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ABSTRACT 16 

We explore the rheology of very concentrated (0.55<Φ<0.67) suspensions of carbonyl iron (CI) 17 

particles coated by a small polymer. A strong discontinuous shear thickening (DST) is observed 18 

in a large range of volume fraction presenting some specific behaviours in comparison to other 19 

systems. In particular, the DST transition can appear suddenly without being preceded by shear 20 

thickening. The presence of a frictional network of particles is confirmed by a simultaneous 21 

measurement of the electric resistance of the suspension and of the rheological curve. Using the 22 

Wyart-Cates(W-C) model we show that with increasing the volume fraction, the fraction of 23 

frictional contacts increases more quickly with the stress, contrary to the prediction of numerical 24 

simulations. The same behaviour is observed in the presence of a magnetic field with  a strong 25 

increase of the viscosity before the DST transition. We interpret this behaviour by the 26 

interpenetration of the polymer layer under the effect of the shear stress -and of the magnetic 27 

stress- followed by the expulsion of the polymer out of the surfaces between two particles in 28 

contact. We point out that above the DST transition, we do not observe a jamming in the range 29 

of volume fraction whereas it is predicted by the W-C model. The  frictional contacts are created 30 

by a shear stress and not by a static stress, so in the absence of shear flow, the polymer can 31 

adsorb again on the surface and lubricate the frictional contacts. We thus predict an asymptotic 32 

non-zero shear rate reproducing the experimental behaviour. 33 

 34 

I. INTRODUCTION 35 

The rheology of suspensions of particles is of ubiquitous importance in many industrial 36 

processes where it is needed to find a compromise between a large volume fraction of solid 37 

particles to obtain a strong material and to minimize subsequent drying keeping a low viscosity 38 
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in the moulding process. Generally the viscosity of these suspensions first decreases with the 39 

shear rate (shear thinning) and then increases (shear thickening) more and more abruptly as the 40 

volume fraction of particles increases (for a review of pioneering works see Barnes 1). If only 41 

hydrodynamic interactions between particles are present the shear rate gives a time scale but, 42 

in absence of inertia, the viscosity would not depend on it. It is only through the presence of 43 

other forces -entropic or deriving from a potential- that a dependence on the shear rate can 44 

appear. For non-Brownian suspensions adhesive Van Der Waals forces and gravity play an 45 

important role on the formation of a network of aggregated particles which can give rise to a 46 

yield stress. Increasing the shear rate will contribute to break these aggregates and to decrease 47 

he viscosity of the suspension. On the other hand, repulsive forces either electrostatic like those 48 

due to ionic layers or entropic like those coming from an adsorbed or grafted  layer of polymers 49 

can prevent the aggregation. In the latter, the yield stress is decreased, and the viscosity is 50 

reduced for a given volume fraction. Generally, the decrease of the viscosity is due to 51 

deflocculating whereas the shear thickening is, on the contrary, due to the formation of transient 52 

aggregates. The qualitative explanation being that the suspending fluid imprisoned inside the 53 

aggregates behave as the solid particles and then increases the apparent volume fraction of the 54 

particles and thus the viscosity. Actually, a model based on the dynamics of 55 

aggregation/disaggregation can qualitatively represents the different rheological behaviour 56 

observed in concentrated suspensions2. In the extreme case of highly concentrated suspensions 57 

the shear thickening transition can manifest by a sudden jump of stress at a given shear rate in 58 

an imposed ramp of shear rate or in a sudden decrease of shear rate in a controlled stress 59 

experiment. This sudden phenomenon is called discontinuous shear thickening (DST). To our 60 

knowledge H. Freundlich3 was the first to present an experiment clearly showing a DST 61 

transition on a paste made of quartz particles in water. More recently Hoffman 4 conducted a 62 

systematic study of the rheology of suspensions of monodisperse PVC spheres with a diameter 63 

in the range 0.4-1.3m and volume fraction larger than 50%. The use of diffraction of white 64 

light during the experiment clearly demonstrated that the transition was associated with the 65 

rupture of a layered structure made of particles hexagonally packed and sliding over each other. 66 

This behaviour was recovered on monodisperse suspensions of smaller particles: d=200nm 5. 67 

On the other hand this abrupt shear thickening was also observed in moderately polydisperse 68 

suspensions of latex particles by Laun et al.6 and it was demonstrated, by neutron scattering in 69 
7,8 that it happens in the absence of a layered pattern preceding the transition. Using dichroism 70 

measurements, d’Haene et al. 9 have observed on suspensions of PMMA sterically stabilized, 71 

that above the critical stress, the relaxation of the structure was much longer and deduced the 72 

presence of large clusters spanning the cell. Furthermore polydisperse suspensions particles of 73 

irregular shape like corn-starch 10,  acicular calcium carbonate 11 or gypsum 12 which cannot be 74 

supposed to flow in regular planes also show this jump of viscosity. The DST transition can 75 

happen as well for particles sterically stabilized in non-polar solvents like PMMA in aliphatic 76 

hydrocarbon 13 , in di-octyl phthalate 14 or stabilized by electrostatic layers in polar solvent 3, 77 

for quartz in water15,16 for silica in water; 8,17 for silica in tetrahydrofuran; 18 for polystyrene in 78 

water. The onset of the transition is ruled by the competition between the shear forces and the 79 

repulsive forces which prevent the surfaces to come in contact and to experiment friction forces. 80 

By varying the pH in suspensions of silica or alumina at a constant salt concentration, Franks 81 

et al.19 have shown that the increase of the magnitude of the repulsive force was increasing the 82 

critical shear stress of the DST transition. The sudden contact between particles is believed to 83 

provoke the formation of a network of particles acting like a solid skeleton able to support the 84 

stress through elastoplastic contacts. This network is a transient one and its rupture and 85 

reformation with the strain manifests through huge fluctuations of the stress if the shear rate is 86 

imposed 16 or of the shear rate if the stress is imposed 20 as also pointed by other authors 8,9,18. 87 

The presence of frictional forces was confirmed experimentally through the presence of a 88 
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positive normal stress proportional to the shear stress 10,20–23 which expresses the force exerted 89 

on the upper plate of the rheometer by quasi solids aggregates trying to rotate in a confined 90 

space. Also shear reversal experiments demonstrated that even in the continuous shear 91 

thickening domain, the elastic forces were dominant upon hydrodynamic ones 24. In the usual 92 

rheometric cells, there is a free surface and the particle pressure generated by the shear stress 93 

above the transition will push them outside the fluid phase; nevertheless there are maintained 94 

inside the fluid as long as the capillary pressure is larger than the particle pressure 23,25. 95 

Besides the experiments, numerical simulation of the trajectories of an assembly of particles is 96 

a precious tool to correlate the macroscopic observations of the rheological behaviour to the 97 

spatial reorganisation of the particles under shear. Stokesian Dynamics allows to properly 98 

consider hydrodynamic forces in concentrated suspensions and in particular the lubrication 99 

forces which play a crucial role to prevent the contacts between the surfaces of the particles. A 100 

simulation including lubrication forces and frictional ones was realized by Seto et al.26 and Mari 101 

et al.27 on concentrated suspensions. In their model the cut-off of the lubrication forces was 102 

taken at 10-3 a (a is the radius of the particles) and at this distance, the contact forces were 103 

introduced through normal, kn, and tangential kt spring stiffness with the Coulomb criteria for 104 

the tangential force: Ft≤Fn where  is the friction coefficient. It is also worthwhile to note that 105 

the presence of periodic boundary conditions prevents the dilatancy of the suspension and the 106 

simulation made at an imposed shear rate, actually shows a DST transition above a given 107 

volume fraction. The stress corresponding to the beginning of the shear thickening remains 108 

quite independent of the volume fraction-except close to the jamming one28 - as expected if it 109 

results from a balance of repulsive to shear forces. This independence was also found 110 

experimentally in several works 8,14,20,22,23,29–31. The most important observation was the 111 

correlation between the change of the fraction of frictional contacts f() with the giant 112 

fluctuation of stress close to the DST transition  showing that the transition was mostly not 113 

structural but related to the contact between the particles. The function f() had a sigmoid shape 114 

and was independent of the volume fraction. In imposed stress simulations Singh et al. 28 have 115 

compared their results to the predictions of a model of M. Wyart and Cates 32 based on a 116 

jamming volume fraction j() which can change from a lower bound depending on : j
 to 117 

the maximum packing fraction of frictionless spheres  according  to a linear equation:  118 

j()=f() j
+(1- f())j

0. The model was able to reproduce the numerical data both for the 119 

viscosity, the normal stress difference, and the particle pressure. Nevertheless, using this model 120 

with the values obtained for the dependence j
 () and different prefactors, Lee et al. 33 did 121 

not succeed to represent properly their experimental data on silica spheres with different 122 

coating, even with an overestimated value (=1) of the friction coefficient. Another objection 123 

to this model is that it is possible to get a DST transition without frictional forces if the surface 124 

of the particles present asperities, as demonstrated by numerical simulation 34.  125 

