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Abstract

Self modifying code is code that can modify its own instructions during the ex-
ecution of the program. It is extensively used by malware writers to obfuscate
their malicious code. Thus, analysing self modifying code is nowadays a big
challenge. In this paper, we consider the LTL model-checking problem of self
modifying code. We model such programs using self-modifying pushdown sys-
tems (SM-PDS), an extension of pushdown systems that can modify its own set
of transitions during execution. We reduce the LTL model-checking problem to
the emptiness problem of self-modifying Biichi pushdown systems (SM-BPDS).
We implemented our techniques in a tool that we successfully applied for the
detection of several self-modifying malware. Our tool was also able to detect sev-
eral malwares that well-known antiviruses such as BitDefender, Kinsoft, Avira,
eScan, Kaspersky, Qihoo-360, Baidu, Avast, and Symantec failed to detect.

Keywords: malware detection, model checking, automata

1. Introduction

Binary code presents several complex aspects that cannot be encountred
in source code. One of these aspects is self-modifying code, i.e., code that can
modify its own instructions during the execution of the program. Self-modifying
code makes reverse code engineering harder. Thus, it is extensively used to
protect software intellectual property. It is also heavily used by malware writers
in order to make their malwares hard to analyse and detect by static analysers
and anti-viruses. Thus, it is crucial to be able to analyse self-modifying code.

There are several kinds of self-modifying code. In this work, we consider
self-modifying code caused by self-modifying instructions. These kind of
instructions treat code as data. This allows them to read and write into code,
leading to self-modifying instructions. These self-modifying instructions
are usually mov instructions, since mov allows to access memory and read and
write into it.

Let us consider the example shown in Figure . For simplicity, the addresses’
length is assumed to be 1 byte. In the right box, we give, respectively, the binary
code, the addresses of the different instructions, and the corresponding assembly
code, obtained by translating syntactically the binary code at each address. For
example, Oc is the binary code of the jump jmp. Thus, Oc 02 is translated to
jmp 0x2 (jump to address 0x2). The second line is translated to push 0x9,
since £f is the binary code of the instruction push. The third instruction mov
0x2 Oxc will replace the first byte at address 0x2 by 0xc. Thus, at address 0x2,
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ff 09 is replaced by Oc 09. This means the instruction push 0x9 is replaced
by the jump instruction jmp 0x9 (jump to address 0x9), etc. Therefore, this
code is self-modifying: the mov instruction was able to modify the instructions
of the program via its ability to read and write the memory. If we study this
code without looking at the semantics of the self-modifying instructions, we will
extract from it the Control Flow Graph CFG a that is in the left of the figure,
and we will reach the conclusion that the call to the API function CopyFileA at
address 0x9 cannot be made. However, you can see that the correct CFG is the
one on the right hand side CFG b, where the call to the API function CopyFileA
at address 0x9 can be reached. Thus, it is very important to be able to take
into account the semantics of the self-modifying instructions in binary code.

0x0 jmp 0x2 0x0 jmp 0x2

0x2 push 09 } [ 0x2 jmp 09 } [ 0x2 push 09 }

0x4 mov 0x2 Oxc

Binary Codes address Assembly

. After Execution of
0c 02 0x0  jmp 0x2 ™0 e

09 0x2  push0x9 —  jmp 0x9

0x4 mov 0x2 Oxc c6020c Ox4 mov0x2 Oxc
Oc 02 0x7  jmp 0x2
0x7 jmp 0x2

e832f6 ffff 0x9 call CopyFileA
0x9 call CopyFileA

0x7 jmp 0x2
0x9 call CopyFileA

CFGa CFG b
CFGs

Figure 1: An Example of a Self-modifying Code

In this paper, we consider the LTL model-checking problem of self-modifying
code. To this aim, we use Self-Modifying Pushdown Systems (SM-PDSs) [f]
to model self-modifying code. Indeed, SM-PDSs were shown in [0] to be an
adequate model for self-modifying code since they allow to mimic the program’s
stack while taking into account the self-modifying semantics of the transitions.
This is very important for binary code analysis and malware detection, since
malwares are based on calls to API functions of the operating system. Thus,
antiviruses check the API calls to determine whether a program is malicious or
not. Therefore, to evade from these antiviruses, malware writers try to hide the
API calls they make by replacing calls by push and jump instructions. Thus,
to be able to analyse such malwares, it is crucial to be able to analyse the
program’s stack. Hence the need to a model like pushdown systems and self-
modifying pushdown systems for this purpose, since they allow to mimic the
program’s stack.

Intuitively, a SM-PDS is a pushdown system (PDS) with self-modifying rules,
i.e., with rules that allow to modify the current set of transitions during exe-
cution. This model was introduced in [l] in order to represent self-modifying
code. In [0], the authors have proposed algrithms to compute finite automata
that accept the forward and backward reachability sets of SM-PDSs. In this
work, we tackle the problem of LTL model-checking of SM-PDSs. Since SM-
PDSs are equivalent to PDSs [[], one possible approach for LTL model checking
of SM-PDS is to translate the SM-PDS to a standard PDS and then run the

LTL model checking algorithm on the equivalent PDS [2, B]. But translation
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from a SM-PDS to a standard PDS is exponential. Thus, performing the LTL
model checking on the equivalent PDS is not efficient.

To overcome this limitation, we propose a direct LTL model checking algo-
rithm for SM-PDSs. Our algorithm is based on reducing the LTL model checking
problem to the emptiness problem of Self Modifying Biichi Pushdown Systems
(SM-BPDS). Intuitively, we obtain this SM-BPDS by taking the product of the
SM-PDS with a Biichi automaton accepting an LTL formula . Then, we solve
the emptiness problem of an SM-BPDS by computing its repeating heads. This
computation is based on computing labelled pre* configurations by applying a
saturation procedure on labelled finite automata.

We implemented our algorithm in a tool. Our experiments show that our
direct techniques are much more efficient than translating the SM-PDS to an
equivalent PDS and then applying the standard LTL model checking for PDSs
[2, B]. Moreover, we successfully applied our tool to the analysis of 892 self-
modifying malwares. Our tool was also able to detect several self-modifying
malwares that well-known antiviruses like BitDefender, Kinsoft, Avira, eScan,
Kaspersky, Qihoo-360, Baidu, Avast, and Symantec were not able to detect.

This paper is an expanded version of the conference paper [4].
Compared to [@], this journal version includes the proofs of all our
results (no proof is provided in [4]).

Related Work. Model checking and static analysis approaches have been
widely used to analyze binary programs, for instance, in [B, 8, [, 8, 9]. Temporal
Logics were chosen to describe malicious behaviors in [I0, B, G, [0, T2]. However,
these works cannot deal with self-modifying code.

POMMADE [4, (] is a malware detector based on LTL and CTL model-
checking of PDSs. STAMAD (i3, (4, 5] is a malware detector based on PDSs
and machine learning. However, POMMADE and STAMAD cannot deal with
self-modifying code.

Cai et al. [I6] use local reasoning and separation logic to describe self-
modifying code and treat program code uniformly as regular data structure.
However, [I6] requires programs to be manually annotated with invariants. In
[7], the authors propose a formal semantics for self-modifying codes, and use
that to represent self-unpacking code. This work only deals with packing and
unpacking behaviours. Bonfante et al. [I8] provide an operational semantics for
self-modifying programs and show that they can be constructively rewritten to
a non-modifying program. However, all these specifications [IR, [, I7] are too
abstract to be used in practice.

In [T9], the authors propose a new representation of self-modifying code
named State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends stan-
dard control flow graphs with a new data structure, keeping track of the possible
states programs can reach, and with edges that can be conditional on the state
of the target memory location. It is not easy to analyse a binary program only
using its SE-CFG, especially that this representation does not allow to take into
account the stack of the program.

The authors in [20] propose abstract interpretation techniques to compute
an over-approximation of the set of reachable states of a self-modifying pro-
gram, where for each control point of the program, an over-approximation of
the memory state at this control point is provided. Static and dynamic analysis
techniques are combined to analyse self-modifying programs in [Z1] . Unlike our
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approach, these techniques [20, 21] cannot handle the program’s stack.
Unpacking binary code is also considered in [22, 23, 24, 7). These works do
not consider self-modifying mov instructions.

Outline. The rest of the paper is structured as follows: Section 2 recalls
the definition of Self Modifying pushdown systems. LTL model checking and
SM-BPDSs are defined in Section 3. Section 4 solves the emptiness problem of
SM-BPDS. Finally, the experiments are reported in Section 5.

2. Self-Modifying Pushdown Systems

2.1. Definition
We recall in this section the definition of Self-modifying Pushdown Systems

[].

Definition 1. A Self-modifying Pushdown System (SM-PDS) is a tuple P =
(P,T,A,A,), where P is a finite set of control points, T is a finite set of stack
symbols, A C (P xT') x (P xT'*) is a finite set of transition rules, and A, C
Px(AUA,) x (AUA,) X P is a finite set of modifying transition rules. If
((p, ), @, w)) € A, we also write (p,v) — (p,w) € A. If (p,r1,72,p') € A,

(r1,m2)

we also write p ———— p’ € A.. A Pushdown System (PDS) is a SM-PDS
where A, = (.

Intuitively, a Self-modifying Pushdown System is a Pushdown System that
can dynamically modify its set of rules during the execution time: rules A
are standard PDS transition rules, while rules A, modify the current set of
transition rules: (p,7y) < (p/,w) € A expresses that if the SM-PDS is in control

point p and has v on top of its stack, then it can move to control point p’, pop
(r1,72)

~ and push w onto the stack, while p ———— p’ € A, expresses that when the
PDS is in control point p, then it can move to control point p’, remove the rule
r1 from its current set of transition rules, and add the rule rs.

