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Abstract. This paper investigates the utility gain of using Iterative
Bayesian Update (IBU) for private discrete distribution estimation using
data obfuscated with Locally Differentially Private (LDP) mechanisms.
We compare the performance of IBU to Matrix Inversion (MI), a stan-
dard estimation technique, for seven LDP mechanisms designed for one-
time data collection and for other seven LDP mechanisms designed for
multiple data collections (e.g., RAPPOR). To broaden the scope of our
study, we also varied the utility metric, the number of users n, the domain
size k, and the privacy parameter ϵ, using both synthetic and real-world
data. Our results suggest that IBU can be a useful post-processing tool
for improving the utility of LDP mechanisms in different scenarios with-
out any additional privacy cost. For instance, our experiments show that
IBU can provide better utility than MI, especially in high privacy regimes
(i.e., when ϵ is small). Our paper provides insights for practitioners to
use IBU in conjunction with existing LDP mechanisms for more accurate
and privacy-preserving data analysis. Finally, we implemented IBU for
all fourteen LDP mechanisms into the state-of-the-art multi-freq-ldpy
Python package (https://pypi.org/project/multi-freq-ldpy/) and
open-sourced all our code used for the experiments as tutorials.

Keywords: Expectation-Maximization · Iterative Bayesian Update ·
Local Differential Privacy · Distribution Estimation.

1 Introduction

The widespread availability of Big Data has led to the development of new meth-
ods for extracting valuable insights from large datasets. However, the increased
capacity to collect and analyze data also raises significant concerns about privacy,
particularly in cases where sensitive information about individuals is involved.
Thus, the direct collection and storage of users’ raw data on a centralized server
should be avoided as these data are subject to illegal access [21] or internal
fraud [28], for example. To address this issue, recent works have proposed sev-
eral mechanisms satisfying Differential Privacy (DP) [12, 13], in the distributed
setting, referred to as Local DP (LDP) [19].
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One of the strengths of LDP is its simple trust model: since each user sani-
tizes their data locally, user privacy is protected even if the server is malicious.
However, the increased privacy of the local DP model comes at the cost of re-
duced utility. That is, as each user’s data is obfuscated, several lower bounds
exist on the error of these LDP mechanisms. This strongly differentiates the
local DP model from the central DP model. [8]. To address this issue, one line
of research has largely explored the issue of improving the utility of LDP distri-
bution estimation mechanisms [7, 16, 18, 24, 25, 30], in which the data collector
estimates the number of users for each possible value based on the sanitized
data of the users. Distribution estimation is a primary objective of LDP [29], as
it is a building block for more complex tasks (e.g., heavy hitter estimation [7],
marginal estimation [9, 17,20,23], and distribution monitoring [3, 6, 16]).

Two commonly used estimators for distribution estimation under LDP
are [29]: Matrix Inversion (MI), which is based on simple linear algebra tech-
niques, and Iterative Bayesian Update (IBU) [1, 2], which is based on the well-
known Expectation-Maximization [10] algorithm. Thus, another line of research
has explored how to improve the estimation at the server side through post-
processing techniques [14, 15, 22, 26]. For instance, to improve the utility of
the MI estimator, in [18], the authors evaluate two post-processing techniques,
namely, normalization (also adopted in this paper) and projection on the sim-
plex. More recently, Wang et al. [26] revisited and introduced, in total, ten
post-processing techniques for the MI estimator. Regarding IBU, ElSalamouny
& Palamidessi [14,15] investigated a generalization of IBU for personalized LDP
and, in [22], the authors improved IBU considering small number of users.

Main contributions. While the aforementioned works have explored how
to improve the estimation of LDP mechanisms on the server side through post-
processing techniques, no study has compared the performance of MI and IBU
estimators for more than three LDP mechanisms. This paper aims to fill this
research gap by conducting an in-depth empirical analysis of the utility gain by
using IBU instead of MI for fourteen state-of-the-art LDP mechanisms. More pre-
cisely, we have experimentally assessed seven state-of-the-art LDP distribution
estimation mechanisms, namely, Generalized Randomized Response (GRR) [18],
Binary Local Hashing (BLH) [7], Optimal Local Hashing (OLH) [25], Symmetric
Unary Encoding (SUE) [16], Optimal Unary Encoding (OUE) [25], Subset Se-
lection (SS) [24,30], and Thresholding with Histogram Encoding (THE) [25]. In
addition, we also extended the analysis to seven state-of-the-art memoization-
based LDP mechanisms, namely, Longitudinal GRR (L-GRR) [3], four Longitu-
dinal Unary Encoding (L-UE) [3, 16] mechanisms, and two Longitudinal Local
Hashing (L-LH) [6] mechanisms. To further broaden the scope of our study, we
have evaluated two popular utility metrics by varying the number of users n,
the privacy guarantee ϵ, and the domain size k, with both synthetic and real-
world datasets. Finally, this paper open-sources the implementation of IBU for
all aforementioned LDP mechanisms into the multi-freq-ldpy Python pack-
age [4], as well as the code used for our experiments in the form of tutorials.

In summary, the three main contributions of this paper are:
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– We present an in-depth analysis of the utility gain of IBU over MI for seven
state-of-the-art LDP mechanisms designed for one-time data collection;

– To the authors’ knowledge, we are the first to extend IBU and conduct a
detailed analysis of its utility gain over MI for seven state-of-the-art longi-
tudinal LDP mechanisms designed for multiple data collections;

– We open-sourced the IBU implementation for all aforementioned LDP mech-
anisms into multi-freq-ldpy [4], facilitating future research in the area and
making it easier for researchers to replicate and build upon our findings.