In this paper, we are comparing the prediction of this model to experimental data 126 

obtained on a suspension of iron microparticles coated by a polymer brush. Polymer brushes 127 

make very efficient coating to prevent dry friction between the particles 35. Polymer brushes as 128 

surfactant, together with the use of mineral undeformable particles, provide a system more 129 

reliable than soft particles as shown in a recent work of Le et al. 36  proofing that the interaction 130 

of the solvent with the surface of the particles modifies the interparticle force and rules the DST 131 

behaviour. In addition, the use of iron spheres provides a double interest: first we can measure 132 

its conductivity and we expect to observe a change when frictional contacts occur during the 133 

DST transition, second, we can add a supplementary stress through the application of a 134 

magnetic field. In this way we have already shown that it was possible to trigger the DST 135 

transition 37. Other possibilities to trigger the transition are to add vibrations which contribute 136 

to break the force chains 38 or to use a coating of microparticles with temperature responsive 137 
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polymers to modify the interparticle forces 39. In this work we shall rather use this possibility 138 

to deepen our understanding of the DST transition. 139 

In section II we shall present the suspension used and the determination of its theoretical 140 

maximum flowing volume fraction 0. In section III we shall describe the experimental results 141 

in the absence of a magnetic field fand demonstrate the existence of a percolated network of 142 

frictional contacts through the measurement of the electric resistance of the sample during a 143 

ramp of shear rate. Then we shall  look at the dependence of stress-shear rate curves versus the 144 

volume fraction and will see to which extent it is possible to reproduce them with the model of 145 

Wyart and Cates. We shall also propose some modifications of this model to explain the absence 146 

of jamming at high volume fraction. At last,in section IV, looking at the change of DST with 147 

the magnetic field we shall see if it is possible to get a coherent view of these experimental data, 148 

taking into account the interpenetration of the the polymer layers. 149 

II.  MATERIALS 150 

The particles we used are made of carbonyl iron obtained from BASF (grade HQ); they have a 151 

density =7.7g/cm3 measured with a gas pycnometer and are currently used for making 152 

magnetorheological suspensions. Their size distribution was obtained with the help of several 153 

images taken by scanning electron microscopy (SEM). The samples were mounted on a SEM 154 

stub with carbon tape and subsequently coated with platinum (3 nm) prior to observations, 155 

performed with a JEOL JSM 6700F SEM at an accelerating voltage of 3 kV.  A total of 2300 156 

particles were analysed with ImageJ. From this size distribution, the first moment is the mean 157 

radius: M1= <a>=0.296m and the standard deviation is std= 0.15m. A representative SEM 158 

image is shown in Fig 1(a) and the experimental size distribution in Fig. 1(b) together with its 159 

fit by a lognormal distribution for the density of probability to find a radius ai in a class i of 160 

thickness 0.05mm: 161 

𝑃(𝑥) =
1

𝑥𝜎√2𝜋
exp [−

(𝑙𝑛 𝑥 + 0.5
2)

2

2𝜎2
]                   (1) 162 

Here x =a/<a>. The parameter of the fit is =0.547. The moments of the size distribution are: 163 

𝑀𝑘 = ∫ 𝑎𝑘∞

0
𝑃(𝑎)𝑑𝑎         (2) 164 

 165 

Using SEM pictures, we do not consider the thickness of the polymer layer which prevents the 166 

aggregation of the particles. This polymer is a superplasticizer molecule whose commercial 167 

name is Optima 100 made of a short polyethylene oxide (PEO) chain (in average 44 O-CH2CH2 168 

groups) and a diphosphonate head with sodium counter ions. As in a preceding work where we 169 

have used it with calcium carbonate particles we shall name it PPP44 43. It is the phosphonate 170 

head negatively charged which binds electrostatically with the iron surface. In all the 171 

suspensions, the mass of PPP44 used was 2mg/g of iron which is slightly larger than the 172 

concentration corresponding to the inflexion of the adsorption isotherm marking the realization 173 

of the first layer of polymer on the surface of the particles. The thickness of the layer can be 174 

approximated by the gyration radius of the polymer in a good solvent which is d=b.P3/5 with 175 

b=0.526nm the Kuhn length of the PEO group and P=44 the number of monomers; we obtain 176 

d=5.1nm. The third moment of the distribution is proportional to the volume of the solid, so 177 

taking (a+)3 instead of a3 we obtain for the real volume fraction of the solid phase: 178 

𝑒𝑓𝑓 =
1

1+
𝑀3  (1−)

𝑀3𝛿  

                                                            (3) 179 

where M3=0.0642 and M3 =0.066 are respectively the moments of the experimental 180 

distribution based on a3 and (a+)3. The different volume fractions are calculated from the 181 
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density of the iron particles and of the suspending fluid and corrected with the help of Eq. (3) 182 

when they are used in the rheological models.  183 

 184 

 
 

Fig.1(a): SEM image of the carbonyl iron 

particles. Voltage 3KV and magnification 

x10000 

Fig.1(b): Experimental probability density for 

the radius of the particles: each point 

corresponds to a class of 0.05m. The solid 

line is the fit with a Lognormal distribution 

 185 

Last, the suspending liquid is a mixture of ethylene glycol and water (respectively 85% and 186 

15% in mass) whose composition was chosen to minimize the evaporation rate. The viscosity 187 

of the suspending fluid at 20°C was f=11.8mPa.s. . The suspension was stirred with a vortex 188 

mixer during 5mn, then placed in an ultrasound bath for 10 min, and stirred again for 5 min 189 

with the vortex mixer. Then the suspension remains inside a hermetically closed vessel rotating 190 

at 5 rpm during one day before placing a sample on the rheometer plate 191 

 192 

III. RHEOLOGY IN THE ABSENCE OF MAGNETIC FIELD  193 

 A. Experimental results  194 

 195 

The rheogram of the suspension was obtained with an imposed stress rheometer MCR 502 from 196 

Anton-Paar. Most of the experiments were realized with a plate-plate geometry where both 197 

plates were covered with sandpaper of granulometry 40 m to avoid slipping on the walls. The 198 

usual gap was 1mm and we must point that below 0.5mm, we have noticed that the critical 199 

shear stress was decreasing. In all the experiments, we take care that there is no spilling of the 200 

suspension, which can be the case at high stresses and/or high shear rates; if it was the case we 201 

have used the cylindrical Couette geometry with a small gap in order to prevent the migration 202 

of the particles from the higher shear rate domain close to the internal wall towards the external 203 

one. 204 
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Fig.2 Sketch of the rheometer equipped with coils and devices to simultaneously record the 

resistance and the rheometric curves. 

 205 

The rheometer is equipped with a thermostated coil providing a magnetic field up to 65kA/m 206 

(corresponding to an induction B~0.08 Tesla). When the measurement of the resistance is 207 

required, it is realized thanks to a brush of fine copper wires rubbing slightly on the axis of the 208 

tool. The extra torque due to this electrode is small (<0.1 mN.m) and is subtracted from the 209 

viscous torque of the sample. The synchronisation between the measurements made by the 210 

software of the rheometer and the one of the resistance is done using the logical signal 0-1V 211 

sent by the hardware before each measurement to the logical gate of the multimeter Keithley 212 

2110 after amplification (cf.Fig. 2). The placement of the sample requires special care to relax 213 

the normal forces which are generated during the compression of the initial drop. For the last 214 

step of compression from 2m to 1m, the descent speed is regulated between 1m/s and 5m/s 215 

depending on the volume fractions, with a typical rotating speed of 0.1 rpm. For experiments 216 

with ≤0.66, we finally get, at rest, a small negative normal force: Fn~ -0.1N (of the order of 217 

magnitude of the capillary force between the disk and the plate but well above the nominal 218 

resolution of 1mN), ensuring an absence of a residual compressive stress due to loading. A pre-219 

shear was realized on all experiments with a ramp of stress from 0 to a stress below the critical 220 

one, typically 100Pa, which is then maintained constant during 3mn, followed by a rest time of 221 

30s at zero stress. Then a linear ramp of stress was applied, typically at  a rate of 0.5 -1 Pa/s and 222 

with an acquisition rate of  1 or 2 points/s. For all the experiments the temperature was regulated 223 

at T=20°C and a solvent trap was used 224 

 225 

In plate-plate geometry the shear rate is not constant and the stress versus shear rate curve must 226 

be corrected using the Mooney-Rabinovitch equation:  227 

𝜏 =
𝜏𝑎

4
 [3 +

𝛾̇

𝜏𝑎

𝑑𝜏𝑎

𝑑𝛾̇
]                         (4) 228 

where a is the shear stress given by the software of the rheometer. We have plotted in Fig.3 229 

the stress versus shear rate for an experiment made at a volume fraction =0.64 in plate-plate 230 

geometry (black curve) and in cylindrical geometry (red curve). The first remarkable thing is 231 

that, in both geometries, we observe a sudden decrease of the shear rate by an order of 232 

magnitude at a critical point 𝛾̇𝑐, 𝜎𝑐 ) and that above the critical point the shear rate oscillates 233 

about a constant value in the plate-plate geometry or with a slight increase in the case of the 234 

cylindrical geometry. For this volume fraction, we do not observe a second branch with a stable 235 
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flow up to the maximum stress we were able to use; here 3800 Pa in cylindrical geometry and 236 

only 1300 Pa in plate-plate geometry because, as can be seen in the Fig.3, it ends up with an 237 

expulsion of the liquid. 238 

 

 

Fig.3 Volume fraction =0.64. Solid black line: 

plate-plate geometry; Dotted black line: 

correction with Eq.(4). Solid red line: Cylindrical 

Couette geometry. 