Formally, a configuration of a SM-PDS is a tuple ¢ = ((p, w), ) where p € P
is the control point, w € I'* is the stack content, and § C A U A, is the
current set of transition rules of the SM-PDS. 6 is called the current phase of
the SM-PDS. When the SM-PDS is a PDS, i.e., when A. = (), a configuration
is a tuple ¢ = ({(p,w), A), since there is no changing rule, so there is only one
possible phase. In this case, we can also write ¢ = (p,w). Let C be the set
of configurations of a SM-PDS. A SM-PDS defines a transition relation =p
between configurations as follows: Let ¢ = ({p, w), 8) be a configuration, and let
r be a rule in 6, then:

1. if r € A, is of the form r = p <M> p’, such that r; € 6, then
((p,w),0) =p ({(p/,w),0"), where 0 = (0\{r1})U{r2}. In other words, the
transition rule r updates the current set of transition rules 6 by removing
r1 from it and adding ro to it.

2. if r € A is of the form r = (p,7) — (', w’) € A, then ((p,yw),0) =p
((p', w'w), ). In other words, the transition rule r moves the control point
from p to p’, pops 7 from the stack and pushes w’ onto the stack. This
transition keeps the current set of transition rules 6 unchanged.
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Let =% be the transitive, reflexive closure of =p and :>7t. be its transitive
closure. An execution (a run) of P is a sequence of configurations © = coc;...
s.t. ¢ =p ci41 for every i > 0. Given a configuration ¢, the set of imme-
diate predecessors (resp. successors) of ¢ is prep(c) = {¢ € C : ¢ =p ¢}
(resp. postp(c) = {¢ € C : ¢ =p }). These notations can be generalized
straightforwardly to sets of configurations. Let pre}, (resp. post}) denote the
reflexive-transitive closure of prep (resp. postp). We remove the subscript P
when it is clear from the context.

We suppose w.l.o.g. that rules in A are of the form (p,v) — (p/,w) such

(r1,72)

that |w| < 2, and that the self-modifying rules r = p p’ in A, are such
that 7 # r1. Note that this is not a restriction, since for a given SM-PDS, one
can compute an equivalent SM-PDS that satisfies these conditions [ .

Example 1. Let P = (P,T',A,A.) be a SM-PDS where P = {p1,p2,p3,p4},
D= {v,7,7} A ={r: (pr.,7) = (p2.7271): 72 : (P2,72) = (p3.€),73 ¢

(r1,r3)

(pa;71) = (p2,7273) ), Ac = {r' : p3 ——— pa}. Let co = ((p1,717M),60)

where Op = {ry,r2,7"}. Applying rule i, we get ((p1,7171),60) =P ((P2,V27171),00)-

Then, applying rule 13, we get ((p2.127):00) =p ((ps717m):00).  Then,
applying rule ', we get ({ps3,1171),00) =p ((p1,7171),61) where 1" is self-
modifying, thus, it leads the SM-PDS from phase 8y = {r1,r2,7'} to phase §; =
Oo\{r1}U{rs} = {ra,r3,7'}. Then, applying rule r3, we get ({ps, 171),01) =p
((p2,727371),61). Then, applying rule ro again, we get ((p2,727371),01) =p
((p3;y371), 01)-

2.2. SM-PDS vs. PDS
Let P = (P,T', A, A.) be a SM-PDS. It was shown in [l that:

1. P can be described by an equivalent pushdown system (PDS). Indeed,
since the number of phases is finite, we can encode phases in the con-
trol point of the PDS. However, this translation is not efficient since the
number of control points of the equivalent PDS is | P| - 20UAIFIAD)

2. P can also be described by an equivalent Symbolic pushdown system [25],
where each SM-PDS rule is represented by a single, symbolic transition,
where the different values of the phases are encoded in a symbolic way us-
ing relations between phases. This translation is not efficient neither since
the size of the relations used in the symbolic transitions is 20(AF1AD,

2.8. Modeling self-modifying code with SM-PDSs

2.8.1. Self-modifying instructions

There are different techniques to implement self-modifying code. We con-
sider in this work code that uses self-modifying instructions. These are in-
structions that can access the memory locations and write onto them, thus
changing the instructions that are in these memory locations. In assembly, the
only instructions that can do this are the mov instructions. In this case, the
self-modifying instructions are of the form mov ! v, where [ is a location of the
program that stores executable data and v is a value. This instruction replaces
the value at location ! (in the binary code) with the value v. This means if at
location [ there is a binary value v’ that is involved in an assembly instruction
11, and if by replacing v’ by v, we obtain a new assembly instruction ¢, then
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the instruction ¢; is replaced by i5. E.g., £f is the binary code of push, 40 is
the binary code of inc, Oc is the binary code of jmp, c6 is the binary code of
mov, etc. Thus, if we have mov [ £f, and if at location [ there was initially the
value 40 01 (which corresponds to the assembly instruction inc %edx), then 40
is replaced by ff, which means the instruction inc %edx is replaced by push
01. If at location [ there was initially the value c6 01 02 (which corresponds to
the assembly instruction mov edx 0x2), then c6 is replaced by ££f, which means
the instruction mov edx 0x2 is replaced by push 02.

Note that if the instructions 7; and i do not have the same number of
operands, then mov [ v will, in addition to replacing i; by i, change several
other instructions that follow ;. Currently, we cannot handle this case, thus
we assume that ¢; and i5 have the same number of operands.

Note also that mov [ v is self-modifying only if [ is a location of the program
that stores executable data, otherwise, it is not; e.g., mov eax v does not change
the instructions of the program, it just writes the value v to the register eax.
Thus, from now on, by self-modifying instruction, we mean an instruction of the
form mov [ v, where [ is a location of the program that stores executable data.
Moreover, to ensure that only one instruction is modified, we assume that the
corresponding instructions i; and iy have the same number of operands.

2.3.2. From self-modifying code to SM-PDS

We show in what follows how to build a SM-PDS from a binary program.
We suppose we are given an oracle O that extracts from the binary code a
corresponding assembly program, together with informations about the values
of the registers and the memory locations at each control point of the program.
In our implementation, we use Jakstab [P6] to get this oracle. We translate
the assembly program into a self-modifying pushdown system where the control
locations store the control points of the binary program and the stack memics
the program’s stack. The non self-modifying instructions of the program define
the rules A of the SM-PDS (which are standard PDS rules), and can be obtained
following the translation of [d] that models non self-modifying instructions of
the program by a PDS.

As for the self-modifying instructions of the program, they define the set
of changing rules A.. As explained above, these are instructions of the form
mov | v, where [ is a location of the program that stores executable data. This
instruction replaces the value at location ! (in the binary code) with the value
v. Let 41 be the initial instruction involving the location [, and let i3 be the
new instruction involving the location I, after applying the mov [ v instruction.
As mentioned previously, we assume that i; and 75 have the same number of
operands (to ensure that only one instruction is modified). Let r1 (resp. r2) be
the SM-PDS rule corresponding to the instruction ; (resp. i2). Suppose from
(r1,m2)

control point n to n/, we have this mov [ v instruction, then we add n !

to A.. This is the SM-PDS rule corresponding to the instruction mov [ v at
control point n.
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3. LTL Model-Checking of SM-PDSs

3.1. The linear-time temporal logic LTL

Let At be a finite set of atomic propositions. LTL formulas are defined as
follows (where A € At):

o= Al | 1V Xo|piUgps

Formulae are interpreted on infinite words over 24%. Let w = w’w!... be an

infinite word over 24t. We write w; for the suffix of w starting at w’. We denote
w = @ to express that w satisfies a formula ¢:

whEA = Acuwd

wE-p <= wkeyp

wEp1Vpr <= wE @1 orw = o

wEXp <= wiEyp

whEepiUps <= Fi>0,w; = @2 and VO < j < i,w; = o1

The temporal operators G (globally) and F (eventually) are defined as fol-
lows: Fo=(AV-A)Uyp and Gy = ~F—p. Let W(p) be the set of infinite
words that satisfy an LTL formula ¢. It is well known that W (y) can be ac-
cepted by Biichi automata:

Definition 2. A Biichi automaton B is a quintuple (Q,T',n,qo, F) where @ is
a finite set of states, ' is a finite input alphabet, n C (Q x ' X Q) is a set
of transitions, qo € @ is the initial state and ' C Q 1is the set of accepting
states. A run of B on a word yoy1... € 'Y is a sequence of states qoq1qz... S.t.
Vi > 0, (g, Vi, qi+1) € M. An infinite word w is accepted by B if B has a run on
w that starts at qy and visits accepting states from F infinitely often.

Theorem. [Z7] Given an LTL formula o, one can effectively construct a Biichi
automaton B, which accepts W (p).

3.2. Self Modifying Biichi Pushdown Systems

Definition 3. A Self Modifying Biichi Pushdown Systems (SM-BPDS) is a
tuple BP = (P,I',A,A.,G) where P is a set of control locations, G C P is
a set of accepting control locations, A C (P x T') x (P x T'*) is a finite set of
transition rules, and A, C P x 28YA¢ x 28UAc » P s q finite set of modifying

(0,0")

transition rules of the form p ———— p' where 0,0’ C AU A,.
Let =pp be the transition relation between configurations as follows: Let
OCAUA,,yeT,wel™ andp € P, then

L Ifr:(p,y) — ', w') € A and r € 0, then ({p,yw),0) =pp ({p’,w'w),0).

