of
FA, γ and Φλ,µ to R2 by the same symbols. For the first statement, we need
to show for arbitrary τ ∈ R2 that

|F [FA · γ(· − τ)](ξ)| ≤ Ke−C|ξ|2 , ξ ∈ R2.

Let λ, µ ∈ R2 be arbitrary but fixed. We set

p = p(λ, µ) = 4λ+ 4µ+ τ

9 and q = q(λ, µ) = λ+ µ− 2τ
6 ,

so that, after an elementary computation,(
x− λ+ µ

2
)2 + 1

8
(
x− τ

)2 = 9
8(x− p)2 + q2.

With this we rewrite

Φλ,µ(x)γ(x− τ) = C(λ, µ)eiπ[J (λ−µ)]·x · e−π
(
x−λ+µ

2

)2

· e−
π
8 (x−τ)2

= C(λ, µ)e−πq2 ·
(
M 1

2J (λ−µ)Tp[e
− 9

8π·
2 ]
)

(x).

As F [e−
9
8π·

2 ](ξ) = 8
9e
− 8π

9 ξ
2 , we get that the Fourier transform of the above

function is given by

F [Φλ,µ(·)γ(· − τ)](ξ) = 8
9C(λ, µ)e−πq2 ·

(
T 1

2J (λ−µ)M−p[e
− 8

9π·
2 ]
)

(ξ).
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With this, application of the triangle inequality yields

|F [FA(·)γ(· − τ)](ξ)| ≤ ‖A‖max
∑
λ,µ∈Γ

|F [Φλ,µγ(· − τ)](ξ)|

≤ 8
9‖A‖max

∑
λ,µ∈aZ2

.e−
π
4 (λ−µ)2− π

36 (λ+µ−2τ)2− 8π
9 (ξ− 1

2J (λ−µ))2
.

Note that J 2 = −I, that J −1 = −J and that{
aZ2 × aZ2 → aZ2 × aZ2

(λ, µ) 7→ (λ+ µ, λ− µ)

is injective (but not onto!). Thus, substituting u = λ+µ and v = λ−µ and
ξ′ = J ξ allows us to estimate the above sum from above by∑

u,v∈aZ2

exp
{
−π4 v

2 − π

36(u− 2τ)2 − 8π
9 (ξ − 1

2J v)2
}

=
∑

u,v∈aZ2

exp
{
−π4 v

2 − π

36(u− 2τ)2 − 8π
9 (ξ′ − v

2)2
}

=

 ∑
u∈aZ2

e−
π
36 (u−2τ)2

 ∑
v∈aZ2

e−
π
4 v

2− 8π
9 (ξ′− v2 )2

 .(44)

As per Lemma 4.2 we have that

∑
u∈aZ2

e−
π
36 (u−2τ)2 ≤

sup
t∈R

∑
k∈Z

e−
π
72 (k−t)2

2

≤ 72ϑ3(0, e−72π)2.

We rewrite the second sum in (44) as

∑
v∈aZ2

e−
π
4 v

2− 8π
9 (ξ′− v2 )2 =

2∏
`=1

∑
k∈Z

exp
{
−π8 k

2 − π

9
(
k − 2

√
2ξ′`
)2
}
.

We consider for t ∈ R arbitrary∑
k∈Z

exp
{
−π8 k

2 − π

9 (k − t)2
}

= e−
π
17 t

2 ∑
k∈Z

exp{−17
72π(k − 8

17 t)
2}

≤ e−
π
17 t

2 ·
√

72
17ϑ3(0, e−

72
17π),

where we once more made use of Lemma 4.2. Plugging in t = 2
√

2ξ′`,
` ∈ {1, 2}, we obtain by combining the above estimates that

|F [FA(·)γ(· − τ)](ξ)|

≤ 8
9‖A‖max ·

722

17 · ϑ3(0, e−72π)2 · ϑ3(0, e−
72
17π)2 · e−

8π
17 ξ

2
.

Recall that a positive definite matrix attains its maximum absolute value in
the diagonal: ‖A‖max = maxλ∈ΓAλ,λ. Finally, as

8
9 ·

722

17 · ϑ3(0, e−72π)2 · ϑ3(0, e−
72
17π)2 < 272,
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we find that

|F [FA · γ(· − τ)](ξ)| ≤ 272
(

max
λ∈Γ

Aλ,λ

)
e−

8π
17 ξ

2
,

which proves the first statement.

