
HAL Id: hal-03863361
https://hal.science/hal-03863361

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LTL Model Checking of Self Modifying Code
Tayssir Touili, Xin Ye

To cite this version:
Tayssir Touili, Xin Ye. LTL Model Checking of Self Modifying Code. Formal Methods in System
Design, 2022, 60 (2). �hal-03863361�

https://hal.science/hal-03863361
https://hal.archives-ouvertes.fr

LTL Model Checking of Self Modifying Code

Tayssir Touilia, Xin Yea,b

aLIPN, CNRS and University Paris 13, Villetaneuse, France
bEast China Normal University, Shanghai, China

Abstract

Self modifying code is code that can modify its own instructions during the ex-
ecution of the program. It is extensively used by malware writers to obfuscate
their malicious code. Thus, analysing self modifying code is nowadays a big
challenge. In this paper, we consider the LTL model-checking problem of self
modifying code. We model such programs using self-modifying pushdown sys-
tems (SM-PDS), an extension of pushdown systems that can modify its own set
of transitions during execution. We reduce the LTL model-checking problem to
the emptiness problem of self-modifying Büchi pushdown systems (SM-BPDS).
We implemented our techniques in a tool that we successfully applied for the
detection of several self-modifying malware. Our tool was also able to detect sev-
eral malwares that well-known antiviruses such as BitDefender, Kinsoft, Avira,
eScan, Kaspersky, Qihoo-360, Baidu, Avast, and Symantec failed to detect.

Keywords: malware detection, model checking, automata

1. Introduction

Binary code presents several complex aspects that cannot be encountred
in source code. One of these aspects is self-modifying code, i.e., code that can
modify its own instructions during the execution of the program. Self-modifying
code makes reverse code engineering harder. Thus, it is extensively used to5

protect software intellectual property. It is also heavily used by malware writers
in order to make their malwares hard to analyse and detect by static analysers
and anti-viruses. Thus, it is crucial to be able to analyse self-modifying code.

There are several kinds of self-modifying code. In this work, we consider
self-modifying code caused by self-modifying instructions. These kind of10

instructions treat code as data. This allows them to read and write into code,
leading to self-modifying instructions. These self-modifying instructions
are usually mov instructions, since mov allows to access memory and read and
write into it.

Let us consider the example shown in Figure 1. For simplicity, the addresses’15

length is assumed to be 1 byte. In the right box, we give, respectively, the binary
code, the addresses of the different instructions, and the corresponding assembly
code, obtained by translating syntactically the binary code at each address. For
example, 0c is the binary code of the jump jmp. Thus, 0c 02 is translated to
jmp 0x2 (jump to address 0x2). The second line is translated to push 0x9,20

since ff is the binary code of the instruction push. The third instruction mov

0x2 0xc will replace the first byte at address 0x2 by 0xc. Thus, at address 0x2,

Preprint submitted to Elsevier February 14, 2022

ff 09 is replaced by 0c 09. This means the instruction push 0x9 is replaced
by the jump instruction jmp 0x9 (jump to address 0x9), etc. Therefore, this
code is self-modifying: the mov instruction was able to modify the instructions25

of the program via its ability to read and write the memory. If we study this
code without looking at the semantics of the self-modifying instructions, we will
extract from it the Control Flow Graph CFG a that is in the left of the figure,
and we will reach the conclusion that the call to the API function CopyFileA at
address 0x9 cannot be made. However, you can see that the correct CFG is the30

one on the right hand side CFG b, where the call to the API function CopyFileA
at address 0x9 can be reached. Thus, it is very important to be able to take
into account the semantics of the self-modifying instructions in binary code.

0x0 jmp 0x2

0x2 push 09

0x4 mov 0x2 0xc

0x7 jmp 0x2

0x0 jmp 0x2

0x2 jmp 09

0x4 mov 0x2 0xc

0x7 jmp 0x2

0x9 call CopyFileA

CFG a CFG b

0x9 call CopyFileA

CFGs

0x0 jmp 0x2

0x2 push 0x9
0x4 mov 0x2 0xc
0x7 jmp 0x2

0x9 call CopyFileA

 0c 02

 ff 09
c6 02 0c
 0c 02

e8 32 f6 ff ff

Binary Codes Assemblyaddress

Codes

0x2 push 09

 jmp 0x9

After Execution of
mov 0x2 0xc

Figure 1: An Example of a Self-modifying Code

In this paper, we consider the LTL model-checking problem of self-modifying
code. To this aim, we use Self-Modifying Pushdown Systems (SM-PDSs) [1]35

to model self-modifying code. Indeed, SM-PDSs were shown in [1] to be an
adequate model for self-modifying code since they allow to mimic the program’s
stack while taking into account the self-modifying semantics of the transitions.
This is very important for binary code analysis and malware detection, since
malwares are based on calls to API functions of the operating system. Thus,40

antiviruses check the API calls to determine whether a program is malicious or
not. Therefore, to evade from these antiviruses, malware writers try to hide the
API calls they make by replacing calls by push and jump instructions. Thus,
to be able to analyse such malwares, it is crucial to be able to analyse the
program’s stack. Hence the need to a model like pushdown systems and self-45

modifying pushdown systems for this purpose, since they allow to mimic the
program’s stack.

Intuitively, a SM-PDS is a pushdown system (PDS) with self-modifying rules,
i.e., with rules that allow to modify the current set of transitions during exe-
cution. This model was introduced in [1] in order to represent self-modifying50

code. In [1], the authors have proposed algrithms to compute finite automata
that accept the forward and backward reachability sets of SM-PDSs. In this
work, we tackle the problem of LTL model-checking of SM-PDSs. Since SM-
PDSs are equivalent to PDSs [1], one possible approach for LTL model checking
of SM-PDS is to translate the SM-PDS to a standard PDS and then run the55

LTL model checking algorithm on the equivalent PDS [2, 3]. But translation

2

from a SM-PDS to a standard PDS is exponential. Thus, performing the LTL
model checking on the equivalent PDS is not efficient.

To overcome this limitation, we propose a direct LTL model checking algo-
rithm for SM-PDSs. Our algorithm is based on reducing the LTL model checking60

problem to the emptiness problem of Self Modifying Büchi Pushdown Systems
(SM-BPDS). Intuitively, we obtain this SM-BPDS by taking the product of the
SM-PDS with a Büchi automaton accepting an LTL formula φ. Then, we solve
the emptiness problem of an SM-BPDS by computing its repeating heads. This
computation is based on computing labelled pre∗ configurations by applying a65

saturation procedure on labelled finite automata.
We implemented our algorithm in a tool. Our experiments show that our

direct techniques are much more efficient than translating the SM-PDS to an
equivalent PDS and then applying the standard LTL model checking for PDSs
[2, 3]. Moreover, we successfully applied our tool to the analysis of 892 self-70

modifying malwares. Our tool was also able to detect several self-modifying
malwares that well-known antiviruses like BitDefender, Kinsoft, Avira, eScan,
Kaspersky, Qihoo-360, Baidu, Avast, and Symantec were not able to detect.

This paper is an expanded version of the conference paper [4].
Compared to [4], this journal version includes the proofs of all our75

results (no proof is provided in [4]).

Related Work. Model checking and static analysis approaches have been
widely used to analyze binary programs, for instance, in [5, 6, 7, 8, 9]. Temporal
Logics were chosen to describe malicious behaviors in [10, 8, 9, 11, 12]. However,
these works cannot deal with self-modifying code.80

POMMADE [9, 11] is a malware detector based on LTL and CTL model-
checking of PDSs. STAMAD [13, 14, 15] is a malware detector based on PDSs
and machine learning. However, POMMADE and STAMAD cannot deal with
self-modifying code.

Cai et al. [16] use local reasoning and separation logic to describe self-85

modifying code and treat program code uniformly as regular data structure.
However, [16] requires programs to be manually annotated with invariants. In
[17], the authors propose a formal semantics for self-modifying codes, and use
that to represent self-unpacking code. This work only deals with packing and
unpacking behaviours. Bonfante et al. [18] provide an operational semantics for90

self-modifying programs and show that they can be constructively rewritten to
a non-modifying program. However, all these specifications [18, 16, 17] are too
abstract to be used in practice.

In [19], the authors propose a new representation of self-modifying code
named State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends stan-95

dard control flow graphs with a new data structure, keeping track of the possible
states programs can reach, and with edges that can be conditional on the state
of the target memory location. It is not easy to analyse a binary program only
using its SE-CFG, especially that this representation does not allow to take into
account the stack of the program.100

The authors in [20] propose abstract interpretation techniques to compute
an over-approximation of the set of reachable states of a self-modifying pro-
gram, where for each control point of the program, an over-approximation of
the memory state at this control point is provided. Static and dynamic analysis
techniques are combined to analyse self-modifying programs in [21] . Unlike our105

3

approach, these techniques [20, 21] cannot handle the program’s stack.
Unpacking binary code is also considered in [22, 23, 24, 17]. These works do

not consider self-modifying mov instructions.

Outline. The rest of the paper is structured as follows: Section 2 recalls
the definition of Self Modifying pushdown systems. LTL model checking and110

SM-BPDSs are defined in Section 3. Section 4 solves the emptiness problem of
SM-BPDS. Finally, the experiments are reported in Section 5.

2. Self-Modifying Pushdown Systems

2.1. Definition

We recall in this section the definition of Self-modifying Pushdown Systems115

[1].

Definition 1. A Self-modifying Pushdown System (SM-PDS) is a tuple P =
(P,Γ,∆,∆c), where P is a finite set of control points, Γ is a finite set of stack
symbols, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of transition rules, and ∆c ⊆
P × (∆ ∪ ∆c) × (∆ ∪ ∆c) × P is a finite set of modifying transition rules. If120

((p, γ), (p′, w)) ∈ ∆, we also write ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆. If (p, r1, r2, p
′) ∈ ∆c,

we also write p
(r1,r2)

↪−−−−→ p′ ∈ ∆c. A Pushdown System (PDS) is a SM-PDS
where ∆c = ∅.

Intuitively, a Self-modifying Pushdown System is a Pushdown System that
can dynamically modify its set of rules during the execution time: rules ∆125

are standard PDS transition rules, while rules ∆c modify the current set of
transition rules: ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆ expresses that if the SM-PDS is in control
point p and has γ on top of its stack, then it can move to control point p′, pop

γ and push w onto the stack, while p
(r1,r2)

↪−−−−→ p′ ∈ ∆c expresses that when the
PDS is in control point p, then it can move to control point p′, remove the rule130

r1 from its current set of transition rules, and add the rule r2.
Formally, a configuration of a SM-PDS is a tuple c = (⟨p, w⟩, θ) where p ∈ P

is the control point, w ∈ Γ∗ is the stack content, and θ ⊆ ∆ ∪ ∆c is the
current set of transition rules of the SM-PDS. θ is called the current phase of
the SM-PDS. When the SM-PDS is a PDS, i.e., when ∆c = ∅, a configuration135

is a tuple c = (⟨p, w⟩,∆), since there is no changing rule, so there is only one
possible phase. In this case, we can also write c = ⟨p, w⟩. Let C be the set
of configurations of a SM-PDS. A SM-PDS defines a transition relation ⇒P
between configurations as follows: Let c = (⟨p, w⟩, θ) be a configuration, and let
r be a rule in θ, then:140

1. if r ∈ ∆c is of the form r = p
(r1,r2)

↪−−−−→ p′, such that r1 ∈ θ, then
(⟨p, w⟩, θ) ⇒P (⟨p′, w⟩, θ′), where θ′ = (θ\{r1})∪{r2}. In other words, the
transition rule r updates the current set of transition rules θ by removing
r1 from it and adding r2 to it.

2. if r ∈ ∆ is of the form r = ⟨p, γ⟩ ↪→ ⟨p′, w′⟩ ∈ ∆, then (⟨p, γw⟩, θ) ⇒P145

(⟨p′, w′w⟩, θ). In other words, the transition rule r moves the control point
from p to p′, pops γ from the stack and pushes w′ onto the stack. This
transition keeps the current set of transition rules θ unchanged.

4

Let ⇒∗
P be the transitive, reflexive closure of ⇒P and ⇒+

P be its transitive
closure. An execution (a run) of P is a sequence of configurations π = c0c1...150

s.t. ci ⇒P ci+1 for every i ≥ 0. Given a configuration c, the set of imme-
diate predecessors (resp. successors) of c is preP(c) = {c′ ∈ C : c′ ⇒P c}
(resp. postP(c) = {c′ ∈ C : c ⇒P c′}). These notations can be generalized
straightforwardly to sets of configurations. Let pre∗P (resp. post∗P) denote the
reflexive-transitive closure of preP (resp. postP). We remove the subscript P155

when it is clear from the context.

We suppose w.l.o.g. that rules in ∆ are of the form ⟨p, γ⟩ ↪→ ⟨p′, w⟩ such

that |w| ≤ 2, and that the self-modifying rules r = p
(r1,r2)

↪−−−−→ p′ in ∆c are such
that r ̸= r1. Note that this is not a restriction, since for a given SM-PDS, one
can compute an equivalent SM-PDS that satisfies these conditions [1] .160

Example 1. Let P = (P,Γ,∆,∆c) be a SM-PDS where P = {p1, p2, p3, p4},
Γ = {γ1, γ2, γ3}, ∆ = {r1 : ⟨p1, γ1⟩ ↪→ ⟨p2, γ2γ1⟩, r2 : ⟨p2, γ2⟩ ↪→ ⟨p3, ϵ⟩, r3 :

⟨p4, γ1⟩ ↪→ ⟨p2, γ2γ3⟩}, ∆c = {r′ : p3
(r1,r3)

↪−−−−→ p4}. Let c0 = (⟨p1, γ1γ1⟩, θ0)
where θ0 = {r1, r2, r′}. Applying rule r1, we get (⟨p1, γ1γ1⟩, θ0) ⇒P (⟨p2, γ2γ1γ1⟩, θ0).
Then, applying rule r2, we get (⟨p2, γ2γ1γ1⟩, θ0) ⇒P (⟨p3, γ1γ1⟩, θ0). Then,165

applying rule r′, we get (⟨p3, γ1γ1⟩, θ0) ⇒P (⟨p4, γ1γ1⟩, θ1) where r′ is self-
modifying, thus, it leads the SM-PDS from phase θ0 = {r1, r2, r′} to phase θ1 =
θ0 \{r1}∪{r3} = {r2, r3, r′}. Then, applying rule r3, we get (⟨p4, γ1γ1⟩, θ1) ⇒P
(⟨p2, γ2γ3γ1⟩, θ1). Then, applying rule r2 again, we get (⟨p2, γ2γ3γ1⟩, θ1) ⇒P
(⟨p3, γ3γ1⟩, θ1).170

2.2. SM-PDS vs. PDS

Let P = (P,Γ,∆,∆c) be a SM-PDS. It was shown in [1] that:

1. P can be described by an equivalent pushdown system (PDS). Indeed,
since the number of phases is finite, we can encode phases in the con-
trol point of the PDS. However, this translation is not efficient since the175

number of control points of the equivalent PDS is |P | · 2O(|∆|+|∆c|).

2. P can also be described by an equivalent Symbolic pushdown system [25],
where each SM-PDS rule is represented by a single, symbolic transition,
where the different values of the phases are encoded in a symbolic way us-
ing relations between phases. This translation is not efficient neither since180

the size of the relations used in the symbolic transitions is 2O(|∆|+|∆c|).

2.3. Modeling self-modifying code with SM-PDSs

2.3.1. Self-modifying instructions

There are different techniques to implement self-modifying code. We con-
sider in this work code that uses self-modifying instructions. These are in-185

structions that can access the memory locations and write onto them, thus
changing the instructions that are in these memory locations. In assembly, the
only instructions that can do this are the mov instructions. In this case, the
self-modifying instructions are of the form mov l v, where l is a location of the
program that stores executable data and v is a value. This instruction replaces190

the value at location l (in the binary code) with the value v. This means if at
location l there is a binary value v′ that is involved in an assembly instruction
i1, and if by replacing v′ by v, we obtain a new assembly instruction i2, then

5

the instruction i1 is replaced by i2. E.g., ff is the binary code of push, 40 is
the binary code of inc, 0c is the binary code of jmp, c6 is the binary code of195

mov, etc. Thus, if we have mov l ff, and if at location l there was initially the
value 40 01 (which corresponds to the assembly instruction inc %edx), then 40
is replaced by ff, which means the instruction inc %edx is replaced by push

01. If at location l there was initially the value c6 01 02 (which corresponds to
the assembly instruction mov edx 0x2), then c6 is replaced by ff, which means200

the instruction mov edx 0x2 is replaced by push 02.
Note that if the instructions i1 and i2 do not have the same number of

operands, then mov l v will, in addition to replacing i1 by i2, change several
other instructions that follow i1. Currently, we cannot handle this case, thus
we assume that i1 and i2 have the same number of operands.205

Note also that mov l v is self-modifying only if l is a location of the program
that stores executable data, otherwise, it is not; e.g., mov eax v does not change
the instructions of the program, it just writes the value v to the register eax.
Thus, from now on, by self-modifying instruction, we mean an instruction of the
form mov l v, where l is a location of the program that stores executable data.210

Moreover, to ensure that only one instruction is modified, we assume that the
corresponding instructions i1 and i2 have the same number of operands.