Outline. The rest of this paper is organized as follows. Section 2 introduces
the notation, the problem, and the metrics, and briefly reviews LDP and the
two estimators, i.e., MI and IBU. In Section 3, we present all LDP distribution
estimation mechanisms analyzed in this paper. Next, Section 4 details the ex-
perimental setting and main results before discussing related work in Section 5.
Finally, we conclude this work indicating future perspectives in Section 6.

2 Preliminaries

In this section, we present the notation, the problem, the utility metrics, the
LDP privacy model, and both MI and IBU estimators, used in this paper.

2.1 Notations & Problem Statement

The main notation used throughout this paper is summarized in Table 1. This
paper considers a distributed setting with n users and one untrusted server.
Each user holds a value v ∈ V , where V ranges on a finite domain D of size k.
The distribution of V is represented by f = {f(v)}v∈D ∈ [0, 1]k, i.e., f(v) is the
probability of v ∈ D. To satisfy LDP, each user i, for i ∈ [1..n], will apply an
obfuscation mechanismM(ϵ) to their value v

i to obtain an output yi = M(ϵ)

(
vi
)

from a finite set Y ranging on D. The obfuscation mechanism M(ϵ) maps v ∈ D
to y ∈ D through a channel matrix Avy, i.e., the probability that M(ϵ) yields
y from v. Upon collecting the obfuscated data of all users, the server computes
the observed distribution of yi denoted as f̃ = {f̃(v)}v∈D ∈ [0, 1]k, where f̃(v)
is the probability of v ∈ D and is calculated by counting the number of times
that v is observed in Y and divided by n. The server’s goal is to estimate f by
calculating f̃ and with the knowledge of the obfuscation mechanism M(ϵ). We

denote the estimated distribution of f by f̂ = {f̂(v)}v∈D.
As utility metrics, we use the Mean Squared Error (MSE) and the Mean Ab-

solute Error (MAE) to measure the difference between the original distribution
f and estimated distribution f̂ , which are formally defined as:

– MSE. Given f and f̂ , the MSE is an expectation of the squared error:

MSE =
1

k

∑
v∈D

(f(v)− f̂(v))2.
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Symbol Description

D Data domain.
k Domain size k = |D|.
n Number of users.
V Discrete set of original data {v1, v2, v3, . . . , vn}, ranging on D.
Y Discrete set of obfuscated data {y1, y2, y3, . . . , yn}, ranging on D.

f Distribution of original data, where f = {f(v)}v∈D ∈ [0, 1]k.

f̃ Distribution of obfuscated data, where f̃ = {f̃(v)}v∈D ∈ [0, 1]k.

f̂ Estimated distribution of f , where f̂ = {f̂(v)}v∈D.
M(ϵ) ϵ-LDP obfuscation mechanism, M(ϵ) : V → Y .
Avy Channel matrix, probability that M(ϵ) yields y ∈ D from v ∈ D.
Γ Utility gain of IBU over MI defined in Eq. (1).

[a, b] Set of all real numbers ≥ a and ≤ b.
[1..a] Set of integers {1, 2, 3, . . . , a}.
ai i-th coordinate of vector a.

Table 1: Notations

– MAE. Given f and f̂ , the MAE is an expectation of the absolute error:

MAE =
1

k

∑
v∈D

|f(v)− f̂(v)|.

In this paper, we are interested in comparing the two main statistical esti-
mators for f̂ , namely, MI and IBU. Based on the two popular metrics MSE and
MAE, we define the utility gain Γ of IBU over MI as follows:

Γ (%) = 100 ·max

(
MetricMI −MetricIBU

MetricMI
, 0

)
, (1)

that is, the utility gain is clipped to zero to represent no gain.

2.2 Local Differential Privacy (LDP)

In this paper, we use LDP [19] as the privacy model considered, formalized as:

Definition 1 (ϵ-Local Differential Privacy). A randomized mechanism M
satisfies ϵ-LDP, where ϵ > 0, if for any input v, v′ ∈ D, we have:

∀y ∈ D : Pr[M(v) = y] ≤ eϵ · Pr[M(v′) = y].

Proposition 1 (Post-Processing [13]). If M is ϵ-LDP, then for any function
g, the composition of M and g, i.e., g(M) satisfies ϵ-LDP.

The parameter ϵ controls the privacy-utility trade-off. Note that lower val-
ues of ϵ result in tighter privacy protection and vice versa. Moreover, an LDP
mechanism is called “pure LDP” if it satisfies the following definition [25].
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Definition 2 (Pure LDP [25]). An ϵ-LDP mechanism is pure if there are two
probability parameters 0 < q∗ < p∗ < 1 such that for all v ∈ D,

Pr[M(v) ∈ {y|v ∈ S(y)}] = p∗,

∀v ̸= v′ ∈ D Pr[M(v′) ∈ {y|v ∈ S(y)}] = q∗,

where S(y) is the set of items that y supports. That is, S(y) maps each possible
output y to a set of input values that y “supports”.

