
THE Lp-FISHER-RAO METRIC AND AMARI-C̆ENCOV α-CONNECTIONS

MARTIN BAUER, ALICE LE BRIGANT, YUXIU LU, CY MAOR

Abstract. We introduce a family of Finsler metrics, called the Lp-Fisher-Rao metrics Fp, for
p ∈ (1,∞), which generalizes the classical Fisher-Rao metric F2, both on the space of densities

Dens+(M) and probability densities Prob(M). We then study their relations to the Amari-C̆encov

α-connections ∇(α) from information geometry: on Dens+(M), the geodesic equations of Fp and

∇(α) coincide, for p = 2/(1 − α). Both are pullbacks of canonical constructions on Lp(M), in
which geodesics are simply straight lines. In particular, this gives a new variational interpretation
of α-geodesics as being energy minimizing curves. On Prob(M), the Fp and ∇(α) geodesics can still
be thought as pullbacks of natural operations on the unit sphere in Lp(M), but in this case they
no longer coincide unless p = 2. Using this transformation, we solve the geodesic equation of the
α-connection by showing that the geodesic are pullbacks of projections of straight lines onto the
unit sphere, and they always cease to exists after finite time when they leave the positive part of
the sphere. This unveils the geometric structure of solutions to the generalized Proudman-Johnson
equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors
of Fp, and study their relation to ∇(α).
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1. Introduction

Information geometry is concerned with the study of spaces of probability densities as differ-
entiable manifolds. Its first developments were mostly about the finite-dimensional geometry of
parametric statistical models, for which the space of distributions can be identified with the pa-
rameter space. In 1945, Rao [37] showed that the Fisher information could be used to define a

Riemannian metric on this space, and in 1982, C̆encov [15] proved that it was the only metric
invariant with respect to sufficient statistics, for families with finite sample spaces. The Fisher-Rao
metric was also shown to induce well-known geometries on certain important statistical models,
such as hyperbolic geometry on normal distributions [3].

Encompassing the Fisher-Rao metric, a richer geometric structure was introduced by C̆encov
[15] and Amari [2] on spaces of parametric probability distributions. The Amari-C̆encov structure

relies on a family of affine connections called the α-connections, denoted by ∇(α), that are dual
with respect to the Fisher-Rao metric, and such that the 0-connection is the Levi-Civita connection.
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2 THE LP -FISHER-RAO METRIC AND AMARI-C̆ENCOV α-CONNECTIONS

The α-connections arise naturally as an interpolating family between the so-called exponential and
mixture connections ∇(1) and ∇(−1), for which exponential and mixture families are (dually) flat
manifolds. These geometric tools relate to natural information-theoretic quantities such as the
Kullback-Leibler divergence, and have been used in statistical inference, e.g. to express conditions
for existence of consistent and efficient estimators, or to obtain a purely geometric interpretation
of the famous Expectation-Maximization (EM) algorithm in the presence of hidden variables [1].

In parallel, infinite-dimensional information geometry tools have also been developed in the non-
parametric setting, although arguably to a lesser extent. The non-parametric Fisher-Rao metric
was introduced by Friedrich in 1991 [21] on the space of all probability densities. He showed that it
yields the historical Fisher information metric when restricted to finite-dimensional submanifolds
representing parametric statistical models, and that the geometry is spherical with constant curva-
ture 1/4. More than two decades later, it was proved to be the only metric (up to a multiplicative
factor) invariant with respect to the action of sufficient statistics, namely diffeomorphic change of
the support, just like in the finite-dimensional case [4, 9]. In the infinite-dimensional setting, it is
possible to work with diffeomorphisms of the support instead of the densities themselves, since the
space of smooth densities on a compact manifold M with respect to a volume form λ can be ob-
tained as the quotient Diff(M)/Diffλ(M) of diffeomorphisms modulo diffeomorphisms preserving
λ. Using this representation Khesin, Lenells, Misiolek and Preston [26] have shown in 2013 that
the Fisher-Rao metric can be obtained as the quotient of a right-invariant homogeneous Sobolev
Ḣ1-metric on Diff(M), see also [33] and the recent overview article [27].

The Amari-C̆encov structure induced by the α-connections also received interest in the non-
parametric setting. Giblisco and Pistone [24] defined the exponential and mixture connections in
this case, and showed that for α ∈ (−1, 1), the interpolating connections can be defined through a
p-root mapping to an Lp sphere, for p = 2

1−α . Divergences and dualistic structures are investigated

in the monograph of Ay, Jost, Lê and Schwachhöfer [5], although the α-connections themselves are
not directly considered there in the infinite-dimensional setting. See also [35] for a definition of
the α-divergences and α-connections in a Hilbert manifold settings. In [30], Lenells and Misio lek
study the α-connections on diffeomorphisms and relate their geodesic equations to a well-known
equation, the generalized Proudman–Johnson equation. Very recently, three authors of the present
paper showed that these Proudman–Johnson equations, on the real line, could alternatively be seen
as the geodesic equations of right-invariant Finsler metrics on the diffeomorphism group [11], which
were first introduced in [18]. This led to making a first link between α-connections and a family of
Finsler metrics, which we investigate further here.

1.1. Main contributions. The aim of the present paper is three-fold. First, to introduce and study
the Lp-Fisher-Rao metrics on (probability) densities

Fp(a) := Fp(µ, a) =

(∫ ∣∣∣∣aµ
∣∣∣∣p µ) 1

p

,

for p ∈ (1,∞) and any density µ and tangent vector a. Note, that is a family of Finsler metrics that
conincides with the Fisher-Rao metric when p = 2. Second, to give a precise and rigorous review of
the Amari-C̆encov α-connections in the infinite-dimensional setting, a new variational formulation
of their corresponding geodesics, and explicit solution formulas for them. Finally, to make links
between the two, distinguishing between the space of densities, the space of probability densities,
and parametric statistical models.

Next we will describe the main contributions in more details: we study the Lp-Fisher-Rao geom-
etry of (probability) densities through a mapping to the set of positive functions,

Φp(µ) =
(µ
λ

)1/p
,
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where λ is some background probability measure. Just like the Fisher-Rao metric is the pullback
of the standard L2-metric via the square-root transform [26, 13, 22], we show that the Lp-Fisher-
Rao metric is the pullback of the Lp-norm via the mapping Φp, that we call by analogy the p-root
transform (Theorems 3.12 and 4.10). The Lp-Fisher-Rao geometry on the space of densities is
therefore that of a flat space, as described in Corollary 3.13, and on the space of probability
densities that of the Lp-sphere (Theorem 4.10). The p-root transform (for p = 2

1−α) also presents an
alternative way to define the α-connections as pullbacks of the trivial connection of the vector space
of functions (Theorems 3.12 and 4.10), as first shown by Gibilisco and Pistone [24] for probability
distributions, albeit with a slightly different construction. The geometric differences between these
constructions for the Lp-Fisher-Rao metric and the α-connections, which we systematically study
in this paper, are summarized in Figure 1.

Towards this aim, we show that the geodesic equations of Fp and ∇(α) coincide on Dens+(M)
(for α = 1−2/p), but not on Prob(M) (see Theorems 3.3, 3.7, 4.2 and 4.4); similarly, on Dens+(M)
the Chern connection induced by Fp coincides with the α-connection, while this no longer holds on
Prob(M) (Theorem 3.10 and Remark 4.8). This provides the novel variational formulation of these
α-connection geodesics.

We further use the p-root transform to obtain explicit solution formulas for α-geodesics on
densities and on probability densities: for densities, we show in Corollary 3.13 that geodesics are
pullbacks of straight lines in Lp space, whereas for probability densities we show in Theorem 4.11
that they are pullbacks of projections of straight lines in Lp onto the Lp-sphere. In the latter case the
projection involves a time rescaling that is obtained as a solution of an ordinary differential equation.
Similar solutions of the geodesic equation of the α-connection were obtained for finite sample space
[5, pp. 50-51]. In the infinite-dimensional case with a one-dimensional base manifold M , it gives an
explicit solution (modulo a solution to an ODE) of the generalized Proudman-Johnson equation,
for a certain range of parameters, and to the generalization to higher-dimensional base manifolds
by Lenells and Misio lek [30]. There, they proved the complete integrability of these equations for
the flat case α = ±1 by providing an explicit solution formula. Similarly, the integrability for the
case α = 0 was shown in [26]. Our results can thus be interpreted as complete integrability of the
α-geodesic equation for the whole range α ∈ (−1, 1).

The results in the one-dimensional situation are in correspondence with the analysis of [29, 38],
where a similar p-root transform was used to study the generalized Proudman-Johnson equation.
In these articles it was used as an ad-hoc simplification of some auxiliary equations; here we expose
the geometry behind it, which also simplifies some of the authors’ calculations, and generalize it to
higher dimensions. These connections are summarized in Section 5.

Throughout this paper we work in the smooth category, i.e., all densities are assumed to be
smooth, and the underlying space M is assumed to be a smooth manifold. This is mainly in order
to avoid some technicalities, and most results work in much lower regularity. For example, for all
results not involving the action of Diff(M), the underlying space M can be simply a measurable
space, and in many cases densities only need to be integrable.

1.2. Outline. The rest of the paper is organized as follows. We start by describing some background
on spaces of densities and the Fisher-Rao metric in Section 2. Then we investigate the geometries
induced by the α-connections and the Lp-Fisher-Rao metrics as well as their links, on the space of
smooth densities in Section 3 and on the space of probability densities in Section 4. In Section 5
we discuss the relations of the various geodesic equations obtained in Sections 3–4 to some known
PDEs, as well as the relation between the Lp-Fisher-Rao metric to Finsler metrics on diffeomorphism
groups. The different notions of geodesics are compared numerically on an example in Section 6.
Finally, we consider the finite-dimensional setting of parametric statistical models in Section 7,
illustrated by the special case of normal distributions. In Appendix A we present a short overview
of infinite-dimensional Finsler geometry.
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Figure 1. Geometric structures on Dens+(M) and Prob(M) via the p-root trans-

form: The map µ 7→
(µ
λ

)1/p
maps Dens+(M) to (a subset of) Lp(λ), and Prob(M) to

its unit sphere Sp. On Lp(λ) there is the natural Finsler metric ‖ · ‖Lp and the triv-
ial connection ∇tr of a vector space, the geodesics of both are straight lines. Their
pullback via the p-root map yield (up to a constant) the Lp-Fisher-Rao metric Fp
and the α-connection ∇(α) on Dens+(M), whose geodesic equations coincide. The
metric ‖ · ‖Lp naturally restricts to Sp. The connection ∇tr induces a connection
on Sp via the natural projection πp : TLp(λ)|Sp → TSp. The geodesics of these
induced metric and connection differ. Their pullbacks via the p-root map yield (up

to a constant) Fp and the α-connection ∇(α)
on Prob(M).
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2. Spaces of densities and the Fisher-Rao metric

In all of this article let M be a closed manifold of dimension dim(M) < ∞. We denote by
Dens+(M) the space of smooth positive densities and by Prob(M) the subspace of smooth proba-
bility densities, i.e.,

Dens+(M) := {µ ∈ Ωn(M) : µ > 0}

Prob(M) :=

{
µ ∈ Dens+(M) :

∫
µ = 1

}
.