2.3.2. From self-modifying code to SM-PDS

We show in what follows how to build a SM-PDS from a binary program.
We suppose we are given an oracle O that extracts from the binary code a215

corresponding assembly program, together with informations about the values
of the registers and the memory locations at each control point of the program.
In our implementation, we use Jakstab [26] to get this oracle. We translate
the assembly program into a self-modifying pushdown system where the control
locations store the control points of the binary program and the stack memics220

the program’s stack. The non self-modifying instructions of the program define
the rules ∆ of the SM-PDS (which are standard PDS rules), and can be obtained
following the translation of [9] that models non self-modifying instructions of
the program by a PDS.

As for the self-modifying instructions of the program, they define the set225

of changing rules ∆c. As explained above, these are instructions of the form
mov l v, where l is a location of the program that stores executable data. This
instruction replaces the value at location l (in the binary code) with the value
v. Let i1 be the initial instruction involving the location l, and let i2 be the
new instruction involving the location l, after applying the mov l v instruction.230

As mentioned previously, we assume that i1 and i2 have the same number of
operands (to ensure that only one instruction is modified). Let r1 (resp. r2) be
the SM-PDS rule corresponding to the instruction i1 (resp. i2). Suppose from

control point n to n′, we have this mov l v instruction, then we add n
(r1,r2)

↪−−−−→ n′

to ∆c. This is the SM-PDS rule corresponding to the instruction mov l v at235

control point n.

6

3. LTL Model-Checking of SM-PDSs

3.1. The linear-time temporal logic LTL

Let At be a finite set of atomic propositions. LTL formulas are defined as
follows (where A ∈ At):

φ := A | ¬φ | φ1 ∨ φ2| Xφ | φ1Uφ2

Formulae are interpreted on infinite words over 2At. Let ω = ω0ω1... be an
infinite word over 2At. We write ωi for the suffix of ω starting at ωi. We denote240

ω |= φ to express that ω satisfies a formula φ:
ω |= A ⇐⇒ A ∈ ω0

ω |= ¬φ ⇐⇒ ω ⊭ φ
ω |= φ1∨φ2 ⇐⇒ ω |= φ1 or ω |= φ2

ω |= Xφ ⇐⇒ ω1 |= φ245

ω |= φ1Uφ2 ⇐⇒ ∃i ≥ 0, ωi |= φ2 and ∀0 ≤ j < i, ωj |= φ1

The temporal operators G (globally) and F (eventually) are defined as fol-
lows: Fφ = (A ∨ ¬A)Uφ and Gφ = ¬F¬φ. Let W (φ) be the set of infinite
words that satisfy an LTL formula φ. It is well known that W (φ) can be ac-
cepted by Büchi automata:250

Definition 2. A Büchi automaton B is a quintuple (Q,Γ, η, q0, F) where Q is
a finite set of states, Γ is a finite input alphabet, η ⊆ (Q × Γ × Q) is a set
of transitions, q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting
states. A run of B on a word γ0γ1... ∈ Γω is a sequence of states q0q1q2... s.t.
∀i ≥ 0, (qi, γi, qi+1) ∈ η. An infinite word ω is accepted by B if B has a run on255

ω that starts at q0 and visits accepting states from F infinitely often.

Theorem. [27] Given an LTL formula φ, one can effectively construct a Büchi
automaton Bφ which accepts W (φ).

3.2. Self Modifying Büchi Pushdown Systems

Definition 3. A Self Modifying Büchi Pushdown Systems (SM-BPDS) is a260

tuple BP = (P,Γ,∆,∆c, G) where P is a set of control locations, G ⊆ P is
a set of accepting control locations, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of
transition rules, and ∆c ⊆ P × 2∆∪∆c × 2∆∪∆c × P is a finite set of modifying

transition rules of the form p
(σ,σ′)

↪−−−−→ p′ where σ, σ′ ⊆ ∆ ∪∆c.
Let ⇒BP be the transition relation between configurations as follows: Let265

θ ⊆ ∆ ∪∆c, γ ∈ Γ, w ∈ Γ∗, and p ∈ P , then

1. If r : ⟨p, γ⟩ ↪→ ⟨p′, w′⟩ ∈ ∆ and r ∈ θ, then (⟨p, γw⟩, θ) ⇒BP (⟨p′, w′w⟩, θ).

2. If r : p
(σ,σ′)

↪−−−−→ p′ ∈ ∆c, σ ∩ θ ̸= ∅ and r ∈ θ, then (⟨p, γw⟩, θ) ⇒BP
(⟨p′, γw⟩, θ′) where θ′ = θ\σ ∪ σ′.

A run π of BP is a sequence of configurations π = c0c1... s.t. ci ⇒BP ci+1270

for every i ≥ 0. π is accepting iff it infinitely often visits configurations having
control locations in G.

Let c and c′ be two configurations of the SM-BPDS BP. The relation ⇒r
BP

is defined as follows: c ⇒r
BP c′ iff there exists a configuration (⟨g, u⟩, θ), g ∈ G

s.t. c ⇒∗
BP (⟨g, u⟩, θ) ⇒+

BP c′. We remove the subscript BP when it is clear275

7

from the context. We define
i⇒ as follows: c

i⇒ c′ iff there exists a sequence of
configurations c0 ⇒BP c1 ⇒BP ... ⇒BP ci s.t. c0 = c and ci = c′.

A head of SM-BPDS is a tuple (⟨p, γ⟩, θ) where p ∈ P , γ ∈ Γ and θ ⊆ ∆∪∆c.
A head ((p, γ), θ) is repeating if there exists v ∈ Γ∗ such that (⟨p, γ⟩, θ) ⇒r

BP
(⟨p, γv⟩, θ). The set of repeating heads of SM-BPDS is called RepBP .280

We assume w.l.o.g. that for every rule in ∆c of the form r : p
(σ,σ′)

↪−−−−→ p′,

r /∈ σ. Note that this is not a restriction since a rule of the form r = p
(σ,σ′)

↪−−−−→ p′

where r ∈ σ can be simulated by a set of rules that satisfy the above condition.

3.3. From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-
BPDSs285

Let P = (P,Γ,∆,∆c) be a self modifying pushdown system. Let At be
a set of atomic propositions. Let ν : P → 2At be a labelling function. Let
π = (⟨p0, w0⟩, θ0)(⟨p1, w1⟩, θ1)... be an execution of the SM-PDS P. Let φ be
an LTL formula over the set of atomic propositions At. We say that

π |=ν φ iff ν(p0)ν(p1) · · · |= φ

Let (⟨p, w⟩, θ) be a configuration of P. We say that (⟨p, w⟩, θ) |=ν φ iff P
has an execution π starting at (⟨p, w⟩, θ) such that π |=ν φ.

Our goal in this paper is to perform LTL model-checking for self-modifying
pushdown systems. Since SM-PDSs can be translated to standard (symbolic)
pushdown systems, one way to solve this LTL model-checking problem is to290

compute the (symbolic) pushdown system that is equivalent to the SM-PDS
(see section 2.2), and then apply the standard LTL model-checking algorithms
on standard PDSs [25]. However, this approach is not efficient (as will be
witnessed later in the experiments). Thus, we need a direct approach that
performs LTL model-checking on the SM-PDS, without translating it to an295

equivalent PDS. Let Bφ = (Q, 2At, η, q0, F) be a Büchi automaton that accepts
W (φ). We compute the SM-BPDS BPφ = (P ×Q,Γ,∆′,∆′

c, G) by performing
a kind of product between the SM-PDS P and the Büchi automaton Bφ as
follows:

1. if r = ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆ and (q, ν(p), q′) ∈ η, then ⟨(p, q), γ⟩ ↪→300

⟨(p′, q′), w⟩ ∈ ∆′. Let prod(r) be the set of rules of ∆′ obtained from
the rule r, i.e., rules of ∆′ of the form ⟨(p, q), γ⟩ ↪→ ⟨(p′, q′), w⟩.

2. if a rule r = p
(r1,r2)

↪−−−−→ p′ ∈ ∆c and (q, ν(p), q′) ∈ η, then (p, q)
(σ,σ′)

↪−−−−→
(p′, q′) ∈ ∆′

c where σ = prod(r1), σ
′ = prod(r2). Let prod(r) be the

set of rules of ∆′ obtained from the rule r, i.e., rules of ∆′
c of the form305

(p, q)
(σ,σ′)

↪−−−−→ (p′, q′).

3. G = P × F .

Remark. Note that a rule r = p
(r1,r2)

↪−−−−→ p′ ∈ ∆c generates rules of the form

(p, q)
(σ,σ′)

↪−−−−→ (p′, q′) ∈ ∆′
c, where σ = prod(r1) and σ′ = prod(r2) are sets of

rules. This is why we require that a Self Modifying Büchi Pushdown System310

8

has modifying transition rules of the form p
(σ,σ′)

↪−−−−→ p′ where σ, σ′ ⊆ ∆ ∪ ∆c

are sets of rules.

We can show that:

Theorem 3.1. Let (⟨p, w⟩, θ) be a configuration of the SM-PDS P. (⟨p, w⟩, θ) |=ν

φ iff BPφ has an accepting run from (⟨(p, q0), w⟩, prod(θ)) where prod(θ) is the315

set of rules of ∆ ∪∆c obtained from the rules of θ as described above.

Thus, LTL model-checking for SM-PDSs can be reduced to checking whether
a SM-BPDS has an accepting run. The rest of the paper is devoted to this
problem.

4. The Emptiness Problem of SM-BPDSs320

From now on, we fix a SM-BPDS BP = (P,Γ,∆,∆c, G). Following [3], we
can show that BP has an accepting run starting from a configuration c if and
only if from c, it can reach a configuration with a repeating head:

Proposition 1. A SM-BPDS BP has an accepting run starting from a con-
figuration c if and only if there exists a repeating head ((p, γ), θ) such that325

c ⇒∗
BP (⟨p, γw⟩, θ) for some w ∈ Γ∗.

Proof: “ ⇒ ”: Let σ = c0c1... be an accepting run starting at configuration
c where c0 = c and ci = (⟨pi, wi⟩, θi). We construct an increasing sequence
of indices i0, i1... with a property that once any of the configurations cik is
reached, the rest of the run never changes the bottom |wik |−1 elements of the
stack anymore. This property can be written as follows:

|wi0 |= min{|wj | | j ≥ 0}

|wik |= min{|wj | | j > ik−1}, k ≥ 1

Because BP has only finitely many different heads, there must be a head
(⟨p, γ⟩, θ) which occurs infinitely often as a head in the sequence ci0ci1 More-
over, as some g ∈ G becomes a control location infinitely often, we can find a
subsequence of indices ij0 , ij1 , ... with the following property: for every k ≥ 1,
there exist v, w ∈ Γ∗

cijk = (⟨p, γw⟩, θ) ⇒r (⟨p, γvw⟩, θ) = cijk+1

Because w is never looked at or changed in this path, we can have (⟨p, γ⟩, θ) ⇒r

(⟨p, γv⟩, θ). This proves this direction of the proposition.

“ ⇐ ”: Because (⟨p, γ⟩, θ) is a repeating head, we can construct the following
run for some u, v, w ∈ Γ∗, θ′ ⊆ (∆ ∪∆c) and g ∈ G:

c ⇒∗ (⟨p, γw⟩, θ) ⇒∗ (⟨g, uw⟩, θ′) ⇒+ (⟨p, γvw⟩, θ) ⇒∗ (⟨g, uvw⟩, θ′) ⇒+ (⟨p, γvvw⟩, θ) ⇒∗ ...

Since g occurs infinitely often, the run is accepting. 2

330

Thus, since there exists an efficient algorithm to compute the pre∗ of SM-
PDSs [1], the emptiness problem of a SM-BPDS can be reduced to computing
its repeating heads.

9

4.1. The Head Reachability Graph G
Our goal is to compute the set of repeating heads RepBP , i.e., the set of335

heads (⟨p, γ⟩, θ) such that there exists v ∈ Γ∗, (⟨p, γ⟩, θ) ⇒r (⟨p, γv⟩, θ). I.e.,
(⟨p, γ⟩, θ) ⇒∗ (⟨p, γv⟩, θ) s.t. this path goes through an accepting location in G.
To this aim, we will compute a finite graph G whose nodes are the heads of BP
of the form ((p, γ), θ), where p ∈ P , γ ∈ Γ and θ ⊆ ∆ ∪ ∆c; and whose edges
encode the reachability relation between these heads. More precisely, given340

two heads ((p, γ), θ) and ((p′, γ′), θ′), ((p, γ), θ)
b−→ ((p′, γ′), θ′) is an edge of the

graph G means that the configuration (⟨p, γ⟩, θ) can reach a configuration having
(⟨p′, γ′⟩, θ′) as head, i.e., it means that there exists v ∈ Γ∗ s.t. (⟨p, γ⟩, θ) ⇒∗

(⟨p′, γ′v⟩, θ′). Moreover, we need to keep the information whether this path
visits an accepting location in G or not. This information is recorded in the345

label of the edge b: b = 1 means that the path visits an accepting location in G,
i.e. that (⟨p, γ⟩, θ) ⇒r (⟨p′, γ′v⟩, θ′). Otherwise, b = 0. Therefore, if the graph G
contains a loop from a head ((p, γ), θ) to itself such that this loop goes through
an edge labelled by 1, then ((p, γ), θ) is a repeating head. Thus, computing
RepBP can be reduced to computing the graph G and finding 1-labelled loops350

in this graph.
More precisely, we define the head reachability graph G as follows:

Definition 4. The head reachability graph G is a tuple (P×Γ×2∆∪∆c , {0, 1}, δ)
such that ((p, γ), θ)

b−→ ((p′, γ′), θ′) is an edge of δ iff:

1. there exists a transition rc : p
(σ,σ′)

↪−−−−→ p′ ∈ θ∩∆c, γ = γ′, θ′ = θ \ σ ∪ σ′,355

and b = 1 iff p ∈ G;

2. there exists a transition ⟨p, γ⟩ ↪→ ⟨p′, γ′⟩ ∈ θ ∩ ∆, θ = θ′ and b = 1 iff
p ∈ G;

3. there exists a transition ⟨p, γ⟩ ↪→ ⟨p′′, γ1γ′⟩ ∈ θ ∩∆, for γ1 ∈ Γ, p′′ ∈ P ,
s.t. (⟨p′′, γ1⟩, θ) ⇒∗

BP (⟨p′, ϵ⟩, θ′), and b = 1 iff p ∈ G or (⟨p′′, γ1⟩, θ) ⇒r
BP360

(⟨p′, ϵ⟩, θ′)

Let G be the head reachability graph. We define −→
i

as follows: let ((p, γ), θ)

and ((p′, γ′), θ′) be two heads of BP. We write ((p, γ), θ) −→
i

((p′, γ′), θ′) iff ∃
booleans b1, b2...bi ∈ {0, 1}, ∃ heads ((pj , γj), θj), 0 ≤ j ≤ i s.t. G contains the

path ((p0, γ0), θ0)
b1−→ ((p1, γ1), θ1)

b2−→ ...
bi−→ ((pi, γi), θi) where ((p0, γ0), θ0) =365

((p, γ), θ) and ((pi, γi), θi) = ((p′, γ′), θ′).

Let →∗ be the reflexive transitive closure of the graph relation
b−→, and let →r

be defined as follows: Given two heads ((p, γ), θ) and ((p′, γ′), θ′), ((p, γ), θ) →r

((p′, γ′), θ′) iff there is in G a path between ((p, γ), θ) and ((p′, γ′), θ′) that goes
through a 1-labelled edge, i.e., iff there exist heads ((p1, γ1), θ1) and ((p2, γ2), θ2)370

s.t. ((p, γ), θ) →∗ ((p1, γ1), θ1)
1−→ ((p2, γ2), θ2) →∗ ((p′, γ′), θ′).

We can show that:

Theorem 4.1. Let BP = (P,Γ,∆,∆c, G) be a self-modifying Büchi pushdown
system, and let G be its corresponding head reachability graph. A head ((p, γ), θ)
of BP is repeating iff G has a loop on the node ((p, γ), θ) that goes through a375

1-labeled edge.

10

To prove this theorem, we first need to prove the following lemma:

Lemma 1. The relations →∗ and →r have the following properties: For any
heads ((p, γ), θ1) and ((p′, γ′), θ2):

(a) ((p, γ), θ1) →∗ ((p′, γ′), θ2) iff (⟨p, γ⟩, θ1) ⇒∗ (⟨p′, γ′v⟩, θ2) for some v ∈380

Γ∗.

(b) ((p, γ), θ1) →r ((p′, γ′), θ2) iff (⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′v⟩, θ2) for some v ∈
Γ∗.