To prove the second statement, let ζ ∈ C2 such that | Im ζ| = r. We apply
the triangle inequality to obtain

|FA(ζ)| ≤ ‖A‖max ·
∑
λ,µ∈Γ

|Φλ,µ(ζ)|

= ‖A‖max ·
∑
λ,µ∈Γ

e−
π
4 (λ−µ)2−π Im ζ·J (λ−µ)−π(Re ζ−λ+µ

2 )2+π(Im ζ)2
.

We substitute again v = λ− µ and u = λ+ µ, and notice that

−π4 v
2 − π Im ζ · J v + π(Im ζ)2 = −π

(
Im ζ + 1

2J v
)2

+ 2π(Im ζ)2

≤ −π
(

Im ζ + 1
2J v

)2
+ 2πr2.

With this (and recalling that (λ, µ) 7→ (λ+µ, λ−µ) is injective on aZ2×aZ2),

(45) |FA(ζ)| ≤ ‖A‖max · e2πr2 ·
∑
v∈aZ2

e−π(Im ζ+ 1
2J v)

2
·
∑
u∈aZ2

e−π(Re ζ− 1
2u)

2
.

To bound the first sum on the right hand side we proceed similarly as before
and resort to a one dimensional sum:

∑
v∈aZ2

e−π(Im ζ+ 1
2J v)

2
≤

sup
t∈R

∑
k∈Z

e
−π(t+ k

2
√

2
)2

2

=

sup
t∈R

∑
k∈Z

e−
π
8 (t+k)2

2

≤ 8ϑ3(0, e−8π)2,

where the last inequality is again a consequence of Lemma 4.2. An analogous
argument shows that the second sum in (45) is upper bounded by the same
quantity. Hence,

|FA(ζ)| ≤ ‖A‖maxe
2πr2 · 82ϑ3(0, e−8π)4 = ‖A‖maxe

2πr2 · 64.0 . . .
Since ζ with | Im ζ| = r was arbitrary, we are done. �

A similar estimate holds true for the holomorphic extension of a spectro-
gram.

Lemma 6.6. Let f ∈ L2(R), with Sf (the entire extension of) its spectro-
gram. Then it holds that

MSf (r) ≤ ‖Sf‖L∞(R2) · e2πr2
, r ≥ 0.

Proof. From the definition of Sf in terms of Bf in Lemma 6.1, we obtain
and estimate

|Sf(z)| = |Bf(z1 − iz2)| · |Bf(z1 + iz2)| · e−π(Re(z2
1)+Re(z2)2)

≤ ‖Gf‖2L∞ · exp
{
π

2 |z1 − iz2|2 + π

2 |z1 + iz2|2 − π
(
|Re(z)|2 − | Im(z)|2

)}
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expressing Bf in terms of Gf with (21). But ‖Gf‖2L∞ = ‖Sf‖L∞(R2) and

|z1 − iz2|2 + |z1 + iz2|2 = 2|z1|2 + 2|z2|2 = 2|Re(z)|2 + 2| Im(z)|2.

It follows that
|Sf(z1, z2)| ≤ ‖Sf‖L∞(R2)e

2π| Im(z)|2 ,

which implies the claim. �

Evaluation of FA can be expressed in terms of a matrix inner product. In
view of Algorithm 1 this fact is relevant in order to see that the CP in step
1 can be rephrased as a SDP as well as for the practical implementation of
step 1.

Lemma 6.7. Let Γ ⊆ aZ2 be finite, let p ∈ R2 ⊆ C2 and let v ∈ CΓ be
defined by

vλ = G[π(λ)ϕ](p) = exp
{
−π2 (p− λ)2 − π(x+ a)(y − b)

}
λ ∈ Γ.

Then it holds for all A ∈ A+(Γ) that

FA(p) = tr(v̄ ⊗ v ·A) = 〈A, v ⊗ v̄〉F .

