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Abstract 
Cesium-137, discharged by nuclear installations under normal operations and deposited in watersheds 

decades. Thus, modelling of 137Cs concentration in rivers have been developed based on geochemical 
approaches and equilibrium assumptions (solid/liquid ratio) as this radionuclide has moved into rivers 
and oceans due to soil erosion.  Recently a new approach is possible to model these concentrations 
with the popularization of data-driven models based on data acquired in the environment by 
monitoring networks. In this study, the concentrations of particulate cesium-137 measured near the 
mouth of the Rhône River (France), a highly nuclearized river, are simulated using two data-driven 
models, a Hierarchical Attention-Based Recurrent Highway Networks (HRHN) and a Random Forest 
Regressor (RF). The data-driven predictions were done using only hydrological data (water discharge 
and suspended solid fluxes) and industrial input of 137Cs. Although the data-driven models provided a 
better prediction than a recent empirical model, the best prediction (R² = 0.71) was obtained with 
HRHN, a model that considers the temporal aspect of the monitoring data. The most important 
predictors were the hydrological data at the monitoring station and of the tributary that generate the 
most sediment flux (Durance River). In fact, the concentration of 137Cs in the perimeter of this study 
was more related to hydrology than to nuclear release, as there were few events with high 137Cs 
concentrations (concomitant nuclear release and low water discharge). However, the HRHN approach, 
which is more complex to implement than RF, can predict the concentrations of such events correctly 
despite their low representation of these events. The results of this study demonstrate the usefulness 
of data-driven models to assist monitoring programs by filling in gaps or helping to understand 
observed concentrations. 
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1. Introduction 5 

Monitoring the pollution in rivers has been an accepted necessity for many years as aquatic ecosystems 6 

are unfortunately the receptors of emissions from many sectors such as agriculture, industry or 7 

urbanization (Horowitz, 2009; Syvitski et al., 2005; WFD, 2000). For many reasons (logistical, economic, 8 

societal), it is sometimes difficult to set up a sustainable monitoring system (Dethier et al., 2020). 9 

Therefore it makes sense to model the concentrations and fluxes of pollutants (Yang and Wang, 2010) 10 

as modelling appear to be an alternative solution to improve water quality monitoring cost. Thus, many 11 

works have taken place during the last decades to set up empirical models or models based on 12 

geochemical processes to predict the concentration of pollutants such as heavy metals, mercury, 13 

nitrates or radionuclides (Braga et al., 2010; Hu et al., 2007; Zheleznyak et al., 2022; Zhu et al., 2018). 14 

However, these models are often based on restrictive assumptions and require parameters that are 15 

not always available (Cho et al., 2016; Ciffroy and Benedetti, 2018; Desai et al., 2013; Hilko et al., 2012; 16 

Lu et al., 2019). With the recent advances on computer calculations and artificial intelligence 17 

applications in many fields (Abiodun et al., 2018), the use of data-driven models bring a new tool to 18 

model the concentrations and the behavior of theses pollutants (Lu et al., 2019; Yaseen, 2021; Ye et 19 

al., 2020). The number of published works on heavy metals simulation using machine learning models 20 

greatly increased from less than 5 publications by year before 2011 to 49 publications in 2020 (Yaseen, 21 

2021). Models such as Artificial Neural Network (ANN), classification and regression tree, linear 22 

regression or support vector machine models are now used to predict the concentration of pollutants 23 

in the environment.  24 



However, their use to model radionuclides concentrations in water and suspended sediment (SS) of 25

rivers remain sparse and new. In a recent review, Drago  highlights the potential use of ANN 26 

in environmental radioactivity but the studies regarding the hydrosphere are still sparse and mainly 27 

focus on water, not on sediment. For example, Korobitsyn et al. (2008) demonstrated that ANN could 28 

be used to understand the high concentrations of dissolved Strontium-90 observed in the Techa River 29 

(Russia). Kulahci et al. (2006) used an ANN construction to predict the total alpha and total beta 30 

radioactivity as a function of pH, total hardness, electrical conductivity and depth. Seasonal and spatial 31 

variability and classification of radionuclide concentrations might also be done using neural network 32 

such as self-organizing maps (Skwarzec et al., 2009; Tutu et al., 2005) and help improve monitoring 33 

programs. While other machine learning tools such as random forest (with predictive or causal 34 

techniques) had been recently used to analyze cesium-137 (137Cs) contamination of terrestrial plants 35 

(Shuryak, 2023, 2022), no similar work was conducted on liquid or particulate concentration in rivers. 36 

Due to its anthropogenic presence in many environmental compartments, this radionuclide and its 37 

dynamics has been studied for decades, especially in waterways (Antonelli et al., 2008; He and Walling, 38 

1996; Konoplev et al., 2020; Lepage et al., 2014). Thus, during the last decades, empirical modelling of 39 