Since Dens+(M) is an open subset of the Fréchet space Ωn(M) it carries the structure of a Fréchet
manifold with tangent space Tµ Dens(M) = Ωn(M). Similarly, as a linear subspace of a Fréchet
manifold, the space of probability densities is a Fréchet manifold, where the tangent space is given
by

Tµ Prob(M) =

{
a ∈ Ωn(M) :

∫
a = 0

}
.

On both the space of densities and probability densities we can consider the pushforward action
of the diffeomorphism group Diff(M). On Dens+(M) it is given by

(1) Diff(M)×Dens+(M) 3 (ϕ, µ) 7→ ϕ∗µ ∈ Dens+(M)

and, since the pushforward by a diffeomorphism is volume preserving, this action restricts to an
action on the space of probability densities. By a result of Moser [34] this action is transitive, which
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allows us to identify the space of probability densities with the quotient

(2) Prob(M) ≡ Diff(M)/Diffλ(M),

where Diffλ(M) is the group of volume preserving diffeomorphisms of some fixed probability density
λ. Thus, constructions (metrics, connections, geodesics) on Prob(M) can be pulled back to Diff(M)
via the map ϕ 7→ ϕ∗λ.

For a ∈ Ωn(M) and µ ∈ Dens+(M), we denote by a
µ the Radon-Nikodym derivative of a with

respect to µ. In particular, the map µ 7→ µ
λ allows us to identify Dens+(M) with positive smooth

functions on M , and Prob(M) with the positive smooth functions that integrate to one. For the
proof of the local wellposedness results in Sections 3 and 4 we will also need the Sobolev completions
of these spaces, which can be defined using their Radon-Nikodym derivative w.r.t. to λ, i.e., for
k > dim(M)/2 we consider

Densk+(M) :=
{
µ :

µ

λ
∈ Hk(M), and µ > 0

}
Probk(M) :=

{
µ ∈ Densk+(M) :

∫
µ = 1

}
.

Note, that the assumption k > dim(M)/2 is necessary to make sense of the positivity condition.
A central object in information geometry is the Fisher-Rao metric, which we introduce now:

Definition 2.1 (Fisher-Rao metric). Given µ ∈ Dens+(M) and a, b ∈ Tµ Dens+(M) the Fisher-Rao
metric on Dens+(M) is given by

GFR
µ (a, b) =

∫
a

µ

b

µ
µ .(3)

Via restriction GFR induces a Riemannian metric on Prob(M), which we denote by the same letter.

3. The Lp-Fisher-Rao metric and α-connections on the space of densities

In this section we will introduce the Lp-Fisher-Rao metric on the space of densities, which will
allow us to obtain a new interpretation of the family of α-connections.

3.1. The Amari-C̆encov α-connections on Dens+(M). First we will introduce the family of α-
connections on the space Dens+(M). In the finite-dimensional case, i.e., when M is a finite set, the
below definitions coincide with the classical ones, see e.g. [2, 4].

Definition 3.1 (α-divergence). For α ∈ (−1, 1), define the α-divergenceD(α) : Dens+(M)×Dens+(M)→
R, by

D(α)(µ||ν) = p

∫
M
ν + p∗

∫
M
µ− p∗p

∫
M

(µ
λ

)1/p (ν
λ

)1/p∗

λ,

where p = 2
1−α and p∗ = 2

1+α is its Hölder conjugate.

Using Hölder inequality, it follows that D(α) is non-negative and vanishes if and only if µ = ν.
Furthermore, a straightforward calculation shows that the negative of its second derivative defines
a positive bilinear form, which is exactly the Fisher-Rao metric, i.e.,

−∂µ∂νD(α)(µ||ν)|ν=µ[a, b] =

∫
M

a

µ

b

µ
µ = GFR

µ (a, b), a, b ∈ TµDens+(M).

Here ∂µ and ∂ν refer to derivatives with respect to the µ and ν variables, respectively. Thus, for

any α ∈ (−1, 1), D(α) is a divergence in the sense of [4, Section 4.4], and induces a connection ∇(α)

on Dens+(M) via the relation

(4) GFR
µ (∇(α)

a b, c) = −∂µ(∂µ∂νD
(α)(µ||ν)[b, c])[a]|ν=µ =

∫
M

Db.a

µ

c

µ
µ− 1

p∗

∫
M

a

µ

b

µ

c

µ
µ,
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where a, b, c ∈ Tµ Dens+(M). Since Dens+(M) is a Fréchet manifold, GFR is merely a weak Rie-

mannian metric, and as such, (4) does not necessarily define ∇(α) uniquely. However, in our case
it does, yielding the following formulae:

Lemma 3.2 (α-connection). For any α ∈ (−1, 1) the α-connections ∇(α) on Dens+(M) are given by

(5) ∇(α)
a b = Db.a− 1

p∗
a

µ
b, a, b ∈ Tµ Dens+(M), p∗ =

2

1 + α
.

Here Db.a|µ := Dµb(aµ) denotes the directional derivative of the vector field b in the direction given
by aµ.

The easiest way to read this lemma (and similar formulae below) is to consider again the iden-
tification of densities and positive functions via µ 7→ µ/λ.

Proof. This follows directly from formula (4). �

In the following result we will study the local wellposedness of the corresponding geodesic equa-
tions. Therefore we will first consider these equations on a Banach space of Sobolev densities, where
it will be easy to obtain the local wellposedness using the theorem of Picard-Lindelöff. The result
in the smooth category will then follow from an Ebin-Marsden type no-loss-no-gain result [19]:

Theorem 3.3. A path µ : [0, 1]→ Dens+(M) is a geodesic with respect to ∇(α) if

(6) µtt =
1

p∗
µt
µ
µt.

For any k > dim(M)/2 the geodesic equations are locally wellposed on the space of Sobolev densities
Densk+(M), i.e., given initial conditions µ(0) ∈ Densk+(M), µt(0) ∈ Tµ(0) Densk+(M) there exists
an unique solution to equation (6) defined on a maximal interval of existence [0, T ). The maximal
interval of existence is uniform in the Sobolev order k and thus the local wellposedness continues to
hold in the limit, i.e., on the space of smooth densities Dens+(M).

Proof. The formula for the geodesic equation follows directly from Lemma 3.2. To show the local
well-posedness we view the geodesic equation (6) as a flow equation on T Densk+(M). Therefore let
F (µt) denote the right hand side of the geodesic equation, i.e.,

(7) F (µ, µt) = µ−1µ2
t

where we use the identification of Densk+(M) with the space of positive, Sobolev functions Hk
+(M)

and Tµ Densk+(M) with all of Hk(M). Using the Sobolev module properties and the positivity of µ

it follows that F is a smooth map from Hk
+(M)×Hk(M) and thus the local well-posedness follows

by the theorem of Picard-Lindelöff. Next, we observe that F is equivariant under the action of
the diffeomorphism group Diff(M)(M), i.e., F (ϕ∗µ, ϕ∗µt) = ϕ∗F (µ, µt). Thus the result on the
uniformness of the maximal interval of existence follows by an adaption of the Ebin-Marsden no-
loss-no-gain theorem [19, Lemma 12.2] to the present setting, i.e., the diffeomorphism group acting
on densities. This can be achieved by following the proof in [7], where the no-loss-no-gain result
has been extended to the action of diffeomorphisms on the space of all Riemannian metrics. The
key ingredient for this result is the fact that, in a chart, Lie derivatives along coordinate vector
fields coincide with ordinary derivatives. �

3.2. The Lp-Fisher-Rao metric. Next we introduce the main object of the present article, the Lp-
Fisher-Rao (Finsler) metric on the space Dens+(M):

Definition 3.4. Given µ ∈ Dens+(M) and a ∈ Tµ Dens+(M) we define the Lp-Fisher-Rao metric
via:

Fp(a) := Fp(µ, a) =

(∫ ∣∣∣∣aµ
∣∣∣∣p µ) 1

p

.(8)
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Remark 3.5. It is easy to see that the Lp-Fisher-Rao metric satisfies the axioms of a Finsler metric,
as defined in Definition A.1, for any p ∈ (1,∞). We will, however, see in Lemma 3.8, that it is not
strongly convex if p 6= 2.

First we will show, that the family of Lp-Fisher-Rao metrics shares an important property with
the Fisher-Rao metric: they are invariant under the action of the diffeomorphism group as defined
in (1).

Lemma 3.6. For any p ∈ (1,∞), the Lp-Fisher-Rao metric on the space of Dens+(M) is invariant
under the action of the diffeomorphism group Diff(M), i.e.,

(9) Fp(µ, a) = Fp(ϕ∗µ, ϕ∗a), a ∈ Tµ Dens+(M), ϕ ∈ Diff(M).

Proof. This result follows by direct computation using the transformation formula for integrals. �

Next we calculate the geodesic equations of this family of Finsler metrics on Dens+(M).

Theorem 3.7 (Geodesic equation on Dens+(M)). For any p ∈ (1,∞), the geodesic equation of the
Lp-Fisher-Rao metric on the space of densities Dens+(M) is given by

d

dt

(
µt
µ

)
+

1

p

(
µt
µ

)2

= 0,(10)

which coincides with the geodesic equation of the α-connection for α = 1− 2
p . Thus the local well-

posedness result of Theorem 3.3 also hold for the geodesic equation of the Lp-Fisher-Rao metric.

Proof. The length functional of the Lp-Fisher-Rao metric on Dens+(M) is given by

L(µ) =

∫ 1

0

(∫ ∣∣∣∣µtµ
∣∣∣∣p µ) 1

p

dt,

where µ : [0, 1] → Dens+(M) such that µ(0) = µ0, µ(1) = µ1 and where µt denotes its (time)
derivative. A geodesic is a path that locally minimizes the length functional; since L is invariant to
reparametrization, we can restrict ourselves to paths of constant speed. By the Hölder inequality,
it follows that constant speed geodesics are equivalently the local minimizers of the q-energy

Eq(µ) =
1

q

∫ 1

0

(∫ ∣∣∣∣µtµ
∣∣∣∣p µ)

q
p

dt,

for any q > 1. In our case the most convenient choice is to consider the q-Energy with q = p. The
corresponding energy functional reads as

Ep(µ) =
1

p

∫ 1

0

∫ ∣∣∣∣µtµ
∣∣∣∣p µdt.

