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Set-membership Fault Detection Approach for a

Class of Nonlinear Networked Control Systems

with Communication Delays

Afef NAJJAR and Jean-Christophe PONSART

Abstract In this paper, a Fault Detection (FD) problem for a class of Nonlinear Net-

worked Control Systems (NNCS) in a set-membership framework is investigated.

Under the assumption of bounded network-induced delays and process uncertainties

(i.e. process disturbances and measurement noises), a residual generator is con-

structed based on a set-membership estimation-based predictor approach. Finally, a

numerical example illustrating the performances of the proposed method is given.

Key words: Fault detection, Nonlinear Networked Control System (NNCS), un-

known network delay, interval observer, predictor.

1 Introduction

The NCS are systems wherein some or all signals are transmitted among the system’s

components as information flows through a shared network [7]. Compared with

conventional point-to-point architectures, the advantages of NCS are lighter wiring,

lower installation costs and greater abilities in diagnostic, reconfigurability and

maintenance [7]. Thanks to these distinctive benefits, application of NCS ranges

over various industry’s fields nowadays [7, 13]. However, using a shared network

for data exchange make system control [10], monitoring [9] or diagnostic [11] more

difficult where some communication constraints should be considered such as packets

losses, sampling problems and network-induced delays [7]. The last mentioned is

one of the most common problem in literature [6], especially in NCS FD. Intensive

research addresses this challenging subject, one can see for example [6, 11] and the
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Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France e-mail: afef.najjar@univ-lorraine.fr

Jean-Christophe PONSART
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references therein. Filtering method, Markovian jump approach and observer-based

approach are ones of the most used approaches dealing with this problem. In this

paper, a FD technique is proposed in a set-membership framework for the NNCS

with unknown communication delays and unknown external disturbances [5] by only

knowing their bounds. The main idea consists in detect faults by generating interval

residual signals. Then, FD is ensured through a belonging test of the zero signal to

the interval delimited by upper and lower residual signals.

This paper is structured as follows. Section 2 introduces some preliminaries. Section

3 represents the studied system architecture. In Section 4, we develop the proposed

fault detection technique. Then, Section 5 is devoted to simulation results proving

the proposed FD strategy. Conclusions are given in Section 6.

2 Preliminaries

R andN represent the sets of real and natural numbers, respectively. The eigenvalues

set of a matrix � ∈ R=×= is named _(�) and Re(I) is the real part of the complex

number I. The set of Hurwitz matrices from the set R=×= is denoted by H, i.e.

' ∈ H⇔ Re(_) < 0,∀_ ∈ _('). We denoteM as the set of Metzler matrices from

the set R=×=, i.e. ' =
{
A8 9

}=
8, 9=1

∈ M⇔ A8, 9 ≥ 0 for 8 ≠ 9 . For a variable G(C) ∈ R=,

the upper and lower bounds are denoted by G(C) ∈ R= and G(C) ∈ R=, respectively,

such that G(C) ≤ G(C) ≤ G(C) and the relation ≤ should be interpreted elementwise

for vectors and matrices, i.e. � = (08, 9 ) ∈ R
=×< and � = (18, 9 ) ∈ R

=×< such that

� ≥ � if and only if 08, 9 ≥ 18, 9 ∀ 8 ∈ {1, ..., =} and 9 ∈ {1, ..., <}, 8, 9 ∈ N. For a

matrix ' ∈ R=×<, define '+ = max {0, '} and '− = '+ − '. The matrix of absolute

values of all elements of a matrix " ∈ R=×< is |" | = "+ + "− . The vector �? is

stated for (? × 1) vector with unit elements, and �= denotes the identity matrix of

= × = dimension. Superscript ) denotes the transpose of a matrix or a vector. K is

the set of continuous increasing functions W : R+ → R+ with W(0) = 0. We refer by

V ∈ KL if V(·, C) ∈ K for all C ≥ 0 and V(A, ·) is continuous and strictly decreasing

to zero for all A > 0. ‖.‖ is the standard 2-norm.