(0,07)

2. Ifr:p——sp €A, 0Nl #0 and r € 0, then ({p,yw),0) =pp
((p/,yw),8") where 0 =\o U o’

A run m of BP is a sequence of configurations m = coci... s.t. ¢; =pp Cit1
for every i > 0. 7 is accepting iff it infinitely often visits configurations having
control locations in G.

Let ¢ and ¢ be two configurations of the SM-BPDS BP. The relation =jp
is defined as follows: ¢ =pp ¢ iff there exists a configuration ({g,u),0), g € G
s.t. ¢ =gp ((9,u),0) =fp /. We remove the subscript BP when it is clear
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from the context. We define = as follows: ¢ = ¢ iff there exists a sequence of
configurations co = gp ¢1 =>Bp ... =>Bp ¢ S.t. co=c and ¢; = .

A head of SM-BPDS is a tuple ({p,v),0) wherep € P, v €T and § C AUA.,.
A head ((p,7),0) is repeating if there exists v € I'* such that ({p,7),0) =%p
({p,yv),0). The set of repeating heads of SM-BPDS is called Reppp.

We assume w.l.o.g. that for every rule in A, of the form r : p ~'(U—U)> P,

r ¢ o. Note that this is not a restriction since a rule of the form r = p cﬂ) P

where r € o can be simulated by a set of rules that satisfy the above condition.

/

3.8. From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-
BPDSs

Let P = (P,T,A,A,) be a self modifying pushdown system. Let At be
a set of atomic propositions. Let v : P — 24% be a labelling function. Let
7 = ({po,wo), 00)((p1,w1),01)... be an execution of the SM-PDS P. Let ¢ be
an LTL formula over the set of atomic propositions At. We say that

T =y @ iff v(po)v(pr) - FE o

Let ({p,w),0) be a configuration of P. We say that ({p,w),0) =, ¢ iff P
has an execution 7 starting at ({p,w), 8) such that 7 =, ¢.

Our goal in this paper is to perform LTL model-checking for self-modifying
pushdown systems. Since SM-PDSs can be translated to standard (symbolic)
pushdown systems, one way to solve this LTL model-checking problem is to
compute the (symbolic) pushdown system that is equivalent to the SM-PDS
(see section E72), and then apply the standard LTL model-checking algorithms
on standard PDSs [?5]. However, this approach is not efficient (as will be
witnessed later in the experiments). Thus, we need a direct approach that
performs LTL model-checking on the SM-PDS, without translating it to an
equivalent PDS. Let B, = (Q, 24t 1. qo, F) be a Biichi automaton that accepts
W (p). We compute the SM-BPDS BP, = (P x Q,I',A’, A, G) by performing
a kind of product between the SM-PDS P and the Biichi automaton B, as
follows:

Lifr = (p,7) = (p,w) € A and (q,v(p),q") € n, then ((p,q),7) —
((p,q"),w) € A'. Let prod(r) be the set of rules of A’ obtained from
the rule r, i.e., rules of A’ of the form ((p,q),7) = {((p’,q’), w).

(r1,7m2) (o,0")

2. iffaruler =p—=p € A; and (¢,v(p),q’) € n, then (p,q) ———
(p',¢') € AL where o = prod(r1),0’ = prod(rg). Let prod(r) be the
set of rules of A’ obtained from the rule r, i.e., rules of A/ of the form

(0,0")
(pa Q) — (p/a q/)

3. G=PXF.

Remark. Note that aruler =p <M> p’ € A, generates rules of the form

(p,q) & (0',q") € AL, where o = prod(r1) and ¢’ = prod(rs) are sets of

rules. This is why we require that a Self Modifying Biichi Pushdown System
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has modifying transition rules of the form p ———— p’ where 0,0’ C AU A,
are sets of rules.

We can show that:

Theorem 3.1. Let ({p,w),d) be a configuration of the SM-PDSP. ({p,w),0) =,
@ iff BP, has an accepting run from ({(p,qo), w), prod(0)) where prod(8) is the
set of rules of AU A, obtained from the rules of 6 as described above.

Thus, LTL model-checking for SM-PDSs can be reduced to checking whether
a SM-BPDS has an accepting run. The rest of the paper is devoted to this
problem.

4. The Emptiness Problem of SM-BPDSs

From now on, we fix a SM-BPDS BP = (P,T', A, A, G). Following [3], we
can show that BP has an accepting run starting from a configuration c if and
only if from ¢, it can reach a configuration with a repeating head:

Proposition 1. A SM-BPDS BP has an accepting run starting from a con-
figuration ¢ if and only if there exists a repeating head ((p,7),0) such that
c=%p ((p,yw),0) for some w € I'*.

Proof: “ = 7: Let 0 = c¢ycy... be an accepting run starting at configuration
¢ where ¢g = ¢ and ¢; = ((p;, w;),0;). We construct an increasing sequence
of indices 4p,%1... with a property that once any of the configurations c;, is
reached, the rest of the run never changes the bottom |w;, |—1 elements of the
stack anymore. This property can be written as follows:

|wio|= min{Jw;| | j = 0}

|wg,, |= minf{|w;| | j > ix—1}, k> 1

Because BP has only finitely many different heads, there must be a head
({(p,7),0) which occurs infinitely often as a head in the sequence ¢;,¢;, .... More-
over, as some g € GG becomes a control location infinitely often, we can find a
subsequence of indices i, ,%;,, ... with the following property: for every k > 1,
there exist v, w € T'*

Cijk = (<pv 7w>a0) =" (<p, ’}/'UU)>,0) = Cijk+1

Because w is never looked at or changed in this path, we can have ((p,~),0) ="
((p,yv),8). This proves this direction of the proposition.

“

< 7: Because ((p,7),0) is a repeating head, we can construct the following
run for some u,v,w € I'*, 8/ C (AUA,) and g € G:

c=" ({(p,yw),0) =" ((g,uw),0') = ((p,yvw),0) =" ((g,uvw),0') =7 ((p, yvvw),0)
Since g occurs infinitely often, the run is accepting. O
Thus, since there exists an efficient algorithm to compute the pre* of SM-

PDSs [0], the emptiness problem of a SM-BPDS can be reduced to computing
its repeating heads.
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4.1. The Head Reachability Graph G

Our goal is to compute the set of repeating heads Repgp, i.e., the set of
heads ({p,7),0) such that there exists v € T'*, ((p,7),0) =" ({p,7v),0). Le.,
({p,7),8) =* ({p,yv),0) s.t. this path goes through an accepting location in G.
To this aim, we will compute a finite graph G whose nodes are the heads of BP
of the form ((p,7),6), where p € P, v € T' and § C A U A,; and whose edges
encode the reachability relation between these heads. More precisely, given
two heads ((p,7),6) and ((p',v),¢"), ((p,7),0) LN ((p',7"),0") is an edge of the
graph G means that the configuration ({p, ), 8) can reach a configuration having
((p',7),0") as head, i.e., it means that there exists v € T'* s.t. ((p,7),0) =*
((p',v'v),0"). Moreover, we need to keep the information whether this path
visits an accepting location in G or not. This information is recorded in the
label of the edge b: b = 1 means that the path visits an accepting location in G,
i.e. that ((p,7),0) =" ({(p',7'v),0"). Otherwise, b = 0. Therefore, if the graph G
contains a loop from a head ((p,7), ) to itself such that this loop goes through
an edge labelled by 1, then ((p,7v),0) is a repeating head. Thus, computing
Reppp can be reduced to computing the graph G and finding 1-labelled loops
in this graph.

More precisely, we define the head reachability graph G as follows:

Definition 4. The head reachability graph G is a tuple (P xT x 22V {0, 1}, )
such that ((p,7),0) KN ((p',v"),0") is an edge of § iff:
1. there exists a transition re : p & peEINA,vy=+,0=0\ocUd,
andb=1iff p e G;
2. there exists a transition (p,v) — (P',7') € 6NA,0 =6 and b = 1 iff
peG;
3. there exists a transition (p,v) <= (", 1Y) € ONA, forv, €T, p’ € P,
st (0", m),0) =%p ((P,€),0), andb=1iff pe G or ((p",m),0) =%p
((p',6),0")

Let G be the head reachability graph. We define — as follows: let ((p,7),0)
and ((p',v),0") be two heads of BP. We write ((1;,7),9) = ((p',7),¢) if 3
booleans by, by...b; € {0,1}, 3 heads ((pj,~;),0;),0 < j <1 ls,t. G contains the
path ((o,70),00) =5 ((p1,71),01) 2 .. =5 ((pi, 7). 0) where ((po,0), 00) =
((,7),0) and ((pi, i), 0:) = ((v',7"),0").

Let —* be the reflexive transitive closure of the graph relation i>, and let —"
be defined as follows: Given two heads ((p,7),0) and ((p',7'),0"), ((p,7),0) ="
((p',v),0") iff there is in G a path between ((p,7),0) and ((p',7'),0") that goes
through a 1-labelled edge, i.e., iff there exist heads ((p1,71),61) and ((p2,72),62)
st ((0,7),0) = ((p1.71),01) = ((p2,72),02) = (0,7, 0.

We can show that:

Theorem 4.1. Let BP = (P,I', A, A., G) be a self-modifying Biichi pushdown
system, and let G be its corresponding head reachability graph. A head ((p,7), )
of BP is repeating iff G has a loop on the node ((p,7),0) that goes through a
1-labeled edge.