Proof: “⇒”: Assume ((p, γ), θ1) −→
i

((p′, γ′), θ2). We proceed by induction on

i.385

(a) Basis. i = 0. In this case, ((p, γ), θ1) = ((p′, γ′), θ2), then we can get
(⟨p, γ⟩, θ1) ⇒∗ (⟨p, γ⟩, θ1) = (⟨p′, γ′⟩, θ2)

Step. i > 0. Then there exist p1 ∈ P, γ′′ ∈ Γ∗ and θ′ ⊆ ∆ ∪ ∆c such
that ((p, γ), θ1) −→

1
((p1, γ

′′), θ′) −−→
i−1

((p′, γ′), θ2). From the induction

hypothesis, there exists u ∈ Γ∗ such that (⟨p1, γ′′⟩, θ′) ⇒∗ (⟨p′, γ′u⟩, θ2)390

Since ((p, γ), θ1) → ((p1, γ
′′), θ′), we have (⟨p, γ⟩, θ1) ⇒∗ (⟨p1, γ′′w⟩, θ′) for

w ∈ Γ∗, hence (⟨p, γ⟩, θ1) ⇒∗ (⟨p′, γ′uw⟩, θ2).
The property holds.

(b) ((p, γ), θ1) →r ((p, γ), θ1) cannot hold for the case i = 0.

Basis. i = 1. In this case, ((p, γ), θ1) →r ((p′, γ′), θ2), then we can get395

p ∈ G and (⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′⟩, θ2). The property holds.

Step. i > 0. As done in the proof of part (a) of this lemma, there exists
p1, γ

′′ ∈ Γ, θ′′ ⊆ ∆ ∪∆c s.t. ((p, γ), θ1) −→
1

((p1, γ
′′), θ′) −−→

i−1
((p′, γ′), θ2).

Then if ((p, γ), θ1) →r ((p′, γ′), θ2), either ((p1, γ
′′), θ′) →r ((p′, γ′), θ2) or

((p, γ), θ1)
1−→ ((p1, γ

′′), θ′) holds. In the first case i.e. ((p1, γ
′′), θ′) →r

400

((p′, γ′), θ2), by the induction hypothesis, we can have (⟨p1, γ′′⟩, θ′) ⇒r

(⟨p′, γ′u⟩, θ2), hence, (⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′u⟩, θ2) holds

The second case depends on the rule applied to get ((p, γ), θ1)
1−→ ((p1, γ

′′), θ′)
according to Definition 4.

- If this edge corresponds to a transition rc : p
(σ,σ′)

↪−−−−→ p1 ∈ θ1,405

then γ = γ′′, θ′ = θ1\σ ∪ σ′ and p ∈ G. Since we can obtain
(⟨p, γ⟩, θ1) ⇒BP (⟨p1, γ⟩, θ′) ⇒∗ (⟨p′, γ′uw⟩, θ2) from part (a) and
p ∈ G, then (⟨p, γ⟩, θ1) ⇒r (⟨p1, γ⟩, θ′) ⇒∗ (⟨p′, γ′uw⟩, θ2). This
implies that (⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′v⟩, θ2) for some v ∈ Γ∗.

- If this edge corresponds to a transition r : ⟨p, γ⟩ ↪→ ⟨p1, γ′′⟩ ∈ θ1∩∆,410

then θ′ = θ1 and p ∈ G. Since we can obtain (⟨p, γ⟩, θ1) ⇒BP
(⟨p1, γ′′⟩, θ1) ⇒∗ (⟨p′, γ′uw⟩, θ2) from part (a) and p ∈ G, then
(⟨p, γ⟩, θ1) ⇒r (⟨p1, γ′′⟩, θ1) ⇒∗ (⟨p′, γ′uw⟩, θ2). This implies that
(⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′v⟩, θ2) for some v ∈ Γ∗.

11

- If this edge corresponds to a transition r : ⟨p, γ⟩ ↪→ ⟨p′′, γ1γ′′⟩ ∈415

θ1, then either p ∈ G or (⟨p′′, γ1⟩, θ1) ⇒r (⟨p1, ϵ⟩, θ′) holds. If
p ∈ G, then we have (⟨p, γ⟩, θ1) ⇒r (⟨p′′, γ1γ′′⟩, θ1). Otherwise,
(⟨p′′, v1γ′′w⟩, θ1) ⇒r (⟨p1, γ′′w⟩, θ′). Since we can obtain (⟨p1, γ′′⟩, θ′) ⇒∗

(⟨p′, γ′u⟩, θ2) from part (a). Therefore, (⟨p, γ⟩, θ1) ⇒r (⟨p1, γ′′⟩, θ′) ⇒∗

(⟨p′, γ′u⟩, θ2). This implies that (⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′v⟩, θ2) for some420

v ∈ Γ∗.

‘⇐”: Assume (⟨p, γ⟩, θ1)
i⇒ (⟨p′, γ′v⟩, θ2). We proceed by induction on i.

(a) Basis. i = 0. In this case, v = ϵ and (⟨p, γ⟩, θ1) = (⟨p′, γ′⟩, θ2), then
((p, γ), θ1) →∗ ((p′, γ′), θ2) holds.

Step. i > 0. Then there exist p1 ∈ P, u ∈ Γ∗ and θ′ ⊆ ∆ ∪∆c such that425

(⟨p, γ⟩, θ1)
1⇒ (⟨p1, u⟩, θ′)

i−1⇒ (⟨p′, γ′v⟩, θ2). There are 2 cases:

1. Case θ′ = θ1 : There must exist a rule r : ⟨p, γ⟩ ↪→ ⟨p1, u⟩ ∈ ∆
such that r ∈ θ′ and |u| ≥ 1. Let l denote the minimal length of
the stack on the path from (⟨p1, u⟩, θ1) to (⟨p′, γ′v⟩, θ2). Then u can
be written as u′′γ1u

′ where |u′| = l − 1 (that means u′ will remain430

on the stack for the path). Furthermore, there exists p′′′ such that
(⟨p1, u′′⟩, θ1) ⇒∗ (⟨p′′′, ϵ⟩, θ′′) for some θ′′ ⊆ (∆c ∪ ∆). We have

(⟨p, γ⟩, θ1)
k⇒ (⟨p′′′, γ1u′⟩, θ′′) for k < i. By the induction on i, we

have ((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′). Because u′ has to remain on the

stack for the rest of the path, v is of the form v′u′ for some v′ ∈ Γ∗.435

That means (⟨p′′′, γ1⟩, θ′′)
j⇒ (⟨p′, γ′v′⟩, θ2) for j < i. By the induc-

tion hypothesis, ((p′′′, γ1), θ
′′) →∗ ((p′, γ′), θ2) holds. Moreover, we

have ((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′), hence ((p, γ), θ1) →∗ ((p′, γ′), θ2).

2. Case θ′ ̸= θ1 : There must be a rule rc : p
(σ,σ′)

↪−−−−→ p1 ∈ ∆c such440

that rc ∈ θ1 and σ ∩ θ1 ̸= ∅, then θ′ = θ1 \ σ ∪ σ′. After the ex-
ecution of rc, the content of the stack will remain the same, thus,

u = γ. Then (⟨p, γ⟩, θ1)
1⇒ (⟨p1, γ⟩, θ′)

i−1⇒ (⟨p′, γ′v⟩, θ2). By the

induction hypothesis to (⟨p1, γ⟩, θ′)
i−1⇒ (⟨p′, γ′v⟩, θ2), we can obtain

that ((p1, γ), θ
′) →∗ ((p′, γ′), θ2). Since (⟨p, γ⟩, θ1)

1⇒ (⟨p1, γ⟩, θ′),445

then we can have a path ((p, γ), θ1) → ((p1, γ), θ
′) →∗ ((p′, γ′), θ2)

that implies ((p, γ), θ1) →∗ ((p′, γ′), θ2). The property holds.

(b) (⟨p, γ⟩, θ1) ⇒r (⟨p, γ′v⟩, θ1) is impossible in 0 steps.

Basis. i = 1. (⟨p, γ⟩, θ1) ⇒r (⟨p, γ⟩, θ1), then p ∈ G. Thus, ((p, γ), θ1) →r

((p, γ), θ1) holds.450

Step. i > 1. (⟨p, γ⟩, θ1) ⇒r (⟨p′, γ′v⟩, θ2) holds, then there exist p1 ∈
P, u ∈ Γ∗ and θ′ ⊆ ∆ ∪ ∆c such that (⟨p, γ⟩, θ1)

1⇒ (⟨p1, u⟩, θ′)
i−1⇒

(⟨p′, γ′v⟩, θ2). Thus, either (⟨p, γ⟩, θ1) ⇒r (⟨p1, u⟩, θ′) or (⟨p1, u⟩, θ′) ⇒r

(⟨p′, γ′v⟩, θ2) holds.

The first case implies p ∈ G. There are 2 cases:455

12

1. Case θ′ = θ1 : then as in the previous proof of part (a), we can have
a path ((p, γ), θ1) →∗ ((p′′′, γ1), θ

′′) →∗ ((p′, γ′), θ2). Since p ∈ G,
we get by Definition 4 ((p, γ), θ1) →∗ ((p′′′, γ1), θ

′′) →∗ ((p′, γ′), θ2).
Thus, we have that ((p, γ), θ1) →r ((p′, γ′), θ2). The property holds.

2. Case θ′ ̸= θ1: then as in the previous proof of part (a), we can have460

a path ((p, γ), θ1) → ((p1, γ), θ
′) →∗ ((p′, γ′), θ2). Since p ∈ G, we

get ((p, γ), θ1)
1−→ ((p1, γ), θ

′) →∗ ((p′, γ′), θ2). Thus, we have that
((p, γ), θ1) →r ((p′, γ′), θ2). The property holds.

In the second case, (⟨p1, u⟩, θ′) ⇒r (⟨p′, γ′v⟩, θ2) holds. As previously,
there are 2 cases:465

1. Case θ′ = θ1 : then as in case (a) we have (⟨p1, u⟩, θ1) ⇒∗ (⟨p′′′, γ1u′⟩, θ′′)
and (⟨p′′′, γ1⟩, θ′′) ⇒∗ (⟨p′, γ′v′⟩, θ2). If (⟨p1, u⟩, θ1) ⇒r (⟨p′, γ′v⟩, θ2),
then either (⟨p1, u⟩, θ1) ⇒r (⟨p′′′, γ1u′⟩, θ′′) or (⟨p′′′, γ1⟩, θ′′) ⇒r (⟨p′, γ′v′⟩, θ2).

- If (⟨p1, u⟩, θ1) ⇒r (⟨p′′′, γ1u′⟩, θ′′), let u′′ ∈ Γ∗ s.t. u = u′′γ1u
′

and (⟨p1, u′′⟩, θ1) ⇒r (⟨p′′′, ϵ⟩, θ′′), then, we have ((p, γ), θ1) →r
470

((p′′′, γ1), θ
′′). We have (⟨p, γ⟩, θ1)

k⇒ (⟨p′′′, γ1u′⟩, θ′′) for k < i.
By the induction on i, we have ((p, γ), θ1) →∗ ((p′′′, γ1), θ

′′). Be-
cause u′ has to remain on the stack for the rest of the path, v

is of the form v′u′ for some v′ ∈ Γ∗. That means (⟨p′′′, γ1⟩, θ′′)
j⇒

(⟨p′, γ′v′⟩, θ2) for j < i. By the induction hypothesis, ((p′′′, γ1), θ
′′) →∗

475

((p′, γ′), θ2) holds. Moreover, we have ((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′),

hence ((p, γ), θ1) →∗ ((p′, γ′), θ2). So we can have a path ((p, γ), θ1) →∗

((p′′′, γ1), θ
′′) →∗ ((p′, γ′), θ2), thus we have that ((p, γ), θ1) →r

((p′, γ′), θ2);

- If (⟨p′′′, γ1⟩, θ′′) ⇒r (⟨p′, γ′v′⟩, θ2), then by the induction hypoth-480

esis we have ((p′′′, γ1), θ
′′) →r ((p′, γ′), θ2). Thus, we can have a

path ((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′) →∗ ((p′, γ′), θ2), then we have

that ((p, γ), θ1) →r ((p′, γ′), θ2);

2. Case θ′ ̸= θ1 : then (⟨p1, γ⟩, θ′) ⇒r (⟨p′, γ′v⟩, θ2). By the induction

hypothesis we have ((p1, γ), θ
′) →r ((p′, γ′), θ2). Since (⟨p, γ⟩, θ1)

1⇒485

(⟨p1, γ⟩, θ′)
i−1⇒ (⟨p′, γ′v⟩, θ2).

By the induction hypothesis to (⟨p1, γ⟩, θ′)
i−1⇒ (⟨p′, γ′v⟩, θ2), we can

obtain that ((p1, γ), θ
′) →∗ ((p′, γ′), θ2). Since (⟨p, γ⟩, θ1)

1⇒ (⟨p1, γ⟩, θ′),
then we can have a path ((p, γ), θ1) → ((p1, γ), θ

′) →∗ ((p′, γ′), θ2).
Thus, we have that ((p, γ), θ1) →r ((p′, γ′), θ2);490

Thus, the property holds.

2

Proof of Theorem 4.1
We can now prove Theorem 4.1.
Proof: Let ((p, γ), θ) be a repeating head, then there exists some v ∈ Γ∗, θ ⊆495

∆c ∪∆ such that (⟨p, γ⟩, θ) ⇒r (⟨p, γv⟩, θ). By Lemma 1, this is the case if and
only if ((p, γ), θ) →r ((p, γ), θ). From the definition of→r, that means that there

exist heads ((p1, γ1), θ
′) and ((p2, γ2), θ

′′) such that ((p, γ), θ) →∗ ((p1, γ1), θ
′)

1−→
((p2, γ2), θ

′′) →∗ ((p, γ), θ). Then ((p, γ), θ), ((p1, γ1), θ
′) and ((p2, γ2), θ

′′) are all
in the same loop with a 1-labelled edge. Conversely, whenever ((p, γ), θ) is in500

a component with such an edge, ((p, γ), θ) →r ((p, γ), θ) holds, then Lemma 1

13

implies that (⟨p, γ⟩, θ) ⇒r (⟨p, γv⟩, θ) which means that ((p, γ), θ) is a repeating
head.

2

505

4.2. Labelled configurations and labelled BP-automata

To compute G, we need to be able to compute predecessors of configu-
rations of the form (⟨p′, ϵ⟩, θ′), and to determine whether these predecessors
were backward-reachable using some control points in G (item 3 in Defini-
tion 4). To solve this question, we will label configurations (⟨p′′, w⟩, θ) s.t.510

(⟨p′′, w⟩, θ) ⇒∗ (⟨p′, ϵ⟩, θ′) by 1 if this path went through an accepting location
in G, i.e., if (⟨p′′, w⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′), and by 0 if not. To this aim, we define a
labelled configuration as a tuple [(⟨p, w⟩, θ), b], s.t. (⟨p, w⟩, θ) is a configuration
and b ∈ {0, 1}.

Multi-automata were introduced in [2, 3] to finitely represent regular infinite515

sets of configurations of a PDS. Since a labelled configuration c = [(⟨p, w⟩, θ), b]
of a SM-PDS involves a PDS configuration ⟨p, w⟩, together with the current set
of transition rules (phase) θ, and a boolean b, in order to take into account the
phases θ, and these new 0/1-labels in configurations, we extend multi-automata
to labelled BP-automata as follows:520

Definition 5. Let BP = (P,Γ,∆,∆c, G) be a SM-BPDS. A labelled BP-automaton
is a tuple A = (Q,Γ, T, I, F) where Γ is the automaton alphabet, Q is a fi-
nite set of states, I ⊆ P × 2∆∪∆c ⊆ Q is the set of initial states, T ⊂
Q ×

(
(Γ ∪ {ϵ}) × {0, 1}

)
× Q is the set of transitions, F ⊆ Q is the set of

final states.525

If
(
q, [γ, b], q′

)
∈ T , we write q

[γ,b]−−−→T q′. We extend this notation in the obvious

way to sequences of symbols: (1) ∀q ∈ Q, q
[ϵ,0]−−−→T q, and (2) ∀q, q′ ∈ Q,∀b ∈

{0, 1},∀w ∈ Γ∗ for w = γ0...γn+1, q
[w,b]−−−→T q′ iff ∃q0, ..., qn ∈ Q, b0, ..., bn+1 ∈

{0, 1}, b = b0∨b1∨...∨bn+1 and q
[γ0,b0]−−−−−→T q0

[γ1,b1]−−−−−→T q1 · · · qn
[γn+1,bn+1]−−−−−−−−→T q

′. If

q
[w,b]−−−→T q′ holds, we say that q

[w,b]−−−→T q′ and q
[γ0,b0]−−−−−→T q0

[γ1,b1]−−−−−→T q1 · · · qn
[γn+1,bn+1]−−−−−−−−→T q

′
530

is a path of A.
A labelled configuration [(⟨p, w⟩, θ), b] is accepted by the automaton A iff

there exists a path (p, θ)
[γ0,b0]−−−−−→T q1

[γ1,b1]−−−−−→T q2 · · · qn
[γn,bn]−−−−−→T qn+1 in A such

that w = γ0γ1 · · · γn, b = b0 ∨ b1 ∨ ... ∨ bn, (p, θ) ∈ I, and qn+1 ∈ F . Let L(A)
be the set of labelled configurations accepted by A.535

4.3. Computing pre∗
(
(⟨p′, ϵ⟩, θ′)

)
Given a configuration of the form (⟨p′, ϵ⟩, θ′), our goal is to compute a la-

belled BP-automaton Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
that accepts labelled configurations of

the form [c, b] where c is a configuration and b ∈ {0, 1} such that c ⇒∗ (⟨p′, ϵ⟩, θ′)
(i.e., c ∈ pre∗

(
(⟨p′, ϵ⟩, θ′)

)
) and b = 1 iff this path went through final control540

points, i.e., c ⇒r (⟨p′, ϵ⟩, θ′). Otherwise, b = 0.
Let p ∈ P , we defineB(p) = 1 if p ∈ G andB(p) = 0 otherwise. Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
=

(Q,Γ, T, I, F) is computed as follows: Initially, Q = I = F = {(p′, θ′)} and
T = ∅. We add to T transitions as follows:

14

α1: If r = ⟨p, γ⟩ ↪→ ⟨p1, w⟩ ∈ ∆. If there exists in T a path (p1, θ)
[w,b]−−−→T q545

(in case |w| = 0, we have w = ϵ) with r ∈ θ. Then, add (p, θ) to I, and(
(p, θ), [γ,B(p) ∨ b], q

)
to T .