Calculating the variation of the p-energy functional in direction δµ leads to

(11)

δEp(µ)(δµ) =
1

p

∫ 1

0

∫
p

∣∣∣∣µtµ
∣∣∣∣p−2 µt

µ
δµt − (p− 1)

∣∣∣∣µtµ
∣∣∣∣p δµdλ dt

= −1

p

∫ 1

0

∫ (
p
d

dt

(∣∣∣∣µtµ
∣∣∣∣p−2 µt

µ

)
+ (p− 1)

∣∣∣∣µtµ
∣∣∣∣p
)
δµdλ dt,

where we used integration by parts in time t and that the variational direction vanishes at the end
points, i.e., δµ(0) = δµ(1) = 0. From here we can immediately read off the geodesic equation

p
d

dt

(∣∣∣∣µtµ
∣∣∣∣p−2 µt

µ

)
+ (p− 1)

∣∣∣∣µtµ
∣∣∣∣p = 0.

which can be simplified to the desired formula. That this equation coincides with the geodesic
equation of the α-connection can be seen by comparing it to the equation of Theorem 3.3. �
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Next we will study the Finslerian geometry induced by the Lp-Fisher-Rao metric (see Appendix A
for a short overview of the main definitions). We will see in the next Lemma, that the Lp-Fisher-
Rao metric is, in general, not strongly convex and thus some of the calculations in this and the
next sections have to be understood formally.

Lemma 3.8 (The Hessian matrix). Let µ ∈ Dens+(M) and ν, a, b ∈ Tµ Dens+(M). The Hessian
matrix gν of the squared Lp-Fisher-Rao metric at ν is given by

(12) gνµ(a, b) = (p− 1)I(ν, ν)
2
p
−1
I(a, b)− (p− 2)I(ν, ν)

2
p
−2
I(ν, a)I(ν, b).

where

(13) I(a, b) := Iνµ(a, b) :=

∫ ∣∣∣∣νµ
∣∣∣∣p−2 a

µ

b

µ
µ .

If ν is nowhere zero than gν is positive definite and thus a Riemannian metric. If ν vanishes on
an open set U ⊂M then, for p > 2, gν is degenerate as it vanishes for all a, b ∈ Tµ Dens+(M) with
support contained in U , and for p < 2 it is not well-defined.

Proof. We introduce the notations

ω̃ = ω̃(r, s) :=
ν

µ
+ r

a

µ
+ s

b

µ
,

ω := |ω̃(r, s)| =
∣∣∣∣νµ + r

a

µ
+ s

b

µ

∣∣∣∣ .
To compute the Hessian matrix of F 2

p (µ, ν) we need to calculate the second derivative in r and s

of F 2
p (µ, ω). We have

∂rF
2
p (µ, ω) = 2

(∫
ωpµ

)2/p−1 ∫
ωp−1∂rω µ = 2

(∫
ωpµ

)2/p−1 ∫
ωp−1 sgn(ω̃)

a

µ
µ.

For the second derivative we get

∂s∂rF
2
p (µ, ω) = 2(2− p)

(∫
ωpµ

)2/p−2 ∫
ωp−1 sgn(ω̃)

a

µ
µ

∫
ωp−1 sgn(ω̃)

b

µ
µ

+ 2(p− 1)

(∫
ωpµ

)2/p−1 ∫
ωp−2 a

µ

b

µ
µ.

Evaluating at r = s = 0 yields the desired formula for gνµ.
For ν 6= 0 we can use the Cauchy-Schwarz inequality to prove the positive-definiteness of the

Hessian: (∫ ∣∣∣∣νµ
∣∣∣∣p−1 ∣∣∣∣aµ

∣∣∣∣ µ
)2

≤
∫ ∣∣∣∣νµ

∣∣∣∣p µ∫ ∣∣∣∣νµ
∣∣∣∣p−2(a

µ

)2

µ.

Then we get the inequality

gν(a, a) ≥
(∫ ∣∣∣∣νµ

∣∣∣∣p µ)2/p−1 ∫ ∣∣∣∣νµ
∣∣∣∣p−2(a

µ

)2

µ.

Thus for ν being a nowhere vanishing vector field, gν(a, a) = 0 implies that a
µ = 0. �
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Lemma 3.9 (The Cartan tensor). Let µ ∈ Dens+(M) and ν, a, b, c ∈ Tµ Dens+(M). The Cartan
tensor of the Lp-Fisher-Rao metric is given by

(14)

Cν(a, b, c) =
1

2
(p− 1)(p− 2)I(ν, ν)

2
p
−3
(

2I(ν, a)I(ν, b)I(ν, c)

− I(ν, ν)I(ν, a)I(b, c)− I(ν, ν)I(ν, b)I(c, a)

− I(ν, ν)I(ν, c)I(a, b) + I(ν, ν)2J(ν, a, b, c)
)
,

where

(15)

I(a, b) := Iνµ(a, b) :=

∫ ∣∣∣∣νµ
∣∣∣∣p−2 a

µ

b

µ
µ,

J(a, b, c) := Jνµ(a, b, c) :=

∫ ∣∣∣∣νµ
∣∣∣∣p−4 a

µ

b

µ

c

µ
µ.

Proof. This formula can be derived similarly as the formula for the Hessian by computing

Cν(a, b, c) = ∂r∂s∂t|r=s=t=0 Fp(µ, ω̃)

where ω̃(r, s, t) = ν + ra+ sb+ tc. �

3.3. The α-connection as Chern connection of the Lp-Fisher-Rao metric. Next we will show that
the Chern connection associated to the Lp-Fisher-Rao metric on Dens+(M) is an α-connection,
when two entries are taken to be the same.

Theorem 3.10 (The Chern connection on Dens+(M)). Let α = 1− 2
p . For every nowhere vanishing

vector field ν on Dens+(M) and any a ∈ Tµ Dens+(M), we have

(16) ∇νaν = ∇(α)
a ν,

where ∇ν is the Chern connection induced by the Lp-Fisher-Rao metric and ∇(α) is the α-connection
on Dens+(M) defined by (5).

Proof. Formula (16) defines the Chern connection if and only if it verifies the generalized Koszul
formula (see Lemma A.8)

2gν(∇νaν, b) = agν(ν, b) + νgν(b, a)− bgν(a, ν) + gν([a, ν], b)− gν([ν, b], a) + gν([b, a], ν)

− 2Cν(∇νaν, ν, b)− 2Cν(∇ννν, b, a) + 2Cν(∇ννb, a, ν).

Since the Cartan tensor verifies Cν(ν, ·, ·) = 0 this formula reduces to

(17)
2gν(∇νaν, b) = agν(ν, b) + νgν(b, a)− bgν(a, ν)

+ gν([a, ν], b)− gν([ν, b], a) + gν([b, a], ν)− 2Cν(∇ννν, b, a).

To compute the first terms of the right hand-side of this equality, we will need

cI(a, b) = I(Da.c, b) + I(a,Db.c)− (p− 1)K(a, b, c) + (p− 2)J(ν, a, b,Dν.c),

where I and J are defined by (15), and

K(a, b, c) := Kν
µ(a, b, c) =

∫ ∣∣∣∣νµ
∣∣∣∣p−2 a

µ

b

µ

c

µ
µ.
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Using this we get

agν(ν, b) = −p− 2

p
I(ν, ν)2/p−2I(ν, b) (pI(ν,Dν.a)− (p− 1)K(ν, ν, a))

+ I(ν, ν)2/p−1 (I(ν,Db.a)− (p− 1)K(ν, a, b) + (p− 1)I(b,Dν.a)) ,

bgν(ν, a) = −p− 2

p
I(ν, ν)2/p−2I(ν, a) (pI(ν,Dν.b)− (p− 1)K(ν, ν, b))

+ I(ν, ν)2/p−1 (I(ν,Da.b)− (p− 1)K(ν, a, b) + (p− 1)I(a,Dν.b)) ,

and

νgν(a, b) = −(p− 1)(p− 2)

p
I(ν, ν)2/p−2I(a, b) (pI(ν,Dν.ν)− (p− 1)K(ν, ν, ν))

+ (p− 1)I(ν, ν)2/p−1 (I(Da.ν, b) + I(a,Db.ν)− (p− 1)K(ν, a, b) + (p− 2)J(ν, a, b,Dν.ν))

+
2(p− 1)(p− 2)

p
I(ν, ν)2/p−3I(ν, a)I(ν, b) (pI(ν,Dν.ν)− (p− 1)K(ν, ν, ν))

− (p− 2)I(ν, ν)2/p−2I(ν, b) (I(ν,Da.ν)− (p− 1)K(ν, ν, a) + (p− 1)I(a,Dν.ν))

− (p− 2)I(ν, ν)2/p−2I(ν, a) (I(ν,Db.ν)− (p− 1)K(ν, ν, b) + (p− 1)I(b,Dν.ν)) .

The following terms of the right hand-side of the generalized Koszul formula (17) are given by

gν([a, ν], b) = (p− 1)I(ν, ν)2/p−1I(Dν.a−Da.ν, b)

− (p− 2)I(ν, ν)2/p−2I(ν,Dν.a−Da.ν)I(ν, b),

gν([ν, b], a) = (p− 1)I(ν, ν)2/p−1I(Db.ν −Dν.b, a)

− (p− 2)I(ν, ν)2/p−2I(ν,Db.ν −Dν.b)I(ν, a),

gν([b, a], ν) = I(ν, ν)2/p−1I(ν,Da.b−Db.a).

Finally there remains to compute the two terms involving the Chern connection, i.e. the term on
the left hand-side and the last term of the right hand-side. With the chosen value of α, we have

∇νaν = Dν.a− p− 1

p

a

µ

ν

µ
µ,

and so

I(∇νaν, b) = I(Dν.a, b)− p− 1

p
K(ν, a, b)

J(ν, a, b,∇ννν) = J(ν, a, b,Dν.ν)− p

p− 1
K(ν, a, b).
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This yields, using (14),

2Cν(∇ννν, b, a) = (p− 1)(p− 2)I(ν, ν)2/p−3

·
[
2I(ν, a)I(ν, b)

(
I(ν,Dν.ν)− p− 1

p
K(ν, ν, ν)

)
− I(ν, ν)I(ν, a)

(
I(b,Dν.ν)− p− 1

p
K(ν, ν, b)

)
− I(ν, ν)I(ν, b)

(
I(a,Dν.ν)− p− 1

p
K(ν, ν, a)

)
− I(ν, ν)I(a, b)

(
I(ν,Dν.ν)− p− 1

p
K(ν, ν, ν)

)
+ I(ν, ν)2

(
J(ν, a, b,Dν.ν)− p− 1

p
K(ν, a, b)

)]
.

Putting all the terms together yields the left hand-side of the generalized Koszul formula (17), i.e.

2gν(∇νaν, b) = 2(p− 1)I(ν, ν)2/p−1

(
I(Dν.a, b)− p− 1

p
K(ν, a, b)

)
− 2(p− 2)I(ν, ν)2/p−2I(ν, b)

(
I(Dν.a, ν)− p− 1

p
K(ν, ν, a)

)
.