10



To prove this theorem, we first need to prove the following lemma:

Lemma 1. The relations —* and —" have the following properties: For any
heads ((p,),61) and ((p',7),02):

o (a) ((p,7),01) =" ((0,7"), 02) iff ((p;7),01) =" ((p's7'v),02) for some v €
F*

3

@

(b) (F(f,v)ﬁl) =" ((0',7),02) iff ((p,7),01) =" ((p/,7'v),02) for some v €

Proof: “=7: Assume ((p,7), 91) ((p',7),02). We proceed by induction on

385 1.

(a) Basis. ¢ = 0. In this case, ((p,7),01) = ((¢p',7'),02), then we can get
(7). 01) =" ({p,7), 01) = ((p', 7). 62)

Step. ¢ > 0. Then there exist p; € P,v” € I'* and ¢/ C A U A, such
that ((p,7),601) - ((p1,7"),0") — ((p',v),02). From the induction

30 hypothesis, there exists u € I'* such that ({p1,~y >,6V =* ((p',v'u), 02)
P, 7),01)

Since ((p,7),61) = ((p1,7"),0"), we have ( 1) =* ({p1,7"w),0") for
w € T, hence ((p,7),01) =* ((p, 7 uw), b:).

The property holds.

(b) ((p,7),601) =" ((p,7),01) cannot hold for the case i = 0.

305 Basis. i = 1. In this case, ((p,7),01) =" ((p’,7'),02), then we can get
p € G and ({p,7),01) =" ({p',7'),02). The property holds.

Step. i > 0. As done in the proof of part (a) of this lemma, there exists
p1,7" € 1,07 CAUA. st ((p,7),601) 7 ((p1,77),0") — (0 7), 02)-

Then if ((p, ) 01) =" ((p',7'), 02), either ((p1,7"),0") =" ((p',7),02) or

400 ((p,7), 91) ((p1,7"),0") holds. In the first case i.e. ((p1,7”),0') —"
((p',7),02), by the induction hypothesis, we can have ({p1,v”),0") =
((pla7lu>702)> hence, (<p7 7>a91) =" (<p/77/u>702) holds

The second case depends on the rule applied to get ((p, ), 91) ((p1,7v"),0")
according to Definition .
a0 - If this edge corresponds to a transition r. : p & p1 € 61,
then v = +”,6' = 6;\cUo’ and p € G. Since we can obtain
((p:7),01) =sp ((P1,7),0") =" ((P',7'uw),02) from part (a) and
p € G, then ((p,7),01) =" ((p1,7),0") =* ({p',7uw),02). This
implies that ((p,7),61) =" ((p’, ¥ v),02) for some v € I'*.

a10 - If this edge corresponds to a transition r : (p,y) < (p1,7”) € 61 NA,
then ¢ = 6, and p € G. Since we can obtain ((p,v),01) =pp
(p1.7"),01) =* (. 'w), 2) from pat (a) and p € G, then
((p,1),61) =7 ((p1,7"),61) =* ({sf,7/uw),6). This implies that
((p,7),61) =" ((p',7'v), b3) for some v € T*.

11
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- If this edge corresponds to a transition r : (p,7) < (", 11vy") €

61, then either p € G or ({p”,1),61) =" ((p1,€),0) holds. If
p € G, then we have ((p,7),01) =" ((p",117"),01). Otherwise,

(", v17"w),01) =" ({p1,7"w), d"). Since we can obtain ((p1,~7"),0") =

((p',~'u),02) from part (a). Therefore, ({p,7),61) =" ((p1,7"),0') ="
((p',7'u), 02). This implies that ((p,v),01) =" ((p',7'v), 62) for some
veI'™.

‘=" Assume ({p,7),0;) = (<p ~v'v), 6). We proceed by induction on i.

(a) Basis. ¢ = 0. In this case, v = € and ((p,7),01) = ((p',7'),02), then

((p,y

),01) =" ((p',7), 02) holds.

Step. ¢ > 0 Then there exist p; € P,u € I'* and 8/ C A U A, such that

((p,

(b) ((p:y

v),601) = ((pl7 u),0") =5 ((p',7'v),02). There are 2 cases:

1. Case @' = 6y : There must exist a rule r : (p,v) — (p1,u) € A

such that r € ¢ and |u| > 1. Let ! denote the minimal length of
the stack on the path from ({p1,u),61) to ((p’,7'v),603). Then u can
be written as u”v v’ where |u/| = [ — 1 (that means v’ will remain
on the stack for the path). Furthermore, there exists p”’ such that
({p1,u"), 91) =* ((p',€),0") for some 8”7 C (A.UA). We have

((p,7),61) = ((p”’ 'ylu> 0") for k < i. By the induction on 4, we
have ((p,v),601) =* ((p",71),0"). Because u' has to remain on the
stack for the rest of the path v is of the form v'u’ for some v’ € I'*.
That means ((p",71),0") = ((p',7"v > 02) for j < i. By the induc-
tion hypothesis, ( "), 0") =* ((p',7'),02) holds. Moreover, we
have ((p,7),01) =" ((p"';71),0"), hence ((p,7),01) = ((¢',7"),02).

(0,0")

. Case 0’ # 6, : There must be a rule . : p ———— p; € A, such

that 7. € 01 and o N6y # 0, then 8 = 61 \ cUc’. After the ex-
ecution of r., the content of the stack will remain the same, thus,
w = 7. Then ((p,7),61) & ((p1,7),0) = ((/,'v),05). By the

i—1

induction hypothesis to ((p1,7),8) = ((p',7'v),02), we can obtain

that ((p1,7),0") =* ((¢/,7),62). Since ((p,7),61) = ((p1,7)0"),
then we can have a path ((p,7),01) = ((p1,7),0") —=* ((p',7),02)
that implies ((p,7),61) =* ((p’,7'),02). The property holds.

),01) =" ({p,+'v),61) is impossible in 0 steps.

Basis. i = 1. ({p,7),01) =" ({p,7),01), then p € G. Thus, ((p,7),61) —

((ps

v), 61) holds.

Step. i > 1. ((p,7),61) =" ((p',7'v),02) holds, then there exist p; €

Piu € T* and 0 C A U A, such that ((p,7),61) N ({p1,u),0") =

1

((p',9'v),02). Thus, either ((p,7),01) =" ({(p1,u),0') or ((p1,u),0") ="
({¢v',7'v), 62) holds.

The first case implies p € G. There are 2 cases:

12
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1. Case 0’ = 6 : then as in the previous proof of part (a), we can have
a path ((p,7),01) =" (", m),0") = ((¢p,7'),62). Since p € G,
we get by Definition 8 ((p, 7). 01) —* (0", 71),0") —* (¢/,7'), 02).
Thus, we have that ((p,v),01) =" ((p',7'),02). The property holds.

2. Case 0’ # 0;: then as in the previous proof of part (a), we can have
a path ((p,7), 91) = ((p1,7),0") =" ((¥',7'),02). Since p € G, we
get ((p,7),01) = ((p1,7),0") =* ((p',7'),62). Thus, we have that
((p,7), 01) =" ((p’,7"),02). The property holds.

In the second case, ((p1,u),0") =" ({p,7'v),02) holds. As previously,
there are 2 cases:
1. Case#' = 0, : then as in case (a) we have ((p1,u),61) =* ({p"",n1u),0")

and ((p",1),0") =" ((p,7'v"),02). I ((p1, u),01) =" ({p',7'v), b2),
then either ((p1,u),61) =" ((p”', y1u'),0") or ((p"',711),6") =" ({(p',7'v'), 02).

- If ((p1,u),601) =" ((p",mu'),0"), let v € T* st u = vy

and ((p1,u”),61) =" ((p"",¢€),8"), then, we have ((p,v),601) —

(0", 1),0"). We have ((p,7),01) = ((p "), ") for k< i.

By the induction on %, we have ((p,7),601) =* ((p"',71),6"). Be

cause v’ has to remain on the stack for the rest of the path, v

is of the form v’u’ for some v’ € T'*. That means ({p"’, 11 > ") 2
({p', 7'V}, 02) for j < i. By the induction hypothesis, ((p”’,71), 6"
((p',v),02) holds. Moreover, we have ((p,7),601) —* ((p"',71), 9”),
hence ((p,7), 91) *((p, ’), 2). Sowecanhaveapath(( v),0 )%*
((plllv’)/l)vo”) (( 3’7/)a02)7 thus we have that ((p7 7)301)
((#",7"), 02);
- IE((p",7),0") =" ({(p',4'0v'), 02), then by the induction hypoth-
esis we have ((p"’,71),0") =" ((p',7'),02). Thus, we can have a
path ((p,7),61) =* (", 711),0") =* ((v',7),02), then we have
'), 02)
)

%*

~—

),
that ((pa 7)701) - (( a02 ;
2. Case 0" # 0, : then ({p1,7),0") =" ({(p/,7'v)
hypothesis we have ((p1,7),0") =" ((p',7'), 02
(1, 7),60) = ((/,7'0),05). }
By the induction hypothesis to ({p1,7),0") = ((p',v ’U>,02) we can
obtain that ((p1,7),0') =* ((¢',7"),62). Since ((p,7),01) = (<p1,7>,0’)7

then we can have a path ((p,7v),01) — ((ph’y),ﬂ') =* ((p',v"),02).
Thus, we have that ((p,~), 91) =" ((p',v),02);

Thus, the property holds.