α2: if r = p
(σ,σ′)

↪−−−−→ p1 ∈ ∆c and there exists in T a transition (p1, θ)
[γ,b]−−−→T q

with r ∈ θ, where γ ∈ Γ. Then add (p, θ′) to I, and
(
(p, θ′), [γ,B(p)∨b], q

)
to T , for θ′ such that θ = θ′ \ σ ∪ σ′.550

The procedure above terminates since there is a finite number of states
and phases. Note that by construction, F = {(p′, θ′)}, and, since initially
Q = {(p′, θ′)}, states of Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
are all of the form (p, θ) for p ∈ P

and θ ⊆ ∆ ∪∆c.
Let us explain the intuition behind rule (α1). Let r = ⟨p, γ⟩ ↪→ ⟨p1, w⟩ ∈ ∆.555

Let c = (⟨p1, ww′⟩, θ) and c′ = (⟨p, γw′⟩, θ). Then, if c ⇒∗ (⟨p′, ϵ⟩, θ′), then
necessarily, c′ ⇒∗ (⟨p′, ϵ⟩, θ′). Moreover, c′ ⇒r (⟨p′, ϵ⟩, θ′) iff either c ⇒r

(⟨p′, ϵ⟩, θ′) or p ∈ G (i.e. B(p) = 1). Thus, we would like that if the au-
tomaton Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
accepts the labelled configuration [c, b] (where b = 1

means c ⇒r (⟨p′, ϵ⟩, θ′)), then it should also accept the labelled configuration560

[c′, b ∨ B(p)] (b ∨ B(p) = 1 means c′ ⇒r (⟨p′, ϵ⟩, θ′)). Thus, if the automaton

Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
contains a path of the form π = (p1, θ)

[w,b1]−−−−→T q
[w′,b2]−−−−→T qf

where qf ∈ F that accepts the labelled configuration [c, b], then the automaton
should also accept the labelled configuration [c′, b∨B(p)]. This configuration is

accepted by the run (p, θ)
[γ,B(p)∨b1]−−−−−−−−→T q

[w′,b2]−−−−−→T qf added by rule (α1).565

Rule (α2) deals with modifying rules: Let r = p
(r1,r2)

↪−−−−→ p1 ∈ ∆c. Let
c = (⟨p1, γw′⟩, θ) and c′ = (⟨p, γw′⟩, θ′′) s.t. θ = θ′′\{r1} ∪ {r2}. Then, if
c ⇒∗ (⟨p′, ϵ⟩, θ′), then necessarily, c′ ⇒∗ (⟨p′, ϵ⟩, θ′). Moreover, c′ ⇒r (⟨p′, ϵ⟩, θ′)
iff either c ⇒r (⟨p′, ϵ⟩, θ′) or p ∈ G (i.e. B(p) = 1). Thus, we need to
impose that if the automaton Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
contains a path of the form570

(p1, θ)
[γ,b1]−−−→T q

[w′,b2]−−−−→T qf (where qf ∈ F) that accepts the labelled con-
figuration [c, b], b = b1 ∨ b2 (b = 1 means c ⇒r (⟨p′, ϵ⟩, θ′)), then necessarily,
the automaton Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
should also accept the labelled configuration

[c′, b ∨ B(p)]. This configuration is accepted by the run (p, θ′′)
[γ,B(p)∨b1]−−−−−−−→T

q
[w′,b2]−−−−→T qf added by rule (α2).575

4.3.1. Example

Let us illustrate the procedure by an example. Consider the SM-BPDS
BP = (P,Γ,∆,∆c, G) shown in the left (i.e. part a) of Fig.2 where P =
{p1, p2, p3, p′},∆ = {r1, r2, r3, r4, r5, r6, r7},∆c = {r′} and G = {p2}. We show
how to compute a BP-automaton Apre∗((⟨p′, ϵ⟩, θ′)). Let A be the automaton580

that accepts the set {(⟨p′, ϵ⟩, θ′)} with Q = I = F = {(p′, θ′)}. Initially, T is
empty. The result is obtained through the following steps:

1. First we note that (p′, θ′)
[ϵ,b]−−→T (p′, θ′), b = 0 holds. Since ⟨p′, ϵ⟩ occurs

on the right hand side of rule r1 ∈ θ′ and r3 ∈ θ′, moreover, p1 /∈ G i.e.
B(p1) = 0 and p′ /∈ G i.e. B(p′) = 0, then Rule (α1) adds the transition585

(p1, θ
′)

[γ1,b1]−−−−→T (p′, θ′) with b1 = B(p1)∨ b = 0 and (p′, θ′)
[γ′,b2]−−−−→T (p′, θ′)

with b2 = B(p′) ∨ b = 0.

15

!pre*((⟨p′�, ϵ⟩, θ′�))

p′�, θ′�p′�, θ′�

Δ :Δ :
r1 : ⟨p1, γ1⟩ ↪ ⟨p′�, ϵ⟩r1 : ⟨p1, γ1⟩ ↪ ⟨p′�, ϵ⟩ r2 : ⟨p2, γ2⟩ ↪ ⟨p1, γ1γ′�⟩r2 : ⟨p2, γ2⟩ ↪ ⟨p1, γ1γ′�⟩
r3 : ⟨p′�, γ′�⟩ ↪ ⟨p′�, ϵ⟩r3 : ⟨p′�, γ′�⟩ ↪ ⟨p′�, ϵ⟩ r4 : ⟨p2, γ′�⟩ ↪ ⟨p3, γ2⟩r4 : ⟨p2, γ′�⟩ ↪ ⟨p3, γ2⟩
r5 : ⟨p′�, γ′�⟩ ↪ ⟨p2, γ′�⟩r5 : ⟨p′�, γ′�⟩ ↪ ⟨p2, γ′�⟩ r6 : ⟨p2, γ′�⟩ ↪ ⟨p1, γ1⟩r6 : ⟨p2, γ′�⟩ ↪ ⟨p1, γ1⟩
r7 : ⟨p1, γ1⟩ ↪ ⟨p2, γ2⟩r7 : ⟨p1, γ1⟩ ↪ ⟨p2, γ2⟩

Δc :Δc :

 r′� : p3r′� : p3

θ′� = {r1, r2, r3, r5, r6, r7, r′ �}θ′� = {r1, r2, r3, r5, r6, r7, r′ �} , θ1 = {r1, r2, r4, r5, r6, r7, r′�}θ1 = {r1, r2, r4, r5, r6, r7, r′�}
G = {p2}G = {p2} , Γ = {γ1, γ2, γ′�}Γ = {γ1, γ2, γ′�}

↪ p2

p1, θ′�p1, θ′�

p2, θ′�p2, θ′�

p3, θ1p3, θ1 p2, θ1p2, θ1

a b

p′�, θ1p′�, θ1 p1, θ1p1, θ1

[γ′�,0]

[γ1,0]

[γ′�,1
]

[γ 2,1
]

[γ
′�,1

]

[γ′�,1]

[γ1,0]
({r4}, {r3})

[γ 2,1
]

[γ′
�,1]

[γ2,1
]

[γ′�,1]

[γ1,1]
[γ′�,1]

[γ1 ,1]

Figure 2: BP-automaton Apre∗ ((⟨p′, ϵ⟩, θ′))

2. Now that we have the path (p1, θ
′)

[γ1,b1]−−−−→T (p′, θ′)
[γ′,b2]−−−−→T (p′, θ′), b1 = 0

and b2 = 0, since r2 ∈ θ′, moreover, p2 ∈ G i.e. B(p2) = 1 then Rule (α1)

adds (p2, θ
′)

[γ2,b]−−−→T (p′, θ′) with b = B(p2) ∨ b1 ∨ b2 = 1.590

3. Since we have (p1, θ
′)

[γ1,b1]−−−−→T (p′, θ′), b1 = 0 and r6 ∈ θ′, moreover, p2 ∈
G i.e. B(p2) = 1, then Rule (α1) adds the transition (p2, θ

′)
[γ′,b]−−−→T (p′, θ′)

with b = B(p2) ∨ b1 = 1.

4. Now we have (p2, θ
′)

[γ2,b1]−−−−→T (p′, θ′), b1 = 1 and r7 ∈ θ′, moreover, p2 ∈ G

i.e. B(p2) = 1, then Rule (α1) adds the transition (p1, θ
′)

[γ1,b]−−−→T (p′, θ′)595

with b = B(p2) ∨ b1 = 1.

5. Now we have (p2, θ
′)

[γ′,b1]−−−−→T (p′, θ′), b1 = 1 and r5 ∈ θ′, moreover, p′ /∈ G

i.e. B(p′) = 0, then Rule (α1) adds the transition (p′, θ′)
[γ′,b]−−−→T (p′, θ′)

with b = B(p′) ∨ b1 = 1.

6. Since we have (p2, θ
′)

[γ′,b1]−−−−→T (p′, θ′) and (p2, θ
′)

[γ2,b2]−−−−→T (p′, θ′), b1 =600

1, b2 = 1, the self-modifying rule r′ ∈ θ′ can be applied. Moreover,

p3 /∈ G i.e. B(p3) = 0 Thus, Rule (α2) adds (p3, θ1)
[γ2,b]−−−→T (p′, θ′) and

(p3, θ1)
[γ′,b′]−−−−→T (p′, θ′) where θ1 = (θ′ \{r3})∪{r4} with b = B(p3)∨ b1 =

1, b′ = B(p3) ∨ b2 = 1.

7. Now we have (p3, θ1)
[γ2,b1]−−−−→T (p′, θ′), b1 = 1 and r4 ∈ θ1, moreover, p2 ∈ G605

i.e. B(p2) = 1, then Rule (α1) adds the transition (p2, θ1)
[γ′,b]−−−→T (p′, θ′)

with b = B(p2) ∨ b1 = 1.

8. Since (p2, θ1)
[γ′,b1]−−−−→T (p′, θ′), b1 = 1 and r5 ∈ θ1, moreover, p2 ∈ G i.e.

B(p2) = 1, then Rule (α1) adds the transition (p′, θ1)
[γ′,b]−−−→T (p′, θ′) with

b = B(p2) ∨ b1 = 1.610

16

9. We note that (p′, θ1)
[ϵ,b1]−−−→T (p′, θ1), b1 = 0 holds. Since ⟨p′, ϵ⟩ occurs on

the right hand side of rule r1 ∈ θ1, moreover, p1 /∈ G i.e. B(p1) = 0 and

p′ /∈ G i.e. B(p′) = 0, then Rule (α1) adds the transition (p1, θ1)
[γ1,b]−−−→T

(p′, θ′) with b = B(p1) ∨ b1 = 0.

10. Now we have (p1, θ1)
[γ1,b1]−−−−→T (p′, θ1), b1 = 0 and r6 ∈ θ1, moreover,615

p2 ∈ G i.e. B(p2) = 1, then Rule (α1) adds the transition (p2, θ1)
[γ′,b]−−−→T

(p′, θ1) with b = B(p2) ∨ b1 = 1.

11. Now that we have the path (p1, θ1)
[γ1,b1]−−−−→T (p′, θ1)

[γ′,b2]−−−−→T (p′, θ′), since
r2 ∈ θ1, b1 = 0, b2 = 1, moreover, p2 ∈ G i.e. B(p2) = 1 then Rule (α1)

adds (p2, θ1)
[γ2,b]−−−→T (p′, θ′) with b = B(p2) ∨ b1 ∨ b2 = 1.620

12. Since we have (p2, θ1)
[γ2,b1]−−−−→T (p′, θ′), b1 = 1 and r7 ∈ θ1, Rule (α1) adds

the transition (p1, θ1)
[γ1,b]−−−→T (p′, θ′) with b = B(p1) ∨ b1 = 1.

13. No further additions are possible. Thus, the procedure terminates.

The result is depicted in the right side of Fig.2

4.3.2. Proof625

Before proving that our construction is correct, we introduce the following
definition:

Definition 6. Let Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
= (Q,Γ, T, P, F) be the labelled P-automaton

computed by the saturation procedure above. In this section, we use −→
i T

to de-

note the transition relation of Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
obtained after adding i tran-630

sitions using the saturation procedure above. Let us notice that due to the fact
that initially Q = {(p′, θ′)} and due to rules (α1) and (α2) that at step i add

only transitions of the form (p, θ)
γ−→T q for a state q that is already in the

automaton at step i − 1, then, states of Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
are all of the form

(p, θ) for p ∈ P and θ ⊆ ∆ ∪∆c.635

We can show that:

Lemma 2. Let p, p′′ ∈ P and θ, θ′′ ⊆ ∆ ∪∆c. Let w ∈ Γ∗ and b ∈ {0, 1}. If a

path (p, θ)
[w,b]−−−→T (p

′′, θ′′) is in Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
, then (⟨p, w⟩, θ) ⇒∗ (⟨p′′, ϵ⟩, θ′′).

Moreover, if b = 1, then (⟨p, w⟩, θ) ⇒r (⟨p′′, ϵ⟩, θ′′).

Proof: Initially, the automaton contains no transitions. Let i be an index such640

that (p, θ)
[w,b]−−−→
i T

(p′′, θ′′) holds. We proceed by induction on i.

Basis. i = 0, then (p′′, θ′′)
[ϵ,0]−−−→
0 T

(p′′, θ′′). This means p′′ = p′, θ′′ = θ′.

Since initially Q = {(p′, θ′)}, then (⟨p′′, ϵ⟩, θ′′) ⇒∗ (⟨p′′, ϵ⟩, θ′′) always holds.
Step. i > 0. Let t =

(
(p1, θ1), [γ, b1], (p0, θ0)

)
be the i-th transition

added to Apre∗ and j be the number of times that t is used in the path645

(p, θ)
[w,b]−−−→
i T

(p′′, θ′′). The proof is by induction on j. If j = 0, then we have

(p, θ)
[w,b]−−−→
i−1 T

(p′′, θ′′) in the automaton, and we apply the induction hypothe-

sis (induction on i) then we obtain (⟨p, w⟩, θ) ⇒∗ (⟨p′′, ϵ⟩, θ′′). So assume

17

that j > 0. Then, there exist u, v ∈ Γ∗, b′, b′′ ∈ {0, 1} such that w = uγv,
b = b′ ∨ b1 ∨ b′′ and650

(p, θ)
[u,b′]−−−→
i−1 T

(p1, θ1)
[γ,b1]−−−→

i T
(p0, θ0)

[v,b′′]−−−−→
i T

(p′′, θ′′) (1)

The application of the induction hypothesis (induction on i) to (p, θ)
[u,b′]−−−→
i−1 T

(p1, θ1) gives that

(⟨p, u⟩, θ) ⇒∗ (⟨p1, ϵ⟩, θ1), moreover, if b′ = 1, (⟨p, u⟩, θ) ⇒r (⟨p1, ϵ⟩, θ1) (2)

There are 2 cases depending on whether transition t was added by saturation
rule α1 or α2.

1. Case t was added by rule α1: There exist p2 ∈ P and w2 ∈ Γ∗ such that

r = ⟨p1, γ⟩ ↪→ ⟨p2, w2⟩ ∈ ∆ ∩ θ1 (3)

and Apre∗ contains the following path:

π′ = (p2, θ1)
[w2,b2]−−−−→
i−1 T

(p0, θ0)
[v,b′′]−−−−→

i T
(p′′, θ′′), b1 = b2 ∨B(p1) (4)

Applying the transition rule r, we get that

(⟨p1, γv⟩, θ1) ⇒ (⟨p2, w2v⟩, θ1) (5)

By induction on j (since transition t is used j−1 times in π′), we get from
(4) that

(⟨p2, w2v⟩, θ1) ⇒∗ (⟨p′′, ϵ⟩, θ′′) moreover, if b2∨b′′ = 1, (⟨p2, w2v⟩, θ1) ⇒r (⟨p′′, ϵ⟩, θ′′)
(6)

Putting (2), (5) and (6) together, we can obtain that

(⟨p, w⟩, θ) = (⟨p, uγv⟩, θ) ⇒∗ (⟨p1, γv⟩, θ1) ⇒ (⟨p2, w2v⟩, θ1) ⇒∗ (⟨p′′, ϵ⟩, θ′′)

Furthermore, if b = b′ ∨ b1 ∨ b′′ = 1, then b′ = 1 or b1 ∨ b′′ = 1.