2.3 Matrix Inversion (MI) Estimator

All obfuscation mechanisms we analyze in this paper are pure LDP (cf. Defini-
tion 2), which makes their analysis advantageous. For instance, for any pure LDP

mechanism, the server estimates the distribution f̂ = {f̂(v)}v∈D ∈ Rk as [25]:

∀v ∈ D, f̂(v) =

∑n
i=1 1S(yi)(v

i)− nq∗

n(p∗ − q∗)
, (2)

in which yi represents the obfuscated data provided by each user (for i ∈ [1..n]),
and the function 1S(yi)(v

i) equals 1 if yi supports the value vi, and 0 otherwise.
However, when the number of users is small, many elements estimated with
Eq. (2) can be negative. Therefore, we clip the negative estimates to 0 and re-
normalize the estimated frequencies so that they sum up to 1, ensuring that
they constitute a valid probability distribution. Another way to write Eq. (2)
is: f̂ = f̃A−1

vy , in which f̃ is the observed distribution and A−1
vy is the inverse of

Avy [14, 18, 22]. For any pure LDP mechanism, we observed that the channel
matrix Avy is a square matrix with values p∗ in the diagonal and q∗ otherwise.

2.4 Iterative Bayesian Update (IBU) Estimator

The IBU estimator [1,2,14] is based on the Expectation Maximization (EM) [10]
method, which is a powerful method for obtaining parameter estimates when part
of the data is missing. IBU estimates the distribution of f as follows. Let f̃ be
the observed distribution on Y , Avy be the channel matrix, which represents the

probability of obtaining y from v, and f̂ be the estimated distribution on V . IBU
starts with a full-support distribution f̂0 on V (e.g., the uniform distribution).
Next, it iteratively generates new distributions by updating Eq. (3), where (∗),
(·), and (/) represent the element-wise product, dot product, and element-wise
division, respectively. Finally, it converges until a specified tolerance is reached.

f̂ t+1 = f̃ · f̂
t ∗Avy

f̂ t ·Avy

. (3)

3 LDP Distribution Estimation Mechanisms

In this section, we briefly review fourteen state-of-the-art LDP distribution es-
timation mechanisms, i.e., seven for one-time collection (Section 3.1) and seven
for multiple collections (Section 3.2).
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3.1 LDP Mechanisms for One-Time Data Collection

Algorithm 1 exhibits the general procedure for one-time discrete distribution
estimation under pure LDP. The five following subsections briefly present state-
of-the-art pure LDP mechanisms.

Algorithm 1 General pure LDP procedure for distribution estimation.

Input : Original data of users, privacy parameter ϵ, mechanism M(ϵ).
Output : Estimated discrete distribution.
# User-side

1: for each user i ∈ [1..n] with input data vi ∈ V do
2: Encode(vi) into a specific format (if needed);
3: Obfuscate(vi) as yi = M(ϵ)(v

i);
4: Transmit yi to the aggregator.
5: end for

# Server-side

6: Obtain the support set S(y) and probabilities p∗ and q∗ for M(ϵ).

7: Estimate Aggregate the obfuscated data yi (i ∈ [1..n]) to estimate {f̂(v)}v∈D.
8: return : Estimated discrete distribution f̂ (i.e., a k-bins histogram).

Generalized Randomized Response (GRR) The GRR [18] mechanism
generalizes the Randomized Response (RR) surveying technique proposed by
Warner [27] for k ≥ 2 while satisfying ϵ-LDP.
Encode. GRR [18] uses no particular encoding, i.e., EncodeGRR(v) = v.
Obfuscate. Given the user’s personal data v, GRR outputs v with probability
p, and any other randomly chosen value v′ ∈ D \ {v} otherwise. More formally:

∀y ∈ D : Pr[MGRR(ϵ,k)(v) = y] =

{
p = eϵ

eϵ+k−1 , if y = v,

q = 1
eϵ+k−1 , otherwise,

(4)

in which y is the obfuscated value sent to the server.
Estimate. For aggregation at the server side, it is important to obtain the
support set S(y) and the probabilities p∗ and q∗. For GRR, an obfuscated value
y only supports itself, i.e., SGRR(y) = {y}. Given the support set and with
p∗ = p and q∗ = q, the server can estimate item frequencies using Eq. (2) for MI
and Eq. (3) for IBU.

Local Hashing (LH) LH mechanisms [7,25] can handle a large domain size k
by using hash functions to map an input data to a smaller domain of size g, for
2 ≤ g ≪ k, and then applying GRR to the hashed value. Let H be a universal
hash function family such that each hash function H ∈ H hashes a value v ∈ D
into [1..g], i.e., H : D → [1..g]. There are two variations of LH mechanisms:
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– Binary LH (BLH) [7]. A simple case that just sets g = 2;
– Optimal LH (OLH) [25]. An optimized version that selects g = ⌊eϵ + 1⌉.

Encode. EncodeLH(v) = ⟨H,H(v)⟩, in which H ∈ H is selected at random.
Obfuscate. LH mechanisms only obfuscate the hash value H(v) with GRR and
does not change H. In particular, the LH reporting mechanism is:

MLH(ϵ)(v) := ⟨H,MGRR(ϵ,g)(H(v))⟩,

in which MGRR(ϵ,g) is given in Eq. (4), while operating on the new domain [1..g].
Each user reports, the hash function and obfuscated value ⟨H, y⟩ to the server.
Estimate. The support set for LH mechanisms is SLH (⟨H, y⟩) = {v|H(v) = y},
i.e., the set of values that are hashed into the obfuscated data y. LH mechanisms
are pure with probabilities p∗ = p and q∗ = 1

g [25]. Thus, the server can estimate

item frequencies using Eq. (2) for MI and Eq. (3) for IBU.