�

As a direct consequence of the above characterization of the α-connections as a Chern connection
we obtain that these connections have an interpretation as describing energy minimizing curves:

Corollary 3.11. Let α ∈ (−1, 1). Geodesic curves of the α-connection describe locally minimizing
curves of the 2

1−α -Energy

E 2
1−α

(µ) =
1− α

2

∫ 1

0

∫ ∣∣∣∣µtµ
∣∣∣∣ 2
1−α

µdt.

3.4. The p-root transform. Next, we will isometrically map the space of densities to a simpler space,
which will allow us to obtain explicit expressions for solutions to the geodesic equation; we call this
construction, which is a direct generalization of the square-root transform for the Fisher-Rao metric,
the p-root transform. At the same time the p-root transform presents an alternative way to define
the α-connection. This has been first proposed by Gibilisco and Pistone [24], who considered
this construction specifically for the space Prob(M) albeit with slightly different notations and a
different identification of a tangent vector with a function.

Theorem 3.12. Endow the space C∞(M) of smooth functions with the standard Lp-norm and with
the trivial vector space connection ∇tr, i.e., for two vector fields ξ, η : C∞(M)→ C∞(M),

∇tr
ξ η = Dη.ξ.

Let α ∈ (−1, 1) and, as before, denote p = 2
1−α . Define the map Φp : Dens+(M)→ C∞(M) by

(18) Φp(µ) =
(µ
λ

)1/p
.

We have:

(a) The image Φp(Dens+(M)) is the set of all positive functions in C∞(M).
(b) The mapping Φp is an isometric embedding, where Dens+(M) is equipped with a multiple

of the Lp-Fisher-Rao metric and where C∞(M) is viewed as a vector space equipped with
the standard Lp-norm.
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(c) The pullback of Φ∗p∇tr coincides with ∇(α) up to a constant depending only on the footpoint:

(Φ∗p∇tr)ab|µ =
1

p

(µ
λ

) 1
p
−1
∇(α)
a b|µ, µ ∈ Dens+(M), a, b ∈ X(Dens+(M))

In particular, the geodesics of Φ∗p∇tr and ∇(α) coincide.

Note that geodesics of the trivial connection on a vector space are always straight lines; in partic-
ular, this proposition allows us to obtain geodesics of the Lp-Fisher-Rao metric (of the α-connection,
resp.) by pulling-back straight lines in C∞(M) using Φp. We will use this in Corollary 3.13 below
to explicitly describe the resulting formulas on Dens+(M). First we present the proof of the above
theorem, which is a fairly straightforward calculation:

Proof of Theorem 3.12. The characterization of the image of Φp follows directly from the definition
of Dens+(M). To show item (b) we calculate for µ ∈ Dens+(M) and a ∈ Tµ Dens+(M) the
differential of Φp:

DµΦp(a) =
1

p

a

λ

(µ
λ

)1/p−1
.

Therefore the pullback of the Lp-norm via the embedding Φp is given by

‖DµΦp(a)‖Lp =
1

p

(∫
M
|DµΦp(a)|p dλ

)1/p

=
1

p

(∫
M

∣∣∣∣aµ
∣∣∣∣p µ)1/p

=
1

p
Fp(µ, a),

which implies that the embedding Φp is indeed an isometry.
Similarly we calculate for item (c)

(Φ∗p∇tr)ab|µ = (TΦp)
−1∇tr

TΦp(a)TΦp(b)|Φp(µ)

= (TΦp)
−1

(
1

p2

(µ
λ

) 1
p
−1
(
∇tr
a/λ

(ν
λ

) 1
p
−1 b

λ

)
µ=ν

)

=
1

p

(
∇tr
a/λ

(ν
λ

) 1
p
−1 b

λ

)
µ=ν

λ

=
1

p

(µ
λ

) 1
p
−1
(
D(b/dx).(a/dx) +

(
1

p
− 1

)(µ
λ

)−1 a

λ

b

λ

)
λ

=
1

p

(µ
λ

) 1
p
−1
(
Db.a+

(
1

p
− 1

)
a

µ
b

)
=

1

p

(µ
λ

) 1
p
−1
∇(α)
a b|µ.

�

The above theorem allows us to explicitly solve for geodesics on Dens+(M), which in turn leads
to a proof of metric and geodesic incompleteness of the Lp-Fisher-Rao metric for any p > 1. By the
equivalence of geodesics for the α-connections and for the Lp-Fisher-Rao metric the formulas for
geodesics also hold for the former. In the finite dimensional setting this solution formula (via the
p-root mapping) for the α-geodesics is known albeit without any geometric interpretation, cf. [5,
Page 50].

Corollary 3.13 (The geometry of the Lp-Fisher-Rao metric). For any p > 1 we have the following
statements:

(a) The space Dens+(M) equipped with the Lp-Fisher-Rao metric (the α-connection resp.) is
geodesically convex and, even more, there exists an explicit formula for all minimizing
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geodesics: given any µ0, µ1 ∈ Dens+(M) the unique geodesic µ : [0, 1] → Dens+(M) con-
necting µ0 to µ1 is given by

µ(t) =
(
t p
√

µ1
λ + (1− t) p

√
µ0
λ

)p
λ.

(b) Given any µ0, µ1 ∈ Dens+(M) the geodesic distance of the Lp-Fisher-Rao metric is given
by

d(µ0, µ1) =

(∫
M

∣∣∣ p√µ1
λ −

p

√
µ0
λ

∣∣∣λ)1/p

In particular, the geodesic distance of the Lp-Fisher-Rao metric on Dens+(M) is non-
degenerate.

(c) For any initial conditions µ0 ∈ Dens+(M) and a ∈ Tµ Dens+(M) the unique Lp-Fisher-
Rao geodesic (α-connection geodesic, resp.) µ : [0, T )→ Dens+(M) defined on its maximal
interval of existence [0, T ) is given by

µ(t) =

(
p

√
µ0
λ + t

a

λ

(µ
λ

)1/p−1
)p

λ.

The geodesic µ(t) exists for all time t, i.e., T =∞, if and only if a
λ(x) ≥ 0 for all x ∈ M .

Thus the space Dens+(M) equipped with the Lp-Fisher-Rao metric is geodesically incomplete
since the solution to the geodesic equation (10) leaves the space in finite time for any initial
condition with a

λ(x) < 0 for some x.
(d) The space Dens+(M) equipped with the geodesic distance of the Lp-Fisher-Rao metric is

metrically incomplete.
(e) The metric completion of the space Dens+(M) with respect to the geodesic distance of the

Lp-Fisher-Rao metric is the space of all non-negative L1-densities:

DensL1(M) =
{
µ :

µ

λ
∈ L1(M),

µ

λ
≥ 0 a.e.

}
Proof. Statements (a)–(d) follow directly from the isometry of Theorem 3.12, the fact that geodesics
on the vector space (C∞(M), Lp) are straight lines and the characterization of the image of Φp as an
open, convex subset of C∞(M). To see the statement regarding the metric completion we observe
that the metric completion of the image is exactly the set of a.e. non-negative Lp-functions and
thus the statement on the metric completion follows by applying Φ−1

p . �

4. The Lp-Fisher-Rao metric and α-connections on the space of probability
densities

The Lp-Fisher-Rao metric Fp and the α-divergence Dα define, via restriction, corresponding
objects on Prob(M), which we study in this section. In particular, we will see that Prob(M)
equipped with the Lp-Fisher-Rao metric corresponds geometrically to an infinite dimensional Lp-
sphere. In addition we will see that the equivalence to the α-connection, that has been established
for the space of all densities in the previous section, does not hold on the space of probability
densities. Consequently we obtain three different notions of p-geodesics on this space:

(1) geodesics of the restriction of the Lp-Fisher-Rao metric to Prob(M);
(2) geodesics of the α-connections on Prob(M);
(3) projections of Lp-Fisher-Rao geodesic curves (or equivalently, the α-connection ones) on

Dens+(M).

In addition, if we allow to leave the space of probability densities, we obtain a fourth notion:

(4) Lp-Fisher-Rao geodesics in Dens+(M). In analogy to the L2 case, the induced geodesic
distance between probability densities defines an Lp version of the Hellinger distance.
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We will show that (2) and (3) coincide, thereby providing an explicit formula for α-geodesics on
Prob(M). For a graphic summary of these constructions we refer to Figure 1. In the next section
we will compare the remaining three notions of geodesics numerically.

4.1. The Amari-C̆encov α-connections on Prob(M). The restriction of the α-divergences Dα to

the space Prob(M) induces again a family of α-connections, which we will denote by ∇(α)
. Note,

that this connection is not simply the restriction of the α-connections on Dens+(M), which is the
reason for choosing a different notation for it. We start by deriving an explicit formula for the
α-connections on Prob(M):

Lemma 4.1. For any α ∈ (−1, 1) the α-connections ∇(α)
on Prob(M) are given by

(19) ∇(α)
a b = Db.a− 1

p∗

(
a

µ
b−

(∫
M

a

µ

b

µ
µ

)
µ

)
.

Thus, the connection ∇(α)
a b on Prob(M) is the projection of ∇(α)

a b with respect to the Fisher-Rao
metric GFR.

For finite sample spaces this result is well-known (e.g., [5, Section 2.5.2]); in infinite dimen-
sions formula (19) agrees with the formula (22) in [30], under the identification of Prob(M) =
Diff(M)/Diffλ(M).

Proof. To derive the formula for the α-connection ∇(α)
we calculate the second derivative of the

restriction of Dα, which is given again by formula (4) with the only difference being that a, b, c ∈
Tµ Prob(M). Thus we have determined ∇(α)

up to a function in the GFR orthogonal complement of
Tµ Prob(M), which are exactly the constant multiples of µ. Thus the formula follows by ensuring

that ∇(α)
a b ∈ Prob(M). This argument also proves that ∇(α)

a b is the Fisher-Rao projection of

∇(α)
a b. �

Theorem 4.2. A path µ : [0, 1]→ Prob(M) is a geodesic with respect to ∇(α) if

µtt −
1

p∗
µ−1µ2

t = − 1

p∗

(∫ (
µt
µ

)2

µ

)
µ.

For any k > dim(M)/2 the geodesic equations are locally wellposed on the space of Sobolev proba-

bility densities Probk(M), i.e., given initial conditions µ(0) ∈ Probk(M), µt(0) ∈ Tµ(0) Probk(M)
there exists an unique solution to equation (6) defined on a maximal interval of existence [0, T ).
The maximal interval of existence is uniform in the Sobolev order k and thus the local wellposedness
continues to hold in the limit, i.e., on the space of smooth, probability densities Prob(M).