Fig.4 Plastic viscosity (red dots, left 

scale) and Normal Force (black dots, 

right scale) in plate-plate geometry; 

Volume fraction =0.64. 

The dotted line represents the application of Eq.(4) to the experimental curve below the critical 239 

stress. The experimental curve is first smoothed to calculate the derivative. We see that the 240 

corrected curve is lower that the experimental one and well follow the one obtained in 241 

cylindrical geometry below 10s-1. After it begins to get closer to the initial curve, because the 242 

derivative 
𝑑𝜏𝑎

𝑑𝛾̇
 . is not constant but slightly increases as the suspension shear thickens when it 243 

approaches the jamming point. If the experimental curve was following a pure Bingham law 244 

with a yield stress 𝜏𝑦
𝑎  and a plastic viscosity pl, then the corrected curve would have a true 245 

yield stress 𝜏𝑦 =
3

4
𝜏𝑦

𝑎  and the same plastic viscosity. Then in this case the true critical stress 246 

obtained in plate-plate geometry would be simply 𝜏𝑐 = 𝜏𝑐
𝑎 − 𝜏𝑦

𝑎 /4  .Nevertheless, even a small 247 

shear thickening can give a quite different result, so for all the measurements made in plate-248 

plate geometry we have used Eq.(4) to get the critical stress. In Fig.4 we have plotted the normal 249 

force and the plastic viscosity: 𝜂𝑝𝑙 = (τ-𝜏𝑦)/𝛾̇ versus the stress. Below the jamming stress, the 250 

viscosity is almost constant: pl=5.2±0.2 Pa.s and it jumps to pl=90±20 Pa.s at the jamming 251 

point; at the same time, the normal force passes from slightly negative(Fn= -0.06±0.01N) to 252 

positive (Fn=-0.08±0.02N). Above the critical point both values increase with the stress and 253 

fluctuate a lot; nevertheless, as previously noted 21,23 , the average stress on the upper plate : 254 

Fn/R2 remains proportional to the shear stress with, in our case, a coefficient of 0.29±0.03. 255 

Another important observation is that using different gaps in plate-plate geometry between 256 

0.5mm and 1.5 mm give the same result, which indicates that there is no noticeable slip on the 257 

plates. In the following we have used plate-plate geometry with a gap of 1mm or, when high 258 

shear rates are used for <0.62, a cylindrical geometry. In Figs 5(a) and 5(b) we have gathered 259 

the shear stress versus shear rate curves obtained for volume fractions between =0.53 and 260 

=0.67. The curve for =0.62 is reported on both graphs : it is the volume fraction above which 261 

the critical stress of jamming c steadily increases until the discontinuous jamming transition 262 

disappears at =0.53; also for ≤0.62 the DST transition is accompanied by a sudden decrease 263 

of the shear rate followed by strong oscillations which are the signature of an instability 264 

described in detail for corn-starch suspensions 44 and explained by introducing the inertia of the 265 

rotating tool 43,45. 266 
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Fig.5(a) Rheograms shear stress versus shear 

rate for 0.62≤≤0.67 

 Fig.5(b) Rheograms shear stress versus 

shear rate for 0.53≤≤0.62 

Another point that we want to emphasize is the fact that, even at the highest possible fraction: 267 

=0.67, after the DST transition we never observe a return to zero of the shear rate as predicted 268 

by the model of Wyart et Cates 32 but rather an oscillating regime whose average value remains 269 

practically constant during the increase of the shear stress. This regime is shown in Fig.5(a) for 270 

=0.66,0.665,0.67 and in Fig.3 for =0.64. A similar behaviour was reported for other kinds 271 

of suspensions e.g. corn-starch 44,46, submicronic PMMA suspensions stabilized with grafted 272 

polymers 9,14, polystyrene particles of diameter 0.3m 21, silica 15 and alumina particles of 273 

micronic size in water at different pH. This behaviour with a shear rate fluctuating around a 274 

constant value above the critical shear stress in stress-controlled experiments seems quite 275 

generic and can’t be explained by the Wyart-Cates model. We shall come back to this point at 276 

the end of this section (sub-section C). In the following figures we have plotted the plastic 277 

viscosity obtained from a fit of the linear part of the curve by a Bingham law 𝜂(𝛾̇) = 𝜏𝑦 + 𝜂𝑝𝑙𝛾̇ 278 

versus the effective volume fraction given by Eq.(3). 279 

 

Fig.6 Plastic viscosity versus the volume fraction: 𝜂𝑝𝑙(𝑒𝑓𝑓) = 𝐴(1 −
𝑒𝑓𝑓

0𝑒𝑓𝑓
)−2 With 

A=0.01 Pa.s and 0eff=0.684. 
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The value 0eff=0.684 given by the fit is very close to the prediction obtained from the use of 280 

the equivalence with a bidisperse suspension (cf Appendix A) and we shall keep it for the 281 

analysis of the rheological model.  282 

Before trying to explain the experimental curves with the help of a rheological model we also 283 

want to mention that all the curves presented are taken during the first rise of stress or shear 284 

rate (in rate control experiments) after loading the suspension. As can be seen in Fig.7, the  285 

 
Fig.7 Hysteresis of the stress versus shear rate; the blue solid line is the ascending ramp of 

stress and the brown dashed line the descending ramp. 

 286 

descending curve (brown dashed line) shows a hysteresis and falls on the ascending one at a 287 

lower stress, but after that, remains on the ascending one, showing that the suspension has 288 

recovered its equilibrium state. This hysteresis can be much more important when the DST 289 

transition occurs at high stresses as is the case at volume fraction lower than 0.62. In this case 290 

a second ramp of stress with the same suspension gives a higher viscosity on the descending 291 

branch, which is the signature of an irreversible aggregation induced by the preceding high 292 

stress. The initial state can nevertheless be recovered by a pre-shear at an intermediate stress. 293 

The fact that the DST transition is provoked by a percolation of frictional contacts between 294 

particles has been demonstrated by numerical simulation 27 but to our knowledge there is no 295 

experimental demonstration of the correlation between the percolation of contact forces and the 296 

DST transition. In our suspension we are using coated iron particles and this coating increases 297 

the resistivity of the suspension. If, on the other hand, the DST transition is related to the 298 

formation of a percolated network of frictional contacts, it means that the coating has been 299 

removed and the transition should manifest through a decrease of the conductivity of the 300 

suspension. The resistance between the two plates or between the outside cylinder and the bob 301 

was measured using a comb of thin conductive wires rubbing on the shaft. We have presented 302 

in Fig.8 and Fig.9 the change of the resistance of the suspension associated with the DST 303 

transition respectively for a volume fraction =0.64 in the domain where there is a strong 304 
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decrease of the shear rate and for =0.55 which is close to the lower limit of the DST transition. 305 

Both measurements are made in an imposed shear rate ramp in cylindrical Couette geometry 306 

where high stresses are accessible without the expulsion of the suspension contrary to plate-307 

plate geometry. At =0.64 we have imposed a ramp of shear rate, and before the definitive 308 

transition at 𝛾̇ =24 s-1, we see a transient exploration of the high stress domain accompanied by 309 

a sudden drop of the resistance which is the negative footprint of the stress jump. The drop of 310 

the resistance and the jump of shear stress are very well correlated in both cases. The effective 311 

surface of contact between the particles is difficult to quantify because a part of the conductivity 312 

can be due to tunnel effect 47. Nevertheless, this sudden decrease of resistance is an experimental 313 

proof of the formation of a percolation network of frictional contacts between the particles.  314 

 

 

Fig.8  =0.64. Change of resistance (in red) and 

stress (in black) versus shear rate during a ramp 

of shear rate. 