,02). By the induction
). Since ((p,7),61) =

Proof of Theorem Bl

We can now prove Theorem Bl

Proof: Let ((p,7v),0) be a repeating head, then there exists some v € I'*,0 C
A, UA such that ((p,7),0) =" ((p,7v),0). By Lemma [, this is the case if and
only if ((p,7),0) =" ((p,7),0). From the definition of —", that means that there

exist heads ((plm) 0') and ((pa,72),6") such that ((p,7),6) —* ((p1,7),0') =

((p2,72),0") =~ ((p,7),6)- Then ((p,7),0), ((pr,7),0') and ((p2,72),0") are all
in the same loop with a 1-labelled edge. Conversely, whenever ((p,~),#) is in

a component with such an edge, ((p,7v),0) =" ((p,7), 6) holds, then Lemma 0

13
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implies that ((p,7),0) =" ((p,yv),#) which means that ((p,~), ) is a repeating
head.
O

4.2. Labelled configurations and labelled BP-automata

To compute G, we need to be able to compute predecessors of configu-
rations of the form ((p,€),8’), and to determine whether these predecessors
were backward-reachable using some control points in G (item 3 in Defini-
tion @). To solve this question, we will label configurations ((p”,w),8) s.t.
(", w),0) =* ((p',€),0") by 1 if this path went through an accepting location
in G, ie., if ({(p",w),8) =" ((p',€),0"), and by 0 if not. To this aim, we define a
labelled configuration as a tuple [({p,w),8),b], s.t. ({p,w),#) is a configuration
and b € {0,1}.

Multi-automata were introduced in [2, B] to finitely represent regular infinite
sets of configurations of a PDS. Since a labelled configuration ¢ = [({(p, w), 9), ]
of a SM-PDS involves a PDS configuration (p, w), together with the current set
of transition rules (phase) 6, and a boolean b, in order to take into account the
phases 6, and these new 0/1-labels in configurations, we extend multi-automata
to labelled BP-automata as follows:

Definition 5. Let BP = (P,I'; A;A.,G) be a SM-BPDS. A labelled BP-automaton
is a tuple A = (Q,T,T,1,F) where T is the automaton alphabet, Q is a fi-
nite set of states, I C P x 28V%¢ C Q is the set of initial states, T C
Q x (T U{e}) x {0,1}) x Q is the set of transitions, F C Q is the set of
final states.

If (q,[y,b],q') € T, we write g M)T q'. We extend this notation in the obvious

way to sequences of symbols: (1) Vg € Q7qﬂ>T q, and (2) Vq,q' € Q,Vb €

{0,1},Vw € T* for w = 70...7n+1,qM>Tq’ iff 3qo,...,qn € Q,boy ..., b1 €

{0,1},b=0bpVb1V...Vb, 41 and ¢ 0,50l 40 ra,bu) Tq qn—>h"“’b"+1] rq. If
[w,b]

is a path of A.
A labelled configuration [({(p,w),#),b] is accepted by the automaton A iff

there exists a path (p,0) [v0,50) Tq1 GERLEY Tq2-~-an>an+1 in A such

that w = Y71 Yn, b=0bo Vb1 V...V by, (p,0) € I, and qn,1+1 € F. Let L(A)
be the set of labelled configurations accepted by A.

4.8. Computing pre* (((p’, €), 9’))

Given a configuration of the form ({p’,€),8’), our goal is to compute a la-
belled BP-automaton Ay (((p',€),6")) that accepts labelled configurations of
the form [c, b] where ¢ is a configuration and b € {0, 1} such that ¢ =* ((p/,€),8’)
(i.e., c € pre*(({(p',€),0'))) and b = 1 iff this path went through final control
points, i.e., ¢ =" ((p/,€),0"). Otherwise, b = 0.

Let p € P, we define B(p) = 1if p € G and B(p) = 0 otherwise. Ay~ (((p',€),6"))
(Q,I,T,1,F) is computed as follows: Initially, @ = I = F = {(p/,0')} and
T = (. We add to T transitions as follows:

14
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ay: I r = (p,v) = (p1,w) € A. If there exists in T a path (pi,0) M>Tq

(in case |w| = 0, we have w = €) with r € 6. Then, add (p,0) to I, and
((0:0), v, B(p) V¥, q) to T.

ag: ifr=p & p1 € A, and there exists in T a transition (py, H)L)Tq

0]
with r € 0, where v € I'. Then add (p, 6’) to I, and ((p, 0", [, B(p) V], q)
to T, for 6’ such that 6 = 6"\ o Uo’.

The procedure above terminates since there is a finite number of states
and phases. Note that by construction, F = {(p,0')}, and, since initially
Q ={,0)}, states of A, - (((p’,e),@')) are all of the form (p,d) for p € P
and 0 C AUA..

Let us explain the intuition behind rule («y). Let r = (p,v) < (p1,w) € A.
Let ¢ = ({p1,ww’),0) and ¢ = ({p,yw’),0). Then, if ¢ =* ((p,€),0’), then
necessarily, ¢ =* ((p,€),0’). Moreover, ¢ =" ((p',€),8') iff either ¢ ="
((p',€),0") or p € G (i.e. B(p) = 1). Thus, we would like that if the au-
tomaton A= ( ', e),0 )) accepts the labelled configuration [c, b] (where b = 1
means ¢ =" ((p,€),0")), then it should also accept the labelled configuration

[¢,bV B(p)] (bV B(p) =1 means ¢ =" ((p,€),0)). Thus, if the automaton

Apres ((p',€),0")) contains a path of the form m = (py,6) bobal, q hobel, qar

where ¢y € F that accepts the labelled configuration [c, b], then the automaton
should also accept the labelled configuration [¢/,bV B(p)]. This configuration is
[v,B(p)Vb1] rq [w’,b2]

T ¢f added by rule (aq).

(r1,m2)

Rule (a2) deals with modifying rules: Let r = p ———— p; € A.. Let

¢ = ({(p1,yw"),0) and ¢ = ({(p,yw'),0") st. 6 = 0"\{r1} U {ra}. Then, if
=* ((p/,€),80"), then necessarily, ¢ =* ((p,€),8"). Moreover, ¢’ =" ((p',€),6")
iff either ¢ =" ((p',€),0’) or p € G (i.e. B(p) = 1). Thus, we need to
impose that if the automaton Ape- (((',€),6')) contains a path of the form

(p1,0) i) T q Lo’ b2] r qf (where g5 € F) that accepts the labelled con-
figuration [c,b],b = by V by (b = 1 means ¢ =" ((p/,¢€),0’)), then necessarily,
the automaton A, (((p’ ,€),0 )) should also accept the labelled configuration
[v,B(p)Vbi] .

accepted by the run (p, 0)

[¢,bV B(p)]. This configuration is accepted by the run (p, ")

q MT ¢r added by rule (o).

4.3.1. Example

Let us illustrate the procedure by an example. Consider the SM-BPDS
BP = (P,T,A,A.,G) shown in the left (i.e. part a) of Fig.l where P =
{p1,p2,p3,0' }, A = {r1,7r9,73,74,75,76,77}, Ac = {r'} and G = {p2}. We show
how to compute a BP-automaton Ap..-(((p’,€),0’)). Let A be the automaton
that accepts the set {((p/,€),0")} with Q =T = F = {(p/,0")}. Initially, T is
empty. The result is obtained through the following steps:

1. First we note that (p’, ') ﬂ>T (p',0"),b = 0 holds. Since (p/,€) occurs
on the right hand side of rule r; € 6’ and r3 € 6, moreover, p; ¢ G i.e.
B(p1) =0and p’ ¢ G i.e. B(p') =0, then Rule (1) adds the transition

(p1,0") D22 0) with by = B(p1) Vb = 0 and (¢, 8") 220250 (0, 0)

with by = B(p/) Vb= 0.

15
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Figure 2: BP-automaton Apre+ (((p',€),6"))

2. Now that we have the path (p1,0") MT (»',0") MT (»,0"),b1=0

and by = 0, since o € §’, moreover, p, € G i.e. B(py) =1 then Rule (ay)

adds (ps,0") 220 (0/,0) with b= B(ps) Vb1 V by = 1.

3. Since we have (p1,6’) MT (p',8'), by =0 and rg € 6, moreover, py €

G i.e. B(pz) =1, then Rule (o) adds the transition (p2, 6’) MT (', 80)

4. Now we have (pq, 6’) MT (p',0'), by =1 and r; € ', moreover, ps € G

i.e. B(p2) =1, then Rule («;) adds the transition (p1,6’) M>T (', 0)

5. Now we have (po, 6') M)T (p',0"), by =1 and r5 € §', moreover, p' ¢ G

ie. B(p') =0, then Rule (o) adds the transition (p’,6") MT (', 0"

with b= B(p/) V by = 1.

6. Since we have (p2,6’) M)T (p',0") and (p2,0’) MT (p',0), by =

1,bo = 1, the self-modifying rule r’ € 6 can be applied. Moreover,

ps ¢ G ie. B(ps) = 0 Thus, Rule (a2) adds (ps,0:) M)T (p',6') and

(pg7 91) M)T (p/, 9/) where 0; = (9’\{’)"3}) U {’l"4} with b = B(p3) Vb =
1,b/ = B(p3) V b2 =1.

7. Now we have (ps, 01) MT (p',0'), by = 1and ry € 61, moreover, p; € G

i.e. B(p2) =1, then Rule (ay) adds the transition (pq, 6;) MT (p',8)

with b = B(pg) Vb =1.

b
8. Since (pa2,61) wa (p',0'), by = 1 and r5 € 01, moreover, ps € G i.e.