137Cs concentration in rivers have been developed, based on assumption like the solid/liquid ratio or 40 

the size of the particles (Ciffroy et al., 2001; Konoplev et al., 2020; Tomczak et al., 2019). However, to 41 

our knowledge, the dynamic in rivers of this radionuclides was not yet subjected to a machine learning 42 

analysis. To pursue this effort of using artificial intelligence in radioecology, a machine learning and a 43 

deep learning approaches were used and compared to a semi-empirical model to estimate the 137Cs 44 

particulate concentrations in a nuclearized river. 45 

2. Material and method 46 

2.1. Study area 47 

This study was conducted near the outlet of the Rhône River basin (  95 000km²) within the Rhône 48 

Sediment Observatory (Lepage et al., 2021; Fabien Thollet et al., 2021) (Fig. 1). This river is the largest 49 



source of freshwater to the Mediterranean sea and deliver 6.6 Mt yr 1 of sediment each year (Poulier 50

et al., 2019). The Rhône watershed is also characterized by a large climatic and geological 51 

heterogeneity (Olivier et al., 2022) that leads to strong variations of annual SS fluxes (from 1.4 Mt to 52 

18.0 Mt) (Delile et al., 2020). Moreover this river is one of the most nuclearized river over the world 53 

with many nuclear facilities (Eyrolle et al., 2020) such as Nuclear Power Plant (NPP), fuel cycle facilities 54 

and research centers (Fig. 1). The basin has also been affected by the fallouts from the atmospheric 55 

weapons tests and the accident of Chernobyl (Roussel-Debel et al., 2007). Total inventory of 137Cs was 56 

estimated to be 9.4 1014 Bq in 1986. This work focuses on the 137Cs concentrations in SS measured at 57 

the SORA monitoring station from 2010 to 2019. Located at Arles (Eyrolle et al., 2010), this station is 58 

the reference station to evaluate SS and radionuclides concentrations and fluxes near the outlet of the 59 

Rhône River in the Mediterranean Sea (Fig. 1).  60 

2.2. Suspended sediment sampling 61 

The sampling method used to characterize the 137Cs concentration in SS of the Rhône River is described 62 

in Eyrolle et al. (2020). Briefly, for baseflow period (water discharge lower than 3000 m3 s-1), 13.5 L of 63 

water are automatically sampled and filtered at 0.5 µm every 80 min and integrated for a month. For 64 

flood period, the previous sampling strategy is stopped, and a specific flood event automatic sampling 65 

is settled using up to five acetate cartridges (0.5 µm) with 5 L collected every 60 min until the clogging 66 

of the cartridge. 67 

2.3. Radionuclide analyses and concentrations (endogenous variable) 68 

Measurement of 137Cs is described in Eyrolle et al. (2020). The SS samples were slowly (approx. 2 69 

weeks) evaporated (80 °C) to dryness, ashed and put into tightly closed plastic boxes (17 mL or 60 mL) 70 

for gamma-ray spectrometry measurements (20 60 g) using low-background and high-resolution High 71 

Purity Germanium detectors. Measurements are regularly checked for background noise and drift 72 

using multi-gamma calibration sources in accordances with national standards. The detectors are also 73 

used in national and international intercomparisons. Results are expressed in Bq kg-1 (d.w.) and each 74 



sample was measured for 3 days to achieve detection limits of 0.5 Bq kg-1 (d.w.). Measured activities75

are decay-corrected to the date of sampling. The activity uncertainty (k=2) was estimated as the 76 

combination of calibration uncertainties, counting statistics, and summing and self-absorption 77 

correction uncertainties.  78 

For the studied period (2010-01-05 to 2019-06-04), 269 SS including 112 during baseflow and 157 79 

during flood events were measured (Fig. 2  supplementary information). From 2010 to 2019, the 80 

average particulate concentration was 7.8 ± 6.1 Bq kg-1 for 137Cs. Higher mean concentration was 81 

observed during baseflow (11.4 ± 7.4 Bq kg-1) than during flood events (5.3 ± 3.1 Bq kg-1).  82 

The annual flux of particulate 137Cs is calculated by multiplying its particulate concentration by the flux 83 

of SS (water discharge multiplied by SS concentration) for the sampling periods and summed by year. 84 

In 2015, while water discharge and SS concentration were measured, most of the SS sampling was not 85 

conducted due to logistical issues. To estimate the flux during this period, the year has been cut 86 

according to the hydrology to distinguish floods and baseflows regarding the flood threshold (3000 m3 87 

s-1). 88 

2.4. Machine learning methodology 89 

2.4.1. Input variables (exogenous variable) 90 

Two different types of exogenous variable were used: routine radioactive liquid releases and 91 

hydrological information. Note that with this approach, we do not apply any transit time between the 92 

monitored stations (Fig1) and Arles, and we do not consider physicochemical variables such as particle 93 

size or organic content as such variables were not available for the whole studied period. All the data 94 

used are available in the supplementary information (SI). 95 

2.4.1.1. Nuclear liquid effluents 96 

As explained previously, nuclear facilities are allowed to release radioactive effluent directly into the 97 