Unary Encoding (UE) UE mechanisms [16,25] interpret the user’s input data
v ∈ D, as a one-hot k-dimensional vector and obfuscate each bit independently.
Encode. EncodeUE(v) = v = [0, . . . , 0, 1, 0, . . . , 0] is a binary vector with only
the bit at the position corresponding to v set to 1 and the other bits set to 0.
Obfuscate. The obfuscation function of UE mechanisms randomizes the bits
from v independently to generate y as follows:

∀i ∈ [1..k] : Pr[yi = 1] =

{
p, if vi = 1,

q, if vi = 0,
(5)

in which y is sent to the server. There are two variations of UE mechanisms:

– Symmetric UE (SUE) [16]. Also known as Basic One-Time RAPPOR,

SUE selects p = eϵ/2

eϵ/2+1
and q = 1

eϵ/2+1
in Eq. (5), such that p+ q = 1;

– Optimal UE (OUE) [25]. OUE selects p = 1
2 and q = 1

eϵ+1 in Eq. (5).

Estimate. An obfuscated vector y supports an item v if and only if the v-th
bit of y, denoted as yv, equals to 1. Formally, we have SUE(y) = {i|yi = 1}, for
i ∈ [1..k]. UE mechanisms are pure with p∗ = p and q∗ = q. Thus, the server
can estimate item frequencies using Eq. (2) for MI and Eq. (3) for IBU.

Subset Selection (SS) The SS [24, 30] mechanism was proposed for the case
where the obfuscation output is a subset of values Ω of the original domain
V . The user’s true value v ∈ D has higher probability of being included in the
subset Ω, compared to the other values in D \{v}. The optimal subset size that
minimizes the MSE is ω = ⌊ k

eϵ+1⌉.
Encode. EncodeSS(v) = Ω = ∅ is an empty subset.
Obfuscate. Given the empty subset Ω, the true value v is added to Ω with
probability p = ωeϵ

ωeϵ+k−ω . Finally, it adds values to Ω as follows:
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– If v ∈ Ω, then ω − 1 values are sampled from D \ {v} uniformly at random
(without replacement) and are added to Ω;

– If v /∈ Ω, then ω values are sampled from D \ {v} uniformly at random
(without replacement) and are added to Ω.

Afterward, the user sends the subset Ω to the server.
Estimate. An obfuscated subset Ω supports an item v if and only if v ∈ Ω.
Formally, we have SSS(Ω) = {v|v ∈ Ω}. The SS mechanism is pure with p∗ = p

and q∗ = ωeϵ(ω−1)+(k−ω)ω
(k−1)(ωeϵ+k−ω) . Thus, the server can estimate item frequencies using

Eq. (2) for MI and Eq. (3) for IBU.

Thresholding with Histogram Encoding (THE) In Histogram Encoding
(HE) [25], an input data v ∈ D is encoded as a one-hot k-dimensional histogram
and each bit is obfuscated independently with the Laplace mechanism [12]. For
any two input data v, v′ ∈ D, the L1 distance between the two vectors is ∆ = 2.
Encode. EncodeHE(v) = v = [0.0, . . . , 0.0, 1.0, 0.0, . . . , 0.0], where only the v-th
component is 1.0 and the other bits are set to 0.0.
Obfuscate. HE outputs y such that yi = vi + Lap

(
2
ϵ

)
, in which Lap(β) is the

Laplace distribution where Pr[Lap (β) = x] = 1
2β e

−|x|/β .
Estimate. Since Laplace noise with zero mean is added to each bit indepen-
dently, a simple aggregation method is to sum the noisy counts for each bit.
However, this aggregation method does not provide a support function and is not
pure (a.k.a. SHE in [25]). Wang et al. [25] proposed THE such that the user re-
ports (or the server computes) the support set as STHE(y) = {v | yv > θ}, i.e.,
each noise count that is > θ supports the corresponding value. According to [25],

the optimal threshold value θ that minimizes the MSE = 2eϵθ/2−1
(1+eϵ(θ−1/2)−2eϵθ/2)2

is

within (0.5, 1). THE is pure with p∗ = 1− 1
2e

ϵ
2 (θ−1) and q∗ = 1

2e
− ϵ

2 θ. Thus, the
server can estimate item frequencies using Eq. (2) for MI and Eq. (3) for IBU.

3.2 LDP Mechanisms for Multiple Data Collections

The LDP mechanisms presented in Section 3.1 consider a one-time data collec-
tion. In this section, we consider the server is interested in multiple collections
throughout time. More precisely, for longitudinal data (i.e., data that is mon-
itored over time t ∈ [τ ]), all major LDP mechanisms make use of an internal
memoization mechanism [16]. Memoization was designed to enable longitudi-
nal collections through memorizing an obfuscated version of the true value v as
y = Mϵ∞(v), and consistently reusing y as the input to a second step of obfusca-
tion in time t ∈ [τ ]. Algorithm 2 exhibits the general procedure for longitudinal
discrete distribution estimation under LDP guarantees.

Without loss of generality, we consider τ = 1 (one-time collection) in this
paper, which will allow us to compare all LDP mechanisms under the same
privacy guarantees: (i) ϵ∞-LDP, which is the privacy guarantees of the first
obfuscation step and the upper bound when τ → ∞; (ii) ϵ1-LDP, which is the
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privacy guarantees of the first report by chaining two LDP mechanisms (i.e., the
lower bound when τ = 1). Naturally, ϵ1 ≤ ϵ∞ and, in practice, we want ϵ1 ≪ ϵ∞.