B(pz) = 1, then Rule (o) adds the transition (p’, 6;) MT (p',0") with
b= B(pg) \/b1 =1.
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9. We note that (p’,6;) MT (p',61), by = 0 holds. Since (p', €) occurs on

the right hand side of rule r; € 6y, moreover, p; ¢ G i.e. B(p1) = 0 and

' ¢ Gie B(p') =0, then Rule (1) adds the transition (py, 0;) -2

(p/, 9’) with b = B(pl) Vb =0.

10. Now we have (p1,61) MT (p',01), by = 0 and r¢ € 61, moreover,

p2 € G ie. B(p2) =1, then Rule (a;) adds the transition (pz,6;) b,

(p’,91) with b = B(pg) V b1 =1.

11. Now that we have the path (p1,6;) M>T (p',01) MT (p',0), since

r9 € 61, by = 0,by = 1, moreover, ps € G i.e. B(p2) = 1 then Rule (ay)

adds (p2,61) 22 (0/,0') with b= B(ps) V by V by = 1.
12. Since we have (pa, 01) MT (p',0), by =1 and r; € 61, Rule (o) adds

the transition (p1, 61) M)T (p',0") with b= B(p1) Vb = 1.

13. No further additions are possible. Thus, the procedure terminates.

The result is depicted in the right side of Fig.2

4.3.2. Proof

Before proving that our construction is correct, we introduce the following
definition:

Definition 6. Let A, ¢~ ((<p', €, 9')) = (Q,I, T, P, F) be the labelled P-automaton

computed by the saturation procedure above. In this section, we use — to de-
iT

note the transition relation of Ayrex (0, €),0')) obtained after adding i tran-

sitions using the saturation procedure above. Let us motice that due to the fact

that initially Q = {(p',0')} and due to rules (a1) and (az2) that at step i add

only transitions of the form (p,0) Lsr q for a state g that is already in the
automaton at step i — 1, then, states of Apre (((pﬂe),ﬂ')) are all of the form
(p,0) forpe P and 6 CAUA.,.

We can show that:

Lemma 2. Letp,p” € P and 6,0” C AUA.. Let w eT* and b€ {0,1}. If a

path (p,0) L2507 is in Apre- (0, €),607)), then ((p,w),0) =* ((p",€),0").

Moreover, if b =1, then ({p,w),0) =" ({p",€),0").

Proof: Initially, the automaton contains no transitions. Let ¢ be an index such
[w,b]

that (p,0) ——= (p”,6"”) holds. We proceed by induction on i.
i T

Basis. i =0, then (p”,0") —[—6(’)0—]> (p”,0"). This means p” =p', " =0'.

T
Since initially @ = {(p’,6")}, then ((p”,€),0”) =* ({(p”,¢€),0") always holds.
Step. i > 0. Let t = ((p1,61),[7,b1], (po.60)) be the i-th transition

added to Apre~ and j be the number of times that ¢ is used in the path

(p,@)% (p”,0"”). The proof is by induction on j. If j = 0, then we have
T

(p,H)Pw—’?> (p”,0") in the automaton, and we apply the induction hypothe-
i1 p

sis (induction on ) then we obtain ({p,w),0) =* ((p”,€),0"”). So assume
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that j > 0. Then, there exist u,v € I'*, ¥/,b"” € {0,1} such that w = u~yv,
b=0bv Vb VY and

[u,b'] [v,b1] [0,0"]
(p, 9)?>T(P1» 91)%T(P07 90)—i>T(PHa 0") (1)
The application of the induction hypothesis (induction on i) to (p, 6) Lb}
i1

(p1,61) gives that
((pr).0) = ((p1.€).61). moreover, if V' = 1, ((p.).0) =" (pr.e).01)  (2)

There are 2 cases depending on whether transition ¢ was added by saturation
rule aq or as.

1. Case t was added by rule a;: There exist po € P and wy € I'* such that
r=(p1,7y) = (p2,w2) € ANHy (3)
and Ape~ contains the following path:

’U,b”
(0.80) 5 (.67), b=baV B(p)  (4)

n' = (pa, ) 222
1—1 T

Applying the transition rule r, we get that

(<p1,’YU>,91) = ((pg,w2v>,01) (5)

By induction on j (since transition ¢ is used j — 1 times in 7’), we get from
(4) that

({p2, wav),01) =" ({(p”,€),0") moreover, if boyVb"" = 1, ({p2,wav),01) =" ((p”,€),0")

(6)

Putting (2), (5) and (6) together, we can obtain that

((p,w), 0) = ((p,uvv), 0) =" ((p1,7v), 01) = ((p2, w2v),01) =" ((p",€),0")
Furthermore, if b=V b; Vb’ =1, thend =1 or by Vb’ = 1.

For the first case, b’ = 1, then we can have ({p,u),0) =" ((p1,€),61)
from (2). Thus, we can obtain that ((p,uyv),0) =" ((p1,7v),61) =*
((p",€),0") i.e. ({p,w),0) =" ((p",¢€),0").

The second case by Vb’ = 1 ie. B(p1) Vb VI = 1 implies that
B(p1) = 1 (that means p; € G and ({p1,7v),01) =" ((p",€),0"”)) or
by Vb =1 (that implies ((pa, wav),01) =" ({p",€),0”) from (6)). There-
fore, ((p,w),01) =" ({p",€),0").

2. Case t was added by rule as : there exist po € P and 65 C A U A, such
that ,
r:pl(ﬂ)pQGACOGQ,QQZ(al\O—)Ual (7)
and the following path in the current automaton ( self-modifying rule
won’t change the stack) with r € 6 :
[v,b4] [v,b"]

(p2»92)ﬁ> (Po, o) %T (",60"), bi=B(p1) Vb (8)
= T

18
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Applying the transition rule, we can get from (7) that

(<p1,’}/’u>,91) = (<p2,’}/11>,92) (9)

We can apply the induction hypothesis (on j) to (8), and obtain

({p2,yv),02) =" ({p”,€),0"), moreover, if b)VV" =1, ({p2,yv),02) =" ({p”,

(10)
From (2),(9) and (10), we get

(<pa w>79) = (<p7 U’YU>79) =" (<P1a7v>a91) = (<p277v>792) =" (<p//7€>79”)
Furthermore, if b= Vb Vb’ =1, then b =1or by VI’ =1.

For the first case, b’ = 1, then we can have ({p,u),0) =" ((p1,¢€),61)
from (2). Thus, we can obtain that ((p,uyv),0) =" ({(p1,7v),01) =
((p",¢€),0") i.e. ({p,w),0) =" ((p”,€),0”). The second case by V"' =1
ie. B(p1)V by v =1 implies that B(p;) = 1 (that means p; € G and
((p1,70),01) =7 ((¢/,€),0')) ox by V' = 1 (that implis ((pa. 70),62) ="

((p",€),0") from (10)) i.e. ((p,w),01) =" ({p',€),0"). Therefore, we can

get that if b = 1, then ((p, w), 91) =" ((p”,€),0").

Lemma 3. If there is a labelled configuration [({p,w),8),b] such that ({p, w),0) =*
((p,€),0"), then there is a path (p,0) MT #',0') in Apre- (0, €),0")). More-

over, if ((p,w),8) =" ((p/.€),6'), then b= 1.

Proof: Assume ({p,w),6) - ((p',€),0"). We proceed by induction on 1.

Basis. i = 0. Then 6 = ¢',p' = p and w = €. Initially, we have that Q =

€

{(p',0")}, therefore, by the definition of —, we have (p',0") =1 (p',0").

cannot have ((p/,¢€),0") =" ((¢,€),0’) in O-step.
Step. i > 0. Then there exists a configuration ({(p”,u),6") such that

((p,w),0) = (" 1), 0") S (W, €),0")

‘We

We apply the induction hypothesis to ((p”’,u),0") = ((p',€),0"), and obtain

[u,b”]

that there exists in Ayre (9, €),60')) apath (p”,0”) ——7(p',0'). If ((p”

((v',e),0"), v =1.

,uy,0") =

Let (po,6o) be a state of Appex. Let wi,uq € T*,y € T, 45,07 € {0,1} be

such that w = ywy, u = wywy, b’ = b Vb and

( 1 9//) [u1,b( ] T(p0,90) [wi,by] T(p/79/)

(1)

There are two cases depending on which rule is applied to get ((p,w),0) =

(", u), 0").
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1. Case ({p,w),0) = ((p”,u),0") is obtained by a rule of the form: (p,~) —
(p"”,u1) € A. In this case, §” = 6. By the saturation rule ay, we have

(p, 0”)M>T(P0790)» bo = B(p) V by (2)

Putting (1) and (2) together, we can obtain that

= (p,0") 2L 1 (po, ) 2L (1, 07) (3)

Thus, (p,0”) MT(])’,G’) ie. (p,0) M>T(p', 0") where b = by V
by

2. Case ((p,w),0) = ({p”,u),0"”) is obtained by a rule of the form p &
p” € A.ie 0’ # 6. In this case, u; = . By the saturation rule fs, we
obtain that

(p, )22 1 (po, ) where 87 = O\{r1} U {r2},bo = B(p) V.  (4)
Putting (1) and (4) together, we have the following path
(0, 0) 2L (po, 80) 2Ly L 07 e, (p, ) (1, 6') where b = oV
(5)

Furthermore, if ({p,w),0) =" ((p',€),8’), then ({p,w),0) =" ((p",u),0"”) or
(P, w),0") =" (', €),0").