Rhône River. Such release must respect concentration thresholds and must be carried out under 98 



normal hydrological conditions (baseflow), excluding low-level water and flood. For 137Cs, the main 99

source of liquid effluent in the Rhône River is the reprocessing center of Marcoule (Fig. 1) which 100 

represent most of the annual liquid emission of the 137Cs. In fact, the mean annual releases from 2010 101 

to 2016 was 20.3 GBq y-1 of 137Cs for the center of Marcoule while the sum of the mean annual releases 102 

of the four NPPs was 0.1 GBq y-1 of 137Cs. Quantity of 137Cs (MBq) released was estimated for each 103 

measurement at the monitoring station without applying a transit time. The duration of the releases 104 

(in hours) and the total flux of SS (t) that transited in the river during the release periods was also used 105 

as exogeneous data. 106 

2.4.1.2. Water discharge and suspended sediment concentration 107 

In addition to the SORA station, water discharge (Q in m3 s-1) and SS concentration (SSC in mg L-1) were 108 

also acquired at Jons, which is the reference station to evaluate concentrations and fluxes from the 109 

Upper Rhône River, and at the outlet of the main tributaries: Saône, Isère, Ardèche and Durance rivers 110 

(Fig. 1). Acquisition of Q and SSC are described in (Lepage et al., 2021) and was conducted within the 111 

Rhône Sediment Observatory. Hourly water discharges (QH) were calculated by conversion of water 112 

level measurements through stage-discharge rating curves, otherwise through numerical modelling (F. 113 

Thollet et al., 2021). During the studied period, the mean water discharge was 1520 ± 818 m3 s-1, 566 114 

± 317 m3 s-1, 65 ± 131 m3 s-1, 93 ± 125 m3 s-1, 312 ± 150 m3 s-1, 399 ± 420 m3 s-1, respectively at Arles, 115 

Jons, Ardèche, Durance, Isère and Saône stations (Fig. 3). The SSC at most stations are derived from in-116 

situ turbidity measurements conducted every 10 minutes (Le Bescond et al., 2018). The SSC is then 117 

calculated through the site-specific turbidity-SS rating curve (Navratil et al., 2011), which is determined 118 

on each site for a wide range of concentrations. At Arles, the SSC is measured by filtration of water 119 

sample collected by an automatic water sampler by the MOOSE network (Mediterranean Ocean 120 

Observing System for the Environment) (Raimbault et al., 2014). During the studied period, the mean 121 

SSC was 51 ± 160 mg L-1, 19 ± 46 mg L-1, 9 ± 18 mg L-1, 114 ± 606 mg L-1, 82 ± 455 mg L-1, 14 ± 17 mg L-122 

1, respectively for Arles, Jons, Ardèche, Durance, Isère and Saône rivers (Fig. 3). While QH was used as 123 

input variable (referred to as Q_Name-of-the-station in m3 s-1), SSC was not used in this form but after 124 



calculating the flux of SS (t h-1) by multiplying SSC by Q. The SS flux is referred to as FSS_Name-of-the-125

station. 126 

2.4.2. Models 127 

2.4.2.1. Random Forest - RF 128 

The random forest (RF) is a supervised learning algorithm consisting of a set of decision trees (Breiman, 129 

2001). It uses the "bagging" method whose general idea is that a combination of learning models 130 

increases the overall result. The regressor algorithm is used to process the regressions. The RF 131 

algorithm randomly selects observations and features to construct multiple decision trees and then 132 

averages the results. Bootstrap samples are used when building trees. Several hyperparameters are of 133 

interest, including: 134 

 The n_estimators hyperparameter which is the number of trees the algorithm built before 135 

taking the maximum vote or taking the averages of the predictions. In general, a higher 136 

number of trees increases performance and makes the predictions more stable, but it also 137 

slows down the computation.  10 values were chosen among a uniform distribution in [80, 138 

200]. 139 

 The max_depth hyperparameter is the maximum depth of the tree: 10 values were chosen 140 

regularly distributed in the interval [5, 30]. 141 

 The max_features hyperparameter which is the maximum number of features that the random 142 

forest considers splitting a node. It is chosen equal to the number of features which are in our 143 

case the columns of water discharges at the different stations. 144 

 The min_sample_leaf hyperparameter which determines the minimum number of leaves 145 

needed to split an internal node. Ten values were chosen among a uniform distribution in [1, 146 

10].  147 



 The min_sample_split hyperparameter which determines the minimum number of samples 148 

required to split an internal node. Ten values were chosen among a uniform distribution in [1, 149 