Fig.9   =0.55.  Change of resistance (in 

red) and stress (in black) versus shear rate 

during a ramp of shear rate. 

 

For a lower volume fraction, =0.55, the change of resistance as well as the change of stress 315 

during a ramp of shear rate is much softer but, in total, is of the same order of magnitude. We 316 

can also note that at the beginning of the shear there is an increase of the resistance, which is 317 

due to the resuspension of the particles and to the destruction of a fragile network which was 318 

formed at the bottom of the cylinder in the presence of sedimentation. Besides the experimental 319 

proof of the presence of frictional contacts between particles this experiment also shows that 320 

the formation of this network can be either progressive at the lower volume fraction or very 321 

abrupt at higher volume fraction. We shall come back to this point in the next section 322 

 323 

B. Comparison with Wyart-Cates model  324 

The discontinuous shear thickening transition is characterized by a point in the rheogram 𝜎 =325 

𝑓(𝛾)̇ where the derivative 
𝑑𝛾̇

𝑑𝜎
= 0. As γ̇ = σ/η(σ) ,taking the derivative gives the condition: =326 

𝑑𝐿𝑜𝑔(𝜂)

𝑑𝐿𝑜𝑔(𝜎)
= 1  which is often used in the plot 𝜂 = 𝑓(σ) in Log-Log scale to characterize the DST 327 

transition.  328 

In the model of Wyart and Cates 32 the viscosity can diverge at a volume fraction lower than 0 329 

called𝑗
𝜇

. In granular materials, the minimum volume fraction which can support a stress is 330 

known as the random loose packing, RLP ~0.55-0.56 for monodisperse spheres, so it seems 331 

reasonable to think that 𝑗
𝜇

𝑅𝐿𝑃 The following linear relation is taken in the W-C. model for 332 

the dependence of the jamming volume fraction to f(r) where r=/c: 333 
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𝑗(𝑓) = 𝑗


𝑓 + 0(1 − 𝑓)  𝑤ℎ𝑒𝑟𝑒 𝑓 = 𝑓(𝑟) 𝑤𝑖𝑡ℎ 0 < 𝑓 < 1         (5) 334 

The divergence of the relative viscosity at j is then supposed to follow the same law than for 335 

frictionless spheres with 𝑗(𝑓) replacing 0:  336 

𝜂𝑟() ∝ (𝑗(𝑓) − 𝑒𝑓𝑓)
−2

 𝑜𝑟     𝜂𝑟() ∝ (1 −
𝑒𝑓𝑓

𝑗(𝑓)
)

−2

                                               (6) 337 

The second expression is equivalent, close to the divergence, but is more usual in rheology so 338 

we shall keep it in the following. The power -2 was shown to well represent experimentally the 339 

divergence of the viscosity at the vicinity of the jamming volume fraction 49,50 and is also 340 

compatible with numerical simulations whatever the value of the friction coefficient 28,51,52. 341 

When the stress and so f(r) increases, j(f) decreases and can reach the actual value of  if 342 

𝑗
𝜇

<<0 , then the viscosity diverges and the flow should stop. In a range of volume fraction 343 

below 𝑗
𝜇

 there is still a domain of stress where the DST transition subsists but do not lead to a 344 

jammed situation.  A phase diagram in the plane (,) illustrating these different behaviour can 345 

be found in A.Singh et al 28. In the W-C. paper the function f(r) was chosen arbitrary as f(r) 346 

= 1-exp(-r). In a recent paper R. Radhakrishnan et al 52  the authors have calculated the function 347 

f(r) from the distribution of normal forces between particles: P() with  =Fn/<Fn> and:  348 

𝑓(∗) =
∫ 𝑃(

∞

∗ )𝑑

∫ 𝑃(
∞

0
)𝑑

                                   (7) 349 

The average value of the normal force should be proportional to the applied stress  so 350 

∗ =
𝑐


= /𝑟 where =1.85 was a proportionality constant found numerically to be 351 

independent of the volume fraction. We have plotted in Fig.10 a curve representing the values 352 

they have obtained by numerical simulation in the low friction limit (=10-4) and a fit by the 353 

function: 354 

𝑓(𝑟)=𝑒
−(



𝑟
)

𝑞

  with the parameters =1.712  and q= 1.163                                       (8) 355 

The parameter  shifts the curves since it scales r=/c and should not depend too much on the 356 

volume fraction since the characteristic magnitude of the repulsive force does not depend on 357 

the volume fraction; the parameter, q, modifies the sharpness of the transition. On the other 358 

hand, as shown in this last paper, the function f(r) is quite insensitive to the value of .  359 

 
Fig.10 Fit of the values of f(r) for =10-4 (R. Radhakrishnan et al.52) with Eq.(8) and 

=1.712 ; q=1.163 
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Furthermore Eq.(8) for f(r) was previously used 28,53 to represent the data obtained from 360 

numerical simulations. It is also possible to use a prefactor in Eq.(8): fmax() 54, but at the cost 361 

of a supplementary parameter which will not be useful to interpret our experimental data. 362 

In order to fit the dependence of the viscosity versus the volume fraction for different values of 363 

the friction coefficient Singh et al 28, have proposed to generalize Eq.(6) to take into account 364 

the variation of the viscosity with the friction coefficient. Their modification is the following:  365 

𝜂𝑐(, 𝑟) = (𝑟 , )(1 −
𝑒𝑓𝑓

𝐽(𝑟,)
)−2                                        (9) 366 

 Where the function  has the dimension of a viscosity with:  367 

(𝑟 , ) = 𝑓(𝑟) + 0(1 − 𝑓(𝑟))                                   (10) 368 

and   𝐽(𝑟 , ) = 𝑗


𝑓(𝑟) + 0(1 − 𝑓(𝑟))                       (11) 369 

 370 

The parameters  and 𝑗

 are functions of the friction coefficient, ,  and are obtained from a 371 

fit of the numerical results with an empirical function. Wagner et al. 33 have used their 372 

prediction for these functions together with experimentally determined values of the friction 373 

coefficient in order to compare the predictions of the model with some experimental results on 374 

several kind of suspensions. They found strong deviations between the model and their 375 

experimental results.  376 

The coefficient, 0, corresponds to the low stress range: 𝑓(𝑟)~0 and is related to the beginning 377 

of the experimental curve (𝛾̇). The second parameter  is a fitting parameter without real 378 

physical significance, so we shall discard it and take: 379 

(𝑟 , ) = 0                                      (12) 380 

 381 

 In our system the coating molecule is a superplasticizer playing the role of a polymer brush at 382 

the surface of the particles and we have seen that the divergence of the low stress viscosity 383 

versus the volume fraction,(Fig.6), was corresponding to the theoretical random close packing 384 

of our polydisperse suspension (cf Appendix A). It means that the friction coefficient is close 385 

to zero. This agrees with measurements55,56 made with a surface force balance on mica surfaces 386 

covered by PEO polymer of similar length where the friction coefficient was of order 10-3. In 387 

the model we need also to know the lower jamming volume fraction 𝑗

. In principle it can be 388 

determined from the viscosity of the second branch of  𝜂𝑐(𝑟)  in the domain of DST where 389 

<𝑗

 for large values of 𝑟 where 𝑓(𝑟) ⇾ 1 , since in this case 𝜂𝑐 becomes a constant 390 

independent of the stress (cf. Eqs. (9)-(11)). In this zone -typically for  ≤0.58 - there is a second 391 

branch, but due to high stresses and shear rates it is not possible to obtain a reproducible value 392 

of the viscosity, cf. Fig.5(b). In the W-C model and in numerical simulations the friction 393 

coefficient  is supposed to be independent of the shear stress but in practice, and in the 394 

presence of a layer of adsorbed polymer at the surface of the particles, we expect that the friction 395 

increases with the stress due an increase of the entanglement between the polymers. It was 396 

already observed by AFM measurements where the friction increases a lot due either to the 397 

entanglement of the polymer or even to their expulsion from the surface 56,57. In this context it 398 

is reasonable to suppose that 𝑗

 corresponds to the loose random packing at high friction (>1). 399 

For monodisperse spheres, several authors 52,58,59 have found:𝑗

~0.55-0.56 which is also close 400 

to the high friction limit obtained by numerical simulation with the critical load model 28. We 401 

have transposed these values to a bidisperse suspension using the same methods as for RCP ( 402 

cf. Appendix A) and we have obtained 𝑗


= 0.59 ± 0.01 . Finally, to check the model we shall 403 

use the following values: 0 = 0.684 and  𝑗


= 0.59. In any event, we shall see that even a 404 

change of ±0.01 in 𝑗

 does not change our conclusions. 405 
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Besides these two volume fractions, the other parameters of the model are those, , q, defining 406 

the fraction of frictional contacts (Eq.(8)) and the coefficient 0. The coefficient, 0, 407 

corresponds to the low stress range: 𝑓(𝑟)~0 and is related to the beginning of the experimental 408 

curve (𝛾̇) which can be represented either by a Bingham model or more generally by a 409 