Proof. Since A 7→ FA(p) is linear it suffices to consider the rank one case
A = a⊗ ā. In this case we have that

FA(p) = S[
∑
λ∈Γ

aλπ(λ)ϕ](p) =
∣∣∑
λ∈Γ

aλG[π(λ)ϕ](p)
∣∣2 =

∣∣∑
λ∈Γ

aλvλ
∣∣2

= (a · v)(a · v) = tr(aH v̄vTa) = tr([v̄ ⊗ v][a⊗ ā]),

which implies the claim. �

In the following, let f ∈ L2(R) and let s > 0. Moreover, let Ω ⊆ sZ2 and
Γ ⊆ aZ2 be finite sets. Given p ∈ R2, we use the notation Wp = v ⊗ v̄ with
v defined as in Lemma 6.7.

Definition 6.8 (Associated Convex Problem (ACP)). Given a triple (f,Γ,Ω)
as above, and a tolerance parameter ε > 0 we define the Admissible Set as

Admε(f,Γ,Ω) = {A ∈ A+(Γ) : |〈A,Wp〉F − Sf(p)| ≤ ε, p ∈ Ω}.

The Associated Convex Problem (ACP) is then

(46) min
A∈Admε(f,Γ,Ω)

max
λ∈Γ

Aλ,λ

Solving the ACP (46) amounts to finding among all admissible matrices
the one such that the maximum of all diagonal entries is minimal. While
the admissibility condition can be simply reformulated in terms of FA, that
is,

A ∈ Admε(f,Γ,Ω) ⇔ ‖Sf − FA‖`∞(Ω) ≤ ε,

it is not yet clear why this particular objective function could be helpful.
The next statement vindicates that this is indeed a good choice.
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Proposition 6.9. Let f ∈ L2(R), let ε ∈ (0, e−1) and let s > 0 such that

(47) s ≤
√

38π
36

(
ln 1
ε

)−1/2
.

Moreover, let Ω ⊆ sZ2, let Γ ⊆ aZ2 and let p, u ∈ R2 be such that

p+ 1
2u ∈ A(s,Ω) := {X ∈ R2 : dist

(
X, sZ2 \ Ω

)
≥
√

19
9 s−1}.

Suppose that A ∈ Admε(f,Γ,Ω) and let

c0 := ‖Sf‖L∞(R2) + 64.1
(

max
λ∈Γ

Aλ,λ
)
.

Then it holds that

|E [FA](p, u)− Tu[Gf ](p)| ≤ 8.6(1 + 5.2
√
c0)2 ·

√
ε · e

17π
32 u

2
.

∂R

A(s,Ω)

Figure 6. Here Ω = sZ2 ∩ R where R is a square. The
condition ε < e−1 ensures that A(s, ξ) contains no point
outside R.

Proof. We want to apply Proposition 6.3 to G = FA − Sf . According to
Lemma 4.4 and Lemma 6.6, respectively we have that

Sf ∈ V
(38π

81 , 8‖Sf‖L∞(R2)

)
and MSf (r) ≤ ‖Sf‖L∞(R2)e

2πr2
.

As per Lemma 6.5 we have that

FA ∈ V
(8π

17 , 272 max
λ∈Γ

Aλ,λ

)
and MFA(r) ≤ 64.1(max

λ∈Γ
Aλ,λ)e2πr2

.

Note that

F1 ∈ V(C1,K1), F2 ∈ V(C2,K2) ⇒ F1−F2 ∈ V
(

min{C1, C2},K1+K2
)
.

Thus, we get that

G ∈ V
(38π

81 , 8‖Sf‖L∞ + 272 max
λ∈Γ

Aλ,λ

)
⊆ V

(38π
81 , 8c0

)
,
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and furthermore, we have that

MG(r) ≤MFA(r)+MSf (r) ≤
(

64.1 max
λ∈Γ

Aλ,λ + ‖Sf‖L∞
)
e2πr2 ≤ c0e

2πr2
.

Note that with C = 38π
81 we have that

√
C
2π =

√
19
9 . Proposition 6.3 therefore

implies that

|E [G](p, u)|

≤ 8.6
(
‖G‖1/2`∞(Ω) +

(√
MG(0) + 1.8

√
81 · 8c0

38π

)
e−

38π
81·32s2

)
·
√
MG(|u|)e−

15π
32 u

2

≤ 8.6
(
√
ε+
√
c0

(
1 + 1.8

√
81 · 8
38π

)
e−

38π
81·32s2

)
·
√
c0e

17π
32 u

2

≤ 8.6
(√

ε+ 5.2
√
c0e
− 38π

81·32s2
)
·
√
c0e

17π
32 u

2

Finally, Assumption (47) is equivalent to e−
38π

81·32s2 ≤
√
ε. Hence,

|E [G](p, u)| ≤ 8.6(1 + 5.2
√
c0)2 ·

√
ε · e

17π
32 u

2
,

as desired. �

Next, we provide sufficient conditions for the set of admissible matrices
to be non-empty as well as an upper bound for the objective function of a
minimizer.