30].  150 

A randomized search on hyper parameters has been performed, optimized by 5 cross-validated 151 

searches over parameter settings. 152 

2.4.2.2. Hierarchical Attention-Based Recurrent Highway Networks - HRHN 153 

The proposed deep learning method aims at predicting the future T of the timeseries of 137Cs 154 

(endogenous variable) from a set of past information t at T-1 of the presented exogenous variable and 155 

the associated 137Cs evolution. The architecture chosen here is the HRHN (Hierarchical Attention-Based 156 

Recurrent Highway Networks) an encoder-decoder neural network (Tao et al., 2018). The principle of 157 

this architecture is the use of two neural networks. The first one encodes the input data (exogenous 158 

variable at time [t,T-1]) into a latent representation. A hierarchical attention layer weights the 159 

importance of the different elements of this representation.  Then, the second network must decode 160 

this information to predict the future T of the time series of 137Cs concentration in relation to the 161 

history of concentration 137Cs at time t to T-1. The decoder and encoder may have different layers. 162 

Here the encoder is composed of convolutional layers (Lecun et al., 2015) and Recurrent Highway 163 

Network (RHN) (Zilly et al., 2017) layers. The decoder is composed of RHN layers.  The purpose of the 164 

recurrent layers is to capture the temporal dynamics of the series. The convolutional layer aims to 165 

detect patterns in the series (seasonality, peak). Max pooling (Aggarwal, 2018) is also performed 166 

between successive convolutional layers, which can reduce the size of feature maps to avoid 167 

overfitting and improve efficiency. For more information on the nature of the layers we refer the 168 

reader to (Goodfellow et al., 2016). 169 

This neural network architecture is associated with several hyperparameters linked to the nature of 170 

these layers. The optimization is carried out with the Hyperband method (Li et al., 2018). The aim of 171 

the optimization algorithm is to minimize the error on both the training and the test base to propose 172 



the best performing model with the most interesting parameters and hyper-parameters.  The detail of 173

the grid of possible combinations for hyperparameters is presented. We have decided to keep the 174 

number of convolution layers given in (Tao et al., 2018) (i.e. 3), however their size and the associated 175 

max-pooling will be determined in the following interval for each: 176 

 CNN window size (nbr_filter_cnn) in [3,5,7]. The convolution window size determines the size 177 

of the region over which convolution is applied at each time step. It is important to choose an 178 

appropriate window size to capture the relevant temporal patterns in the data. 179 

 Number of filters (dim_filter_cnn) in [8,16,32,64,128,256]. The number of filters determines 180 

how many different patterns the network can learn. The higher the number of filters, the more 181 

complex the network can be, but this can also make training more difficult. 182 

 Max pooling size (dim_max_pooling) in [2,3,4,5]. The pooling window size determines the 183 

region of the input that will be aggregated into a single output element. In general, a larger 184 

pooling window size reduces the spatial resolution of the output but can also improve the 185 

robustness of the network to minor variations in the input. In contrast, a smaller pooling 186 

window size retains more detail of the input but may also make the network more sensitive to 187 

noise or minor variations. 188 

As in Tao et al. (2018), we assume the RHN has same structure in the encoder and the decoder:  189 

 Hidden layers (layer_RHN) in [1,2,3,4,5]. The hidden layers allow the neural network to model 190 

non-linear relationships between inputs and outputs. Each hidden layer in a deep neural 191 

network computes a non-linear transformation of the previous layer's outputs, allowing the 192 

network to learn increasingly abstract and complex features as information is propagated 193 

through the network. 194 

 Dimension of hidden state (dim_RHN) in [8,16,32,64,128,256]. The dimension of the hidden 195 

state determines the size of the hidden state vectors that are calculated at each time step of 196 

the model. A higher dimension of the hidden state can allow the model to capture more 197 



complex and subtle information in the data, but it can also make the model slower to train and 198

require more training data. 199 

The intervals chosen for these different hyperparameters are based on the following references 200 

(Chollet, 2018; Goodfellow et al., 2016) and documentation available on Tensorflow. The algorithm 201 

Hyperband has been customized to include optimization of the number of time steps. It implies that 202 

for each combination of selected hyperparameters an update of the data size is performed. This 203 

hyperparameter linked to the data history allows us to determine the quantity of past information 204 

most relevant to predict the future evolution of the endogenous variable. The sequence length (here 205 

monthly) is selected between 9 and 20 past data. 206 

2.4.3. Splitting methods and cross-validation 207 

Two processes were used to split the dataset: 208 

 The dataset was chronologically separated as a time series as it is required for the HRHN 209 

approach. The train dataset ranges between 2010 to end of 2014 with 198 observations and 210 

the test dataset ranges between end of 2015 to 2019 with 72 observations (Table 1). For RF, 211 

this modelling will be referred as RF_TS. All the mean with their range of the data used by the 212 

models are displayed in the Table 1. 213 

 For RF, an additional five cross-validation procedure was performed on the whole data. The 214 

split was performed randomly on the 269 observations. This modelling will be referred as 215 