For the first case, b′ = 1, then we can have (⟨p, u⟩, θ) ⇒r (⟨p1, ϵ⟩, θ1)655

from (2). Thus, we can obtain that (⟨p, uγv⟩, θ) ⇒r (⟨p1, γv⟩, θ1) ⇒∗

(⟨p′′, ϵ⟩, θ′′) i.e. (⟨p, w⟩, θ) ⇒r (⟨p′′, ϵ⟩, θ′′).
The second case b1 ∨ b′′ = 1 i.e. B(p1) ∨ b2 ∨ b′′ = 1 implies that
B(p1) = 1 (that means p1 ∈ G and (⟨p1, γv⟩, θ1) ⇒r (⟨p′′, ϵ⟩, θ′′)) or
b2 ∨ b′′ = 1 (that implies (⟨p2, w2v⟩, θ1) ⇒r (⟨p′′, ϵ⟩, θ′′) from (6)). There-660

fore, (⟨p, w⟩, θ1) ⇒r (⟨p′′, ϵ⟩, θ′′).

2. Case t was added by rule α2 : there exist p2 ∈ P and θ2 ⊆ ∆ ∪∆c such
that

r = p1
(σ,σ′)

↪−−−−→ p2 ∈ ∆c ∩ θ2, θ2 = (θ1\σ) ∪ σ′ (7)

and the following path in the current automaton (self-modifying rule
won’t change the stack) with r ∈ θ2 :

(p2, θ2)
[γ,b′1]−−−→
i−1 T

(p0, θ0)
[v,b′′]−−−−→

i T
(p′′, θ′′), b1 = B(p1) ∨ b′1 (8)

18

Applying the transition rule, we can get from (7) that

(⟨p1, γv⟩, θ1) ⇒ (⟨p2, γv⟩, θ2) (9)

We can apply the induction hypothesis (on j) to (8), and obtain

(⟨p2, γv⟩, θ2) ⇒∗ (⟨p′′, ϵ⟩, θ′′), moreover, if b′1∨b′′ = 1, (⟨p2, γv⟩, θ2) ⇒r (⟨p′′, ϵ⟩, θ′′)
(10)

From (2),(9) and (10), we get

(⟨p, w⟩, θ) = (⟨p, uγv⟩, θ) ⇒∗ (⟨p1, γv⟩, θ1) ⇒ (⟨p2, γv⟩, θ2) ⇒∗ (⟨p′′, ϵ⟩, θ′′)

Furthermore, if b = b′ ∨ b1 ∨ b′′ = 1 , then b′ = 1 or b1 ∨ b′′ = 1.

For the first case, b′ = 1, then we can have (⟨p, u⟩, θ) ⇒r (⟨p1, ϵ⟩, θ1)
from (2). Thus, we can obtain that (⟨p, uγv⟩, θ) ⇒r (⟨p1, γv⟩, θ1) ⇒∗

665

(⟨p′′, ϵ⟩, θ′′) i.e. (⟨p, w⟩, θ) ⇒r (⟨p′′, ϵ⟩, θ′′). The second case b1 ∨ b′′ = 1
i.e. B(p1) ∨ b′1 ∨ b′′ = 1 implies that B(p1) = 1 (that means p1 ∈ G and
(⟨p1, γv⟩, θ1) ⇒r (⟨p′, ϵ⟩, θ′)) or b′1 ∨ b′′ = 1 (that implies (⟨p2, γv⟩, θ2) ⇒r

(⟨p′′, ϵ⟩, θ′′) from (10)) i.e. (⟨p, w⟩, θ1) ⇒r (⟨p′, ϵ⟩, θ′). Therefore, we can
get that if b = 1, then (⟨p, w⟩, θ1) ⇒r (⟨p′′, ϵ⟩, θ′′).670

2

Lemma 3. If there is a labelled configuration [(⟨p, w⟩, θ), b] such that (⟨p, w⟩, θ) ⇒∗

(⟨p′, ϵ⟩, θ′), then there is a path (p, θ)
[w,b]−−−→T (p′, θ′) in Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
. More-

over, if (⟨p, w⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′), then b = 1.675

Proof: Assume (⟨p, w⟩, θ) i⇒ (⟨p′, ϵ⟩, θ′). We proceed by induction on i.

Basis. i = 0. Then θ = θ′, p′ = p and w = ϵ. Initially, we have that Q =
{(p′, θ′)}, therefore, by the definition of →T , we have (p′, θ′)

ϵ−→T (p′, θ′). We
cannot have (⟨p′, ϵ⟩, θ′) ⇒r (⟨p′, ϵ⟩, θ′) in 0-step.

Step. i > 0. Then there exists a configuration (⟨p′′, u⟩, θ′′) such that

(⟨p, w⟩, θ) ⇒ (⟨p′′, u⟩, θ′′) i−1⇒ (⟨p′, ϵ⟩, θ′)

We apply the induction hypothesis to (⟨p′′, u⟩, θ′′) i−1⇒ (⟨p′, ϵ⟩, θ′), and obtain680

that there exists inApre∗
(
(⟨p′, ϵ⟩, θ′)

)
a path (p′′, θ′′)

[u,b′′]−−−−→T (p
′, θ′). If (⟨p′′, u⟩, θ′′) ⇒r

(⟨p′, ϵ⟩, θ′), b′′ = 1.
Let (p0, θ0) be a state of Apre∗ . Let w1, u1 ∈ Γ∗, γ ∈ Γ, b′′0 , b

′′
1 ∈ {0, 1} be

such that w = γw1, u = u1w1, b
′′ = b′′0 ∨ b′′1 and

(p′′, θ′′)
[u1,b

′′
0]−−−−−→T (p0, θ0)

[w1,b
′′
1]−−−−−→T (p

′, θ′) (1)

There are two cases depending on which rule is applied to get (⟨p, w⟩, θ) ⇒
(⟨p′′, u⟩, θ′′).

19

1. Case (⟨p, w⟩, θ) ⇒ (⟨p′′, u⟩, θ′′) is obtained by a rule of the form: ⟨p, γ⟩ ↪→685

⟨p′′, u1⟩ ∈ ∆. In this case, θ′′ = θ. By the saturation rule α1, we have

(p, θ′′)
[γ,b0]−−−−→T (p0, θ0), b0 = B(p) ∨ b′′0 (2)

Putting (1) and (2) together, we can obtain that

π = (p, θ′′)
[γ,b0]−−−−→T (p0, θ0)

[w1,b
′′
1]−−−−−→T (p

′, θ′) (3)

Thus, (p, θ′′)
[γw1,b0∨b′′1]−−−−−−−−→T (p

′, θ′) i.e. (p, θ)
[w,b]−−−→T (p

′, θ′) where b = b0 ∨
b′′1 .

2. Case (⟨p, w⟩, θ) ⇒ (⟨p′′, u⟩, θ′′) is obtained by a rule of the form p
(σ,σ′)

↪−−−−→
p′′ ∈ ∆c i.e θ′′ ̸= θ. In this case, u1 = γ. By the saturation rule β2, we
obtain that

(p, θ)
[γ,b0]−−−−→T (p0, θ0) where θ′′ = θ\{r1} ∪ {r2}, b0 = B(p) ∨ b′′0 . (4)

Putting (1) and (4) together, we have the following path

(p, θ)
[γ,b0]−−−−→T (p0, θ0)

[w1,b
′′
1]−−−−−→T (p

′, θ′) i.e. (p, θ)
[w,b]−−−→T (p

′, θ′) where b = b0∨b′′1
(5)

Furthermore, if (⟨p, w⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′), then (⟨p, w⟩, θ) ⇒r (⟨p′′, u⟩, θ′′) or
(⟨p′′, u⟩, θ′′) ⇒r (⟨p′, ϵ⟩, θ′).690

For the first case, (⟨p, w⟩, θ) ⇒r (⟨p′′, u⟩, θ′′), then p ∈ G i.e. B(p) = 1. For
the second case, (⟨p′′, u⟩, θ′′) ⇒r (⟨p′, ϵ⟩, θ′), we can get b′′ = 1 (from induction
hypothesis). Thus, b = b0 ∨ b′′1 = B(p) ∨ b′′0 ∨ b′′1 = B(p) ∨ b′′ = 1. Therefore, if
(⟨p, w⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′), then we can obtain b = 1.

2695

From these two lemmas, we get:

Theorem 4.2. Let [c, b] be a labelled configuration. Then [c, b] is in L(Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
iff c ∈ pre∗

(
(⟨p′, ϵ⟩, θ′)

)
. Moreover, c ⇒r (⟨p′, ϵ⟩, θ′) iff b = 1.

Proof: Let [(⟨p, w⟩, θ), b] be a labelled configuration of pre∗
(
(⟨p′, ϵ⟩, θ′)

)
). Then700

(⟨p, w⟩, θ) ⇒∗ (⟨p′, ϵ⟩, θ′). By Lemma 2, we can obtain that there exists a path

(p, θ)
[w,b]−−−→T (p′, θ′) inApre∗

(
(⟨p′, ϵ⟩, θ′)

)
. So [(⟨p, w⟩, θ), b] is in L(Apre∗

(
(⟨p′, ϵ⟩, θ′)

)
).

Moreover, if (⟨p, w⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′), then b = 1.

Conversely, let [(⟨p, w⟩, θ), b] be a labelled configuration accepted byApre∗
(
(⟨p′, ϵ⟩, θ′)

)
i.e. there exists a path (p, θ)

[w,b]−−−→T (p′, θ′) in Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
. By Lemma705

3, (⟨p, w⟩, θ) ⇒∗ (⟨p′, ϵ⟩, θ′) i.e. (⟨p, w⟩, θ) ∈ pre∗(L(A)). Moreover, if b = 1,
(⟨p, w⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′).

2

20

4.4. Computing the Head Reachability Graph G710

Based on the definition of the Head Reachability Graph G, and on Theorem
4.2, we can compute G as follows. Initially, G has no edges.

α′
1: if rc : p

(σ,σ′)
↪−−−−→ p′ ∈ ∆c, then for every phase θ such that rc ∈ θ and

every γ ∈ Γ, we add the edge ((p, γ), θ)
B(p)−−−→ ((p′, γ), θ0) to the graph G,

where θ0 = θ \ σ ∪ σ′.715

α′
2: if r : ⟨p, γ⟩ ↪→ ⟨p0, γ0⟩ ∈ ∆, then for every phase θ such that r ∈ θ, we add

the edge ((p, γ), θ)
B(p)−−−→ ((p0, γ0), θ) to the graph G.

α′
3: if r : ⟨p, γ⟩ ↪→ ⟨p0, γ0γ′⟩ ∈ ∆, then for every phase θ such that r ∈ θ,

we add to the graph G the edge ((p, γ), θ)
B(p)−−−→ ((p0, γ0), θ). Moreover,

for every control point p′ ∈ P and phase θ′ such that Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
720

contains a transition of the form t = (p0, θ)
[γ0,b]−−−−→T (p

′, θ′), we add to the

graph G the edge ((p, γ), θ)
b∨B(p)−−−−→ ((p′, γ′), θ′).

!pre*((⟨p′�, ϵ⟩, θ′�))

p′�, θ1p′�, θ1

!pre*((⟨p′�, ϵ⟩, θ1))

p1, θ1p1, θ1

b

p′�, θ′�p′�, θ′�p1, θ′�p1, θ′�

p2, θ′�p2, θ′�

p3, θ1p3, θ1 p2, θ1p2, θ1

a

p′�, θ1p′�, θ1 p1, θ1p1, θ1

[γ′�,0]

[γ1,0]

[γ′�,1
]

[γ 2,1
]

[γ
′�,1

]

[γ′�,1]

[γ1,0]

[γ1,0]

p2, θ1p2, θ1

[γ′�,0]

((p2, γ′�), θ1)((p2, γ′�), θ1) ((p3, γ2), θ1)((p3, γ2), θ1)1

((p1, γ1), θ1)((p1, γ1), θ1)

1

((p′�, γ′�), θ1)((p′�, γ′�), θ1)
0

((p2, γ2), θ′�)((p2, γ2), θ′�)

((p1, γ1), θ′�)((p1, γ1), θ′�)

((p′�, γ′�), θ′�)((p′�, γ′�), θ′�)1

[γ 2,1
]

((p2, γ2), θ1)((p2, γ2), θ1)((p1, γ′�), θ1)((p1, γ′�), θ1)
0

((p2, γ′�), θ′�)((p2, γ′�), θ′�)

0
1

((p3, γ′�), θ1)((p3, γ′�), θ1)
0

0

[γ1,0]

[γ′
�,1]

[γ2,1
]

[γ′�,1
] [γ2,1

]

[γ′�,1]

1 0

C

[γ1,1]

[γ1,1]

1

1

((p3, γ1), θ1)((p3, γ1), θ1) ((p2, γ1), θ′�)((p2, γ1), θ′�)0

0

[γ′�,1]

[γ1 ,1]

Figure 3: An Example of the SM-BPDS and the graph G

21

Items α′
1 and α′

2 are obvious. They respectively correspond to item 1 and
item 2 of Definition 4 (since B(p) = 1 iff p ∈ G). Item α′

3 is based on
Lemma 1 and on item 3 of Definition 4. Indeed, it follows from Lemma 1 that725

Apre∗
(
(⟨p′, ϵ⟩, θ′)

)
contains a transition of the form (p0, θ)

[γ0,b]−−−−→T (p
′, θ′) implies

that (⟨p0, γ0⟩, θ) ⇒∗ (⟨p′, ϵ⟩, θ′), and if b = 1, then (⟨p0, γ0⟩, θ) ⇒r (⟨p′, ϵ⟩, θ′).
Thus, in this case, the edge ((p, γ), θ)

b∨B(p)−−−−→ ((p′, γ′), θ′) is added to G (item 3
of Definition 4) since ⟨p, γ⟩ ↪→ ⟨p0, γ0γ′⟩ ∈ ∆.

Example: Let us illustrate the procedure by an example. Consider the pre-730

vious example shown in Fig.2. Apre∗((⟨p′,ϵ⟩,θ′)) is shown in Fig. 3 (a) and
Apre∗((⟨p′,ϵ⟩,θ1)) is shown in Fig. 3 (b). The result G shown in Fig. 3 (c) is
obtained as follows:

1. Since r5 ∈ θ′, r5 ∈ θ1 and p′ /∈ G i.e. B(p′) = 0, Rule α′
2 adds edges

((p′, γ′), θ′)
b−→ ((p2, γ

′), θ′) and ((p′, γ′), θ1)
b−→ ((p2, γ

′), θ1), b = B(p′) = 0735

to G.
2. Because r6 ∈ θ′, r6 ∈ θ1 and p2 ∈ G i.e. B(p2) = 1, Rule α′

2 adds edges

((p2, γ
′), θ′)

b−→ ((p1, γ1), θ
′) and ((p2, γ

′), θ1)
b−→ ((p1, γ1), θ1), b = B(p2) =

1 to G.
3. Because r7 ∈ θ′, r7 ∈ θ1 and p1 /∈ G i.e. B(p1) = 0, Rule α′

2 adds edges740

((p1, γ1), θ
′)

b−→ ((p2, γ2), θ
′) and ((p1, γ1), θ1)

b−→ ((p2, γ2), θ1), b = B(p1) =
0 to G.

4. Because r4 ∈ θ1 and p2 ∈ G i.e. B(p2) = 1, Rule α′
2 adds the edge

((p2, γ
′), θ1)

b−→ ((p3, γ2), θ1), b = B(p2) = 1 to G.
5. Now we have r′ ∈ θ1 and r4 ∈ θ1, for every γ ∈ Γ, Rule α′

1 adds edges745

((p3, γ1), θ1)
b−→ ((p2, γ1), θ

′), ((p3, γ2), θ1)
b−→ ((p2, γ2), θ

′) and ((p3, γ
′), θ1)

b−→
((p2, γ

′), θ′), b = B(p3) = 0 to G.
6. Since r2 ∈ θ′ and p2 ∈ G i.e. B(p1) = 1, Rule α′

3 first adds to the

graph G the edge ((p2, γ2), θ
′)

b−→ ((p1, γ1), θ
′), b = B(p2) = 1. Then only

Apre∗((⟨p′,ϵ⟩,θ′)) contains transitions of the form (p1, θ
′)

[γ1,b
′]−−−−→T (p

′, θ′) i.e.750

transition (p1, θ
′)

[γ1,b
′
1]−−−−−→T (p

′, θ′) ,b′1 = 0 and (p1, θ
′)

[γ1,b
′
2]−−−−−→T (p

′, θ′), b′2 =

1. Then Rule α′
3 adds edges ((p2, γ2), θ

′)
b1−→ ((p′, γ′), θ′) with b1 = B(p2)∨

b′1 = 1 and ((p2, γ2), θ
′)

b2−→ ((p′, γ′), θ′) with b2 = B(p2) ∨ b′2 = 1 to G.
7. Since r2 ∈ θ1 and p2 ∈ G i.e. B(p1) = 1, Rule α′

3 first adds to the

graph G the edge ((p2, γ2), θ1)
b−→ ((p1, γ1), θ1), b = B(p1) = 1. Then only755

Apre∗((⟨p′,ϵ⟩,θ′)) contain transitions of the form (p1, θ
′)

[γ1,b
′]−−−−→T (p

′, θ′) and

Apre∗((⟨p′,ϵ⟩,θ1)) contain transitions of the form (p1, θ
′)

[γ1,b
′]−−−−→T (p

′, θ1) i.e.

transition (p1, θ1)
[γ1,b1]−−−−−→T (p

′, θ1) inApre∗((⟨p′,ϵ⟩,θ′)) and (p1, θ1)
[γ1,b1]−−−−−→T (p

′, θ1)

in Apre∗((⟨p′,ϵ⟩,θ1)), b1 = 0. Then Rule α′
3 adds the edge ((p2, γ2), θ1)

b2−→
((p′, γ′), θ1), b2 = b ∨ b1 = 1 to G.760

8. No further additions are possible. Thus, the procedure terminates.

The result is depicted in Fig. 3 (c). By finding 1-labelled loops in G, the
repeating heads are

{((p2, γ2), θ1), ((p′, γ′), θ1), ((p2, γ
′), θ1), ((p1, γ1), θ1)}

22

and
{((p2, γ2), θ′), ((p′, γ′), θ′), ((p2, γ

′), θ′), ((p1, γ1), θ
′)}.