Proof. The proof of the local wellposedness follows exactly as in Theorem 3.3. �

4.2. The Lp-Fisher-Rao metric on Prob(M). Next, we study the restriction of the Lp-Fisher-Rao
metric to the space Prob(M).

Remark 4.3 (C̆encov’s theorem). Note that Lemma 3.6 on the invariance of the Lp-Fisher-Rao
metric continues to hold on the space Prob(M). For the Riemannian case and dim(M) > 1

C̆encov’s theorem states that the Fisher-Rao metric is the only Riemannian metric on Prob(M)
that is invariant under the action of the diffeomorphism group Diff(M), cf. [16, 4, 9]. In the
Finslerian case there is a significant amount of additional flexibility, and one can indeed construct
metrics beyond the Lp-Fisher-Rao metric that satisfy this property. In future work it would be
interesting to obtain a complete characterization of all such Finsler metrics.

We start by computing the geodesic equation of the (restriction) of the Lp-Fisher-Rao metric Fp
on Prob(M):
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Theorem 4.4 (Geodesic equation on Prob(M)). For any p ∈ (1,∞), the geodesic equation of the
Lp-Fisher-Rao metric on the space of densities Prob(M) is given by∣∣∣∣µtµ

∣∣∣∣p−2 d

dt

(
µt
µ

)
+

1

p

∣∣∣∣µtµ
∣∣∣∣p = C(t)(20)

where C(t) is a constant depending only on time t, that is chosen such that
∫
M µ(t) = 1.

This equation coincides with the geodesic equation of the α-connection if and only if p = 2 (α = 0,
resp.).

Remark 4.5 (Existence of solutions). In the previous section we showed that the geodesic equation
of the α-connections is locally wellposed on the space Prob(M). One would be tempted to expect
a similar result for the geodesic equation of the Lp-Fisher-Rao metric; recall that this statement
was true on the space Dens+(M). It turns out that the above equation is analytically much worse-
behaved: the problem arises from the vanishing of the quantity µt

µ which leads to singularities of

the geodesic equation. As a consequence we conjecture that the geodesic equation does not admit
any classical solutions. This behavior can also be observed in the numerical simulations (Figure 2),
where the obtained (approximate) solutions show a singular behavior.

Proof of Theorem 4.4. To derive this equation, we proceed as for the geodesic equation on the space
Dens+(M). We then obtain again

δEp(µ)(δµ) = −1

p

∫ 1

0

∫ (
p
d

dt

(∣∣∣∣µtµ
∣∣∣∣p−2 µt

µ

)
+ (p− 1)

∣∣∣∣µtµ
∣∣∣∣p
)
δµ dλ dt := −1

p

∫ 1

0

∫
Ψ δµ dλ dt

for the variation of the p-Energy with the only difference being that δµ now has to integrate to
zero. Thus we do not get that Ψ = 0 as we had on the space Dens+(M), but only that Ψ has to
be orthogonal to all such δµ. This is equivalent to Ψ being a constant for each fixed time t, which
is determined by the condition that

∫
M µ(t) = 1. �

The above result suggests that the equivalence between the α-connection and the Chern-connection
of the Lp-Fisher-Rao metric cannot hold in this setting. We will make this formal in the following
theorem:

Theorem 4.6 (The Chern connection on Prob(M)). For a vector field ν on Prob(M) the Chern
connection is given by, for all a ∈ Tµ Prob(M),

(21) ∇νaν = Dν.a− p− 1

p

a

µ

ν

µ
µ+ k1

∣∣∣∣νµ
∣∣∣∣−p aµν + k2

∣∣∣∣νµ
∣∣∣∣2−p µ,

with the constants

k1(ν) := −(p− 1)(p− 2)

2p

(∫ ∣∣∣∣νµ
∣∣∣∣2 µ
)
/

(∫ ∣∣∣∣νµ
∣∣∣∣2−p µ

)

k2(ν, a) :=
p− 1

p

(∫
a

µ

ν

µ
µ

)
/

(∫ ∣∣∣∣νµ
∣∣∣∣2−p µ

)
+

(p− 1)(p− 2)

2p

(∫ ∣∣∣∣νµ
∣∣∣∣−p aµν

∫ ∣∣∣∣νµ
∣∣∣∣2 µ
)
/

(∫ ∣∣∣∣νµ
∣∣∣∣2−p µ

)2

.

Remark 4.7. As any vector field ν ∈ Tµ Prob(M) has zeros the above formula has to be taken with
caution and should be understood formally only.

Remark 4.8. In particular, when all entries are the same, the Chern connection on Prob(M) is the

orthogonal projection of the α-connection ∇(α) on Dens+(M), for α = 1 − 2
p , with respect to gν ,

the Riemannian metric (12) induced by the Lp-Fisher-Rao metric

(22) ∇ννν = Projν
(
∇(α)
ν ν

)
= Dν.ν − 1

p∗
ν

µ

ν

µ
µ+ k

∣∣∣∣νµ
∣∣∣∣2−p µ
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where p∗ is the Hölder conjugate of p and

k(ν) :=
1

p∗

(∫ ∣∣∣∣νµ
∣∣∣∣2 µ
)
/

(∫ ∣∣∣∣νµ
∣∣∣∣2−p µ

)
.

Indeed, the correction term k
∣∣∣ νµ ∣∣∣2−p µ is orthogonal to T Prob(M) and makes the integral zero.

Proof of Theorem 4.6. We start by noticing that, since Dν(a) integrates to zero, the integral of
the right hand-side of (21) is zero and so it defines a tangent vector of Prob(M). The formula
(21) defines the Chern connection if and only if it verifies the generalized Koszul formula (17).

Letting α = 1 − 2
p and ∇(α) be the corresponding α-connection on Dens+(M), we can decompose

the candidate for the Chern connection as

∇νaν = ∇(α)
a ν + k1

∣∣∣∣νµ
∣∣∣∣−p aµν + k2

∣∣∣∣νµ
∣∣∣∣2−p µ.

Since ∇(α) is the Chern connection on Dens+(M) for this choice of α, the candidate (21) verifies
the generalized Koszul formula if and only if
(23)

0 =2gν

(
k1(ν)

∣∣∣∣νµ
∣∣∣∣−p aµν + k2(ν, a)

∣∣∣∣νµ
∣∣∣∣2−p µ, b

)
+ 2Cν

(
k1(ν)

∣∣∣∣νµ
∣∣∣∣−p νµν + k2(ν, ν)

∣∣∣∣νµ
∣∣∣∣2−p µ, b, a

)

=2k1(ν)gν

(∣∣∣∣νµ
∣∣∣∣−p aµν, b

)
+ 2k2(ν, a)gν

(∣∣∣∣νµ
∣∣∣∣2−p µ, b

)
+ 2(k1(ν) + k2(ν, ν))Cν

(∣∣∣∣νµ
∣∣∣∣2−p µ, b, a

)
.

Noticing that, for all b ∈ Tµ Prob(M), I(| νµ |
2−pµ, b) =

∫
b = 0, we see from (12) that

gν

(∣∣∣∣νµ
∣∣∣∣2−p µ, b

)
= 0.

This also means that all terms in the Cartan tensor (14) but one vanish, leaving

2Cν

(∣∣∣∣νµ
∣∣∣∣2−p µ, b, a

)
= (p− 1)(p− 2)I(ν, ν)

2
p
−1
J

(
ν,

∣∣∣∣νµ
∣∣∣∣2−p µ, b, a

)

= (p− 1)(p− 2)I(ν, ν)
2
p
−1
∫ (

ν

µ

)−1 a

µ

b

µ
µ

Finally there remains to compute

gν
(∣∣∣µ
ν

∣∣∣p a
µ
ν, b

)
= (p− 1)I(ν, ν)

2
p
−1
∫ ∣∣∣∣νµ

∣∣∣∣p−2 ∣∣∣∣νµ
∣∣∣∣−p aµ νµ bµµ

− (p− 2)I(ν, ν)
2
p
−2
I(ν, b)

∫ ∣∣∣∣νµ
∣∣∣∣p−2 ν

µ

∣∣∣∣νµ
∣∣∣∣−p aµ νµµ

= (p− 1)I(ν, ν)
2
p
−1
∫ (

ν

µ

)−1 a

µ

b

µ
µ.
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Putting all these together, and noticing that k2(ν, ν) = − p
p−2k1(ν), we obtain

2gν

(
k1(ν)

∣∣∣∣νµ
∣∣∣∣−p aµν + k2(ν, a)

∣∣∣∣νµ
∣∣∣∣2−p µ, b

)
+ 2Cν

(
k1(ν)

∣∣∣∣νµ
∣∣∣∣−p νµν + k2(ν, ν)

∣∣∣∣νµ
∣∣∣∣2−p µ, b, a

)

= (pk1(ν) + (p− 2)k2(ν)) (p− 1)I(ν, ν)
2
p
−1
∫ (

ν

µ

)−1 a

µ

b

µ
µ

= 0,

and so condition (23) is satisfied. �

4.3. The p-root transform on Prob(M). In the previous section we have seen that the α-connection
and the Lp-Fisher-Rao metric induce different geodesics on the space Prob(M). In this section we
will investigate the geometric reasons behind this, by connecting both of these objects to the p-root
transform. In order to state this result we will need to define an appropriate connection on the
sphere

Sp := {f ∈ C∞(M) : ‖f‖Lp = 1},
as the image of Prob(M) under Φp is in this set. To this end, we define:

Definition 4.9 (p-projection and p-connection). The p-projection map πp : TC∞|Sp → TSp is defined
by

πpf (ξ) = ξ −
(∫

M
ξf |f |p−2 dλ

)
f, f ∈ Sp, ξ ∈ TC∞|Sp .

The induced p-connection on Sp is defined by

∇pξη = πp
(
∇tr
ξ η
)
.

Note, that πp is the projection with respect to the splitting TfC
∞ = TfSp ⊕ span{f}. The

geodesic equation ∇pγ̇ γ̇ = 0 can therefore be written as:

(24)

{
γ̈ ‖ γ∫
M γp dλ = 1

Note that from a metric point of view, this splitting is natural since f ∈ TfC
∞ is the unique

direction from which straight lines (i.e., geodesics in C∞) emanating from f gets the fastest away
from Sp with respect to the Lp norm (since for p ∈ (1,∞) the space Lp is strictly convex). Similarly,
πpf (ξ) satisfies ‖ξ − πpf (ξ)‖Lp = distLp(ξ, TfSp). For a more general viewpoint on projections on a

sphere in uniformly convex Banach spaces whose dual is also uniformly convex, see [23] and [22,
Prop. 2].

We are now able to formulate the analogous statement of Theorem 3.12, which will demonstrate
the geometric differences between the α-connections and the Lp-Fisher-Rao metric:

Theorem 4.10. Let α ∈ (−1, 1) and, as before, denote p = 2
1−α . Consider the restriction of the map

Φp, as defined in (18), to the space Prob(M). We have:

(a) The image Φp(Prob(M)) is the set of all positive functions in the Lp-sphere Sp.
(b) The mapping Φp is an isometric embedding, where Prob(M) is equipped with a multiple

of the Lp-Fisher-Rao metric and where Sp is equipped with the restriction of the standard
Lp-norm.