RF_CV. With this method, several subsets of training and test data were used, thus considering 216 

the full range of exogenous and endogenous variables. 217 

Table 1: mean (min - max) values of the data used by the data-driven models after chronological splitting. 218 

Mean (min  max) Train dataset Test dataset 

Number of data 198 71 

 water discharge at Arles (m3 s-1) 2646 (595 - 5420) 2586 (579 - 6857) 

 water discharge of Ardèche River (m3 s-1) 202 (5 - 2167) 209 (6 - 2502) 



water discharge of Durance River (m3 s-1) 201 (8 - 1010) 270 (10 - 1715)

 water discharge of Isère River (m3 s-1) 415 (97 - 1130) 375 (118 - 1083) 

 water discharge at Jons (m3 s-1) 880 (187 - 2143) 891 (214 - 2932) 

 water discharge of Saône River (m3 s-1) 792 (56 - 1713) 853 (38 - 2124) 

 suspended sediment flux at Arles (t h-1) 3119 (16 - 48947) 8547 (8 - 105011) 

 suspended sediment flux of Ardèche River (t h-1) 53 (0,05 - 1640) 68 (0,04 - 2066) 

 suspended sediment flux of Durance River (t h-1) 655 (0,1 - 19807) 7874 (0,1 - 113703) 

 suspended sediment flux of Isère River (t h-1) 389 (3 - 6715) 1351 (4 - 20508) 

 suspended sediment flux at Jons (t h-1) 293 (1 - 4324) 434 (1 - 4714) 

 suspended sediment flux of Saône River (t h-1) 96 (0,5 - 622) 195 (1 - 1593) 

137Cs release by nuclear industries (MBq) 479 (0 - 7586) 671 (0 - 3428) 

Duration of the nuclear release (h) 18 (0 - 211) 16 (0 - 81) 

Total suspended sediment flux during nuclear release (t) 4320 (0 - 103254) 4397 (0 - 32921) 

137Cs concentration (Bq kg-1) 7,8 (2,1 - 24,7) 7,9 (2,2 - 43,9) 

 219 

2.4.4. Prediction indicators 220 

The proposed models were evaluated using the Root Mean Squared Error (RMSE) following Eq1 and 221 

the coefficient of determination (R2) following Eq2 as it is commonly used in such studies:  222 

      Eq.1 223 

   224 

Eq. 2 225 

With: 226 

 N is the number of data 227 

  and  respectively the ith occurrence of the  measured and 228 

modeled concentrations of particulate 137Cs 229 

  the mean of the . 230 



These performance indicators are classically used in model evaluation. The measures the degree of 231

variability of the dependent variable that can be explained by the model. The  is a good measure of 232 

how well the model fits the dependent variables.  233 

2.4.5. Sensitivity of the input variables 234 

The importance of a feature is computed as the (normalized) total reduction of the criterion brought 235 

by that feature. It is also known as the Gini importance (Breiman, 2001). It calculates each feature 236 

importance as the sum over the number of splits (across all trees) that include the feature, 237 

proportionally to the number of samples it splits. 238 

Regarding the HRHN approach, sensitivity analysis in neural networks with a complex architecture is 239 

still a subject in full development notably because of the large number of hyperparameters and 240 

parameters of these models. It (Doshi-Velez and Kim, 2017). We propose here the Permutation feature 241 

importance, a simplistic approach to try to bring elements of answer on the importance of the various 242 

exogenous variables. Initially used for random forests, it is applicable to any model (Wei et al., 2015). 243 

This method has the advantage of not requiring a re-training phase for the model or long simulations, 244 

which can be costly in terms of computing time for HRHN. The concept is straightforward: we measure 245 

246 

s 247 

248 

leaves the model error unchanged, because in this case the model ignored the feature for the 249 

prediction. This method is applied to the test set rather than the training set to assess the importance 250 

of the variables in the ability of the model to generalize to the unknown data. This is because the model 251 

is trained on the training set and its coefficients are adjusted to minimize the error on the training 252 

data. If we use the training set to assess the importance of variables, this may lead to an overestimation 253 

of the importance of some variables, as the model has been optimized to minimize the error on these 254 

specific data. In contrast, the validation set is used to assess the ability of the model to generalize to 255 



new data. By calculating the importance of the variables on the validation set, we can assess the 256

importance of the variables in the ability of the model to generalize and predict new data. The results 257 

obtained correspond to the average of 100 simulations of Permutation feature importance for each 258 