Proposition 6.10. Let f ∈ L2(R), let ε ∈ (0, 1), s > 0 and let Ω ⊆ sZ2.
Moreover let Γ ⊆ aZ2 such that

(48) dist
(
Ω, aZ2 \ Γ

)
≥

√
2
π

ln
(53‖Sf‖L∞

ε

)
+ 1

2
√

2
.

Then it holds that Admε(f,Γ,Ω) 6= ∅ and every solution A of the ACP
satisfies

max
λ∈Γ

Aλ,λ ≤ 1.6‖Sf‖L∞(R2).

Proof. Let ψ denote the canonical dual of the Gabor frame (π(λ)ϕ)λ∈aZ2 .
Moreover, let us define a ∈ CΓ by

aλ = 〈f, π(λ)ψ〉, λ ∈ Γ
and set A = a⊗ ā. We prove the statement by showing that

i)A ∈ Admε(f,Γ,Ω) and ii) max
λ∈Γ

Aλ,λ ≤ 1.6‖Sf‖L∞ .

To prove i) let us consider ξ ∈ Ω arbitrary but fixed. We need to show
that

|FA(ξ)− Sf(ξ)| ≤ ε.
Let R denote the quantity on the right hand side of (48) and note that by
that assumption

aZ2 \ Γ ⊆ aZ2 \BR(ξ).
With g :=

∑
λ∈Γ aλπ(λ)ϕ we have by the reconstruction formula (25) that

G[f − g] =
∑

λ∈aZ2\Γ
〈f, π(λ)ψ〉 · G[π(λ)ϕ].



50 GABOR PHASE RETRIEVAL VIA SEMIDEFINITE PROGRAMMING

We can estimate
|G[f − g](ξ)| ≤ sup

λ∈aZ2\Γ
|〈f, π(λ)ψ〉| ·

∑
λ∈aZ2\Γ

|G[π(λ)ϕ](ξ)|

≤ sup
λ∈R2

|〈f, π(λ)ψ〉| ·
∑

λ∈aZ2\BR(ξ)
e−

π
2 |λ−ξ|

2
.(49)

We use that the Gabor transform is unitary and that |G[π(λ)ψ](p)| =
|Gψ(p− λ)| in order to bound

(50) |〈f, π(λ)ψ〉| = |〈Gf,G[π(λ)ψ]〉L2(R2)|

≤
∫
R2
|Gf(y)||Gψ(y − λ)| dy ≤ ‖Gf‖L∞ · ‖Gψ‖L1 ≤ 1.23‖Gf‖L∞

where the last inequality follows from Lemma 4.6.
We proceed with estimating the sum of gaussians. A simple computation

shows that
x 7→ e−

π
2 |x−ξ|

2
, x ∈ R2 \B√ 2

π

(ξ)

is subharmonic. For every λ ∈ aZ2 \BR(ξ) we have that
B a

2
(λ) ∩B√ 2

π

(ξ) = ∅,

since |λ− ξ| ≥ R ≥ 1.2 > a
2 +

√
2
π . By subharmonicity we have for all such

λ that

e−
π
2 |λ−ξ|

2 ≤ 1
|Ba/2(λ)|

∫
Ba/2(λ)

e−
π
2 |x−ξ|

2 dx = 8
π

∫
Ba/2(λ)

e−
π
2 |x−ξ|

2 dx.

Since we have that ⋃
λ∈aZ2\BR(ξ)

Ba/2(λ) ⊆ R2 \BR− a
2
(ξ),

and since all these disks are pairwise disjoint, we can estimate∑
λ∈aZ2\BR(ξ)

e−
π
2 |λ−ξ|

2 ≤ 8
π

∫
R2\BR− a

2
(ξ)
e−

π
2 |x−ξ|

2 dx

= 8
π

∫
R2\BR− a

2
(0)
e−

π
2 |x|

2 dx = 16
π
e−

π
2 (R−a/2)2

.