5. Experiments

5.1. Our approach vs. standard LTL for PDSs

We implemented our approach in a tool1 and we compared its performance
against the approaches that consist in translating the SM-PDS to an equiva-765

lent standard (or symbolic) PDS, and then applying the standard LTL model
checking algorithms implemented in the PDS model-checker tool Moped [25].
All our experiments were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of
memory. To perform the comparison, we randomly generate several SM-PDSs
and LTL formulas of different sizes. For this, we use the function int rand(void)770

several times to randomly generate states and transitions. The results (CPU
Execution time) are shown in Table 1. Column Size is the size of SM-PDS (S1

for non-modifying transitions ∆ and S2 for modifying transitions ∆c). Column
LTL gives the size of the transitions of the Büchi automaton generated from the
LTL formula (using the tool LTL2BA[28]). Column SM-PDS gives the cost775

of our direct algorithm presented in this paper. Column PDS shows the cost
it takes to get the equivalent PDS from the SM-PDS. Column Result reports
the cost it takes to run the LTL PDS model-checker Moped [25] for the PDS
we got. Column Total is the total cost it takes to translate the SM-PDS into
a PDS and then apply the standard LTL model checking algorithm of Moped780

(Total=PDS+Result). Column Symbolic PDS reports the cost it takes to get
the equivalent Symbolic PDS from the SM-PDS. Column Result1 is the cost
to run the Symbolic PDS LTL model-checker Moped. Column Total1 is the
total cost it takes to translate the SM-PDS into a symbolic PDS and then apply
the standard LTL model checking algorithm of Moped. You can see that our785

direct algorithm (Column SM-PDS) is much more efficient than translating
the SM-PDS to an equivalent (symbolic) PDS, and then run the standard LTL
model-checker Moped. Translating the SM-PDS to a standard PDS may
take more than 20 days, whereas our direct algorithm takes only a
few seconds. Moreover, since the obtained standard (symbolic) PDS is huge,790

Moped failed to handle several cases (the time limit that we set for Moped is
20 minutes), whereas our tool was able to deal with all the cases in only a few
seconds.

5.2. Malicious Behavior Detection on Self-Modifying Code

5.2.1. Specifying Malicious Behaviors using LTL.795

As described in [11], several malicious behaviors can be described by LTL
formulas. We give in what follows four examples of such malicious behaviors
and show how they can be described by LTL formulas:

Registry Key Injecting: In order to get started at boot time, many mal-
wares add themselves into the registry key listing. This behavior is typically800

implemented by first calling the API function GetModuleFileNameA to retrieve

1https://lipn.univ-paris13.fr/∼touili/smodic/

23

Size LTL SM-PDS PDS Result Total Symbolic PDSResult1 Total1
S1 : 5, S2 : 2 |δ|:15 0.07s 0.09s 0.01s 0 .10s 0.08s 0.00s 0.08s
S1 : 5, S2 : 3 |δ|:8 0.06s 0.08s 0.01s 0.09s 0.09s 0.00s 0.09s
S1 : 11, S2 : 4 |δ|:8 0.16s 0.13s 0.05s 0.18s 0.10s 0.00s 0.10s
S1 : 5, S2 : 3 |δ|:10 0.06s 0.15s 0.01s 0.16s 0.09s 0.00s 0.09s
S1 : 110, S2 : 4 |δ|:8 0.34s 186.10s 0.79s 186.99s 0.35s 0.00s 0.35s
S1 : 255, S2 : 8 |δ|:8 0.39s 281.02s 0.94s 281.96s 4.82s 0.05s 4.87s
S1 : 255, S2 : 8 |δ|:10 0.42s 281.02s 0.97s 281.99s 4.82s 0.06s 4.88s
S1 : 110, S2 : 4 |δ|:15 0.28s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s
S1 : 255, S2 : 8 |δ|:15 0.46s 281.02s 1.92s 282.94s 4.82s 0.08s 4.90s
S1 : 110, S2 : 4 |δ|:20 0.37s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s
S1 : 255, S2 : 8 |δ|:20 0.55s 281.02s 1.97s 282.99s 4.82s 0.17s 4.99s
S1 : 255, S2 : 8 |δ|:25 0.59s 281.02s 1.23s 282.99s 4.82s 0.24s 5.36s
S1 : 2059, S2 : 7 |δ|:8 0.86s 19525.01s 20.71s 19545.72s 20.70s error -
S1 : 2059, S2 : 9 |δ|:8 1.49s 19784.7s 79.12s 19863.32 128.12s error -
S1 : 2059, S2 : 11 |δ|:8 3.73s 30011.67s 168.15s 30179.82s 261.07s error -
S1 : 2059, S2 : 11 |δ|:28 6.88s 30011.67s 169.55s 30180.22s 261.07s error -
S1 : 3050, S2 : 10 |δ|:8 5.21s 39101.57s killed - 438.27s error -
S1 : 3090, S2 : 10 |δ|:8 5.86s 40083.07s killed - 438.69s error -
S1 : 3050, S2 : 10 |δ|:20 7.24s 39101.57s killed - 438.27s error -
S1 : 3090, S2 : 10 |δ|:30 8.38s 40083.07s killed - 438.69s error -
S1 : 3090, S2 : 10 |δ|:25 8.89s 40083.07s killed - 438.69s error -
S1 : 4050, S2 : 10 |δ|:8 9.21s 81408.91s killed - 699.19s error -
S1 : 4050, S2 : 10 |δ|:28 11.64s 81408.91s killed - 699.19s error -
S1 : 4058, S2 : 11 |δ|:8 9.83s 93843.37s killed - 802.07s error -
S1 : 4058, S2 : 11 |δ|:25 13.59s 93843.37s killed - 802.07s error -
S1 : 5050, S2 : 11 |δ|:8 10.34s 173943.37s killed - 921.16s error -
S1 : 5090, S2 : 11 |δ|:8 10.52s 179993.54s killed - 929.32s error -
S1 : 5090, S2 : 11 |δ|:10 12.89s 179993.54s killed - 929.32s error -
S1 : 6090, S2 : 11 |δ|:8 13.49s 190293.64s killed - 1002.73s error -
S1 : 6090, S2 : 11 |δ|:10 15.81s 190293.64s killed - 1002.73s error -
S1 : 6090, S2 : 11 |δ|:40 32.39s 190293.64s killed - 1002.73s error -
S1 : 7090, S2 : 11 |δ|:25 39.86s 198932.32s killed - 1092.28s error -
S1 : 7090, S2 : 11 |δ|:30 43.24s 198932.32s killed - 1092.28s error -
S1 : 9090, S2 : 11 |δ|:8 29.98s 199987.98s killed - 1128.19s error -
S1 : 9090, S2 : 11 |δ|:20 45.29s 199987.98s killed - 1128.19s error -
S1 : 10050, S2 : 12 |δ|:8 48.53s 2134587.14s killed - 1469.28s error -
S1 : 10050, S2 : 12 |δ|:25 59.69s 2134587.14s killed - 1469.28s error -
S1 : 10050, S2 : 12 |δ|:30 61.42s 2134587.14s kille d - 1469.28s error -
S1 : 10150, S2 : 12 |δ|:35 64.17s 2134633.28s killed - 1469.28s error -
S1 : 10150, S2 : 14 |δ|:8 58.34s 2181975.64s killed - 2849.96s error -
S1 : 10150, S2 : 14 |δ|:40 82.72s 2181975.64s killed - 2849.96s error -
S1 : 10150, S2 : 12 |δ|:40 76.61s 2134633.28s killed - 1469.28s error -
S1 : 10150, S2 : 16 |δ|:45 89.83s 2211008.82s killed - 3665.59s error -
S1 : 10150, S2 : 12 |δ|:60 97.56s 2134633.28s killed - 1469.28s error -
S1 : 10150, S2 : 12 |δ|:65 105.89s 2134633.28s killed - 1469.28s error -
S1 : 10150, S2 : 16 |δ|:65 134.45s 2211008.82s killed - 3665.59s error -
S1 : 10180, S2 : 16 |δ|:65 175.29s 2134643.52s killed - 3689.83s error -
S1 : 10180, S2 : 16 |δ|:78 214.36s 2134643.52s killed - 3689.83s error -

Table 1: Our approach vs. standard LTL for PDSs24

the path of the malware’s executable file. Then, the API function RegSetVal-
ueExA is called to add the file path into the registry key listing. This malicious
behavior can be described in LTL as follows:

ϕrk = F
(
call GetModuleF ileNameA ∧ F(call RegSetV alueExA)

)
805

This formula expresses that if a call to the API function GetModuleFile-
NameA is followed by a call to the API function RegSetValueExA, then proba-
bly a malware is trying to add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular malicious behav-
ior that intend to steal any valuable information including passwords, software810

codes, bank information, etc. To do this, the malware needs to scan the disk to
find the interesting file that he wants to steal. After finding the file, the malware
needs to locate it. To this aim, the malware first calls the API function Get-
ModuleHandleA to get a base address to search for a location of the file. Then
the malware starts looking for the interesting file by calling the API function815

FindFirstFileA. Then the API functions CreateFileMappingA and MapViewOf-
File are called to access the file. Finally, the specific file can be copied by calling
the API function CopyFileA. Thus, this data-stealing malicious behavior can
be described by the following LTL formula as follows:
ϕds = F(call GetModuleHandleA ∧F(call F indF irstF ileA∧F (call CreateF ileMappingA820

∧ F (call MapV iewofF ile ∧ F call CopyF ileA))))

Spy-Worm: A spy worm is a malware that can record data and send it using
the Socket API functions. For example, Keylogger is a spy worm that can
record the keyboard states by calling the API functions GetAsyKeyState and
GetKeyState and send that to the specific server by calling the socket function825

sendto. Another spy worm can also spy on the I/O device rather than the
keyboard. For this, it can use the API function GetRawInputData to obtain
input from the specified device, and then send this input by calling the socket
functions send or sendto. Thus, this malicious behavior can be described by the
following LTL formula:830

ϕsw = F
(
(call GetAsyncKeyState ∨ call GetRawInputData) ∧ F(call sendto ∨

call send)
)

Appending virus: An appending virus is a virus that inserts a copy of its
code at the end of the target file. To achieve this, since the real OFFSET of
the virus’ variables depends on the size of the infected file, the virus has to first835

compute its real absolute address in the memory. To perform this, the virus
has to call the sequence of instructions: l1: call f ; l2:; f : pop eax;. The
instruction call f will push the return address l2 onto the stack. Then, the pop
instruction in f will put the value of this address into the register eax. Thus,
the virus can get its real absolute address from the register eax. This malicious840

behavior can be described by the following LTL formula:

ϕav =
∨

F
(
call ∧X(top-of-stack = a) ∧G¬

(
ret ∧ (top-of-stack = a)

))
where the

∨
is taken over all possible return addresses a, and top-of-stack=a

is a predicate that indicates that the top of the stack is a. The subformula
call ∧X(top-of-stack = a) means that there exists a procedure call having a as845

return address. Indeed, when a procedure call is made, the program pushes its
corresponding return address a to the stack. Thus, at the next step, a will be on
the top of the stack. Therefore, the formula above expresses that there exists a

25

procedure call having a as return address, such that there is no ret instruction
which will return to a.850

Note that this formula uses predicates that indicate that the top of the stack
is a. Our techniques work for this case as well: it suffices to encode the top of
the stack in the control points of the SM-PDS. Our implementation works for
this case as well and can handle appending viruses.

5.2.2. Applying our tool for malware detection.855

We applied our tool to detect several malwares. We use the unpack tool
unpacker [29] to handle packers like UPX, and we use Jakstab [26] as disassem-
bler. We consider 160 malwares from the malware library VirusShare [30], 184
malwares from the malware library MalShare [31], 288 email-worms from VX
heaven [32] and 260 new malwares generated by NGVCK, one of the best mal-860

ware generators. We also choose 200 benign samples from Windows programs.
We consider self-modifying versions of these programs2. In these versions, the
malicious behaviors are unreachable if the semantics of the self-modifying in-
structions are not taken into account, i.e., if the self-modifying instructions are
considered as “standard” instructions that do not modify the code, then the865

malicious behaviors cannot be reached. To check this, we model such programs
in two ways:

1. First, we take into account the self-modifying instructions and model these
programs using SM-PDSs as described in Section 2.3. Then, we check
whether these SM-PDSs satisfy at least one of the malicious LTL formulas870

presented above. If yes, the program is declared as malicious, if not, it is
declared as benign. Our tool was able to detect all the 892 self-modifying
malwares as malicious, and to determine that benign programs are benign.
We report in Table 3 some partial results of our experiments. Column
Size is the number of control locations, Column Result gives the result of875

our algorithm: Yes means malicious and No means benign; and Column
cost gives the cost to apply our LTL model-checker to check one of the
LTL properties (Column Formula) described above. For every program,
we consider all the formulas mentionned above. A program is declared
malicious if it satisfes at least one of the formulas.880

2. Second, we abstract away the self-modifying instructions and proceed as
if these instructions were not self-modifying. In this case, we translate the
binary codes to standard pushdown systems as described in [9]. By using
PDSs as models, none of the malwares that we consider was detected as
malicious, whereas, as reported in Table 3, using self-modifying PDSs as885

models, and applying our LTL model-checking algorithm allowed to detect
all the 892 malwares that we considered.

Remark. Note that checking the formulas ϕrk, ϕds, and ϕsw could be done
using multiple pre∗ queries on SM-PDSs using the pre∗ algorithm of [1]. How-
ever, this would be less efficient than performing our direct LTL model-checking890

algorithm, as shown in Table 2, where Column Size gives the number of control
locations, Column LTL gives the time of applying our LTL model-checking al-
gorithm; and Column Multiple pre∗ gives the cost of applying multiple pre∗ on

2Self-modifying instructions are embedded into these programs.