variable. 259 

2.5. Empirical modelling of 137Cs 260 

In the Rhône River, recent work was conducted to model the solid/liquid fractionation of 137Cs as a 261 

function of the hydro-sedimentary conditions (water discharge, suspended sediment concentration 262 

and particle size), the radioactive liquid discharges and the mean 137Cs concentrations of the superficial 263 

soils of the watershed (Tomczak et al., 2021). With this approach, hourly 137Cs concentrations in 264 

suspended sediments were modeled in the Rhône River at the SORA station using the following 265 

equations: 266 

    Eq. 3 267 

With: 268 

 (l.kg-1), the equilibrium solid/liquid ratio of the superficial reactive layer of particles of 269 

thickness  (µm). 270 

 (Bq.kg-1), the mean 137Cs concentration of the superficial soils of the catchment. 271 

 (mg.l-1),  the reactive fraction of suspended sediments given as a function of  (µm), the 272 

median of their granulometric distribution: 273 

 if  and  if  Eq. 4 274 

 (mg.l-1), the non-reactive fraction of suspended sediments:  275 

  (Bq.l-1), the dissolved concentration of 137Cs: 276 

       Eq. 5 277 

  (mg.l-1), the colloidal fraction of suspended sediments. 278 



(Bq.l-1), the total exchangeable fraction of the 137Cs, 279

where  (m3.s-1) is the waterflow of the river and  (Bq.s-1) is the flux of 137Cs releases by the 280 

routine discharges. 281 

To compare this model approach with the measures and the other approaches, the calculated hourly 282 

series is integrated over the sampling period of average activity was calculated for each SS sampling 283 

period. 284 

3. Results 285 

3.1. Parameters 286 

The optimized parameters used for the Random Forest and the HRHN approaches are detailed in the 287 

Table 2. Before making a prediction, the HRHN model receives as input a batch of data corresponding 288 

to a small history.  According to the optimization, the hyperparameter of the table indicates a sequence 289 

length of data history equal to 16: the first 16 values from the input time series and the target time 290 

series (137Cs concentration) are therefore used to predict the future 137Cs concentration (i.e. the 17th 291 

value of the target series). This 17th value will then be included in the next history of the target variable 292 

in the next prediction. The process is repeated until the last time in the series is reached. 293 

Table 2:  Values of the hyperparameters of random forest and HRHN 294 

Random Forest HRHN 

Parameter Value Parameter Value 

n_estimators 146 dim_RHN                    8 

max_depth 13 layer_RHN                    2 

min_sample_leaf 1 dim_max_pooling               [3,4,2] 

min_sample_split 3 dim_filter_cnn               [7,5,5] 

  nbr_filter_cnn             [8,32,16] 



  sequence_length of 

data history 

                 16 

 295 

3.2. Modeling 296 

The modeling of particulate 137Cs in the SS in the Rhône River at Arles is presented in the Figure 4. For 297 

the different approaches, the modelled concentrations fall within the range of the measurements with 298 

the exception of the empirical approach that overestimates the concentration in the early dataset (Fig. 299 

4A).The approaches correctly follow the trends with lower concentrations during floods and higher 300 

concentrations during baseflow and low-level water but the RF and empirical approaches tend to 301 

underestimate the concentration during low-level water (Fig. 4B) while the HRHN correctly estimate 302 

the concentration for the whole range of hydrological data. The difference between measured and 303 

modelled values is lower for the HRHN and RF_CV approaches with  values of RMSE lower than 4 Bq 304 

kg-1 (Table 3) and  R2 higher than 0.5. 305 

Table 3: Prediction indicators for the different approaches. 306 

 Empirical RF_TS RF_CV HRHN 

RMSE Train  

(Bq kg-1) 
5.74 

0.96 

3.54 ± 2.7 

0.69 

RMSE Test  

(Bq kg-1) 
6.52 3.59 

R2 Train 
0.10 

0.96 
0.59 ± 0.31 

0.98 

R2 Test 0.41 0.71 

3.3. Sensitivity 307 

The sensitivity analysis on the input variables shows contrasted results between the HRHN approach 308 

and the two others (Fig. 5). For HRHN, SS fluxes of the Durance River and at Arles had a sensitivity 309 

higher than 25% while their sensitivity was lower than 5% for RF_TS. For RF_CV, FSS Durance only was 310 



negligible. For both RF approaches, the water discharge at Arles (Q_Arles) and from the Saône River 311

(Q_Saone) had a sensitivity higher than 20%. For RF_TS, the water discharge from the upper Rhône 312 

River at Jons (Q_Jons) had a sensitivity higher than 10%. Finally, nuclear release had a sensitivity lower 313 

than 5% for the different approaches. 314 

3.4. Fluxes 315 

For the periods with measurement of 137Cs in SS, fluxes of 137Cs were calculated for the three modelling 316 

approaches and compared to the measured flux (Fig. 6A). For HRHN, the data history (the sixteen first 317 

values of train and test sub datasets  Table 1) represented around 35% of the annual flux of 2010 and 318 