The three following subsections briefly present state-of-the-art longitudinal
LDP mechanisms [3, 6, 16], which are based on GRR, LH, and UE mechanisms,
i.e., same encoding, perturbation, and aggregation methods. Therefore, we focus
on presenting the composition of two LDP mechanisms (i.e., M1◦M2) and both
p∗ and q∗ parameters that are based on the privacy guarantees ϵ∞, ϵ1.

Algorithm 2 Memoization-based procedure for longitudinal distribution esti-
mation under LDP guarantees [3, 6, 16].

Input : Original data of users, privacy parameters ϵ∞, ϵ1, mechanisms M1, M2.
Output : Estimated discrete distribution f̂ at each t ∈ [τ ].
# User-side

1: for each user i ∈ [1..n] with input data vi ∈ V do
2: Encode(vi) into a specific format (if needed);
3: Obfuscate(vi) as yi = M1(ϵ∞)(v

i); ▷ First obfuscation step: p∗1 and q∗1
4: Memoize(yi) for vi.
5: for each time t ∈ [τ ] do:
6: Obfuscate(yi) as yi

t = M2(ϵ)(y
i); ▷ Second obfuscation step: p∗2 and q∗2

7: Transmit yi
t to the aggregator.

8: end for
9: end for

# Server-side

10: Obtain the support set S(y) and probabilities p∗1, q
∗
1 , p

∗
2, and q∗2 for M1(ϵ), M2(ϵ).

11: for each time t ∈ [τ ] do:
12: Estimate Aggregate the obfuscated data yi

t (i ∈ [1..n]) to estimate {f̂(v)}v∈D.
13: end for

Longitudinal GRR (L-GRR) The L-GRR [3] mechanism chains GRR in
both obfuscation steps of Algorithm 2 (i.e., GRR ◦ GRR).

L-GRR Parameters:

– First obfuscation step: p∗1 = eϵ∞

eϵ∞+k−1 and q∗1 = 1−p1

k−1 ;

– Second obfuscation step: p∗2 = eϵ∞+ϵ1−1
−keϵ1+(k−1)eϵ∞+eϵ1+eϵ1+ϵ∞−1

and q∗2 = 1−p2

k−1 .

– Aggregation: p∗ = p∗1p
∗
2 + q∗1q

∗
2 and q∗ = p∗1q

∗
2 + q∗1p

∗
2.

Longitudinal UE (L-UE) mechanisms Arcolezi et al. [3] analyzed all four
combinations between OUE and SUE in both obfuscation steps, i.e., L-SUE
(SUE ◦ SUE, a.k.a. Basic RAPPOR [16]), L-SOUE (SUE ◦ OUE), L-OUE
(OUE ◦ OUE), and L-OSUE (OUE ◦ SUE). Without loss of generality, we
present the parameters of L-OSUE only and refer the readers to [3] and to
multi-freq-ldpy [4] to access the parameters of the other L-UE mechanisms.

L-OSUE Parameters:
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– First obfuscation step: p∗1 = 1
2 and q∗1 = 1

eϵ∞+1 ;

– Second obfuscation step: p∗2 = eϵ∞eϵ1−1
eϵ∞−eϵ1+eϵ∞+ϵ1−1

and q∗2 = 1− p2.

– Aggregation: p∗ = p∗1p
∗
2 + (1− p∗1)q

∗
2 and q∗ = q∗1p

∗
2 + (1− q∗1)q

∗
2 .

Longitudinal LH (L-LH) Arcolezi et al. [6] extended LH mechanisms for
two obfuscation steps. More specifically, L-LH mechanisms use a hash function
H ∈ H to map a value v ∈ D → [1..g] and use L-GRR to obfuscate the hash
value H(v) in the new domain [1..g]. There are two variations of L-LH:

– L-BLH: A simple case that just sets g = 2;
– L-OLH: Let a = eϵ∞ and b = eϵ1 , this optimized version selects g =

1+max

(
1,

⌊
1−a2+

√
a4−14a2+12ab(1−ab)+12a3b+1

6(a−b)

⌉)
.

L-LH Parameters:

– First obfuscation step: p∗1 = eϵ∞

eϵ∞+g−1 and q∗1 = 1
g ;

– Second obfuscation step: p∗2 = eϵ∞+ϵ1−1
−geϵ1+(g−1)eϵ∞+eϵ1+eϵ1+ϵ∞−1

and q∗2 = 1−p2

g−1 .

– Aggregation: p∗ = p∗1p
∗
2 + q∗1q

∗
2 and q∗ = p∗1q

∗
2 + q∗1p

∗
2.

4 Experimental Evaluation

In this section, we present the setting of our experiments and our main results.

4.1 Setup of Experiments

Environment. All algorithms are implemented in Python 3 and run on a local
machine with 2.50GHz Intel Core i9 and 64GB RAM. The codes we develop
for all experiments are available in the tutorials folder of the multi-freq-ldpy
GitHub repository (https://github.com/hharcolezi/multi-freq-ldpy) [4].
IBU parameters. We fix the # iterations to 10000 and the tolerance to 10−12.
Data distribution. For ease of reproducibility, we generate synthetic data fol-
lowing five well-known distributions and use one real-world dataset.