Lemma 1 [3] Let G, G, G ∈ R= be vectors satisfying G ≤ G ≤ G and � ∈ R=×< be a

time-invariant matrix. Then, the inequalities below hold:

�+G − �−G ≤ �G ≤ �+G − �−G. (1)

Lemma 2 [2] Consider the following system:

{
¤G(C) = �G(C) + k(C),

H(C) = �G(C),
(2)

where k(C) is a continuous function and �, � are known matrices. Suppose that

there exist two known continuous-time functions k(C) and k(C) : R → R= satisfied

k(C) ≤ k(C) ≤ k(C), ∀ C ≥ 0.
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If there exists a gain ! such that (�−!�) ∈ H∩M and G0, G0, G0 ∈ R=, G0 ≤ G0 ≤ G0,

then the system: {
¤G(C) = �G(C) + k(C) + !(H(C) − �G(C))

¤G(C) = �G(C) + k(C) + !(H(C) − �G(C))
(3)

is an interval observer for (2) and G(C) ≤ G(C) ≤ G(C), ∀C ≥ 0.

Definition 1 Consider the nonlinear system

¤G = 5 (G, D), (4)

with 5 (G, D) ∈ R=, the system (4) is input-to-state Stable (ISS) if for any input

D ∈ R< and G0 ∈ R= there exist functions V ∈ KL and W ∈ K such that

|G(C, G0, D) | ≤ V(G0, C) + W(‖D‖), ∀C ≥ 0. (5)

3 NCS architecture description and problem formulation

Consider the following NNCS:

{
¤G(C) = �G(C) + � (D(C), H(C)) + |(C) + � 5 (C),

H(C) = �G(C) + {(C),
(6)

where G ∈ R= denotes the state vector, H ∈ R? the measurable output vector

D ∈ R< the known input vector, where | ∈ R=, { ∈ R? and 5 ∈ R= are the

external disturbances and the additive faults to be detected. The functions D, {, |

are continuous. The function � (D(C), H(C)) ∈ R= is a globally Lipschitz nonlinear

function. The matrices �, � and � are known matrices of compatible dimensions.

Before proceeding further, we make some assumptions on the process matrices.

   

Network

Remote Process SideData Acquisition and FD Side

State Predictor

ProcessI.S.P.G

Interval Observer)

H (C )
G (C ) , G (C )

I (C: )

I (C: )

D(C: )

I (C: ) , I (C: )

Continuous Signal
Digital Signal

30 (C: )

3< (C: )

|(C ) {(C )

Actuator SensorHold

Residual Generator

A (C: ) , A (C: )

Fig. 1 NCS architecture.
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Assumption 1 The pair (�,�) is detectable. �

Assumption 2 |(C) and {(C) are unknown but bounded functions with a priori known

bounds, for |, | ∈ R=, + ∈ R+:

| ≤ |(C) ≤ |, |{(C) | ≤ +�? , ∀C ≥ 0 (7)

The network induces two uncertain delays: 30 (C) and 3<(C) which refer to the

actuation and the measurement channels delay, respectively. These delay functions

are unknown but bounded:

0 ≤ 30 ≤ 30 (C) ≤ 30, 0 ≤ 3< ≤ 3<(C) ≤ 3<, ∀C, (8)

where 30, 30 are respectively the upper and lower bounds of 30 (C) and 3<, 3<

are respectively the upper and lower bounds of 3<(C). Suppose that 3 and 3 are

respectively the upper and lower bounds of the communication delays such that:

3 = max{30, 3<}, 3 = min{30, 3<}. (9)

Considering the communication delay in the actuation channel, the process (6) can

be modeled as an input delayed system:

{
¤G(C) = �G(C) + � (D(C − 30 (C)), H(C)) + |(C) + � 5 (C)

H(C) = �G(C) + {(C).
(10)

Assumption 3 We assume that D(C − 30 (C)) is bounded. �

Let {C: , : ∈ N} be the sequence of sampling instants such that C:+1 − C: = ) and

lim
:→∞

C: = ∞, ) is the sampling period and C: is an increasing sequence such that

C: = :) . In a network environment, data sampling is needed. Therefore, the next

assumptions are required.