26

E
x
a
m
p
le

S
iz
e

L
T
L

M
u
lt
ip
le

p
re

∗
E
x
am

p
le

S
iz
e

L
T
L

M
u
lt
ip
le

p
re

∗

T
an

at
os
.b

12
31

5
16

.2
6
1s

46
.6
35

s
N
et
sk
y.
c

45
0.
00

2s
0.
09

2s
W

in
32

.H
ap

p
y

23
0.
04

2s
0.
07

5s
M
y
D
o
om

-N
16

98
0

30
.2
31

s
98

.4
18

s
K
el
in
o.
g

47
0

0.
67

2s
3.
44

6s
N
et
sk
y.
b

45
0.
05

7s
0.
18

3s
N
et
sk
y.
a

45
0.
04

7s
0.
08

5s
M
y
d
o
om

.c
15

5
0.
01

4s
0.
20

6s
k
le
z.
c

30
0.
03

9s
0.
08

8s
M
y
d
o
om

.v
59

65
3.
97

1s
83

.9
88

s
N
et
sk
y.
d

45
0.
08

3s
0.
12

3s
A
rd
u
rk
.d

19
13

0.
48

2s
3.
21

2s
k
le
z.
f

27
0.
05

4s
4.
51

8s
M
ag
is
tr
.a
.p
ol
y

36
98

9
49

.8
63

s
15

9.
19

5s
k
le
z.
e

27
0.
09

4s
0.
48

2s
M
ag

is
tr
.b

46
70

3.
98

7s
53

.2
35

s
A
d
on

.1
7
03

37
0.
35

8s
0.
88

4s
A
d
on

.1
55

9
37

0.
25

5s
4.
08

8s
S
p
a
m
.T
ed
ro
o
.A

B
48

7
0.
92

4s
4.
89

4s
A
la
u
l.
c

35
5

0.
10

9s
5.
75

7s
A
k
ez

27
3

0.
13

6s
1.
86

3s
A
lc
au

l.
d

84
5

0.
16

5s
0.
39

2s
H
a
h
ar
in
.A

21
0

1.
46

2s
4.
31

8s
fs
A
u
to
B
.F
02

6
24

5
1.
69

8s
4.
50

3s
H
a
h
ar
in
.d
r

23
5

1.
55

8s
4.
31

2s
L
d
P
in
ch
.W

in
32

.5
55

8
20

15
6.
90

7s
8.
98

1s
L
d
P
in
ch
.b
x
.d
ll

20
10

6.
96

5s
8.
12

8s
L
d
P
in
ch
.f
m
y
e

18
45

6.
19

4s
9.
23

2s
L
d
P
in
ch
-1
5

58
0

1.
00

8s
3.
95

7s
L
d
P
in
ch
.e

57
8

1.
18

5s
3.
39

2s
W

in
32

/T
og

a!
rf
n

59
0

2.
02

3s
3.
97

8s
k
le
z-
N

62
81

3.
25

2s
78

.4
19

s
M
y
d
o
om

.y
26

90
2

12
.4
6
2s

10
2.
55

9s
M
y
d
o
om

.j
22

35
5

11
.2
62

s
11

1.
61

7s
P
la
g
e.
b

39
5

0.
29

1s
3.
13

8s
U
rb
e.
a

12
3

0.
37

6s
2.
98

1s
M
y
d
o
om

-E
G

23
0

0.
24

2s
6.
17

2s
E
m
ai
l.
W

32
!c

22
0

0.
24

9s
5.
94

6s
W

32
.M

y
d
o
om

.L
23

5
0.
28

8s
6.
45

2s
M
y
d
o
om

.D
N
.w
or
m

22
0

0.
29

9s
8.
92

8s
M
y
d
o
om

.5
22

8
0.
30

7s
8.
16

3s
M
y
d
o
om

.c
jd
z

22
5

0.
39

2s
9.
96

8s
M
y
d
o
om

.R
23

0
0.
32

2s
9.
08

6s
W

in
32

.M
y
d
o
om

23
5

0.
29

6s
7.
98

5s
M
y
d
o
om

.o
@
M
M
!z
ip

23
5

0.
40

3s
10

.3
23

s
W

in
32

.M
y
d
o
om

.2
88

24
8

0.
41

0s
2.
98

3s
S
ra
m
ot
a.
av

f
24

0
0.
38

3s
2.
69

1s
M
y
d
o
om

23
8

0.
27

8
2.
74

9s
W

in
32

.R
u
n
ou

ce
51

67
8

92
.6
9
2s

24
8.
14

6s
W

in
32

.C
h
u
r.
A

51
89

5
98

.1
61

s
29

8.
04

7s
W

in
32
.C

N
H
a
ck
er

51
09

5
94

.9
5
2s

24
5.
45

2s
N
et
sk
y.
ah

@
M
M

44
80

6.
99

1s
16

.0
18

s
W

in
32

.S
k
y
b
a
g

41
80

6.
89

1s
13

.7
39

s
S
k
y
b
ag

.A
43

10
6.
20

5s
15

.4
52

s
L
d
P
in
ch
.b
y

97
0

4.
09

2s
11

.3
27

s
G
en
er
ic
.2
02

69
43

3
2.
40

2s
9.
61

4s
L
d
P
in
ch
.a
rr

12
50

1.
84

8s
9.
98

6s
L
d
P
n
ch
-F
am

19
5

1.
44

0s
4.
09

7s
T
ro
j.
L
d
P
in
ch
.e
r

20
5

2.
52

9s
6.
15

4s
L
d
P
in
ch
.G

en
.3

21
0

1.
48

2s
4.
97

3s

T
a
b
le

2
:
M
u
lt
ip
le

p
r
e∗

v
.s
.
o
u
r
d
ir
ec
t
L
T
L

m
o
d
el
-c
h
ec
k
in
g
a
lg
o
ri
th

m

27

E
x
a
m
p
le

S
iz
e

F
o
rm

u
la

R
es
u
lt

co
st

E
x
a
m
p
le

S
iz
e

F
o
rm

u
la

R
es
u
lt

co
st

E
x
a
m
p
le

S
iz
e

F
o
rm

u
la

R
es
u
lt

co
st

k
le
z-
N

6
2
8
1

ϕ
d
s

Y
es

3
.2
5
2
s

k
le
z.
c

3
0

ϕ
d
s

Y
es

0
.0
3
9
s

k
le
z.
f

2
7

ϕ
d
s

Y
es

0
.0
5
4
s

k
le
z.
d

3
1

ϕ
d
s

Y
es

0
.0
8
5
s

A
lc
a
u
l.
d

8
4
5

ϕ
a
v

Y
es

0
.1
6
5
s

A
la
u
l.
c

3
5
5

ϕ
a
v

Y
es

0
.1
0
9
s

A
k
ez

2
7
3

ϕ
a
v

Y
es

0
.1
3
6
s

A
k
ez
.W

in
3
2
.1

4
5
5

ϕ
a
v

Y
es

4
.0
0
8
s

M
y
d
o
o
m
.y

2
6
9
0
2

ϕ
d
s

Y
es

1
2
.4
6
2
s

M
y
d
o
o
m
.j

2
2
3
5
5

ϕ
d
s

Y
es

1
1
.2
6
2
s

M
y
d
o
o
m
.c

1
5
5

ϕ
d
s

Y
es

0
.0
1
4
s

M
y
D
o
o
m
-N

1
6
9
8
0

ϕ
d
s

Y
es

3
0
.2
3
1
s

M
y
d
o
o
m
.v

5
9
6
5

ϕ
d
s

Y
es

3
.9
7
1
s

M
y
d
o
o
m
.M

5
9
6
5

ϕ
d
s

Y
es

5
.6
3
3
s

N
et
sk
y.
a

4
5

ϕ
d
s

Y
es

0
.0
4
7
s

N
et
sk
y.
d

4
5

ϕ
d
s

Y
es

0
.0
8
3
s

W
o
rm

.S
k
y
b
a
g
-1

4
8
2
0

ϕ
r
k

Y
es

7
.1
1
9
s

W
in
3
2
.A

g
en

t.
R

4
4
9
0

ϕ
r
k

Y
es

7
.8
9
8
s

L
d
P
in
ch
.B

X
2
0
1
0

ϕ
r
k

Y
es

6
.9
6
5
s

L
d
P
in
ch
.f
m
y
e

1
8
4
5

ϕ
r
k

Y
es

6
.1
9
4
s

L
d
P
in
ch
.W

in
3
2

2
0
1
5

ϕ
r
k

Y
es

6
.9
0
7
s

L
y
d
ra
.a

3
4
5
0

ϕ
r
k

Y
es

8
.2
8
9
s

T
ro
ja
n
.S
ta
rt
P
a
g
e

2
9
8
5

ϕ
r
k

Y
es

5
.9
8
2
s

P
S
W

T
ro
j.
a
u

2
9
8
5

ϕ
r
k

Y
es

6
.1
9
8
s

L
d
P
in
ch
-2
1

3
1
8
0

ϕ
r
k

Y
es

6
.9
1
7
s

L
d
P
in
ch
-R

3
0
2
5

ϕ
r
k

Y
es

7
.0
0
5
s

L
d
P
in
ch
.G

en
2
9
9
0

ϕ
r
k

Y
es

6
.9
9
2
s

R
ep

a
h
.b

2
2
1

ϕ
r
k

Y
es

2
.4
2
8
s

G
ib
e.
b

5
3
5
8

ϕ
r
k

Y
es

4
.2
2
9
s

M
a
g
is
tr
.b

4
6
7
0

ϕ
r
k

Y
es

3
.6
9
9
s

W
in
3
2
.A

n
a
r.
a

2
1
5

ϕ
d
s

Y
es

1
.6
3
1
s

A
n
a
r.
2
4
5
7
6

2
4
0

ϕ
d
s

Y
es

2
.7
3
8
s

A
n
a
r.
S

1
5
5

ϕ
d
s

Y
es

2
.0
9
3
s

K
el
in
o
.l

4
9
5

ϕ
r
k

Y
es

0
.3
2
6
s

K
ip
is
.t

2
0
3
7
8

ϕ
r
k

Y
es

2
5
.3
4
5
s

W
3
2
.H

fs
A
u
to
B
.