Herschel-Buckley(HB) model:  = 𝜏𝑦 + 𝐾. 𝛾̇𝑝.  410 

In our experiments with high volume fraction, we have a yield stress which is not negligible.. 411 

We follow the analysis made in Singh et al. 60. They found that the total viscosity was well 412 

represented by adding the Herchel-Buckley viscosity at low stress and the contact viscosity 413 

(Eq.(9)) at high stress. In this approach, the beginning of the contribution of the contact 414 

viscosity depends strongly on the exponent, p, of the HB law. Since in the experiment we do 415 

not have access to the contact viscosity we adopt the view that we are not looking for a good 416 

model of the low stress behaviour but rather to the application of the W-C model at intermediate 417 

and high stress. To reduce the number of parameters, instead of the HB law, we have used the 418 

Bingham one even if it does not fit very well the lower part of the stress versus shear rate curve. 419 

So, we shall write: 420 

𝜎 = 𝜏𝑦 + (𝜂𝐵 + 𝜂𝐶(𝜎))𝛾̇       with       𝜂𝑐(𝜎) = 0(1 −
𝑒𝑓𝑓

𝐽(𝑟)
)−2    (13) 421 

In this description 𝜂𝐵 is the plastic viscosity obtained by fitting the beginning of the curve by a 422 

Bingham law and we suppose that all the shear thickening part is described by the W-C model 423 

represented by the contact viscosity c. On the other hand we have 𝜂𝑐(𝜎 ⇾ 0) =424 

0(1 −
𝑒𝑓𝑓

0
)−2   , since 𝑓(𝑟)~0 .Then we can just incorporate ηB in ηc  by imposing that the 425 

value of 0 gives back 𝜂𝐵 when j tends to 0 at low stress. Finally, we end up with: 426 

𝜎 = 𝜏𝑦 + 𝜂𝑝𝑙(𝑓(𝜎))𝛾̇       ; 𝜂𝑝𝑙(𝑓(𝜎)) = 𝛼0(1 −
𝑒𝑓𝑓

𝐽(𝑓(𝑟))
)−2 ; 𝛼0=𝜂𝐵(1 −

𝑒𝑓𝑓

0
)+2 (14)427 

         428 

In Eq.(14) the only remaining parameters are those (,q) defining the function f(σr) (cf Eq.(8)). 429 

They can be determined directly by the condition that the theoretical curve should pass through 430 

the transition point (𝑐 , 𝛾̇𝑐):  431 

  𝑐 − 𝜏𝑦 = 𝜂𝑝𝑙(𝑐)𝛾̇𝑐          and         
𝑑𝛾̇

𝑑𝜎
|
=𝑐

= 0           (15) 432 

Or equivalently, using 𝛾̇𝑐 = (𝑐 − 𝜏𝑦)/𝜂𝑝𝑙(𝑐) ,where pl () is given by Eq.(14) we end up 433 

with the two equations: 434 

 435 
𝑐−𝜏𝑦

𝛾̇𝑐
= 𝜂𝑝𝑙(𝑟 = 1)         (16) 436 

 1 =
𝑐−𝜏𝑦

𝜂(𝑐)
[

𝑑𝜂𝑝𝑙(𝜎)

𝑑𝜎
|

𝜎=𝜎𝑐

]                   (17) 437 

The results are shown in Figs 11-12 for the volume fractions =0.58,=0.64 and =0.66. The 438 

parameters used to obtain these curves are listed in table 1. The two first parameters are those 439 

of the Bingham law (𝜏𝑦, 𝜂𝐵) representing the part of the curve which is not shear thickening. 440 

The third one 0 is obtained from B (Eq.(14)), then  and q characterize the function f() and 441 

the last quantity f(c) is the proportion of frictional contacts at the critical stress as obtained 442 

from the values of  and q reported in Eq.(8) for r=1. For =0.58 the experiment was done in 443 

cylindrical Couette rheometry, whereas for =0.64 and =0.66 the experiments were done in 444 

plate-plate geometries. For this last geometry the experimental curves presented in Figs.12(a) 445 

and Fig.12(b) have been corrected as described by Eq.(4) and illustrated in Fig.3. In Fig.11 we 446 

have presented the results for =0.58.  447 

 448 

 449 
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 y(Pa) B   q f(c) 

0.58  2.1 0.81 0.018 1.08 1.19 0.335 

       

0.64 18.4 4.92 0.020 1.46 3.50 0.023 

       

0.66  40.1 28.5 0.034 1.02 111 3.3 10-4 

Table 1 Parameters used in the Wyart Cates model for the volume fractions 

=0.58,0.64,0.66 

 450 

 
Fig.11   =0.58 Comparison of the experimental curve (in red) to the theoretical one(in black) 

with 𝑗
𝜇

. =0.59. The dashed curve in green corresponds to 𝑗
𝜇

. =0.58 and the one in brown 

to 𝑗
𝜇

 =0.60 

The red curve is the experimental one, the black one is the theoretical one (obtained from a fit 451 

of the beginning of the curve (𝛾̇ < 200𝑠−1) by a Bingham law, The resulting curve does not fit 452 

the experimental one very well below the critical point and not at all above. The turning point 453 

corresponding to the S shape (not represented here) is found at  ~6000𝑃𝑎 instead of about 454 

1600Pa experimentally. It is worth noting that adding the parameter  (Eq.(10) in the prefactor 455 

of the viscosity) does not improve significantly the agreement between the experiment and the 456 

model. On the other hand, this discrepancy can’t be attributed to the uncertainty on  𝑗
𝜇

 as can 457 

be seen on Fig.11 where the two curves with 𝑗
𝜇

= 0.58 and 𝑗
𝜇

= 0.60 are still far from the 458 

experimental one. 459 

 460 
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Fig 12(a)  =0.64 Comparison experiment 

(in red) to the W-C model (in green). The 

dashed line is obtained by adding a 

disaggregation time at low shear (cf section 

C). 

Fig 12(b)  =0.66 Comparison experiment(in 

red) to the W-C model (in green). The dashed 

line is obtained by adding a disaggregation 

time at low shear (cf. section C). 

 461 

The results for the volume fractions =0.64 and =0.66 are presented in Figs.12(a) and 12(b). 462 

For the moment we discard the dotted lines which will be discussed later. For =0.64 we see 463 

in the linear scale that we are close to a pure Bingham behaviour but, there is a small shear 464 

thickening before the transition. The value q=3.50 (cf Table 1) indicates that the transition is 465 

more abrupt than at =0.58 where q=1.19-(close to the value q=1.16 of the numerical 466 

simulation of Fig.10). On the contrary at =0.66 we have a transition which occurs without 467 

being preceded by shear thickening. A fit of the upper part of the curve by a Bingham law well 468 

represents the experimental behaviour above 0.5 s-1, cf. Fig.12(b). As there is no shear 469 

thickening before the transition, it amounts to say that the percolating network of frictional 470 

contacts is created suddenly at =c, what is reflected by the huge value q=111.  471 

 
Fig.13 Evolution of the fraction of frictional contacts for different volume fractions with the 

relative stress r=/c The dashed line refers to the result of numerical simulation which does 

not depend on volume fraction (Radhakrishnan et al.52, Mari et al.27). The other curves come 

from the the Wyart-Cates theory with conditions given by Eqs.(14)-(17) 

 472 
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Said differently, the function f(r) jumps from 0 to 1 at =c We have plotted in Fig.13 the 473 

evolution of this function with the stress. We see that at =0.58, the progressive increase of 474 

f(r) is like the one observed in numerical simulation but with a shift relatively to r .This shift 475 

is not surprising since the value of  depends on the specific shape of the repulsive barrier 476 

preventing the particles to come into contact. 477 

The fact that there is only a small shear thickening before the transition at =0.64 is translated 478 

by a sharper evolution of the function f(r), and finally we have the step function at =0.66. 479 

This evolution of f(r) with the volume fraction is supported by the measurement of the 480 

resistance versus the stress, Figs 8 and 9, which shows qualitatively the same difference of 481 

behaviour between the volume fraction =0.64 where the drop of resistance is abrupt and 482 

=0.55 where it is much more progressive. It is worth pointing again that this drop of resistance 483 

at the DST transition is an experimental signature of the formation of a percolating network of 484 

frictional contacts.  The fact that, contrary to the simulation results, the fraction of frictional 485 

contacts for the same stress depends strongly on the volume fraction, is likely due to the 486 

complexity of the interaction between the layers of adsorbed polymers. We indeed expect that, 487 

for the same shear stress, the interpenetrating zone will increase with the volume fraction, 488 

giving more efficiency to the applied stress for removing the layer of adsorbed polymer. 489 