Assumption 4 [1] The sampling communication delays 30 (C:) and 3<(C:) are

unknown but bounded with a priori known bounds and the upper bound 3 is assumed

to be a multiple of the sampling period ) . �

Assumption 5 [1] The information on the control signal D(C:), the information on

the output H(C:) and the information on the sampling upper and lower bounds I(C:),

I(C:) could be stored and used ∀ C: ∈
[
C: − 3, C:

)
. �

Each block of the NCS architecture shown in Fig. 1 performs the same function as

described in [5]. However, the added Residual Generator block is implemented in

the calculator for residual generation; after receiving predictor outputs; I(C:) and

I(C:), Residual Generator calculates interval residual signals A (C:) and A (C:) which

will be used for FD test detailed in Section 4.
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3.1 Interval observer structure

In this section, the interval observer developed in [5] is tackled to estimate the

unavailable states of the process under unknown input delay 30 (C) and process

uncertainties. In free faulty case, the system (10) is:

{
¤G(C) = �G(C) + � (D(C − 30 (C)), H(C)) + |(C)

H(C) = �G(C) + {(C).
(11)

Since it is not always possible to compute a gain ! for the system (11) such that

� − !� ∈ H ∩M, a change of coordinates b = (G with a nonsingular matrix ( such

that the matrix ((� − !�)(−1 ∈ H ∩M is used to relax this restriction [8].

Theorem 1 [5] Let Assumptions 1–3 be satisfied and G0 ≤ G0 ≤ G0. If there exists

a change of coordinates b = (G satisfying E = ((� − !�)% ∈ H ∩M, % = (−1 so

that the following system

{
¤̂G+ (C) = EĜ+ (C) + (� (D(C − 3), H(C)) + (!H(C) + (+| − (−| + |(! | �?+,
¤̂G− (C) = EĜ− (C) + (� (D(C − 3), H(C)) + (!H(C) + (+| − (−| − |(! | �?+,

(12)

where



(� (D(C − 3), H(C)) = max
U∈

[
0,3−3

]{(� (D(C − 3 − U), H(C))},

(� (D(C − 3), H(C)) = min
U∈

[
0,3−3

]{(� (D(C − 3 − U), H(C))},
(13)

and the initial conditions are calculated as follows:

Ĝ+ (0) = (+G0 − (−G0, Ĝ− (0) = (+G0 − (−G0, (14)

is input-to-state stable (ISS) interval observer for the system (11) satisfying [4]

Ĝ− (C) ≤ b (C) ≤ Ĝ+ (C), ∀C ≥ 0 (15)

where the bounds of the solution G(C) are:

G(C) = %+Ĝ+ (C) − %− Ĝ− (C), G(C) = %+Ĝ− (C) − %− Ĝ+ (C) . (16)

such that

G(C) ≤ G(C) ≤ G(C), ∀C ≥ 0. (17)

Proof The proof of the above theorem is detailed in [5]. �
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3.2 State predictor design

To compensate the large unknown communication delays 3<(C:), an interval pre-

dictor introduced in [5] is used. Based on the delayed data I( C:
)
− 3

)
), I( C:

)
− 3

)
), we

will reconstruct I( C:
)
), I( C:

)
) after a finite time C: = 3.