– Gaussian. We generate n samples following the Gaussian distribution with
parameters µ = 1000 and σ2 = 100 and bucketize to a k-bins histogram;

– Exponential.We generate n samples following the Exponential distribution
with parameters λ = 1 and bucketize to a k-bins histogram;

– Uniform. We generate n samples following the Uniform distribution in
range [100, 10000] and bucketize to a k-bins histogram;

– Poisson. We generate n samples following the Poisson distribution with
parameters λ = 5 and bucketize to a k-bins histogram;

– Triangular. We generate n samples following the Triangular distribution
with parameters a = 100 (right), c = 4500 (center), and b = 10000 (left) and
bucketize to a k-bins histogram;

https://github.com/hharcolezi/multi-freq-ldpy
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– Real. We query for n samples of the Income dataset, which is retrieved with
the folktables [11] Python package. We only use the “PINCP” numerical
attribute and set the parameters: survey year=‘2018’, horizon=‘5-Year’,
survey=‘person’. Afterward, we bucketize to a k-bins histogram.

Varying parameters. When generating our data, we considered different:

– Domain size. We varied the domain size k of attributes as k ∈
{2, 50, 100, 200};

– Number of users. We varied the number of users n as n ∈ {20000, 100000}.

Methods evaluated. We assessed the following LDP mechanisms for:

– One-time collection. All seven pure LDP mechanisms from Section 3.1,
i.e., GRR, SUE, OUE, SS, THE, BLH, and OLH;

– Multiple collections. All seven longitudinal pure LDP mechanisms from
Section 3.2, i.e., L-GRR, L-SUE, L-SOUE, L-OUE, L-OSUE, L-BLH, and
L-OLH.

Stability. As LDP protocols and the synthetic data generation procedure are
randomized, we report average results over 20 runs.
Metrics. We evaluated the privacy-utility trade-off of all fourteen LDP mecha-
nisms according to:

– Utility metrics. We measured the utility gain of IBU over MI following
Eq. (1) for both MSE and MAE metrics;

– Privacy guarantees. We varied ϵ of LDP mechanisms for one-time collec-
tion as ϵ ∈ {1, 2, 4}, representing high, medium, and low privacy regimes,
respectively. Besides, we varied the privacy guarantees ϵ∞ and ϵ1 of longitu-
dinal LDP mechanisms for multiple collections as ϵ∞ ∈ {2, 4, 8} and ϵ1 = ϵ∞

2 .
That is, the first report has the same privacy guarantees as one-time LDP
mechanisms, and, thus, similar results are expected for LDP mechanisms
with both one-time and longitudinal versions (e.g., GRR and L-GRR).

4.2 Main Results

First, considering the real data distribution and the MSE metric, Fig. 1 (one-
time LDP mechanisms) and Fig. 2 (longitudinal LDP mechanisms) illustrate
the IBU utility gain calculated as in Eq. (1), by fixing n = 20000, k = 100, and
varying ϵ ∈ {1, 2, 4} (resp. ϵ = ϵ1). These two figures also illustrate the Average
Gain (AvgGain) considering all LDP mechanisms within the same subplot. From
Fig. 1, one can notice that IBU consistently and considerably outperformed MI
for all LDP mechanisms in the medium (ϵ = 2) and low privacy regimes (ϵ = 4).
For ϵ = 1, IBU was only better for GRR, OUE, SS, and OLH, while achieving
similar results for SUE and THE, and unsatisfactory results for BLH. Similar
behavior can be noticed on the left-side plot of Fig. 2 in which IBU did not
improve over MI for L-SUE and L-BLH. This is because both privacy guarantees



12 H.H. Arcolezi, S. Cerna, & C. Palamidessi

are equal for both one-time and longitudinal LDP mechanisms, i.e., ϵ1 = ϵ, and
thus, similar results will occur, on expectation, when running more iterations for
stability. Overall, for both Fig. 1 and Fig. 2, the higher AvgGain occurs in the
medium privacy regime, followed by low and high privacy regimes, respectively.

GRR SUE OUE SS THE BLH OLH
LDP Protocols

10 4

10 3

M
SE

 in
 L

og
 s

ca
le

Γ=7%

Γ=0%
Γ=42% Γ=45%

Γ=0%

Γ=0%

Γ=51%

Real_data, n=20000, k=100, ε=1, AvgGain=21%

MI IBU

GRR SUE OUE SS THE BLH OLH
LDP Protocols

10 4
Γ=47%

Γ=61%
Γ=58% Γ=59%

Γ=61%
Γ=1%

Γ=60%

Real_data, n=20000, k=100, ε=2, AvgGain=50%

MI IBU

GRR SUE OUE SS THE BLH OLH
LDP Protocols

10 5

10 4

Γ=29%

Γ=57%

Γ=42%
Γ=39%

Γ=60%

Γ=39%

Γ=45%

Real_data, n=20000, k=100, ε=4, AvgGain=45%

MI IBU

Fig. 1: IBU utility gain in % (cf. Eq. (1)) for each one-time pure LDP mechanism
with the MSE metric, the real distribution, n = 20000, k = 100, and ϵ ∈ {1, 2, 4}.
AvgGain indicates the average gain considering all LDP mechanisms in the same
subplot.
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LDP Protocols
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Fig. 2: IBU utility gain in % (cf. Eq. (1)) for each longitudinal pure LDP
mechanism with the MSE metric, the real distribution, n = 20000, k = 100
ϵ∞ ∈ {2, 4, 8}, and ϵ1 = ϵ∞

2 . AvgGain indicates the average gain considering all
LDP mechanisms in the same subplot.