For the first case, ((p,w),0) =" ({(p’,u),0"), then p € G i.e. B(p) = 1. For
the second case, ((p”,u),0"”) =" ({p',€),0"), we can get b” =1 (from induction
hypothesis). Thus, b = by V by = B(p) Vbj Vb = B(p) V' = 1. Therefore, if
((p,w),8) =" ((p,€),0), then we can obtain b = 1.

O

From these two lemmas, we get:

Theorem 4.2. Let [c,b] be a labelled configuration. Then [c,b] is in L(Apre (0, €),0"))
iff c € pre*(((p’, e>,9’)). Moreover, ¢ =" ({p',€),0") iff b= 1.

Proof: Let [((p, w), #),b] be a labelled configuration of pre* (((p'7 €), 9’)) ). Then

((p,w),0) =* ({p',€),0"). By Lemma B, we can obtain that there exists a path

(p,60) 2 r (,0) i Apres (9, €),6)). So [((p, w),6), 8] is in L(Apre- (0, €),6))).
Moreover, if ((p,w),8) =" ((p,€),0"), then b = 1.

Conversely, let [((p, w), 6), b] be alabelled configuration accepted by A, e« (((p',€),6"))

i.e. there exists a path (p,0) MT (p',0") in Apre- (((p',€),6')). By Lemma

B, ({p,w),0) =* ({p,€),0) ie. ({p,w),0) € pre*(L(A)). Moreover, if b = 1,

(<p> w>’ 9) =" (<pla €), 9/)'
O
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no  4.4. Computing the Head Reachability Graph G

Based on the definition of the Head Reachability Graph G, and on Theorem
B2, we can compute G as follows. Initially, G has no edges.

/

of:

715

720

(0,0")

if ro: p——— p' € A, then for every phase 6 such that r. € 6 and

every v € I', we add the edge ((p,7),0) ), ((p',7),00) to the graph G,

where 6y =0\ cU0o’.

cif e (p,y) <= (po,v0) € A, then for every phase 6 such that r € 6, we add

the edge ((p,7),8) 22 ((po,70),8) to the graph G.

cif v (p,y) <= (po,v0Y') € A, then for every phase 6 such that r € 6,

we add to the graph G the edge ((p,7),0) B, ((po,70),0). Moreover,
for every control point p’ € P and phase ¢’ such that Ay« (((p',€),0"))

contains a transition of the form ¢t = (po, 6) M>T(p’, 0"), we add to the

graph G the edge ((p,7),0) B, ('), 0).

[y.0l [y, 1]

Figure 3: An Example of the SM-BPDS and the graph G
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Items o and of are obvious. They respectively correspond to item 1 and
item 2 of Definition @ (since B(p) = 1 iff p € G).  Item o4 is based on

Lemma 0 and on item 3 of Definition B. Indeed, it follows from Lemma O that

Apre (0, €),0")) contains a transition of the form (po, 6) MT(p’, 0’) implies

that ({po,70),0) =* ((p',€),0), and if b = 1, then ({pg,70),0) =" ((p',¢€), ).
Thus, in this case, the edge ((p,7),0) BE), ((p',7"),0") is added to G (item 3
of Definition #) since (p,~) < (po,Y07Y') € A.

Example: Let us illustrate the procedure by an example. Consider the pre-
vious example shown in Fig.B. Ap.c.(((p.c),0)) i shown in Fig. B (a) and
Apres(((p€),01)) 15 shown in Fig. B (b). The result G shown in Fig. 8 (c) is
obtained as follows:
1. Since 5 € ¢',r5 € 61 and p’ ¢ G i.e. B(p') = 0, Rule of adds edges
b b
((0',7),0') = ((p2,7), ) and ((p',7),01) = ((p2,7),61), b= B') =0
to G.
2. Because rg € 0’16 € 01 and py € G i.e. B(p2) = 1, Rule of, adds edges
b b
((p2,7"),0") = ((p1,m),0') and ((p2,7"),01) = ((p1,71),61), b= B(p2) =
1toG.
3. Because r7 € 0',r7 € 61 and p; ¢ G i.e. B(p1) = 0, Rule o, adds edges
b b
((P1,71),0") = ((p2:72),0') and ((p1,71),01) = ((p2,72),01), b= B(p1) =
0tog.
4. Because r4 € 01 and p2 € G ie. B(p2) = 1, Rule o) adds the edge
((p2:7),61) % ((p3,72),61), b= B(ps) = 1 to G.
5. Now we have ' € 6, and ry € 0y, for every v € T, Rule o} adds edges
b b b
((p3,71),01) = ((p2,71),0"), ((p3,72),01) = ((p2,72),0") and ((p3,7'),01) =
((p27’7/)70/)7 b= B(p3) =0tog.
6. Since ro € 0" and pa € G ie. B(p1) = 1, Rule of first adds to the
graph G the edge ((p2,72),6") LA ((p1,71),0"), b = B(p2) = 1. Then only

Aprex(((p,¢),6')) contains transitions of the form (py,6’) M>T(p’, 0') ie.

transition (p1,6’) hl—’b/l]w(p’,&’) b =0 and (p1,6") hl—’bIZ]>T(p'7 0),bh =

1. Then Rule of adds edges ((p2,72),6") by ((p',v),0") with by = B(p2)V
by =1 and ((p2,72),0") LN ((p',~"),0") with by = B(p2) Vb =1 to G.
7. Since 1o € 01 and ps € G ie. B(p1) = 1, Rule of first adds to the

graph G the edge ((p2,72),61) LN ((p1,71),01), b = B(p1) = 1. Then only

Apres(((p ¢),0')) contain transitions of the form (py,6’) MT(p’, 0) and

Apres(((p,¢),61)) contain transitions of the form (p1,6’) hl—’b/]w(p’, 01) i.e.

[v1,b1]

.. . b
transition (ph 91) —7 (p/7 91) mn Apre*(((p’,g),e’)) and (pl, 91) M)T(p/, 91)

in Apres(((pr,e),01))> b1 = 0. Then Rule o adds the edge ((p2,72),01) bz,
((pl,’y/), 91)7 bo=bVvb =1 tog.
8. No further additions are possible. Thus, the procedure terminates.

The result is depicted in Fig. B (c). By finding 1-labelled loops in G, the
repeating heads are

{((p2,72),61), (P, 7"),01), ((p2,7'), 01), ((P1,71),61)}
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and

{((p2,72),0"),((®',7),0), (02,7, 0), ((P1,71),6") }-

5. Experiments

5.1. Our approach vs. standard LTL for PDSs

We implemented our approach in a tool® and we compared its performance
against the approaches that consist in translating the SM-PDS to an equiva-
lent standard (or symbolic) PDS, and then applying the standard LTL model
checking algorithms implemented in the PDS model-checker tool Moped [25].
All our experiments were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of
memory. To perform the comparison, we randomly generate several SM-PDSs
and LTL formulas of different sizes. For this, we use the function int rand(void)
several times to randomly generate states and transitions. The results (CPU
Execution time) are shown in Table I. Column Size is the size of SM-PDS (S,
for non-modifying transitions A and Sy for modifying transitions A.). Column
LTL gives the size of the transitions of the Biichi automaton generated from the
LTL formula (using the tool LTL2BA[ZR]). Column SM-PDS gives the cost
of our direct algorithm presented in this paper. Column PDS shows the cost
it takes to get the equivalent PDS from the SM-PDS. Column Result reports
the cost it takes to run the LTL PDS model-checker Moped [Z5] for the PDS
we got. Column Total is the total cost it takes to translate the SM-PDS into
a PDS and then apply the standard LTL model checking algorithm of Moped
(Total=PDS+Result). Column Symbolic PDS reports the cost it takes to get
the equivalent Symbolic PDS from the SM-PDS. Column Result; is the cost
to run the Symbolic PDS LTL model-checker Moped. Column Total; is the
total cost it takes to translate the SM-PDS into a symbolic PDS and then apply
the standard LTL model checking algorithm of Moped. You can see that our
direct algorithm (Column SM-PDS) is much more efficient than translating
the SM-PDS to an equivalent (symbolic) PDS, and then run the standard LTL
model-checker Moped. Translating the SM-PDS to a standard PDS may
take more than 20 days, whereas our direct algorithm takes only a
few seconds. Moreover, since the obtained standard (symbolic) PDS is huge,
Moped failed to handle several cases (the time limit that we set for Moped is
20 minutes), whereas our tool was able to deal with all the cases in only a few
seconds.