Assumption 6 ) is selected such that the matrix Φ = �= + )E is positive. �

Theorem 2 [5] If Assumptions (4)–(6) hold ∀ C: ≥ 3, we get:

Î+(:) = Φ
:2 Î+(: − :2) +

:2∑

9=1

Φ
:2− 9)(� (D(: − :1 − :2 + 9 − 1),H(: − :2 + 9 − 1))

+

:2∑

9=1

Φ
:2− 9!1H(: − :2 + 9 − 1) +

:2∑

9=1

Φ
:2− 9 V, (18)

Î− (:) = Φ
:2 Î− (: − :2) +

:2∑

9=1

Φ
:2− 9)(� (D(: − :1 − :2 + 9 − 1),H(: − :2 + 9 − 1))

+

:2∑

9=1

Φ
:2− 9!1H(: − :2 + 9 − 1) +

:2∑

9=1

Φ
:2− 9 V, (19)

where 9 = 1, 2, 3, ..., :2, : =
C:
)

, :1 =

⌊
3

)

⌋
and :2 =

3
)

, Φ = (�= + )E), !1 = )(!,

V = ) ((+| − (−| + |(! | �?+), V = ) ((+| − (−| − |(! | �?+) and

I(:) = (+ Î+(:) − (− Î− (:), I(:) = (+ Î− (:) − (− Î+(:) (20)

are a predictor from the sampling instant of time : − :2 to : for the process (11) i.e.

I → G and I → G ∀ C: ≥ 3 and the following inclusion holds

I(
C:

)
) ≤ G(

C:

)
) ≤ I(

C:

)
), C: ≥ 3. (21)

Proof Please see the proof detailed in [5]. �

4 Fault detection

In this section, a procedure of fault detection is developed thanks to Residual Gener-

ator block as shown in Fig.1. The residual evaluation in a set-membership context is

ensured via the following belonging test [12]: If the zero signal is enclosed by upper

and lower bounds of the residual signal, it is a fault-free case. Otherwise, a fault is

occurred. Two steps are required to indicate the presence of faults:
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• Step1: Residuals generation: in this first step, the Residual Generator calculates

upper and lower residuals defined as the gap between measured outputs and

estimated outputs using stored information.

From Lemma 1, the upper and lower bounds of the estimated output are then

computed as follows:

{
H(C:) = �I(C:) ++�? = �+I(C:) − �−I(C:) ++�?

H(C:) = �I(C:) −+�? = �+I(C:) − �−I(C:) −+�?
(22)

Then, upper and lower residuals are :

A (C:) = H(C:) − H(C:), A (C:) = H(C:) − H(C:) . (23)

• Step 2: Residuals evaluation: this second step is detailed as follows. When a

fault is occurred, an inconsistency is detected shown that the estimated outputs

are no more compatible with the measurements where:

H(C:) ∉ [H(C:), H(C:)] (24)

The above belonging test is rewritten as follows:




0 ∉ [H(C:), H(C:)] − H(C:)

0 ∉ [H(C:) − H(C:), H(C:) − H(C:)]

0 ∉ [A (C:), A (C:)]

(25)

Then, the zero signal is enclosed by A and A in the fault free case. Otherwise, a

fault is detected.

From (23) and using the fact that � = �+ − �− , A and A are computed as follows:

A (C:) = H(C:) − H(C:) = �+(I(C:) − I(C:)) +�
− (I(C:) − I(C:)) − {(C:) ++�? (26)

A (C:) = H(C:) − H(C:) = −�+(I(C:) − I(C:)) −�
− (I(C:) − I(C:)) − {(C:) −+�? (27)

An augmented system is then defined as:
[
A

A

]
=

[
�+ �−

−�− −�+

] [
4I
4I

]
+

[
−{ ++�?

−{ −+�?

]
,

4I (C:) = I(C:) − G(C:), 4I (C:) = G(C:) − I(C:) (28)

Or we have I → G and I → G ∀ C: ≥ 3 (see Section 3.2), then

{
4I (C:) = I(C:) − G(C:) ≃ G(C:) − G(C:) = 4(C:)

4I (C:) = G(C:) − I(C:) ≃ G(C:) − G(C:) = 4(C:)
(29)

Known that the measurement noise { is bounded, stability analysis of upper and

lower residual signals is equivalent to assure the stability of the estimation errors.
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From Theorem 1, we have upper and lower bound estimation errors 4 and 4 are

ISS [5]. Therefore, from (29), one can prove that 4I and 4I are ISS and then the

residual signals A (C:) and A (C:) are ISS ∀ C: ≥ 3.