2016 so the estimated fluxes are at two third recalculated by this approach in 2010 and 2016. Overall, 319 

the different approaches had annual fluxes close to the measured, with slight overestimation in 2010, 320 

2013 2016 and 2017. The average absolute differences for the test sub-datasets are respectively 36.0 321 

± 25.0%, 46.7 ± 22.4%, 21.7 ± 19.3% and 30.6 ± 24.7% for HRHN (excluding 2016 due to the data history 322 

used), RF_TS, RF_CV and empirical approaches. Finally, flux of 2015 was reconstructed by the three 323 

approaches and the result is similar with a flux of 137Cs estimated between 20.0 to 24.5 GBq (Fig. 6B). 324 

4. Discussion 325 

The two data-driven approaches (HRHN and RF) achieved good prediction scores using only 326 

hydrological data (water discharge et SPM fluxes) and industrial input of 137Cs. These results show that 327 

the use of the main Rhône River tributaries hydrology alone is sufficient to obtain good results, without 328 

any knowledge of the actual input of 137Cs through erosion from the catchment (i.e. soil affected by 329 

the global fallout and the Chernobyl accident). Furthermore, all these input variables do not seem to 330 

be necessary as shown in the sensitivity analysis. Indeed, industrial releases represent only 5% of the 331 

sensitivity analysis (Fig. 5). These results show that near the mouth of the Rhône River, it is rather the 332 

hydrology (and the 137Cs concentration in eroded soils) that governs the concentrations of particulate 333 

137Cs than the industrial releases. However, a bias is possible as there are very few events with high 334 

concentrations of 137Cs (only 4 on 269 values over 25 Bq kg-1  Fig. 2), events related to the combination 335 



of nuclear release with low water discharge (Qevents = 717 ± 98 m3 s-1 vs Qmean
 = 2586 m3 s-1) resulting in 336

a low dilution of the concentration released. So, the weight of the releases could be higher if the 337 

representation of these events was larger in the dataset and the score improved for all the models as 338 

they underestimate the concentration during low-level water (Fig. 4B). This confirms the interest of 339 

regularly updating the parameterization of the models with larger datasets. Also, the sensitivity 340 

analysis shows that some tributaries have more weight than others: the Durance tributary for HRHN 341 

and the Saône tributary for RF. The weight of the Durance River is logical as this tributary is 342 

characterized by intense floods which generate very important sediment flux (Bodereau et al., 2022; 343 

Delile et al., 2020; Poulier et al., 2019) for a relatively low water discharge compared to the other 344 

tributaries (Fig. 7A). This result confirms the necessity to not only use the water discharge but also the 345 

flux of SS as the relation between the two parameters is not linear (Fig. 7B). For the RF approaches, 346 

the negligibility of the Durance tributary and the weight of the Saône tributary illustrate the difficulty 347 

in the choice of input variables when they are correlated (Gregorutti et al., 2017) which is the case of 348 

the hydrological data of this study. For these approaches, the weight of the hydrology at the 349 

monitoring station (Arles) is high and might also explain the low weight of the Durance tributary due 350 

to the proximity of this tributary (Fig. 1). Therefore, the models could be improved by removing the 351 

insignificant variables that indicate redundancy of information in the algorithm. 352 

Regarding the score between the different models, the data-driven approaches have a better 353 

prediction of 137Cs than the empirical approach and among the data-driven approaches, the most 354 

complex one (HRHN) displayed better prediction. However, these machine learning and deep learning 355 

approaches proposed in this article are very different. First, Random Forest (RF) is a machine learning 356 

method that will make a prediction based on a set of regression trees, each having learned its tree 357 

structure from a sample of the training base. Therefore, its operation will be sensitive to the training 358 

frame and to a small number of extreme values (peaks in the data). This sensitivity explains the better 359 

scores obtained after the cross validation splitting method (RF_CV) than with temporal splitting 360 

(RF_TS) as the CV splitting considered a larger number of extreme events. In fact, the FSS_Arles and 361 



FSS_Durance variables used for RF_TS training are not representative of the full dataset (Table 1), 362

which explains the low sensitivity scores for these variables with this approach. Thus, a number of 363 

nodes and leaves will not be present, making it difficult to predict particular cases. However, RF is 364 

distinguished by the very intuitive understanding of its algorithm and will find the average trends. 365 

Furthermore, its low number of hyperparameters makes the algorithm quickly applicable, so it can be 366 

considered to increase its learning base in order to increase its search area. Score of the random forest 367 

could also be improved by considering a causal techniques as the algorithm causal forest (Shuryak, 368 