 490 

 491 

C. The absence of jamming above the DST transition 492 

 493 

In the W-C model the suspension should stop to flow above a given stress if the volume fraction 494 

is between 0 and 𝑗
𝜇

 because, in this range, the jamming volume fraction j() will always 495 

reach the actual volume fraction  when the stress increases, causing the divergence of the 496 

viscosity. In practice we see (cf. Figs 12(a) and 12(b)) that, instead of going to zero, the shear 497 

rate keeps, in average, an almost constant value when the stress is increased above the DST 498 

transition. As pointed out when discussing the results presented in Fig.5, many authors already 499 

noticed this kind of behaviour on different kinds of suspensions. One could object that this 500 

residual shear rate is due to some slipping of the suspension on the walls, but on the other hand 501 

if we apply a magnetic field of about 100kA/m to the same suspension of carbonyl iron particles, 502 

it will show a yield stress of several kPa without any slipping in the same plate-plate geometry 503 
61,62. Besides, the role of the inertia of the rotating tool was recognized to play a major role in 504 

the instability which occurs when the differential viscosity is negative 43,45,63,64 . When coupled 505 

to the W-C model, the introduction of an exponential relaxation for the time evolution of f(t) 506 

towards its equilibrium value f(r), allows to well recover the oscillations above the transition 507 

but did not explain the persistence of these oscillations at stresses where the W-C model predicts 508 

the total stop of the flow. By adding in the time evolution of f(t) a second term: H(fm-f) allowing 509 

the growth of f(t) with the shear rate, it is possible to obtain an asymptotic value of the shear 510 

rate at high shear stress 65  but at the condition to take 𝐻 ∝ 3/2  which seems rather arbitrary. 511 

In a recent paper on DST in capillary flow 66 we have proposed another explanation and a 512 

modification of the W-C model which well succeeded to reproduce this non-zero -almost 513 

constant- shear rate at high stresses. Our approach was based on the idea that a state of flow 514 

arrest at high stress, which would be only due to friction and not to adhesive forces, should be 515 

unstable. This is because, in the absence of flow and of large enough adhesive forces, the 516 

entropic forces, like those due to a small residual Brownian motion or to a change of 517 

configuration of the coating molecules present on or around the surfaces, will be strong enough 518 

to destroy some fragile links in the network of frictional contacts leading to a restart of the flow. 519 

This mechanism will give, on average, a non-zero shear flow at high stresses, and can be simply 520 

taken into account by inserting the condition that the fraction of frictional contacts should 521 
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progressively vanish if the shear rate tends to zero, whatever the value of the stress. This can 522 

be done for instance by multiplying the function f(r) (Eq.(8)) by a function ,g, of the shear rate 523 

which vanishes at zero shear rate and tends to unity when it increases: 524 

𝑓′ (𝑟 , 𝛾̇) = 𝑓(𝑟) ∗ 𝑔(𝑡𝑑. 𝛾̇)       (17) 525 

where td is a parameter related to the rupture time of the frictional contacts. We previously took 526 

arbitrarily a Langevin function for the function g66, but the precise shape of this function can 527 

be deduced from an evolution equation of the function f(t) which is a structural parameter like 528 

others often used to describe the time dependent rheology. Such an approach combines two 529 

mechanisms, one for the building of the structure and the other for its destruction 2. In this way, 530 

we will write: 531 
𝜕𝑓

𝜕𝑡
= −

1

𝑡𝐵
(𝑓(𝑡) − 𝑓(𝜎𝑟)) −

𝑓(𝑡)

𝑡𝑑
      (18) 532 

The first term describes the relaxation of the structure to its equilibrium value corresponding to 533 

the stress r, given by Eq.(8) and was already used to reproduce the oscillations of the shear 534 

rate above the transition 42. If the fraction of frictional contacts is below its equilibrium value, 535 

it will rise with a characteristic time tB which will be inversely proportional to the collision rate 536 

and so to the shear rate: 𝑡𝐵 = 1/(𝛾̇𝐶𝐵)where CB is a constant. On the other hand, in the absence 537 

of shear, we expect that the frictional contacts will be destroyed with a characteristic time td 538 

that, for simplicity, we suppose independent of the stress. At equilibrium 
∂f

∂t
= 0 and from 539 

Eq.(18) we have: 540 

𝑓𝑒𝑞
′ (𝑟 , 𝛾̇) = 𝑓𝑒𝑞(𝜎𝑟)

𝛾̇
1

𝑡𝑑.𝐶𝐵
+𝛾̇

 = 𝑓𝑒𝑞(𝜎𝑟)g(𝛾̇)      (19) 541 

In Eq.(19) we have added the subscript “eq” to emphasize that it is the equilibrium value. Now 542 

the jamming volume fraction depends also on the shear rate since f is replaced by f’ in Eq.(11). 543 

At high value of r we have  𝑓𝑒𝑞(𝑟) ⇾ 1 then  𝑗⇾ (1-g(𝛾̇))0 + 𝑔(𝛾̇)𝑚 and we end up 544 

with: 545 

𝜂 ⇾
1

(𝑗−)
2

 
=

1

(𝛾̇−𝛾̇∞)2      with    𝛾̇∞ =
1

𝐶𝐵.𝑡𝑑
(

0−

−𝑚
)      (20) 546 

The asymptotic value of the shear rate 𝛾̇∞ is given by Eq.(20). The dotted curve of Fig.12(a) for 547 

=0.64 is obtained with CB.td=0.3s, giving 𝛾̇∞ =2.73 𝑠−1 and the one of Fig.12(b) for =0.66 548 

with CB.td=0.7s. giving 𝛾̇∞ =0.43 𝑠−1. Note that it is the product CB.td which can be obtained 549 

from the fit of the experimental curve and not each parameter separately. With this modification 550 

of the W-C model we have now a good agreement with the experiment. Still we are using the 551 

equilibrium value feq(r) and not its time evolution described by Eq.(18). It is only by 552 

considering this time evolution together with the introduction of the inertia of the rotating part 553 

that we can describe the fluctuations of the shear rate above the DST transition and obtain 554 

separately the parameters td and CB. This is beyond the scope of this paper but we have verified 555 

that with the use of Eq. (18) the oscillating regime continue above the jamming volume fraction 556 

predicted by the W-C model (cf. Appendix B). On the other hand, we do not have an oscillating 557 

regime at =0.58 and below because despite a negative differential viscosity, its absolute value 558 

is not large enough to reach the theoretical criteria of instability that can be obtained by a linear 559 

stability analysis 63. 560 

The qualitative explanation of the absence of jamming and of the persistence of the oscillations 561 

of the shear rate at high stresses is stated in the following. When the stress is high enough to set 562 

the particles in solid contact despite the presence of a stabilizing repulsive layer, a solid network 563 

of particles is formed which impends the flow by connecting the walls of the cell. Nevertheless, 564 

in the absence of flow the applied stress which is now a contact stress (in comparison to  a 565 

hydrodynamic one) will not be able to keep unchanged this static solid network, because the 566 

shear flow was responsible for the expulsion of the stabilizing polymer layer. In the absence of 567 

shear, the thermodynamic forces related to the energy of adsorption of the polymer molecules, 568 
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will no longer be opposed by the drag forces coming from the shear flow, so the polymer can 569 

come back on the surfaces in the contact area and generate a pressure which will separate the 570 

surfaces in the contact zone. It is also likely that, in hydrophilic suspensions with charged 571 

surfaces, a layer of water molecules remains attached on the surface, even inside the frictional 572 

contacts, and contributes to facilitate the breakdown of the frictional network in the absence of 573 

a shear flow. The same process can also be present and even stronger, when the stabilizing force 574 

is due to an ionic double layer since in the absence of shear flow, the counterions will be 575 

attracted back to the surfaces and separate them. Once the network of frictional contacts is 576 

broken, the shear flow begins to grow until the shear forces dominate the repulsive ones 577 

initiating the jamming of the suspension and the cycle begins again. As briefly described in 578 

annex B, the typical period of the oscillations is T=0.1s, so the amplitude of the oscillations 579 

observed experimentally depends on the time of acquisition of the shear rate and is in reality 580 

much higher than reported here at an acquisition rate of 1 point/s 581 

 582 

 In practice, above a few kPa, due to the centrifugal force and also to the presence of a normal 583 

force rr, transmitted through the percolated network, the interface with air becomes irregular 584 

with extrusion of “granules“ and intrusion of air bubbles. This mechanism exists as well in 585 

plate-plate geometry and in cylindrical Couette geometry 25 and prevents to get reliable results 586 

at very high stresses even in cylindrical Couette geometry. 587 

Before passing to the effect of the magnetic field, from these comparisons between 588 

experiments at three typical volume fractions we can already retain the following conclusions: 589 