(c) The pullback of Φ∗p∇p to Prob(M) coincides with the connection ∇(α)
up to a constant

depending only on the footpoint:

(Φ∗p∇p)ab|µ =
1

p

(µ
λ

) 1
p
−1
∇(α)
a b|µ, µ ∈ Prob(M), a, b ∈ X(Prob(M)).

In particular, the geodesics of Φ∗p∇p and ∇(α)
coincide.
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Proof. The proof follows by the same calculation as the proof of Theorem 3.12. �

On Sp, geodesics are no longer straight lines, and we do not have an explicit solution for the
geodesic equations of either the α-connection or the Lp-Fisher-Rao metric. However, by projecting
straight lines on the sphere and rescaling time, one can obtain geodesics for the α-connection (cf.
[4, Section 2.5.2] where this result has been shown in the finite dimensional situation):

Theorem 4.11. Let f ∈ Sp and ξ ∈ TfSp. Let I ⊂ R be an interval containing 0, and let τ : I → R
satisfy the ODE

τ̈(t) = 2

∫
M |f + τ(t)ξ|p−2(f + τ(t)ξ)ξ dλ∫

M |f + τ(t)ξ|p dλ
τ̇(t)2

τ(0) = 0

τ̇(0) = 1

Then γ : I → Sp defined by

γ(t) =
f + τ(t)ξ

‖f + τ(t)ξ‖Lp
is a geodesic of ∇p, with initial condition γ(0) = f , γ̇(0) = ξ.

A boundary value problem between f, g ∈ Sp can be similarly addressed by putting ξ = g − f and
I = [0, 1], and replacing the initial conditions for τ by the boundary conditions τ(0) = 0, τ(1) = 1.

Geodesics of ∇(α)
are obtained by pulling back these geodesics using Φp. They all cease to exist

(i.e., leave the space Prob(M)) after finite time. Since the geodesic equation is locally well-posed
(Proposition 4.2), this procedure induces all the α-connection geodesics, i.e., the exponential map

of ∇(α)
.

Proof. Using (24), we need to show that γ̈ ‖ γ; all the other assumptions are satisfied by construc-
tion. We have

γ̈ = τ̈(t)‖f + τ(t)ξ‖−1
Lp ξ + 2τ̇(t)

d

dt
‖f + τ(t)ξ‖−1

Lp ξ +
d2

dt2
‖f + τ(t)ξ‖−1

Lp (f + τ(t)ξ).

The last addend is clearly parallel to γ. Hence it is sufficient to require that

τ̈(t)‖f + τ(t)ξ‖−1
Lp + 2τ̇(t)

d

dt
‖f + τ(t)ξ‖−1

Lp = 0,

which is equivalent to the wanted ODE.
In order to prove that the pullback of the solutions leaves Prob(M) after a finite time, we need

to show that γ(t) stops being positive, i.e., that for some t > 0, f(x) + τ(t)ξ(x) ≤ 0 for some
x ∈ M . From the equivariance under the action of Diff(M), cf. Remark 4.3, it is sufficient to
consider the case f ≡ 1 (which corresponds to µ(0) = λ). In this case ξ is a non-zero function
satisfying

∫
M ξ λ = 0, and thus in particular ξ(x) < 0 for some x. Therefore, in order to prove that

1 + τ(t)ξ(x) ≤ 0 for some t, it is sufficient to prove that τ is unbounded as t → ∞. Note that we
can write the equation for τ as

(25) τ̈(t) = 2

(
1− 1∫

M |1 + τ(t)ξ|p dλ

)
τ̇(t)2

τ
.

Now, since s 7→ 1 + sξ is a tangent line to the unit sphere at f = 1 in the strictly convex space
Lp, it follows that ‖1 + sξ‖Lp ≥ 1, and equality holds if and only if s = 0. Thus, the term in the
parentheses in (25) is non-negative, and vanishes if and only if τ(t) = 0. Since we also have that
τ(0) = 0 and τ̇(0) = 1, it follows that τ̈(t) > 0 for t ∈ (0, t0) for some t0 small enough, and thus for
any positive t. It follows therefore that τ > t for all t > 0, and in particular, it is unbounded. �



THE Lp-FISHER-RAO METRIC AND AMARI-C̆ENCOV α-CONNECTIONS 19

Remark 4.12. In fact, the estimate τ > t implies that 1 + τ(t)ξ hits zero at some point for the
first time at t∗ <

1
−min ξ . Pulling back to Prob(M), we obtain that a geodesic from λ with initial

condition a ∈ Tλ Prob(M) blows up at time

(26) t∗ <
p

−min(a/λ)
.

In principle, better estimates on the blowup can be obtained by more careful analysis of (25).
The estimate (26) is exactly the estimate obtained in [29, Formula (78)] (there, the parameter a is
equivalent to −1− 2

p in our notation).

Example 4.13 (Fisher-Rao geodesics). For the case p = 2, assuming that ξ is a unit vector (which
is, by definition, perpendicular to f), we obtain that the ODE takes a simpler form

τ̈ =
2τ

1 + τ2
τ̇2,

whose solution is τ(t) = tan t, yielding the known solution of the Fisher–Rao geodesics [26, Re-
mark 4.4].

5. Summary of relations to known PDEs and metrics on diffeomorphism groups

We now summarize how the Lp-Fisher-Rao metric relates to (degenerate) right-invariant Finsler
metric on the group of diffeomorphisms, in a similar spirit as in [26] who studied this for the L2-
case. Furthermore, we will see how the geodesics equations described in this paper relate to other
previously studied equations in hydrodynamics and mathematical physics:

• On the diffeomorphism group of a closed manifold M one can consider the family of, right-
invariant (degenerate) Ẇ 1,p-Finsler metrics of the form

F̃p(ϕ,X ◦ ϕ) =

(∫
M
|div(X)|pdλ

)1/p

, X ∈ Tϕ Diff(M).

These metrics were useful for proving that the diameter of Diff(M) with respect to some
critical Sobolev Riemannian metrics is infinite [12]. Note that the kernel of the Finsler

metric F̃p consists exactly of all divergence free vector fields, and thus F̃p is only a “true”
Finsler metric on the quotient space Diff(M)/Diffλ(M). The relation to the Lp-Fisher-
Rao metric, as studied in the present article, becomes clear by considering the mapping
ϕ 7→ Jac(ϕ)λ, which gives rise to an isometry

(Diff(M)/Diffλ(M), F̃p)→ (Prob(M), Fp).

Note, that this result is a direct generalization of the case p = 2 treated in Khesin et
al. [26]. For this case Modin [33] constructed an extension of the metric F̃2 to obtain a
non-degenerate, right invariant Riemannian metric on the full group of diffeomorphisms
Diff(M), that still descends to the Fisher-Rao metric F2 on Prob(M). In future work it
would be interesting to consider a similar extension for the case p 6= 2.
• Similarly, the α-connections on Prob(M) can be pulled back to Diff(M)/Diffλ(M); the

corresponding geodesic equation (which is equivalent to the one in Theorem 4.2) was first
considered in [30]. Theorem 4.11 shows their integrability and finite-time blowup.
• For the special case M = S1, where the group of volume preserving diffeomorphisms is

given by the group of rotations Rot(S1), the α-connections on Prob(S1) can thus be pulled
back to Diff(S1)/Rot(S1), where the associated geodesic equation, when presented on the
Lie algebra, is the generalized periodic inviscid Proudman–Johnson equation

utxx + (2− α)uxuxx + uuxxx = 0,
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as was first shown in [30]. See [38, 29] and the references therein for analysis of this equation,
also beyond the range α ∈ (−1, 1).
• Similarly, the Lp-Fisher–Rao metric on Prob(S1) can be considered as a Finsler metric

on Diff(S1)/Rot(S1). The resulting geodesic equation is the periodic r-Hunter–Saxton
equation for r = 1/p, as considered in [18, 11]. As shown in this paper, this is not the same
equation as the one of the α-connections on Prob(S1) (i.e., the generalized periodic invicid
Proudman–Johnson equation), unlike what we erroneously stated in [11].
• For M = R, the geodesic equations of α-connections (equiv., of the Lp-Fisher-Rao metric)

on Dens(R) can be considered as equations of an appropriate subgroup of Diff(R), defined
in [11]. The resulting equation is the generalized non-periodic invicid Proudman–Johnson
equation, or equivalently, the non-periodic r-Hunter–Saxton equation (for r = 1/p) [18].

Moreover, the metric F̃p described above on this subgroup of Diff(R) yields a similar isome-
try to (Dens+(M)(R), Fp), as follows from [11]. It is interesting whether (Dens+(M)(R), Fp)
can be similarly interpreted on compact manifolds as well, maybe in a similar way to the
”simple unbalanced optimal transport” extension, introduced recently in [28].

6. A numerical comparison of geodesics on Dens+(M) and Prob(M)

In this section we aim to numerically compare the different notions of geodesics that we have
encountered in this article. Given two probability densities we consider three notions of geodesics:

(1) The geodesic for the Lp-Fisher-Rao metric and the α-connection on Dens+(M), which is
simply obtained as the pullback by the p-root transform Φp of the straight line in Lp. This
geodesic leaves the space Prob(M).

(2) The geodesic for the α-connection on Prob(M), which is the pullback by the p-root transform
of the projection of the straight line on the Lp sphere, as described in Theorem 4.11.

(3) The geodesic for the Lp-Fisher-Rao geodesic on Prob(M), which is the pullback by the
p-root transform of the geodesic of the Lp-metric restricted to the Lp-sphere.

Specifically we consider the example of probability densities on the one-dimensional base space
M = [0, 1]. Note, that we have an explicit formula for the first two notions of geodesics (geodesics
on Dens+(M) and α-connection geodesics on Prob(M)), but that the calculation of the Lp-Fisher-
Rao geodesic between two probability distributions µ0 and µ1 requires us to solve an optimization
problem: the geodesic boundary value problem on the Lp-sphere. Namely, we minimize the p-energy
for the Lp metric on smooth functions

(27) Ep(f) =
1

p

∫ 1

0

∫
|ft|p dλ dt,

where f : [0, 1] → C∞(M) is a path constrained to belong to the Lp-sphere, such that f(0) =
Φp(µ0), f(1) = Φp(µ1) and ft denotes its time derivative. This is equivalent to minimizing the
length functional, as explained in the proof of Theorem 3.7. We then obtain the wanted geodesic
µ : [0, 1]→ Prob(M) by applying Φ−1

p .
In Figure 2 we show the three types of geodesics obtained for different values of p (p = 2, 3, 5, 10

from top to bottom), and the corresponding values of α = 1−2/p. The constrained minimization of
(27) was performed in Python using the Sequential Least Squares Programming (SLSQP) method
provided by the Scipy minimization solver, with a discretization of 30 time points and 100 sampling
points, in a straightforward implementation that was not aimed for computational efficiency. As
expected, the Lp-Fisher-Rao metric and the α-connection yield different geodesics on Prob(M),
except for the special case p = 2 corresponding to the Fisher-Rao metric and its Levi-Civita
connection.
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Figure 2. Different notions of geodesics between two probability distributions on
[0, 1], for p = 2, 3, 5, 10 from top to bottom, and corresponding values of α = 1 −
2/p. On the left: geodesics of Dens+(M) for the Lp-Fisher-Rao metric and the
corresponding α-connection. In the middle: α-geodesics on Prob(M). On the right:
Lp-Fisher-Rao geodesics on Prob(M). The last two notions coincide only for p = 2.