2023). Second, the HRHN approach aims to understand the dynamics of the target variable: 369 

understanding past events in order to predict future behavior. This understanding is achieved through 370 

the different layers of HRHN, by detecting patterns in the time series (seasonality, peak...) through 371 

convolutional layers and by trying to capture the temporal dynamics through recurrent layers. During 372 

training, the network will parameterize itself (weighting) to stimulate the most important information 373 

in the network to estimate the future prediction. The model will therefore a priori have a greater 374 

robustness in the most extreme cases, which explain why the results are better than RF_TS despite the 375 

non-representativeness of the FSS_Arles and FSS_Durance variables in the training set (Table 1). 376 

However, its architecture is associated with a large number of hyperparameters and parameters which 377 

makes its optimization phase expensive in terms of computation time. Therefore, the interpretability 378 

of the model is made complex. Although basic sensitivity analysis methods can be implemented to 379 

provide a measure of the relative importance of input characteristics, it will be necessary to develop 380 

more suitable algorithms to capture the full richness of the model. It should be noted here that the 381 

impact of the history of the target variable has not been studied. Even more, prediction with HRHN 382 

requires knowledge of a time history which limits its application to a framework where past data is 383 

available. Finally, regarding the particulate 137Cs annual fluxes, the different approaches can be used 384 

to predict it as the differences are generally low, especially in 2015 (Fig. 7). At the outlet of the Rhône 385 

River, the flux of 137Cs is mostly related to the flux of SS than the concentration of 137Cs. In fact, the 386 



137Cs concentration varies by one order of magnitude while the FSS_Arles varies by five orders of 387

magnitude (Table 1).  388 

To conclude, while the data-driven models can estimate concentrations in the perimeter of this study 389 

(i.e. normal condition of nuclear releases) without the need of the 137Cs released by nuclear industries 390 

(as lower than 5% of the sensitivity analysis), the empirical model needs this information which is 391 

difficult to obtain. This limitation shows that an AI approach seems to be easier to apply on this 392 

catchment to predict particulate 137Cs in normal condition and that this could be a useful approach for 393 

interpreting and supplementing routine monitoring datasets. In case of accidental releases (e.g. 394 

concentration several orders of magnitude above those in this study), the AI models will struggle to 395 

predict the right concentrations if their training dataset does not incorporate such situations and 396 

empirical approaches would then be more useful. However, in this example, the AI approach would 397 

reveal an anomaly between the prediction and the measurement, and therefore allow further work to 398 

be undertaken to understand the anomaly. Moreover, the AI approach might be used to estimate the 399 

quantity of 137Cs released using the 137Cs concentration in SS as input data. Going further, whatever 400 

the sediment-bound contaminant of interest, AI seems to be a good tool for predicting concentrations 401 

or sources as long as any of this information is available. 402 

5. Conclusion 403 

Concentrations of 137Cs is suspended sediment near the mouth of the Rhône River were estimated 404 

using three data-driven models and an empirical approach. Thanks to the long-term monitoring of this 405 

radionuclide, the data-driven models were able to accurately predict its concentration with better 406 

scores than the empirical approach. These results demonstrate that the use of a basic data-driven 407 

model (random forest) allow to obtain a better prediction of this radionuclide with a few diversities of 408 

input variables: water discharge and suspended sediment flux, and 137Cs release from nuclear facilities. 409 

In order to improve the prediction, a more complex model was used (HRHN) with an architecture that 410 

permit to understand the temporality of the 137Cs concentration. In summary, these methods offer 411 



different means of prediction with greater or lesser advantages. It will then be up to the user to choose 412

the most suitable model according to the objectives and the data available.  413 
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Figure 1: Location of the monitoring stations and the nuclear facilities within the French part of the 
Rhône River downstream Lake Geneva and inventory of 137Cs estimated at the date of may 1986 
(Roussel-Debel et al., 2007). 

 

Figure 2: Concentration of particulate 137Cs measured at Arles during the studied period. 

 

Figure 3: (A) Mean hourly water discharge and (B) suspended sediment concentration at the 
monitored stations during the studied period. 

 

Figure 4: (A) measured (black) and modeled (grey) concentration of particulate 137Cs and (B) relation 
between measure and modelling on the test sub-datasets. For the HRHN approach, the 16th firsts 
values of the train (2010  2014) and the test (2015  2019) datasets were used as historic in the 
input dataset and not reported on the B graphic. 

 

Figure 5: Sensitivity (%) of the input variables for the different approaches. 

 

Figure 6: (A) measured and modelled annual flux of 137Cs including only periods with suspended 
sediment sampling and (B) estimation of the total flux in 2015 with completion of the periods 
without sampling by the four models. 

 

Figure 7: (A) mean annual flux of water and suspended sediment for the 5 stations and (B) their 
relation between the water discharge and the suspended sediment flux. 
