1) From the measurement of the electric resistance of the suspension it is possible to follow the 590 

formation of the network of frictional contacts when increasing the stress. 591 

2)-It is not possible to represent the rheological curve at every volume fraction with the same 592 

values of the function f(r): if the parameter q=1.16 (obtained in some numerical simulations)  593 

of the stretched exponential can describe the curve at =0.58, this is clearly not the case at 594 

=0.64 and at =0.66 there is no shear thickening at all before the transition, leading to a 595 

Heaviside function. It is the expression of the fact that we pass abruptly from a Bingham or 596 

even a shear thinning behaviour (p<1) to the DST transition.  597 

3) The non-zero average shear rate at high stress is explained by the fact that the frictional 598 

contacts are unstable at zero shear rate.  599 

 600 
 601 
 602 
 603 

IV. EFFECT OF THE MAGNETIC FIELD ON THE DST 604 

TRANSITION   605 

We have shown in preceding papers 37,67 that the application of a magnetic field on a suspension 606 

of carbonyl iron particles at high volume fraction could considerably shift the critical shear rate 607 

of the DST transition towards lower values. We also remarked that the difference between the 608 

critical stress and the yield stress remained approximately constant in the range of field we have 609 

used 64. We shall try in this section to understand the physical process which could explain this 610 

behaviour. In the following figures, Figs.14(a) and 14(b), we have plotted the raw curves 611 

obtained in plate-plate geometry and below the differential viscosity 
𝜕𝜎

𝜕𝛾̇
 determined from the 612 

corrected curve as defined by Eq.(4) 613 

 614 
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Fig. 14(a)  =0.63. Evolution of the DST with the magnetic field. Raw curves; plate-
plate geometry 

 

 615 

 

Fig. 14(b) =0.63. Differential viscosity for some of the rheograms represented  in 
Fig.14(a) 

 616 

The more remarkable result is that, increasing the magnetic field, we pass from a behaviour 617 

which is first shear thinning and then shear thickening to a behaviour where we have only shear 618 

thinning before the DST transition (cf. Fig. 14(b)). This is like what we observe in the absence 619 
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of the field when we increase the volume fraction. Once again, in the frame of the W-C model, 620 

this is only possible if the function f(r) rises suddenly from zero to one at the transition (cf. 621 

Fig. 13). The shear thickening part which precedes the DST transition at low field or low 622 

volume fraction is more usual and can be interpreted as the formation of small clusters due to 623 

frictional contacts provoked at high shear by the removal of the layer of polymer from the 624 

surface 56. Some more information on the role of the polymer layer can be inferred from the 625 

comparison of the evolution of the yield stress and of the plastic viscosity with the magnetic 626 

field at intermediate and high-volume fraction. This is shown respectively in Figs 15(a) and 627 

15(b). 628 

  

Fig.15a  Bingham yield stress versus field for   
=0.63 and =0.45. Dashed line:  
y(0.45)*0.63/0.45 

Fig.15b Average plastic viscosity (cf. text) 

versus field for =0.63 and =0.45 

 629 

For the yield stress, the difference between the two volume fractions is not important. If we 630 

consider the simplified model of independent chains of particles spanning the gap between the 631 

two plates, the yield stress should be just proportional to the number of chains, that is to say, to 632 

the volume fraction; the dashed line is the extrapolation for =0.63 from =0.45 if it was the 633 

case. Even if the experimental values grow slightly faster (red squares), the difference is not so 634 

big and easy to explain because the model of individual chains is no longer valid at high volume 635 

fractions since the number of contacts per particles- and so the magnetic attractive force 636 

between pairs of particles- is expected to increase with the volume fraction. On the contrary the 637 

increase of viscosity with the intensity of the magnetic field is about 3 orders of magnitude at 638 

=0.63 against one order of magnitude at =0.45. The viscosity in Fig.15(b) is an average 639 

plastic viscosity: 𝜂63 = (𝜎𝑐 − 𝜏𝑦)/𝛾̇𝑐  for =0.63 and 𝜂45 = (𝜎(400𝑠−1) − 𝜏𝑦)/400  for 640 

=0.45. We must emphasize that the range of applied stress is about the same at =0.63 as at 641 

=0.45 but it is the range of shear rate which is much larger at =0.45 than at =0.63. This 642 

unexpected large increase of the viscosity with the field is an important observation for two 643 

reasons. First, it will allow to trigger the viscosity of this magnetorheological fluid with a much 644 

larger efficiency than with usual ones based on suspensions of intermediate volume fractions 645 

and second it helps to understand the process leading to DST in the presence of polymer 646 

brushes. The interaction between two layers of polymer brushes has been extensively studied 647 
68,69 mainly because of their applications to reduce the viscosity of concentrated suspensions of 648 

mineral particles as, for instance, in cement industry. The repulsive force of entropic origin 649 

between the tails of the polymers prevents the particles from aggregation in the presence of 650 

attractive Van Der Waals forces. This osmotic force depends on many factors like the size 651 

distribution and the conformation of the polymer its energy and density of adsorption; its 652 
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miscibility with the suspending fluid (the Flory parameter). A key parameter which derives 653 

from these characteristics is the interpenetration zone of width, , of the layers of polymer and 654 

its dependence on the applied hydrodynamic (and magnetic in our case) stress . If  remains 655 

small, then the system is equivalent to a hard sphere suspension with a renormalized volume 656 

fraction, eff-incorporating the thickness of the polymer layer and a short-range repulsive force. 657 

If the interparticle force, generated by the externally imposed stress, increases, the value of  658 

will also increase in an extent depending of the stiffness of the repulsive force and also of a 659 

Weissenberg number  𝑊 = 𝜏. 𝛾̇ where  is the relaxation time of an adsorbed polymer. If W<1 660 

the polymer has the time to recover its equilibrium shape between the next collision with 661 

another polymer; then the shear force generated by the collisions between monomers in the 662 

interpenetration zone grows proportionally to the shear rate70. It means that in this regime we 663 

can have a Newtonian behaviour but with a viscosity which will depend on the field since 664 

increasing the field will increase the interpenetration zone. On the contrary if W>1 the polymers 665 

do not have time to relax: they remain stretched by the shear flow which will decrease the 666 

interpenetration zone and give a shear thinning behaviour or even an absence of dependence of 667 

the shear if the interpenetration zone remains very weak. The relaxation time of the polymer 668 

can be estimated from the Rouse model for PEO polymer in water 71: 𝜏 = 0.0142𝑁2𝜉𝑏2/kT.  669 

With N=44 the number of units of PEO,  the friction coefficient on one unit and b=0.526nm  670 

the length of one unit. Considering that the viscosity of our suspending fluid is 10 times the one 671 

of water we get 𝜏~10−6𝑠. Another estimation based on Zimm theory 72 gives 𝜏 = 5.11 𝑅3𝜂𝑠/kT 672 

with R the root mean square separation of the extremities of a polymer and 𝜂𝑠 = 0.011𝑃𝑎𝑠,  673 

the viscosity of the suspending fluid. Taking into account the expansion of the polymer due to 674 

its compression by its neighbours we have R=6nm 42 and in this case =2.6 10-6s.  This order of 675 

magnitude means that, with this small polymer, we shall always have W<<1 and so that we 676 

should remain in a Bingham regime with a plastic viscosity independent of the shear rate. This 677 

is roughly what we observe above 3 s-1 except for the highest field where we have a continuous 678 

shear thinning (cf. Fig.14(b)). This change of regime at high compression could be due to a 679 

structural change of the compressed layer perhaps related to a beginning of desorption of the 680 

polymer before the DST transition. On the other hand, the shear thinning observed at 𝛾̇ < 3𝑠−1 681 

is simply due to the progressive rupture of the aggregates formed by the attractive magnetic 682 

forces. 683 

If we call b the viscosity of these bilayers of polymers which separate the surfaces of the 684 

particles it is likely that, at high volume fraction, where the polymer layers are always 685 

interpenetrated, we could approximate the total viscosity as =HSb where HS is the relative 686 

viscosity of the hard sphere suspension without coating polymers. Finally, increasing the field 687 

increases a lot the plastic viscosity and to a much less extent the yield stress - which is the stress 688 

necessary to separate the particles against the attractive magnetic force. On the other hand, the 689 

stress needed to sweep the polymer layer out of the surface in the lubricated zone is essentially 690 

the shearing stress coming from the relative motion of the particles  691 
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Fig.16(a) Evolution of the critical stress c 

with the magnetic field for the volume 

fractions =0.61,0.62,0.63 

Fig.16(b) Evolution of the hydrodynamic 

stress c-y with the magnetic field for the 

volume fractions =0.61,0.62,0.63 

 . This is the reason why it is the difference between the critical stress and the yield stress which 692 