Thus, by injecting this and (50) into (49), we obtain

|G[f − g](ξ)| ≤ 6.3 · 16
π
‖Gf‖L∞e−

π
2 (R−a/2)2

.

With this we can bound
|Sf(ξ)− FA(ξ)| = ||Gf(ξ)| − |Gg(ξ)|| · (|Gf(ξ)|+ |Gg(ξ)|)

≤ |G[f − g](ξ)| · (2|Gf(ξ)|+ |G[f − g](ξ)|)

≤ 6.3 (2 + 6.3) ‖Sf‖L∞(R2)e
−π2 (R−a/2)2

≤ 53‖Sf‖L∞(R2)e
−π2 (R−a/2)2

which is bounded by ε according to the choice of R.
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Part ii) now follows directly from estimate (50): For arbitrary λ ∈ Γ we
have that

Aλ,λ = |aλ|2 = |〈f, π(λ)ψ〉|2 ≤ 1.232‖Sf‖L∞ ,
which – as 1.232 < 1.6 – implies the claimed inequality. �

7. Proof of Theorem 2.8

Proof of Theorem 2.8. We break up the proof into various steps and show
that
a) Step 1 is feasible, and any solution A satisfies A ∈ Adm 3ε

2
(f,Γ,Ω) and

max
λ∈Γ

Aλ,λ ≤ 1.6.

b) For all (λ, λ′) ∈ P it holds that

(51) |Tλ′,λ − Tλ′−λ[Gf ](λ)| ≤ ε′ = (3.1 · 104)
√
εe

17π
32 r

2
.

c) There exists a feasible Y for the CP in step 2 (see (4)).
d) Any such Y has a simple largest eigenvalue, and the corresponding eigen-

vector v obeys (12).

To establish a) we first observe that if A ∈ A+(Γ) is feasible for step 1,
then by the triangle inequality

‖FA − Sf‖`∞(Ω) ≤ ‖FA − σ‖`∞(Ω) + ‖σ − Sf‖`∞(Ω) ≤ ε+ ε

2 ,

i.e. A ∈ Admε(f,Γ,Ω). It remains to show that there existsA ∈ Adm ε
2
(f,Γ,Ω)

which further satisfies the inequality maxλ∈ΓAλ,λ ≤ 1.6, as by the triangle
inequality such a matrix is then feasible for step 1.

By Proposition 6.10 (applied to ε
2) we only need to show that

dist
(
Ω, aZ2 \ Γ

)
≥
√

2
π

ln
(2 · 53

ε

)
+ 1

2
√

2
.

Note that for every ε ∈ (0, 1) the right hand side can be bounded according
to√

2
π

ln
(106
ε

)
+ 1

2
√

2
=
√

2
π

ln(106)− 2
π

ln ε+ 1
2
√

2

≤
√

2
π

ln(106) +
(
−
√

2
π

ln ε
)1/2

+ 1
2
√

2
< 2.1 + 0.9

√
ln 1
ε

By construction of the sets and with condition (11) we have

dist
(
Ω, aZ2 \ Γ

)
≥ R ≥ 2.1 + 0.9

√
ln 1
ε
,

and we are done.
We proceed with the proof of statement b). Let (λ, λ′) ∈ P be arbitrary

but fixed, and denote p = λ and u = λ′ − λ. According to Proposition 6.9
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(with 1.5ε instead of ε), it holds that

(52) |Tλ,λ′ − Tλ′−λ[Gf ](λ)| = |E [FA](p, u)− Tu[Gf ](p)|

≤ 8.6(1 + 5.2
√
c0)2 ·

√
1.5ε · e

17π
32 u

2

with (recalling that A is a solution of the CP in step 1)
(53) c0 = ‖Sf‖L∞(R2) + 64.1(max

λ∈Γ
Aλ,λ) ≤ 1 + 64.1 · 1.6 < 104

provided that the following three conditions hold:
i) 1.5ε < e−1,

ii) s ≤
√

38π
36

(
ln 2

3ε

)− 1
2 , and

iii) p+ 1
2u ∈ A(s,Ω).