Second, in Fig. 3 (one-time LDP mechanisms) and Fig. 4 (longitudinal LDP
mechanisms), we compare the IBU utility gain in different types of distributions
(including real data) by varying ϵ (left-side plots), n (centered plots), and k
(right-side plots). In both figures, we observed that the uniform distribution
presented the highest gain, while the Gaussian and Exponential distributions
obtained the lowest gains. This is due to the fact that more values close or
equal to zero are generated in Gaussian and Exponential distributions, which
makes estimation difficult not only for IBU but also for MI. When analyzing
the variation of ϵ in both figures, we noticed that the lower ϵ (high privacy
regime), the higher the IBU gain, which is desirable in practice. Furthermore,
when examining the variation of the number of users n, we noticed that the gains
obtained considering all LDP mechanisms for all data distributions present a
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Fig. 3: IBU utility gain is in %. Each subplot shows all gains obtained by dis-
tribution type when the privacy level (ϵ), number of users (n), and domain size
(k) are varied, respectively from left to right. We computed all gains with all
one-time pure LDP mechanisms considered and the MSE metric.
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Fig. 4: IBU utility gain is in %. Each subplot shows all gains obtained by dis-
tribution type when the privacy level (ϵ), number of users (n), and domain size
(k) are varied, respectively from left to right. We computed all gains with all
longitudinal pure LDP mechanisms considered and the MSE metric.

better performance when n is higher, especially with longitudinal mechanisms.
This is because longitudinal mechanisms have a higher variance and require
more samples to reduce their estimation error [3,6,16]. Last, when analyzing the
behavior of the domain size k, in both figures, it is shown that IBU outperforms
MI, as the domain grows, i.e., IBU supports data with high dimensionality, which
better reflects real-world data collections.

Finally, Table 2 (one-time LDP mechanisms) and Table 3 (longitudinal LDP
mechanisms) exhibit the averaged utility gain of IBU for all LDP mechanisms,
all data distributions, and both MSE and MAE metrics by considering k ∈
{2, 50, 100, 200}, n ∈ {20000, 100000}, and ϵ ∈ {1, 2, 4} (resp. ϵ1 = ϵ). From
these tables, one can gather the averaged gain for each utility metric (MSE and
MAE) by LDP mechanism considering all data distributions (i.e., last row).
For instance, in Table 2, while the THE mechanism is the one which presented
the higher utility gain followed by the SUE mechanism, GRR presented the
lowest utility gain. Similar results can be observed in Table 3, i.e., the L-SUE
mechanism presented the higher utility gain and L-GRR the lowest one. In [14],
the authors also remarked that the IBU utility gain for GRR was not substantial.
Indeed, while in Table 3 L-UE mechanisms showed higher utility gain than L-LH
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mechanisms, in Table 2, both UE and LH present similar results. Additionally,
from Table 2 and Table 3, one can also gather the averaged gain for each utility
metric (MSE and MAE) by data distribution considering all LDP mechanisms
(i.e., last two columns). For example, for both tables, the higher utility gain
was observed for the Poisson distribution followed by the real data distribution.
The lower utility gain considering all LDP mechanisms was for the Gaussian
distribution followed by the Triangular distribution.

Dist.
GRR SUE OUE SS THE BLH OLH Avg.

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Gauss. 1 1 13 7 10 6 3 1 13 7 16 9 11 7 9 5

Exp. 16 11 26 15 27 16 19 11 26 15 16 10 27 16 22 13

Unif. 0 0 29 21 20 14 14 10 31 22 57 43 18 12 24 17

Poiss. 39 28 41 26 44 28 41 27 41 27 14 6 46 30 38 24

Triang. 0 0 21 13 15 9 10 6 23 14 36 21 15 9 17 10

Real 31 21 40 23 42 25 34 19 42 25 21 11 44 27 36 21

Avg. 14 10 28 17 26 16 20 12 29 18 26 16 26 16 24 15

Table 2: Averaged IBU utility gain in % (cf. Eq. (1)) for all one-time pure LDP
mechanisms and all data distributions (Dist.), considering k ∈ {2, 50, 100, 200},
n ∈ {20000, 100000}, and ϵ ∈ {1, 2, 4}. Results highlighted in bold font repre-
sent the two highest utility gains, on average.

Dist.
L-GRR L-SUE L-OUE L-SOUE L-OSUE L-BLH L-OLH Avg.

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Gauss. 14 5 13 8 9 5 10 7 12 7 2 0 7 4 9 5

Exp. 4 1 27 16 26 15 27 16 27 16 4 2 20 12 19 11

Unif. 36 25 31 22 12 8 16 11 18 13 54 43 21 16 26 19

Poiss. 5 2 43 28 48 32 49 32 44 29 11 6 42 30 34 22

Triang. 28 17 24 15 11 7 13 9 16 10 26 14 14 9 18 11

Real. 4 1 43 25 43 27 44 27 43 25 9 4 34 22 31 18

Avg. 15 8 30 19 24 15 26 17 26 16 17 11 23 15 23 14

Table 3: Averaged utility gain in % of IBU over MI (cf. Eq. (1)) for all lon-
gitudinal pure LDP mechanisms and all data distributions (Dist.), considering
k ∈ {2, 50, 100, 200}, n ∈ {20000, 100000}, ϵ∞ ∈ {2, 4, 8}, and ϵ1 = ϵ∞

2 . Results
highlighted in bold font represent the two highest utility gains, on average.