7. Finite-dimensional geometry of parametric statistical models

In this section we make the link with the finite-dimensional setting of parametric statistical
models. Let us consider a finite-dimensional submanifold of Prob(Rn) corresponding to a family
of probability distributions on Rn that are absolutely continuous with respect to the Lebesgue
measure, and whose densities are parametrized by a parameter θ belonging to an open subset Θ of
Rd:

PΘ = {µ(dx) = f(x, θ) dx : θ ∈ Θ} ⊂ Prob(Rn).

Here x ∈ Rn is the sample variable and dx denotes the Lebesgue measure on Rn. Then a tangent
vector of PΘ at a given µ = f(·, θ)dx is of the form a = d

dt

∣∣
t=0

µt, where µt = f(·, θt)dx with t 7→ θt
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a curve in Θ such that θ0 = θ and θ̇0 = u ∈ TθΘ. Thus the tangent space at µ is

TµPΘ = {a = 〈∇θ f, u〉dx : u ∈ TθΘ ' Rd}
= span{e1, . . . , ed},(28)

where ei = ∂f
∂θi
dx. Here ∇θ denotes the gradient with respect to θ and 〈·, ·〉 the Euclidean scalar

product on Rd. In all the sequel, we identify PΘ ' Θ and TµPΘ ' TθΘ ' Rd via the one-to-one
maps

(29)
φ : Θ→ PΘ, θ 7→ f(·, θ)dx,
(φ∗)θ : TθΘ→ Tφ(θ)PΘ, u 7→ 〈∇θ f, u〉dx.

7.1. The Fisher-Rao metric and the α-connection. The Fisher-Rao metric on the parameter space
Θ is the Riemannian metric whose metric matrix is the Fisher information matrix

G(θ) = E
[
∇θ `(X, θ)∇θ `(X, θ)>

]
.

Here E denotes the expectation taken with respect to the random variable X of density f(·, θ), and
`(x, θ) = log f(x, θ) is the log-likelihood.

Definition 7.1. Given θ ∈ Θ and u, v ∈ TθΘ ' Rd, the Fisher-Rao metric is

GFR
θ (u, v) = u>G(θ)v = E [〈∇θ `, u〉〈∇θ `, v〉] ,

where 〈·, ·〉 denotes the Euclidean scalar product on Rd.

The Fisher-Rao metric on the parameter space Θ is the pullback of the Fisher-Rao metric on
the infinite-dimensional space Prob(Rn) by the bijection φ defined by (29), i.e. for any θ ∈ Θ and
u, v ∈ TθΘ,

GFR
φ(θ)(φ∗u, φ∗v) = GFR

θ (u, v),

and so both are denoted the same way.
Just like in the infinite-dimensional setting, the α-connection on the parameter space can be

defined using the α-divergence.

Definition 7.2. The α-connection on Θ is defined by its Christoffel symbols of the first kind ([39],
Eqn 2.9)

Γ̃
(α)
ij,k

∣∣∣
θ

= GFR
θ (∇(α)

∂i
∂j , ∂k) = − ∂3

∂ui∂uj∂vk
D(α)(θ + u, θ + v)

∣∣∣∣
u=v=0

where

D(α)(θ, θ′) =
4

1− α2

(
1−

∫
f(x, θ)

1−α
2 f(x, θ′)

1+α
2 dx

)
is the α-divergence. This yields the following formula in local coordinates, where ∂i denotes ∂/∂θi,

(30) Γ̃
(α)
ij,k = E

[
(∂i∂j`+

1− α
2

∂i`∂j`)∂k`

]
.

The following result is well-known in the literature, and stated e.g. in [2] for spaces of probability
distributions on a finite set.

Theorem 7.3 (α-connection on Θ). For any u, v ∈ TθΘ, we have

∇̃(α)
u v = ProjFR

(
∇(α)
φ∗uφ∗v

)
,

where ∇̃(α) and ∇(α)
denote the α-connections on PΘ ' Θ and Prob(Rn) respectively, and ProjFR :

Tφ(θ) Prob(Rn)→ TθΘ is the orthogonal projection with respect to the Fisher-Rao metric.
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Proof. First notice that at any µ = φ(θ) ∈ PΘ, the orthogonal projection of a tangent vector
a ∈ Tµ Prob(Rn) onto TθΘ with respect to the Fisher-Rao metric GFR is given by

(31) ProjFR(a) = GijGFR(a, ej)∂i,

where (Gij)ij is the inverse of the Fisher matrix. Indeed, the tangent space TµPΘ is a d-dimensional
vector space spanned by the tangent vectors ei = ∂ifdx for i = 1, . . . , d, and so the orthogonal
projection of a ∈ Tµ Prob(Rn) onto TµPΘ is given by uiei where for j = 1, . . . , d,

GFR(a− uiei, ej) = 0 i.e. GFR(a, ej) = uiGFR(ei, ej) = uiGij .

The α-connection on Prob(Rn) is given by

(∇(α)
a b)µ = Dµb(a)− 1 + α

2

(
a

µ

b

µ
µ−

(∫
a

µ

b

µ
µ

)
µ

)
,

where Dµb(a) is the directional derivative of the vector field b in the direction of the vector aµ.
Let ∂i denote partial derivative with respect to θi for all i = 1, . . . , d. For vector fields on the
finite-dimensional manifold PΘ,

a = φ∗u = uiei, b = φ∗v = vjej ,

and at µ = φ(θ), we get since ei = ∂ifdx,

Dµb(a) = Dθv(u) = ∂i(∂jfv
j)uidx = (∂i∂jfu

ivj + ∂jfu
i∂iv

j)dx

= ((∂i∂j`+ ∂i`∂j`)u
ivj + ∂j`u

i∂iv
j)fdx,

where in the last equality we used the equality ∂i∂j` = ∂i∂jf/f − ∂i`∂j`. Since

a

µ

b

µ
µ = ∂i`∂j`u

ivjfdx,

we obtain ∇(α)
a b = hdx where

h/f = ∂j`u
i∂iv

j +

(
∂i∂j`+

1− α
2

∂i`∂j`

)
uivj − 1 + α

2
GFR(a, b).

Remembering that GFR(hdx, kdx) = E(hk/f2) and since E(∂m`) = 0, we obtain using (30),

GFR(∇(α)
a b, em) = E[∂j`∂m`]u

i∂iv
j + E

[
(∂i∂j`+

1− α
2

∂i`∂j`)∂m`

]
uivj

= Gjmu
i∂iv

j + Γ̃
(α)
ij,mu

ivj .

Finally, using (31), we see that

ProjFR(∇(α)
a b) = GkmGFR(∇(α)

a b, em)∂k =
(
ui∂iv

k +GkmΓ̃
(α)
ij,mu

ivj
)
∂k = ∇̃(α)

u v,

which concludes the proof. �

7.2. The Lp-Fisher-Rao metric. We now introduce a finite-dimensional version of the Finsler Lp-
Fisher-Rao metric.

Definition 7.4. Given θ ∈ Θ and v ∈ TθΘ we define the Lp-Fisher-Rao metric on Θ as

Fp(θ, v) = (E|〈∇θ `(X, θ), v〉|p)1/p .(32)

Here 〈·, ·〉 denotes the Euclidean scalar product on Rd, E denotes the expectation taken with respect
to the random variable X of density f(·, θ), and `(x, θ) = log f(x, θ) is the log-likelihood.
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The metric (32) on the parameter space Θ coincides with the Finsler metric induced on PΘ by
the Lp-Fisher-Rao metric (8) through the identification PΘ ' Θ, which is why they are denoted
the same way. Indeed, for any (θ, v) ∈ TΘ,

Fp(φ(θ), φ∗v) =

∫ ∣∣∣∣〈∇θ f(x, θ), v〉
f(x, θ)

∣∣∣∣p f(x, θ)dx = E|〈∇θ `(X, θ), v〉|p = Fp(θ, v).

Lemma 7.5 (Induced Chern connection on Θ). The Chern connection associated to the Lp-Fisher-
Rao metric on Θ is given by

(33) (∇̃vuv)m = u(vm) + (gv)mk
(
gφ∗v(ω(u, v), ek) + Cφ∗v(ω(v, v), φ∗u, ek)

− (gv)ijgφ∗v(ω(v, v), ei)C
φ∗v(φ∗u, ej , ek)

)
,

where g and C respectively denote the Riemannian metric (12) and Cartan tensor (14) induced by
the Lp-Fisher-Rao metric, (gv)ij = gφ∗v(ei, ej) and (ei)i are the basis vectors (28) of TµPΘ and

(34) ω(u, v) = ωiju
ivi with ωij =

(
∂i∂j`+

1

p
∂i`∂j`

)
fdx.

Proof. Let a = φ∗u, ν = φ∗v, α = 1− 2/p, and ∇(α) be the α-connection on Dens+(Rn). Similarly
to the orthogonal projection with respect to the Fisher-Rao metric (31), the orthogonal projection
on TΘ with respect to gν is given by

(35) Projν(a) = (gv)ijgν(a, ej)∂i.

Let us denote

(∇(α)
a ν)> := φ∗Projν

(
∇(α)
a ν

)
= (gv)ijgν(a, ej)ei, (∇(α)

a ν)⊥ := (∇(α)
a ν)− (∇(α)

a ν)>.

We define the connection ∇̃ by

(36) φ∗(∇̃uv) := (∇(α)
a ν)> + (gv)mkCν

(
(∇(α)

ν ν)⊥, a, ek

)
em.

Let us show that ∇̃ is the Chern connection ∇̃v on Θ, by showing once again that it verifies the
generalized Koszul formula (40). Using the notations gv(u,w) = gφ∗v(φ∗u, φ∗w), Cv(u,w, z) =
Cφ∗v(φ∗u, φ∗w, φ∗z) and the fact that Cv(v, ·, ·) = 0, the generalized Koszul formula can be written

2gv(∇̃uv, w) = ugv(v, w) + vgv(w, u)− wgv(u, v)

+ gv([u, v], w)− gv([v, w], u) + gv([w, u], v)− 2Cv(∇vv, u, w).