As
√

38π
36 = 0.30 . . ., condition ii) follows directly from assumption (10). Since

‖Sf‖L∞(R2) ≤ 1, assumption (8) implies that

ε ≤
[
e−

17π
32 r

2

1.33 · 105

‖Gf‖2`2(Λ)
|Λ|2

]2

≤ (1.33 · 105)−2,

which implies i).
To verify iii), recall that |u| ≤ r and that p ∈ Λ ⊆ [−T, T ]× [−S, S]. As

sZ2 \ Ω ⊆ R2 \ ([−T −R, T +R]× [−S −R,S +R]),
we have with (11) that

dist
(
p+ 1

2u, sZ
2 \ Ω

)
≥ R− r

2 ≥
1
2s >

√
19
9 s−1,

which shows that indeed p+ 1
2u ∈ A(s,Ω). Finally, combining (52) and (53)

implies that

|Tλ,λ′ − Tλ′−λ[Gf ](λ)| ≤ (3.1 · 104) ·
√
εe

17π
32 u

2

It follows directly from the estimate (51) that
Y =

(
Gf(λ)Gf(λ′)

)
λ,λ′∈Λ

meets the constraints of step 2. Thus, statement c) holds.

To prove part d) we apply Corollary 4.17, which states that

(54) min
θ∈R

∣∣∣∣√tr(Y )v − eiθ(Gf(λ))λ∈Λ

∣∣∣∣ ≤
(

1 + 2
√

6
√

B

λ2(f,Λ, r)

)
√
ε′,

provided that

(55) ε′ ≤ min
{

1, |Λ|
2λ2(f,Λ, r)

12B

}
×
‖Gf‖2`2(Λ)
|Λ|2

where B =
∑

(u,v)∈Λ |Lu,v| with L the Laplacian of the signal associated
graph. By the way the graph is defined, we have that the maximal degree
(i.e., the maximal number of neighbors a vertex can have) is bounded from
above by ∣∣Br(0) ∩ aZ2| = |B√2r(0) ∩ Z2| ≤ (2

√
2r)2 = 8r2.
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Recall that the Laplacian is given by

Lλ,µ =


∑
λ′∼λ |Gf(λ′)|2, µ = λ

−|Gf(λ)||Gf(µ)|, µ ∼ λ
0 otw.

Since |xy| ≤ 1
2(|x|2 + |y|2) we can estimate

B ≤
∑
λ∈Λ

∑
λ′∈Λ
λ′∼λ

|Gf(λ′)|2 + 1
2
∑
µ∈Λ
µ∼λ

(|Gf(λ)|2 + |Gf(µ)|2)



=
∑
λ∈Λ

∑
λ′∈Λ
λ′∼λ

|Gf(λ′)|2 + 1
2

∑
λ∈Λ
|Gf(λ)|2


∑
µ∈Λ
µ∼λ

1

+ 1
2
∑
λ∈Λ

∑
µ∈Λ
µ∼λ

|Gf(µ)|2

= 2

∑
λ∈Λ
|Gf(λ)|2


∑
µ∈Λ
µ∼λ

1


≤ 16r2‖Gf‖2`2(Λ)

which implies that
|Λ|2λ2(f,Λ, r)

12B ≥ |Λ|
2λ2(f,Λ, r)

192r2‖Gf‖2`2(Λ)
.

Together with (9) and (8) we get that

ε′ = (3.1× 104)e
17π
32 r

2√
ε

≤ min
{‖Gf‖2`2(Λ)

|Λ|2 ,
λ2(f,Λ, r)

192r2

}

= min
{

1, |Λ|
2λ2(f,Λ, r)

192r2‖Gf‖`2(Λ)2

}
×
‖Gf‖2`2(Λ)
|Λ|2 ,

which implies (55)
Rewriting the right hand side of (54) in terms of ε and making use of the

estimate for B, further implies

min
θ∈R

∣∣∣√tr(Y )v − eiθ(Gf(λ))λ∈Λ
∣∣∣

≤

1 + 2
√

6

√√√√16r2‖Gf‖2`2(Λ)
λ2(f,Λ, r)

×√3.1 · 104 e
17π
64 r

2 4√ε

≤ 177 · e0.84r2 ·

1 + 20r

√√√√ ‖Gf‖2`2(Λ)
λ2(f,Λ, r)

 · 4√ε,

which finishes the proof. �
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[21] Karlheinz Gröchenig. The mystery of Gabor frames. J. Fourier Anal. Appl.,
20(4):865–895, 2014.
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