3
3
9
8

ϕ
r
k

Y
es

5
.0
9
2
s

W
o
rm

.A
n
a
rx
y

2
1
0

ϕ
d
s

Y
es

1
.9
1
3
s

P
la
g
e.
b

3
9
5

ϕ
r
k

Y
es

0
.2
9
1
s

U
rb

e.
a

1
2
3

ϕ
r
k

Y
es

0
.3
7
6
s

ca
lc
u
la
ti
o
n
.e
x
e

9
9
5
2

ϕ
d
s

N
o

3
1
.1
7
6
s

ci
sv
c.
ex
e

4
1
0
5

ϕ
d
s

N
o

9
.1
1
4
s

si
m
p
le
.e
x
e

5
2

ϕ
d
s

N
o

0
.0
5
3
s

ca
lc
u
la
ti
o
n
.e
x
e

9
9
5
2

ϕ
r
k

N
o

1
4
.9
3
2
s

ci
sv
c.
ex
e

4
1
0
5

ϕ
r
k

N
o

3
.4
5
4
s

si
m
p
le
.e
x
e

5
2

ϕ
r
k

N
o

0
.0
0
1
s

ca
lc
u
la
ti
o
n
.e
x
e

9
9
5
2

ϕ
a
v

N
o

4
0
.1
1
8
s

ci
sv
c.
ex
e

4
1
0
5

ϕ
a
v

N
o

5
.0
9
2
s

si
m
p
le
.e
x
e

5
2

ϕ
a
v

N
o

0
.1
9
7
s

ca
lc
u
la
ti
o
n
.e
x
e

9
9
5
2

ϕ
s
w

N
o

1
9
.5
3
9
s

ci
sv
c.
ex
e

4
1
0
5

ϕ
s
w

N
o

2
.8
6
4
s

si
m
p
le
.e
x
e

5
2

ϕ
s
w

N
o

0
.0
0
3
s

sh
u
td
ow

n
.e
x
e

2
5
2
9

ϕ
d
s

N
o

1
3
.2
2
8
s

lo
o
p
.e
x
e

5
2
9

ϕ
d
s

N
o

4
.3
7
3
s

cm
d
.e
x
e

1
3
2
4

ϕ
d
s

N
o

1
3
.4
6
6
s

sh
u
td
ow

n
.e
x
e

2
5
2
9

ϕ
r
k

N
o

9
.1
5
2
s

lo
o
p
.e
x
e

5
2
9

ϕ
r
k

N
o

8
.0
2
9
s

cm
d
.e
x
e

1
3
2
4

ϕ
r
k

N
o

6
.2
3
3
s

sh
u
td
ow

n
.e
x
e

2
5
2
9

ϕ
a
v

N
o

1
9
.0
3
1
s

lo
o
p
.e
x
e

5
2
9

ϕ
a
v

N
o

1
3
.4
7
8
s

cm
d
.e
x
e

1
3
2
4

ϕ
a
v

N
o

9
.6
2
0
s

sh
u
td
ow

n
.e
x
e

2
5
2
9

ϕ
s
w

N
o

0
.3
9
7
s

lo
o
p
.e
x
e

5
2
9

ϕ
s
w

N
o

9
.2
4
9
s

cm
d
.e
x
e

1
3
2
4

ϕ
s
w

N
o

9
.2
6
8
s

n
o
te
p
a
d
.e
x
e

1
0
5
2
9

ϕ
r
k

N
o

2
4
.5
8
3
s

ja
va
.e
x
e

8
0
0

ϕ
r
k

N
o

1
5
.8
5
2
s

ec
li
p
se
.e
x
e

2
1
3
2
4

ϕ
r
k

N
o

4
2
.3
7
3
s

n
o
te
p
a
d
.e
x
e

1
0
5
2
9

ϕ
a
v

N
o

8
9
.1
3
1
s

ja
va
.e
x
e

8
0
0

ϕ
a
v

N
o

1
8
.0
7
9
s

ec
li
p
se
.e
x
e

2
1
3
2
4

ϕ
a
v

N
o

6
3
.4
4
7
s

n
o
te
p
a
d
.e
x
e

1
0
5
2
9

ϕ
s
w

N
o

2
2
.8
3
0
s

ja
va
.e
x
e

8
0
0

ϕ
s
w

N
o

1
3
.4
7
2
s

ec
li
p
se
.e
x
e

2
1
3
2
4

ϕ
s
w

N
o

5
1
.6
9
3
s

n
o
te
p
a
d
.e
x
e

1
0
5
2
9

ϕ
d
s

N
o

3
6
.1
1
9
s

ja
va
.e
x
e

8
0
0

ϕ
d
s

N
o

2
2
.3
5
7
s

ja
va
.e
x
e

2
1
3
2
4

ϕ
d
s

N
o

6
9
.6
8
3
s

so
rt
.e
x
e

8
5
2
9

ϕ
r
k

N
o

2
9
.7
8
9
s

b
ib
D
es
k
.e
x
e

3
2
8
0
0

ϕ
r
k

N
o

5
0
.2
7
9
s

in
te
rf
a
ce
.e
x
e

1
0
0
5

ϕ
r
k

N
o

8
.4
6
2
s

so
rt
.e
x
e

8
5
2
9

ϕ
s
w

N
o

3
4
.4
2
7
s

b
ib
D
es
k
.e
x
e

3
2
8
0
0

ϕ
s
w

N
o

1
9
7
.6
2
8
s

in
te
rf
a
ce
.e
x
e

1
0
0
5

ϕ
s
w

N
o

1
1
.3
0
9
s

so
rt
.e
x
e

8
5
2
9

ϕ
a
v

N
o

6
9
.1
4
0
s

b
ib
D
es
k
.e
x
e

3
2
8
0
0

ϕ
a
v

N
o

4
0
8
.9
2
5
s

in
te
rf
a
ce
.e
x
e

1
0
0
5

ϕ
a
v

N
o

3
2
.1
9
3
s

ip
v
4
.e
x
e

9
6
8

ϕ
r
k

N
o

4
.1
8
6
s

T
ex
tW

ra
n
g
le
r.
ex
e

1
4
6
7
5

ϕ
r
k

N
o

4
5
.2
2
1
s

so
g
o
u
.e
x
e

4
5
2
1
9

ϕ
r
k

N
o

5
5
.2
5
9
s

28

E
x
a
m
p
le

S
iz
e

F
o
rm

u
la

R
es
u
lt

co
st

E
x
a
m
p
le

S
iz
e

F
o
rm

u
la

R
es
u
lt

co
st

E
x
a
m
p
le

S
iz
e

F
o
rm

u
la

R
es
u
lt

co
st

S
d
B
o
t.
zk

3
4
3
0

ϕ
r
k

Y
es

2
3
.2
4
2
s

V
ir
u
s.
G
en

6
6
1

ϕ
a
v

Y
es

9
.4
3
7
s

A
u
to
R
u
n

2
4
0

ϕ
r
k

Y
es

4
.1
8
1
s

S
p
a
m
.A

B
4
8
7

ϕ
r
k

Y
es

0
.9
2
4
s

H
a
h
a
ri
n
.A

2
1
0

ϕ
r
k

Y
es

1
.4
6
2
s

A
la
u
l.
c

3
5
5

ϕ
d
s

Y
es

0
.1
0
9
s

V
ir
u
s.
k
lk

5
2
3
5

ϕ
r
k

Y
es

1
5
.8
6
3
s

V
ir
u
s.
A
g
en

t
5
3
4
0

ϕ
r
k

Y
es

1
5
.9
6
8
s

H
o
a
x
.G

en
5
4
5
5

ϕ
r
k

Y
es

1
3
.5
6
9
s

eH
eu

r.
V
ir
u
s0
2

4
2
0

ϕ
d
s

Y
es

4
.9
8
5
s

A
k
ez
.1
1
2
5
5

4
4
0

ϕ
r
k

Y
es

3
.9
8
5
s

A
k
ez
.5

4
9
0

ϕ
r
k

Y
es

3
.9
5
8
s

W
ei
rd
.c

4
3
0

ϕ
r
k

Y
es

3
.9
2
9
s

P
E
A
K
E
Z
.A

4
5
0

ϕ
r
k

Y
es

2
.9
9
8
s

W
ei
rd
.d

4
7
3

ϕ
d
s

Y
es

3
.3
0
2
s

W
in
3
2
.R

u
n
o
u
ce

5
1
6
7
8

ϕ
r
k

Y
es

9
2
.6
9
2
s

C
h
u
r.
A

5
1
8
9
5

ϕ
r
k

Y
es

9
8
.1
6
1
s

W
C
N
H
a
ck
er
.C

5
1
0
9
5

ϕ
r
k

Y
es

9
4
.9
5
2
s

A
g
en

t.
x
p
ro

5
3
3

ϕ
r
k

Y
es

0
.3
5
2
s

V
il
se
l.
lh
b

1
5
0
3
6

ϕ
r
k

Y
es

4
.9
7
2
s

G
en

er
ic
.2
0
2
6
9

4
3
3

ϕ
a
v

Y
es

3
.4
8
9
s

N
ew

A
p
t!
g
en

er
ic

4
8
1
5

ϕ
s
w

Y
es

9
.0
0
2
s

N
ew

A
p
t.
A
@
m
m

4
4
8
5

ϕ
s
w

Y
es

8
.1
5
9
s

N
ew

a
p
t.
1

4
1
5
5

ϕ
s
w

Y
es

7
.8
8
5
s

N
G
V
C
K
1

3
2
9

ϕ
r
k

Y
es

0
.9
3
3
s

N
G
V
C
K
2

4
5
5

ϕ
s
w

Y
es

1
.1
0
9
s

N
G
V
C
K
3

2
3
0
0

ϕ
r
k

Y
es

1
.3
8
8
s

N
G
V
C
K
4

5
5
0

ϕ
d
s

Y
es

1
.1
4
9
s

N
G
V
C
K
5

1
5
5
5

ϕ
r
k

Y
es

1
.8
2
5
s

N
G
V
C
K
6

1
6
9
8

ϕ
r
k

Y
es

1
.6
8
9
s

N
G
V
C
K
7

6
9
0
2

ϕ
a
v

Y
es

1
4
.5
2
4
s

N
G
V
C
K
8

2
3
5
5

ϕ
r
k

Y
es

4
.2
5
4
s

N
G
V
C
K
9

2
8
1

ϕ
s
w

Y
es

1
3
.3
0
1
s

N
G
V
C
K
1
0

2
9
8
0

ϕ
r
k

Y
es

9
.2
6
2
s

N
G
V
C
K
1
1

5
9
6
5

ϕ
d
s

Y
es

1
1
.4
5
6
s

N
G
V
C
K
1
2

4
5
2
9

ϕ
d
s

Y
es

1
0
.0
9
4
s

N
G
V
C
K
1
3

2
2
1
0

ϕ
r
k

Y
es

8
.9
0
2
s

N
G
V
C
K
1
4

5
3
5
8

ϕ
d
s

Y
es

1
0
.2
9
4
s

N
G
V
C
K
1
5

9
7
0

ϕ
d
s

Y
es

1
.9
1
2
s

N
G
V
C
K
1
6

6
5
8

ϕ
r
k

Y
es

0
.9
3
5
s

N
G
V
C
K
1
7

9
1
3

ϕ
r
k

Y
es

1
.3
9
2
s

N
G
V
C
K
1
8

9
0

ϕ
r
k

Y
es

0
.0
9
4
s

N
G
V
C
K
1
9

1
2
9
5

ϕ
d
s

Y
es

6
.9
5
8
s

N
G
V
C
K
2
0

4
3
7
8

ϕ
d
s

Y
es

1
5
.4
4
9
s

N
G
V
C
K
2
1

3
1

ϕ
r
k

Y
es

0
.0
9
7
s

N
G
V
C
K
2
2

3
7
0

ϕ
d
s

Y
es

0
.8
9
8
s

N
G
V
C
K
2
3

3
9
5
5

ϕ
d
s

Y
es

9
.4
9
8
s

N
G
V
C
K
2
4

6
9
2
4

ϕ
d
s

Y
es

1
1
.9
8
3
s

N
G
V
C
K
2
5

8
1
2
7

ϕ
d
s

Y
es

1
5
.0
1
8
s

N
G
V
C
K
2
6

4
9
7
0

ϕ
d
s

Y
es

9
.9
8
2
s

N
G
V
C
K
2
7

7
9
8
9

ϕ
d
s

Y
es

1
3
.1
9
7
s

N
G
V
C
K
2
8

2
2
7

ϕ
r
k

Y
es

0
.0
9
8
s

N
G
V
C
K
2
9

9
6
0

ϕ
r
k

Y
es

0
.6
9
2
s

N
G
V
C
K
3
0

8
9

ϕ
r
k

Y
es

0
.0
8
8
s

N
G
V
C
K
3
1

5
5
0

ϕ
r
k

Y
es

0
.8
7
5
s

N
G
V
C
K
3
2

6
0

ϕ
r
k

Y
es

0
.0
5
9
s

N
G
V
C
K
3
3

6
5

ϕ
r
k

Y
es

0
.0
6
9
s

N
G
V
C
K
3
4

5
9
9
0

ϕ
d
s

Y
es

9
.8
4
8
s

N
G
V
C
K
3
5

4
5
9
0

ϕ
d
s

Y
es

1
0
.1
7
8
s

N
G
V
C
K
3
6

8
2
5

ϕ
d
s

Y
es

2
.9
3
4
s

N
G
V
C
K
3
7

8
0

ϕ
r
k

Y
es

0
.9
9
8
s

N
G
V
C
K
3
8

1
5
0

ϕ
r
k

Y
es

1
.0
9
3
s

N
G
V
C
K
3
9

3
9
5

ϕ
r
k

Y
es

1
.0
4
8
s

m
fc
.d
ll

1
1
0

ϕ
r
k

N
o

2
.0
1
4
s

U
ed

it
3
2

9
8

ϕ
r
k

N
o

0
.9
2
6
s

w
ec
h
a
t.
ex
e

1
2
2
5
2

ϕ
r
k

N
o

4
5
.1
4
7
s

m
fc
.d
ll

1
1
0

ϕ
s
w

N
o

2
4
.5
7
1
s

U
ed

it
3
2

9
8

ϕ
s
w

N
o

2
.5
7
2
s

w
ec
h
a
t.
ex
e

1
2
2
5
2

ϕ
s
w

N
o

6
8
.3
2
7
s

m
fc
.d
ll

1
1
0

ϕ
a
v

N
o

1
9
.1
3
2
s

U
ed

it
3
2

9
8

ϕ
a
v

N
o

3
6
.1
7
6
s

w
ec
h
a
t.
ex
e

1
2
2
5
2

ϕ
a
v

N
o

5
7
.1
2
9
s

m
fc
.d
ll

1
1
0

ϕ
d
s

N
o

7
.7
4
6
s

U
ed

it
3
2

9
8

ϕ
d
s

N
o

6
.5
2
9
s

w
ec
h
a
t.
ex
e

1
2
2
5
2

ϕ
d
s

N
o

5
4
.3
7
3
s

g
a
m
e.
ex
e

3
4
3
2
5

ϕ
r
k

N
o

8
2
.4
2
4
s

cy
cl
e.
ex
e

9
0
1
4

ϕ
r
k

N
o

4
2
.5
5
5
s

ca
le
n
d
er
.e
x
e

8
9
2

ϕ
r
k

N
o

3
5
.0
3
9
s

g
a
m
e.
ex
e

3
4
3
2
5

ϕ
d
s

N
o

6
0
.1
1
9
s

cy
cl
e.
ex
e

9
0
1
4

ϕ
d
s

N
o

7
3
.3
0
6
s

ca
le
n
d
er
.e
x
e

8
9
2

ϕ
d
s

N
o

4
2
.1
4
8
s

g
a
m
e.
ex
e

3
4
3
2
5

ϕ
a
v

N
o

1
2
6
.0
3
7
s

cy
cl
e.
ex
e

9
0
1
4

ϕ
a
v

N
o

1
1
0
.1
9
1
s

ca
le
n
d
er
.e
x
e

8
9
2

ϕ
a
v

N
o

6
5
.9
8
3
s

g
a
m
e.
ex
e

3
4
3
2
5

ϕ
s
w

N
o

6
1
.2
5
4
s

cy
cl
e.
ex
e

9
0
1
4

ϕ
s
w

N
o

5
1
.0
2
6
s

ca
le
n
d
er
.e
x
e

8
9
2

ϕ
s
w

N
o

2
7
.1
0
5
s

T
a
b
le

3
:
E
x
p
er
im

en
ta
l
re
su

lt
s

29

our tool McAfee Norman BitDefender Kinsoft Avira eScan Kaspersky Qihoo360 Baidu Avast Symantec
100% 24.8% 19.5% 31.2% 9.7% 34.1% 21.9% 53.1% 51.7% 1.4% 68.3% 82.4%

Table 4: Detection rate: Our tool vs. well known antiviruses

SM-PDSs to check the properties ϕrk, ϕds, and ϕsw. It can be seen that apply-
ing our direct LTL model checking algortihm is more efficient. Furthermore, the895

appending virus formula ϕav cannot be solved using multiple pre∗ queries. Our
direct LTL model-checking algorithm is needed in this case. Note that some of
the malwares we considered in our experiments are appending viruses. Thus,
our algorithm and our implementation are crucial to be able to detect these
malwares.900

5.2.3. Comparison with well-known antiviruses.

We compare our tool against well-known and widely used antiviruses. Since
known antiviruses update their signature database as soon as a new malware is
known, in order to have a fair comparision with these antiviruses, we need to
consider new malwares. We use the sophisticated malware generator NGVCK905

available at VX Heavens [32] to generate 205 malwares. We obfuscate these mal-
wares with self-modifying code, and we fed them to our tool and to well known
antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360,
Baidu, Avast, and Symantec. Our tool was able to detect all these programs
as malicious, whereas none of the well-known antiviruses was able to detect910

all these malwares. Table 4 reports the detection rates of our tool and the
well-known anti-viruses.

6. Conclusion and discussion

In this paper, we propose a direct LTL model checking algorithm for SM-
PDSs. Our algorithm is based on reducing the LTL model checking problem915

to the emptiness problem of Self Modifying Büchi Pushdown Systems (SM-
BPDSs). Intuitively, we obtain this SM-BPDS by taking the product of the
SM-PDS with a Büchi automaton accepting an LTL formula φ. Then, we solve
the emptiness problem of an SM-BPDS by computing its repeating heads. This
computation is based on computing labelled pre∗ configurations by applying a920

saturation procedure on labelled finite automata.
We implemented our techniques in a tool for self-modifying code analysis.

We successfully used our tool to model-check more than 900 self-modifying
binary codes. In particular, we applied our tool for malware detection, since
malwares usually use self-modifying instructions, and since malicious behaviors925

can be described by LTL formulas. In our experiments, our tool was able to
detect 895 malwares and to prove that 200 benign programs were benign. It
was also able to detect several malwares that well-known antiviruses such as
Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to
detect.930

Malware detection is nowadays a big challenge. This work brings just a stone
to the building, and helps dealing with self-modifying code. However, a lot of
work remains to be done in order to have a robust tool for malware detection.
Indeed, as mentionned in Section 2.3.1, this work assumes that if instruction i1

30

is replaced by i2, then i1 and i2 must have the same number of operands. This935

of course does not hold for all malicious programs. Moreover, to disassemble
programs, we use Jakstab [26]. This tool has a lot of limitations and offers
sometimes rough translations, as discussed in [26]. Another limitation of our
tool is that currently it considers only the four malicious behaviors described
in Section 5.2.1. Several other malicious behaviors can be found in malwares.940

Thus, we need to study these behaviors and specify them as LTL formulas. To
this aim, we plan to apply machine learning techniques in order to extract the
maximum number of malicious behaviors from malwares.

References

[1] T.Touili, X.Ye, Reachability analysis of self modifying code, in: 2017 22nd945

International Conference on Engineering of Complex Computer Systems
(ICECCS), IEEE, 2017, pp. 120–127.

[2] A. Bouajjani, J. Esparza, O. Maler, Reachability Analysis of Pushdown
Automata: Application to Model Checking, in: International Conference
on Concurrency Theory (CONCUR), Springer, 1997, pp. 135–150.950

[3] J.Esparza, D.Hansel, P.Rossmanith, S.Schwoon, Efficient algorithms for
model checking pushdown systems, in: International Conference on Com-
puter Aided Verification (CAV), Springer, 2000, pp. 232–247.

[4] T.Touili, X.Ye, Ltl model checking of self modifying code, in: 2019 24th
International Conference on Engineering of Complex Computer Systems955

(ICECCS), IEEE, 2019, pp. 1–10.

[5] J.Bergeron, M.Debbabi, et al., Static detection of malicious code in exe-
cutable programs, Int. J. of Req. Eng 2001 (184-189) (2001) 79.

[6] G.Balakrishnan, T. Reps, N.Kidd, A.Lal, J.Lim, et al., Model checking x86
executables with codesurfer/x86 and WPDS++, in: International Confer-960

ence on Computer Aided Verification (CAV), Springer, 2005, pp. 158–163.

[7] P.Singh, A.Lakhotia, Static verification of worm and virus behavior in bi-
nary executables using model checking, in: IEEE Systems, Man and Cy-
bernetics SocietyInformation Assurance Workshop, 2003., IEEE, 2003, pp.
298–300.965

[8] J.Kinder, S.Katzenbeisser, C.Schallhart, H.Veith, Detecting malicious code
by model checking, in: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer, 2005, pp. 174–187.

[9] F.Song, T.Touili, Efficient malware detection using model-checking, in: In-
ternational Symposium on Formal Methods, Springer, 2012, pp. 418–433.970

[10] P. Beaucamps, I. Gnaedig, J. Marion, Behavior abstraction in malware
analysis, in: International Conference on Runtime Verification, Springer,
2010, pp. 168–182.

[11] F.Song, T.Touili, Ltl model-checking for malware detection, in: Interna-
tional Conference on Tools and Algorithms for the Construction and Anal-975

ysis of Systems (TACAS), Springer, 2013, pp. 416–431.

31

[12] H.Nguyen, T.Touili, CARET model checking for malware detection, in:
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software, 2017.

[13] K.Dam, T.Touili, Learning malware using generalized graph kernels, in:980

Proceedings of the 13th International Conference on Availability, Reliabil-
ity and Security, 2018, pp. 1–6.

[14] K.Dam, T.Touili, Precise extraction of malicious behaviors, in: 42nd An-
nual Computer Software and Applications Conference (COMPSAC), Vol. 1,
IEEE, 2018, pp. 229–234.985

[15] K.Dam, T.Touili, Malware detection based on graph classification, in:
ICISSP, 2017.

[16] H.Cai, Z.Shao, A.Vaynberg, Certified self-modifying code, ACM SIGPLAN
Notices 42 (6).

[17] S.Debray, K.Coogan, G.Townsend, On the semantics of self-unpacking mal-990

ware code, Tech. rep. University of Arizona, Computer Science.

[18] G.Bonfante, J. Marion, D.Reynaud-Plantey, A computability perspective
on self-modifying programs, in: International Conference on Software En-
gineering and Formal Methods (SEFM), IEEE, 2009, pp. 231–239.

[19] A.Bertrand, M.Matias, D.Koen, A model for self-modifying code, in: In-995

ternational Workshop on Information Hiding, Springer, 2006, pp. 232–248.

[20] S.Blazy, V.Laporte, D.Pichardie, Verified abstract interpretation tech-
niques for disassembling low-level self-modifying code, Journal of Auto-
mated Reasoning 56 (3) (2016) 283–308.

[21] K.Roundy, B.Miller, Hybrid analysis and control of malware, in: Inter-1000

national Workshop on Recent Advances in Intrusion Detection, Springer,
2010, pp. 317–338.

[22] K.Coogan, S.Debray, T.Kaochar, G.Townsend, Automatic static unpack-
ing of malware binaries, in: 2009 16th Working Conference on Reverse
Engineering, IEEE, 2009, pp. 167–176.1005

[23] K.Gyung, et al., Renovo: A hidden code extractor for packed executables,
in: Proceedings of the 2007 ACM workshop on Recurring malcode, 2007,
pp. 46–53.

[24] P.Royal, M.Halpin, et al., Polyunpack: Automating the hidden-code ex-
traction of unpack-executing malware, in: 22nd Annual Computer Security1010

Applications Conference (ACSAC’06), IEEE, 2006, pp. 289–300.

[25] S.Schwoon, Model-checking pushdown systems, Ph.D. thesis, Technische
Universität München, Universitätsbibliothek (2002).

[26] H. J.Kinder, Jakstab: A static analysis platform for binaries, in: Interna-
tional Conference on Computer Aided Verification (CAV), Springer, 2008.1015

32

[27] M.Vardi, P.Wolper, Reasoning about infinite computations, Inf. Comput.
115 (1).

[28] P.Gastin, D.Oddoux, Fast ltl to büchi automata translation, in: Interna-
tional Conference on Computer Aided Verification (CAV), Springer, 2001.

[29] U. Tool, Automated unpacking: A behaviour based approach, https://1020

github.com/malwaremusings/unpacker.

[30] VirusShare, vxshare, https://virusshare.com.

[31] S.Cutler, malshare, https://malshare.com.

[32] V.Heaven, V.heavens, http://vxer.org/lib/.

33

https://github.com/malwaremusings/unpacker
https://github.com/malwaremusings/unpacker
https://github.com/malwaremusings/unpacker
https://virusshare.com
https://malshare.com
http://vxer.org/lib/

	Introduction
	Self-Modifying Pushdown Systems
	Definition
	SM-PDS vs. PDS
	Modeling self-modifying code with SM-PDSs
	Self-modifying instructions
	From self-modifying code to SM-PDS

	 LTL Model-Checking of SM-PDSs
	The linear-time temporal logic LTL
	Self Modifying Büchi Pushdown Systems
	From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-BPDSs

	The Emptiness Problem of SM-BPDSs
	The Head Reachability Graph G
	Labelled configurations and labelled BP-automata
	Computing pre*(to.("426830A p',"526930B ,'))to.
	Example
	Proof

	Computing the Head Reachability Graph G

	Experiments
	Our approach vs. standard LTL for PDSs
	Malicious Behavior Detection on Self-Modifying Code
	Specifying Malicious Behaviors using LTL.
	Applying our tool for malware detection.
	Comparison with well-known antiviruses.

	Conclusion and discussion