Implementation details. The multi-freq-ldpy Python package [4] is
function-based and simulates the LDP data collection pipeline of n users and one
server. Thus, for each solution and/or mechanism, there is always a client and an
aggregator function. As multi-freq-ldpy had only aggregator functions based
on MI, our implementation of IBU contributes with another aggregator func-
tion for LDP mechanism in both pure frequency oracle and long freq est
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# Multi -Freq -LDPy functions for GRR protocol
from multi_freq_ldpy.pure_frequency_oracles.GRR import GRR_Client ,

GRR_Aggregator_IBU

# NumPy library
import numpy as np

# Parameters for simulation
eps = 1 # privacy guarantee
n = int(1e6) # number of users
k = 5 # attribute ’s domain size

# Simulation dataset following Uniform distribution
dataset = np.random.randint(k, size=n)

# Simulation of client -side data obfuscation
rep = [GRR_Client(user_data , k, eps) for user_data in dataset]

# Simulation of server -side aggregation
GRR_Aggregator_IBU(rep , k, eps , nb_iter =10000 , tol=1e-12, err_func="max_abs")
>>> array ([0.199 , 0.201, 0.199, 0.202 , 0.199])

Listing 1.1: Code snippet for performing distribution estimation using IBU [1,2]
with data obfuscated through the GRR [18] mechanism.

modules. For example, the complete code to execute one-time distribution esti-
mation using IBU [1,2] with data obfuscated through the GRR [18] mechanism
is illustrated in Listing 1.1 with the resulting estimated frequency for a given
set of parameters and a randomly generated dataset. One can notice that the
GRR Aggregator IBU function receives as input: the set of obfuscated data (rep),
the domain size k, the privacy guarantee ϵ, the # iterations (nb iter), and a
small tolerance value (tol) that works along with an error function (err func).
The three last parameters ‘nb iter’, ‘tol’, and ‘err func’ are stopping criteria for
IBU to terminate, and the values in Listing 1.1 are the default parameters.

5 Related Work

The literature on the local DP model [29] has largely explored the issue
of minimizing the utility loss of LDP mechanisms. On the one hand, some
works [7, 16, 18, 24, 25, 30] focused on designed new encoding and perturbation
functions, often leading to new privacy-utility trade-offs as well as robustness to
privacy attacks [5]. On the other hand, recent research works [14, 15, 18, 22, 26]
focused on improving the estimation method on the server side through post-
processing techniques for the MI estimator and using IBU. For instance, the
authors in [18] investigated distribution estimation with GRR and SUE by us-
ing two post-processing approaches for MI, namely, a method that clips negative
elements of f̂ to 0 and re-normalizes f̂ so that its sum is 1, and a method that
projects f̂ onto the probability simplex. Wang et al. [26] studied and proposed,
in total 10 post-processing approaches for MI ranging from methods that enforce
only non-negativity of elements in f̂ or that f̂ sums to 1, and other methods that
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enforce both. Experiments in [26] were perfomed with the OLH mechanism. Re-
garding IBU [1,2], recent works have proposed and investigated its performance
for discrete distribution estimation [14, 15, 22] and for joint distribution esti-
mation [17, 23]. More precisely, ElSalamouny & Palamidessi [14, 15] proposed a
generalization of IBU for personalized LDP, i.e., considering different privacy
guarantees ϵi (i ∈ [1..n]) and different LDP mechanisms (i.e., GRR and SUE).

While the aforementioned research works [14, 15, 18, 22, 26] answer interest-
ing questions experimenting only with the GRR [18], SUE [16], and OLH [25]
mechanisms, we consider in this work fourteen ϵ-LDP mechanisms, i.e., seven
for one-time data collection and seven for multiple data collections. In our anal-
ysis we varied the utility metrics (i.e., MSE and MAE), the data distribution
(i.e., synthetic data following standard distribution and one real-world data),
the number of users n, the domain size k, and the privacy guarantees ϵ. Last,
we have also open-sourced the IBU implementation into multi-freq-ldpy [4],
thereby enabling researchers to easily use and expand upon our results.

6 Conclusion & Perspectives

In conclusion, this paper presents an in-depth investigation into the effectiveness
of Iterative Bayesian Update (IBU) as a post-processing technique for improving
the utility of LDP mechanisms used for private discrete distribution estimation.
Based on our experiments on both synthetic and real-world data, we compared
the performance of IBU to Matrix Inversion (MI), a standard estimation tech-
nique. We assessed the utility gain of IBU over MI for seven state-of-the-art LDP
mechanisms designed for one-time collection [7, 16, 18, 24, 25, 30] and for seven
state-of-the-art longitudinal LDP mechanisms [3,6,16] designed for multiple data
collections. On average, both THE [25] and SUE (a.k.a. Basic One-Time RAP-
POR) [16] mechanisms showed the highest IBU utility gain in our experiments,
which involved varying n, k, ϵ, and the data distribution. Regarding longitudinal
LDP mechanisms, L-UE mechanisms [3, 16] presented higher IBU utility gain,
on average, than L-GRR [3] and L-LH [6] mechanisms. Overall, our results show
that IBU can significantly improve the utility of LDP mechanisms for certain
data distributions (e.g., Poisson) and specific settings (cf. Table 2 and Table 3).

Based on the findings of this paper, there are several areas that could be
explored for future work. Some potential avenues for further research include
investigating the performance of IBU on non-pure LDP mechanisms as well as
for high-dimensional data, e.g., k ≫ 200. Additionally, we plan to investigate
different settings for the IBU initialization and stopping criteria, i.e., considering
non-uniform initial distributions and different tolerance calculation functions. Fi-
nally, we also aim to implement GIBU (Generalized IBU) [14] and the estimation
methods proposed in [15] for personalized LDP, into multi-freq-ldpy [4].
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