Recalling that ∇(α) is the Chern connection on Dens+(M) and noticing that φ∗(∇vv) = (∇(α)
ν ν)>,

the previous equation is satisfied if and only if

gν
(

(gv)ijCν
(

(∇(α)
ν ν)⊥, a, ej

)
ei, φ∗w

)
= Cν

(
(∇(α)

ν ν)⊥, a, φ∗w
)
,

which is easily checked to be true using the fact that gν(ei, ej) = (gv)ij . To obtain the desired

formula for ∇̃v, we write the α-connection in coordinates, through the same computations as in the
proof of Theorem 7.3

∇(α)
a ν = Dν.a− 1 + α

2

a

µ

ν

µ
µ = ui∂iv

jej +

(
∂i∂j`+

1− α
2

∂i`∂j`

)
uivjfdx = u(vj)ej + ω(u, v).

Using (35) we obtain

(∇(α)
a ν)> = u(vm)em + (gv)mkgν(ω(u, v), ek)em

(∇(α)
ν ν)⊥ = w(v, v)− (gv)ijgν(ω(v, v), ei)ej

which injected into (36) gives the desired result. �
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Figure 3. Comparison of the geodesics between two normal distributions shown
in the parameter space for the Lp-Fisher-Rao metric (left) and for the α-connection
(right), for different values of p and the corresponding values of α = 1 − 2/p. The
geodesics all start at the normal distribution of parameters m0 = −2, σ0 = 1, and
end at the normal distribution of parameters m1 = 2, σ1 = σ0 = 1.

Remark 7.6. Like in infinite dimensions (see Remark 4.8), when all entries are the same, the Chern

connection on PΘ ' Θ is the orthogonal projection of the α-connection ∇(α) on Dens+(Rn), for
α = 1− 2

p , with respect to gφ∗v, the Riemannian metric (12) induced by the Lp-Fisher-Rao metric

(37) ∇̃vvv = Projφ∗v
(
∇(α)
ψ∗v

φ∗v
)

=
(
v(vm) + (gv)mkgφ∗v(ω(v, v), ek)

)
∂m.

Theorem 7.7 (Geodesic equation on Θ). The geodesic equation of the Lp-Fisher-Rao metric on the
space PΘ is given by

θ̈m + (gθ̇)mkgφ∗θ̇(ω(θ̇, θ̇), ek) = 0,(38)

where (ei)i are the basis vectors (28) and ω is defined by (34).

Proof. This results directly from Lemma A.9 in Appendix A and writing ∇̃θ̇
θ̇
θ̇ = 0 in local coordi-

nates using (37). �

Example 7.8 (Normal distributions). Let us consider the example of univariate normal distributions,
parametrized by mean and standard deviation. The parameter space is the upper half-plane Θ =
R × R∗+, and the Fisher-Rao metric, after a change of coordinates, is the hyperbolic metric of
the Poincaré half-plane. The family of Riemannian metrics induced by the Finsler Lp-Fisher-Rao
metric are also Poincaré metrics: for any θ = (m,σ) ∈ Θ and v ∈ R2, the metric matrix is given by

gv(m,σ) =
1

σ2
gv0

where gv0 does not depend on m and σ. In order to compute geodesics for the Lp-Fisher-Rao
metric, one can solve the geodesic equation (38), using the following densities with respect to a

given µ(dx) = 1√
2πσ

exp(− (x−m)2

2σ2 )dx: the basis vectors of the tangent plane TµPΘ are given by

e1

µ
=

1

σ
z,

e2

µ
=

1

σ
(z2 − 1) with z :=

x−m
σ
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and for a given curve t 7→ θ(t) = (m(t), σ(t)),

θ̇

µ
=

1

σ
(ṁz + σ̇(z2 − 1))

ω(θ̇, θ̇)

µ
=

1

σ2

(
(−1 +

1

p
z2)ṁ2 + (1− 3z2 +

1

p
(z2 − 1)2)σ̇2 + 2(−2z +

1

p
z(z2 − 1))ṁσ̇

)
.

The Lp-Fisher-Rao geodesic can be compared to the solutions of the geodesic equation of the
α-connection for α = 1− 2/p:

m̈− 2
1 + α

σ
ṁσ̇ = 0, σ̈ +

1− α
2σ

ṁ2 − 1 + 2α

σ
σ̇2 = 0.

In both cases, we solve the geodesic ODE with boundary constraints in Python for a discretization
of 50 time steps, using the dedicated function in Scipy1, which implements a fourth order collocation
algorithm. We plot in Figure 7.8 the Lp-Fisher-Rao geodesics for several values of p as well as the
α-geodesics for the corresponding values of α. As expected, these geodesics do not coincide, except
for p = 2, where we retrieve the Fisher-Rao metric.

Appendix A. Infinite dimensional Finsler geometry

In this appendix we will present several key definitions of Finsler geometry in the infinite dimen-
sional setting. We will base our definitions on their counterparts from classical finite dimensional
Finsler geometry, see eg. [6, 17, 36].

In the following let M be an infinite dimensional, Fréchet manifold with tangent bundle TM.

Definition A.1 (Finsler structure). A Finsler structure onM is a function F : TM→ [0,∞), that is
smooth on the complement of the zero section of TM and satisfies for all x ∈M and X,Y ∈ TxM

(a) F (λY ) = λF (Y ) for all λ > 0;
(b) F (Y ) ≥ 0 and F (Y ) = 0 if and only if Y = 0.
(c) F (X + Y ) ≤ F (X) + F (Y ).

The Finsler norm F is called strongly convex if we have in addition

(d) For any 0 6= V ∈ TxM the Hessian matrix gV of F 2 at V exists and is positive definite,
where

gV (X,Y ) :=
1

2

∂2

∂s∂t

[
F 2(V + sX + tY )

]
s=t=0

.

Remark A.2. It can be shown that the strong convexity condition (d) implies the subadditivity
condition (c) and several modern textbooks require strong convexity instead of subadditivity in the
definition of a Finsler metric as this allows to develop several concepts of Riemannian geometry in
the Finslerian setting. We choose to not assume this stronger condition as our main example, the
Lp-Fisher-Rao metric, is not strongly convex.

Remark A.3 (Weak and strong Finsler metrics). For each x ∈ M the Finsler metric F induces
a topology on TxM and in finite dimensions this topology coincides with the original manifold
topology. In infinite dimensions this is not the case and we will distinguish between two different
types of Finsler metrics: strong Finsler metric, for which Fx induces the locally convex topology on
TxM and weak Finsler metrics, where the induced topology can be weaker than the locally convex
topology. IfM is not a Banach manifold then any Finsler metric onM can only be a weak Finsler
metric.

Similarly as a Riemannian metric a Finsler structure F on a manifoldM defines a length structure
on the set of piece wise smooth curves and thus one can define a corresponding path length distance:

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
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Definition A.4. Let c : [a, b]→M be a piece wise smooth curve. The length of c with respect to F
is defined as

LF (c) :=

∫ b

a
F (c(t), ċ(t))dt.

For any pair of points x, y ∈M we consider the induced geodesic distance function

dF (p, q) := infc LF (c),

where the infimum is calculated over the set of a piece wise smooth curves that connect x to
y. Similar as in Riemannian geometry one can show that minimizing the length is equivalent to
minimizing the energy, which is defined as

EF (c) :=

∫ b

a
F 2(c(t), ċ(t))dt.(39)

Remark A.5 (Vanishing Geodesic distance). It is easy to see that the geodesic distance functions
is symmetric and satisfies the triangle inequality. In general, for weak Finsler metrics, it does not
satisfy the non-degenracy property – dF (x, y) = 0 if and only if x = y for Finsler metrics. Indeed,
even in the Riemannian case, several examples have been encountered where the geodesic distance
can be degenerate or even vanishes identically, see eg. [20, 32, 10, 25].

Next we will introduce two important concepts from Finsler geometry: the Cartan tensor, which
was introduced by E. Cartan [14] to evaluate the differences between Finsler metrics and Riemannian
metrics, and the Chern connection, which is a generalization of the Levi-Civita connection on a
Finsler manifold.

Note, that the definition of these two objects requires that the Finsler metric is strongly convex.
As the Lp-Fisher-Rao metric, studied in the following sections, will not satisfy this property several
of the calculations in these parts have to be taken with caution and should be thus understood only
formally.

Definition A.6 (Cartan Tensor and Chern connection). Let (M, F ) be a Finsler manifold, where F
is assumed to satisfy the strong convexity assumption. For any nonzero tangent vector V ∈ TxM,
the Cartan tensor is defined as the symmetric trilinear form

CV (X,Y, Z) :=
1

4

∂3

∂s∂t∂r

[
F 2(V + sX + tY + rZ)

]
s=t=r=0

,

and the Chern connection, if it exists, is the unique affine, torsion-free connection ∇V that is almost
metric, that is for vector fields X,Y, Z we have

XgV (Y,Z) = gV (∇VXY,Z) + gV (Y,∇VXZ) + 2CV (∇VXV, Y, Z).

Remark A.7. In the above definition of the Chern-connection we have added the assumption on
it’s existence. This is additional assumption is not necessary in finite dimensions, but is entirely an
infinite dimensional phenomenon, see eg. [8] where the authors studied a Riemannian metric on a
group of diffeomorphisms such that the corresponding Levi-Civita connection does not exist.

The next Lemma, which will be of importance when we show the equivalence of the Chern-
connection of the Lp-Fisher-Rao metric and the α-connection on Dens(M), provides a generalized
Koszul-formula for the Chern-connection:

Lemma A.8. Let (M, F ) be a Finsler manifold, where F is assumed to satisfy the strong convexity
assumption. For every non-zero vector field V ∈ TxM, the Chern connection, if it exists, satisfies
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the generalized Koszul formula

(40)

2gV (∇VXY,Z) = XgV (Y,Z) + Y gV (Z,X)− ZgV (X,Y )

+ gV ([X,Y ], Z)− gV ([Y, Z], X) + gV ([Z,X], Y )

− 2CV (∇VXV, Y, Z)− 2CV (∇VY V,Z,X) + 2CV (∇VZV,X, Y )

Proof. The proof of this result follows exactly as in the finite dimensional situation, see eg. [17]. �

The next results shows that the Chern-connection, similarly to the Levi-Civita connection in
Riemannian geometry, describes the locally minimizing curves.

Lemma A.9. Let (M, F ) be a Finsler manifold, where F is assumed to satisfy the strong convexity
assumption. Assume in addition that the Chern connection ∇ exists. Then the critical points of
the energy functional (39) are describe by the geodesic equation

(41) ∇ctctct = 0.

Proof. Assuming the existence of the Chern connection, this follows exactly as in finite dimensions,
see eg. [17, 36]. �
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