5 Numerical example

To prove the efficiency of the proposed FD strategy, the next system (6) is considered:

� =



−3.5000 0 0.5000

0 −2.7540 0

0 0 −1.2000


, � (D(C), H(C)) =



sin(D(C))

1.5 sin(D(C)H(C))

2 sin(D(C))


,

� =
[
0 0 1

]
, � = [−3 2 1])

|(C) = [0.1 cos(2C) 0.1B8=(3C) 0.1 cos(4C)]) , | = [0.1 0.1 0.1]) , | = −|

and {(C) = 0.2 cos(C) cos(5C) sin(10C) sin(20C) with + = 0.2.

On can see that the function � (D(C), H(C)) is globally Lipschitz.

Considering communication delays, system (6) will be modeled as (10); its output

signal and the input signal delivered by the I.S.P.G are depicted in Fig.2.

Network proprieties: The network induces unknown but bounded delays as de-

scribed by (8). These bounds are 3 = 0.7B, 3 = 0.1B and the distribution of delays

is shown in Fig.3 with the disturbances and the measurement noise. The sampling

period is given by ) = 0.01B.
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Fig. 2 System input and output.
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Fig. 3 Network delay, disturbances and

noise.

Interval observer design: A gain ! =
[
−10 0 0

])
is computed satisfying

� − !� ∈ H. However, the matrix � − !� is Hurwitz but is not Metzler. Then,
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a transformation of coordinates as described in Section 3.1 is needed. We propose

( =



0.5005 0.0000 −2.2800

0.000 1.0064 0.0000

−0.0010 −0.0012 5.5701


, and we can easily verify that

E = ((�−!�)(−1 =



−3.5000 0.0000 0.0020

0.0000 −2.7540 0.0000

0.0049 0.0019 −1.2000


∈ H∩M. Therefore, an interval

observer as (12) can be designed. The initial conditions of system (10) are chosen such

that G0(C) ≤ G0 (C) ≤ G0(C); G(0) =
[
0.5 0.5 0.5

])
and G(0) =

[
−0.5 −0.5 −0.5

])
.

Also the estimator (12) is initialized by Ĝ+ (0) and Ĝ− (0) which are defined in (14).

State predictor design: For the sampling period T = 0.01s, we obtain

Φ=



0.9650 0.0000 0.0000

0.0000 0.9724 0.0000

0.00005 0.00002 0.9880


. The predictor described by (18) and (19) can be

computed with Φ, !̃1 = [−0.0500 0.0000 0.0001])

and V = [0.0127 0.0010 0.0010]) , V = −V.

Fault evolution: The system is affected by an additive fault 5 (C):
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Fig. 4 Fault evolution.
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Fig. 5 Evolution of upper and lower residual

signals.

{
5 (C) = 1 20B ≤ C ≤ 30B

5 (C) = 0 4;B4
(30)

The fault evolution is presented in Fig.4. The evolution of the residual signals in

faulty case is plotted in Fig.4 where black lines are the zero signal and red, blue lines

represent the upper and lower residuals, respectively. As shown in Fig.5 upper and

lower residual signals are sensitive to the fault 5 i.e. 0 ∉ [A, A] when 20B ≤ C ≤ 30B.

Then we can conclude that the fault detection strategy is ensured and validated

despite unknown communication delays and external process uncertainties.
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6 Conclusion and future work

In this work, a set-membership FD technique is developed for NNCS subject to

network delays and uncertainties. These uncertainties are assumed to be unknown

but bounded with a priori known bounds. The main contribution consists in using

upper and lower residuals for FD decision. A belonging test of the zero signal to the

interval delimited by the upper and lower residuals is used to ensure the detection of

faults. Theoretical results have been validated through the numerical example.

Nevertheless, the fault isolation problem for such NNCS is not investigated in this

contribution. It will be the subject of a future work.
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