remains approximately constant when we increase the magnetic field instead of the critical 693 

stress as we can see in Figs. 16(a) and 16(b). 694 

The attractive force induced by the magnetic field contributes to increase the interpenetration 695 

of the polymer. Consequently, the viscosity related to the shearing forces between the 696 

interpenetrated parts of the polymer increases, until the shearing stress needed to wipe the 697 

polymer out of the surface is reached. In this process the yield stress generated by the magnetic 698 

force between the iron particles does not contribute directly to the shearing force acting on the 699 

polymer layer which is alone responsible for the desorption of the polymer and the DST 700 

transition. 701 

 702 

V. CONCLUSION  703 

 704 

Using a suspension of ferromagnetic particles stabilized by a superplasticizer molecule used in 705 

cement industry, we have obtained a discontinuous shear thickening in a broad range of volume 706 

fraction (0.54<<0.67). From the divergence of the low shear rate viscosity with the volume 707 

fraction and from the use of the size distribution of the particles, we have deduced the two 708 

volume fractions 0 and 𝑗
𝜇

on which are based the Wyart-Cates model of DST. This model 709 

also introduces the function f(r) representing the fraction of frictional contact versus the stress; 710 

we have modelled this function with the help of two parameters  and q; this last one depicting 711 

the sharpness of the transition. These two parameters are obtained from the constraint that the 712 

experimental curve passes through the critical point where the shear rate begins to decrease. 713 

Whereas simulations predict that this function remains independent of the volume fraction, we 714 

find that it fits the one obtained in simulation, only in the domain of soft DST transition at the 715 

lowest volume fractions where there is a second regime of constant viscosity. At highest volume 716 

fraction the transition is sharper and finally becomes steplike. This last behaviour is related to 717 

the fact that there is no shear thickening before the transition, which implies that f(r)=0 for 718 

r<1. The measurement of the electric resistance together with the stress/shear rate curve allows 719 

to confirm the onset of a percolated network of frictional contacts associated to the decrease of 720 

the shear rate and the fact that the expansion of this network with the stress depends strongly 721 

on the volume fraction, contrary to the predictions of the numerical simulations. A numerical 722 

model introducing a repulsive force depending on the interpenetration of the polymer together 723 

with a criteria for the desorption of the polymer should allow to recover this behaviour. 724 

Contrary to the W-C model which predicts the existence of a domain of jamming above 725 

the DST transition, we do not observe it experimentally but rather the shear rate remains, on 726 
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average, constant above the critical stress. We were able to reproduce this behaviour by 727 

introducing a relaxation time, td, of the frictional contacts at zero shear rate expressed in Eq.(18). 728 

The resulting asymptotic shear rate 𝛾̇∞(Eq.(20)) gives access to the product CB.td where CB is a 729 

constant associated to the collision rate between particles. The independent determination of 730 

these two parameters could be done through the analysis of the period of oscillations of the 731 

shear rate above the transition. 732 

We have explained qualitatively the evolution of the rheology in the presence of the 733 

magnetic field by its effect on the interpenetration of the polymer layer adsorbed on the surface 734 

of the particles, in particular the strong increase of plastic viscosity for small amplitudes of 735 

magnetic field. The evolution of the polymer layers with their progressive interpenetration and 736 

their desorption above a given shearing stress makes the particle short range interactions much 737 

more complicated than the ”critical load model” CLM model used in computer simulations, so 738 

it is not surprising that some predictions of these numerical models do not apply to our 739 

experimental systems. In order to get more information on the interparticle forces in the 740 

presence of brush polymer it would be useful to make experiments on a pair of iron 741 

microparticles with the help of a force apparatus 57. At last, we want to emphasize that this 742 

magnetorheological fluid, based on very high-volume fraction of iron particles thanks to this 743 

superplasticizer, is much more efficient than usual ones because of two physical phenomena: 744 

the DST transition and the increase of viscosity due to the interpenetration of the polymer 745 

brushes. The increase of yield stress with the field which is the usual mechanism in conventional 746 

MR fluid is of course present but not more than in usual MR fluids.  747 

 748 

 749 

APPENDIX A: Theoretical packing of a polydisperse suspension  750 

 751 

For a suspension of monosized frictionless hard spheres the maximum flowing volume fraction 752 

is the well-known random close packing RCP=0.637. For a polydisperse suspension, we use 753 

an expression based on the three first moments of the distribution40: 754 
0 

1−0 
=

M3

M1M2
2

RCP

1−RCP
   where Mk = ∫ ak∞

0
P(a)da      (A-1) 755 

 756 

By taking the moments Mk from the experimental size distribution, one gets 
𝑀3

𝑀1𝑀2
2 = 1.19 and 757 

from Eq. (A-1 ), we find 0=0.676 for the maximum flowing fraction. Another way to obtain 758 

0 is to relate the lognormal distribution to a bidisperse suspension characterized by the two 759 

sizes of the particles and their relative amounts. This relation implies to preserve the same mean 760 

radius,  the same polydispersity and skewness for the lognormal and the bidisperse distribution 761 
41. In our case, we find respectively for the small and large particles as=0.223m, aL=0.715m 762 

and a ratio of large particles: XL=0.149. An analytical expression for the random close packing 763 

of a bidisperse suspension was given by H.J.H. Brouwers 42 (cf their Eq.(16) with rcp=0.2 and 764 

rlp=0.16). Using their expression for small values of u=as/aL corresponding to our situation, we 765 

obtain 0=0.683. 766 

For the estimation of 𝑗

, we start from the theoretical values 𝑗


~0.55-0.56 for monodisperse 767 

suspensions and we use them instead of 𝑅𝐶𝑃  in Eq.(A-1) for the transposition to our 768 

polydisperse suspension,  giving 𝑗


~0.592 − 0.602. Using the second model based on the 769 

analogy with the bidisperse model, we find 𝑗


~0.581 − 0.592. 770 

 771 

 772 
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APPENDIX B: Shear rate fluctuations behind DST  773 

The equation of motion of the rotating tool of the rheometer is the following: 774 

𝐼
𝑑2𝜃

𝑑𝑡2 + 𝑇𝑣 = 𝑇𝑎       with       𝑇𝑣 =
𝜋𝑅3

2
 +

2𝜋𝑅3

3
𝜏𝑦     and         𝑇𝑎 =

𝜋𝑅3

2
𝑎    (B-1) 775 

 776 

I represent the inertia moment of the rotating part (motor +tool). 777 

Tv is the viscous torque of a Bingham fluid on the disk of radius R. 778 

Ta is the torque applied by the motor and a, the stress given by the software of the 779 

rheometer. 780 

It is important to note that, due to inertia, the stress applied by the rheometer, a, is 781 

different from the one, , really applied to the suspension: 𝜂𝛾̇ + 𝜏𝑦 present in the function 782 

feq(/c)  783 

Using the relation between the rim shear rate and the angular frequency: 𝛾̇ =
𝑑𝜃

𝑑𝑡

𝑅

ℎ
, Eq.  B-784 

1 can be written as: 785 

𝛾̈ =
2ℎ

𝜋𝑅4𝐼
[𝜂𝑝𝑙(𝑓)𝛾̇ +

4

3
𝜏𝑦 − 𝑎]        (B-2) 786 

The evolution of the structural parameter, f(t) was given by Eqs.(18)-(19): 787 
𝜕𝑓

𝜕𝑡
= −𝐶𝐵𝛾̇(𝑓(𝑡) − 𝑓(𝜎𝑟)) −

𝑓(𝑡)

𝑡𝑑
         (B-3) 788 

And the viscosity dependence on f by Eq.(14): 789 

𝜂𝑝𝑙(𝑓) = 𝛼0(1 −
𝑒𝑓𝑓

𝐽(𝑓))
)−2         (B-4) 790 

We have reported in Fig. (17) the solution of the two coupled equations (B-2) and (B-3) 791 

for =0.64 for two cases: one, where the destruction time is very large (in practice we  792 

suppress the last term of Eq.(B-3)) and the second where td=3ms. Since, in the W-C model 793 

the suspension is jammed above =216Pa,in the first case, the oscillations of the shear 794 

rate stop at this level (yellow curve). On the contrary, in the presence of the destruction 795 

time, td, the oscillations continue as we observe experimentally (blue curve). The fact that 796 

the amplitude of the shear rate oscillations is much lower in the experiment compared to 797 

the theory is due to the acquisition rate of the rheometer during the ramp of stress, which 798 

is much smaller than the period of the oscillation (typically 0.1s). A faster sampling would 799 

show the same amplitude of oscillation as the theoretical ones63  800 
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Fig ()    =0.64. Evolution of the shear rate during a ramp of stress. Black solid line: 
experiment; Brown solid line: without modification of the W-C model. Blue line with the 
introduction of a destruction time td=3ms 
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