5.2. Malicious Behavior Detection on Self-Modifying Code

5.2.1. Specifying Malicious Behaviors using LTL.

As described in [I], several malicious behaviors can be described by LTL
formulas. We give in what follows four examples of such malicious behaviors
and show how they can be described by LTL formulas:

Registry Key Injecting: In order to get started at boot time, many mal-
wares add themselves into the registry key listing. This behavior is typically
implemented by first calling the APT function GetModuleFileNameA to retrieve

Thttps://lipn.univ-paris13.fr/~touili/smodic/
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Size LTL [SM-PDS PDS Result| Total [Symbolic PDS|Result, (T otaly
S1:5,5:2 ||§]:15] 0.07s 0.09s 0.01s | 0 .10s 0.08s 0.00s | 0.08s
S1:5,5:3 [0]:8| 0.06s 0.08s 0.01s | 0.09s 0.09s 0.00s | 0.09s
Sp:11,85:4 |[|4]:8]| 0.16s 0.13s 0.05s 0.18s 0.10s 0.00s | 0.10s
Sy:5,59:3 |[0]:10[ 0.06s 0.15s 0.01s 0.16s 0.09s 0.00s | 0.09s

S1:110,53:4 [|0]:8| 0.34s 186.10s 0.79s | 186.99s 0.35s 0.00s | 0.35s
Sy :255,55:8 |]9]:8] 0.39s | 281.02s 0.94s | 281.96s 4.82s 0.05s | 4.87s
Sp:255,5:8 [|]:10[ 0.42s 281.02s 0.97s | 281.99s 4.82s 0.06s | 4.88s
Sy : 110,52 :4 ||0]:15] 0.28s 186.10s 1.05s | 187.15s 0.35s 0.06s | 0.41s
S1:255,55:8 [|d]:15 0.46s 281.02s 1.92s | 282.94s 4.82s 0.08s | 4.90s
Sy : 110,55 : 4 ||0]:20[ 0.37s 186.10s 1.05s | 187.15s 0.35s 0.06s | 0.41s
Sp:255,55:8 [|6]:20[ 0.55s 281.02s 1.97s | 282.99s 4.82s 0.17s | 4.99s
Sp:255,55:8 ||0]:25 0.59s | 281.02s 1.23s | 282.99s 4.82s 0.24s | 5.36s
S1:2059,5 :7 |]6]:8| 0.86s | 19525.01s |20.71s [19545.72s 20.70s error -
S1:2059,55:9 |[6]:8| 1.49s | 19784.7s |79.12s|19863.32 128.12s error -
Sy : 2059, 5 : 11[|6]:8] 3.73s | 30011.67s |168.15s/30179.82s 261.07s error -
Sp 12059, 55 :111|6]:28| 6.88s | 30011.67s |169.55s30180.22s 261.07s error -
Sy :3050,5; : 10 |0]:8| 5.21s | 39101.57s | killed - 438.27s error -
S1:3090,55:10]]6|:8| 5.86s | 40083.07s | killed - 438.69s error -
Sy :3050,.5; : 10 [|6]:20] 7.24s | 39101.57s | killed - 438.27s error -
S1:3090, 55 : 101|6]:30] 8.38s | 40083.07s | killed - 438.69s error -
Sy :3090, .55 : 10 [|6]:25] 8.89s | 40083.07s | killed - 438.69s error -
Sp:4050, 55 : 10 [6[:8| 9.21s | 81408.91s | killed - 699.19s error -
Sy 14050, 53 : 101|6]:28| 11.64s | 81408.91s | killed - 699.19s error -
Sp:4058,5: 111 16|:8| 9.83s | 93843.37s | killed - 802.07s error -
Sy : 4058, 55 : 11 {|6]:25] 13.59s | 93843.37s | killed - 802.07s error -
Sp: 5050, 55 : 111 ]6[:8] 10.34s | 173943.37s | killed - 921.16s error -
S7:5090, 55 : 11 ||0]:8] 10.52s | 179993.54s | killed - 929.32s error -
S1: 5090, S5 : 11|6]:10] 12.89s | 179993.54s | killed - 929.32s error -
S7:6090, .55 : 11 ||0]:8 | 13.49s | 190293.64s | killed - 1002.73s error -
Sp: 6090, S5 : 11|6]:10] 15.81s | 190293.64s | killed - 1002.73s error -
S7 : 6090, S5 : 11 {|6]:40| 32.39s | 190293.64s | killed - 1002.73s error -
Sy : 7090, S5 : 11|6]:25 39.86s | 198932.32s | killed - 1092.28s error -
S7: 7090, S5 : 11 {|6]:30] 43.24s | 198932.32s | killed - 1092.28s error -
Sp:9090, 55 : 11 ||0]:8 | 29.98s | 199987.98s | killed - 1128.19s error -
S1:9090, S5 : 11|6]:20] 45.29s | 199987.98s | killed - 1128.19s error -
Sy : 10050, Sy : 12{ [6]:8 | 48.53s [2134587.14s| killed - 1469.28s error -
S : 10050, S5 : 12]6]:25| 59.69s [2134587.14s| killed - 1469.28s error -
Sy : 10050, Sy : 12(|6]:30| 61.42s [2134587.14s| kille d - 1469.28s error -
S : 10150, 55 : 12]0]:35| 64.17s [2134633.28s| killed - 1469.28s error -
Sy : 10150, Sy : 14{ [6]:8 | 58.34s [2181975.64s| killed - 2849.96s error -
S1: 10150, S5 : 14|0]:40| 82.72s [2181975.64s| killed - 2849.96s error -
Sy : 10150, Sy : 12{|6]:40| 76.61s [2134633.28s| killed - 1469.28s error -
S : 10150, 55 : 16||0]:45| 89.83s [2211008.82s| killed - 3665.59s error -
Sy : 10150, S5 : 12(|6]:60| 97.56s [2134633.28s| killed - 1469.28s error -
S : 10150, S5 : 12]0]:65/105.89s(2134633.28s| killed - 1469.28s error -
Sy : 10150, S5 : 16||0]:65/134.45s(2211008.82s| killed - 3665.59s error -
S1: 10180, 55 : 16|]0]:65|175.29s(2134643.52s| killed - 3689.83s error -
Sy : 10180, S : 16||0]:78|214.36s(2134643.52s| killed - 3689.83s error -

Table 1: Our approach 24 standard LTL for PDSs
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the path of the malware’s executable file. Then, the API function RegSetVal-
ueExA is called to add the file path into the registry key listing. This malicious
behavior can be described in LTL as follows:

¢ri = F(call GetModuleFileNameA A F( call RegSetValueExA))

This formula expresses that if a call to the API function GetModuleFile-
NameA is followed by a call to the API function RegSetValueExA, then proba-
bly a malware is trying to add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular malicious behav-
ior that intend to steal any valuable information including passwords, software
codes, bank information, etc. To do this, the malware needs to scan the disk to
find the interesting file that he wants to steal. After finding the file, the malware
needs to locate it. To this aim, the malware first calls the API function Get-
ModuleHandleA to get a base address to search for a location of the file. Then
the malware starts looking for the interesting file by calling the API function
FindFirstFileA. Then the API functions CreateFileMappingA and MapViewOf-
File are called to access the file. Finally, the specific file can be copied by calling
the API function CopyFileA. Thus, this data-stealing malicious behavior can
be described by the following LTL formula as follows:

das = F(call Get Module Handle A AF(call FindFirstFile AAF (call CreateFile Mapping A

AF (call MapViewofFile NF call CopyFileA))))

Spy-Worm: A spy worm is a malware that can record data and send it using
the Socket API functions. For example, Keylogger is a spy worm that can
record the keyboard states by calling the API functions GetAsyKeyState and
GetKeyState and send that to the specific server by calling the socket function
sendto. Another spy worm can also spy on the I/O device rather than the
keyboard. For this, it can use the API function GetRawInputData to obtain
input from the specified device, and then send this input by calling the socket
functions send or sendto. Thus, this malicious behavior can be described by the
following LTL formula:

Gsw = F((call GetAsyncKeyState V call GetRawInputData) A F(call sendto vV
call send))

Appending virus: An appending virus is a virus that inserts a copy of its
code at the end of the target file. To achieve this, since the real OFFSET of
the virus’ variables depends on the size of the infected file, the virus has to first
compute its real absolute address in the memory. To perform this, the virus
has to call the sequence of instructions: [1: call f; lo: ....; f: pop eax;. The
instruction call f will push the return address l5 onto the stack. Then, the pop
instruction in f will put the value of this address into the register eax. Thus,
the virus can get its real absolute address from the register eax. This malicious
behavior can be described by the following LTL formula:
Pav =V F(call A X (top-of-stack = a) A G=(ret A (top-of-stack = a)))

where the \/ is taken over all possible return addresses a, and top-of-stack=a
is a predicate that indicates that the top of the stack is a. The subformula
call A X (top-of-stack = a) means that there exists a procedure call having a as
return address. Indeed, when a procedure call is made, the program pushes its
corresponding return address a to the stack. Thus, at the next step, a will be on
the top of the stack. Therefore, the formula above expresses that there exists a
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procedure call having a as return address, such that there is no ret instruction
which will return to a.

Note that this formula uses predicates that indicate that the top of the stack
is a. Our techniques work for this case as well: it suffices to encode the top of
the stack in the control points of the SM-PDS. Our implementation works for
this case as well and can handle appending viruses.

5.2.2. Applying our tool for malware detection.

We applied our tool to detect several malwares. We use the unpack tool
unpacker [29] to handle packers like UPX, and we use Jakstab [Z6] as disassem-
bler. We consider 160 malwares from the malware library VirusShare [B0], 184
malwares from the malware library MalShare [31], 288 email-worms from VX
heaven [32] and 260 new malwares generated by NGVCK, one of the best mal-
ware generators. We also choose 200 benign samples from Windows programs.
We consider self-modifying versions of these programs®. In these versions, the
malicious behaviors are unreachable if the semantics of the self-modifying in-
structions are not taken into account, i.e., if the self-modifying instructions are
considered as “standard” instructions that do not modify the code, then the
malicious behaviors cannot be reached. To check this, we model such programs
in two ways:

1. First, we take into account the self-modifying instructions and model these
programs using SM-PDSs as described in Section EZ3. Then, we check
whether these SM-PDSs satisfy at least one of the malicious LTL formulas
presented above. If yes, the program is declared as malicious, if not, it is
declared as benign. Our tool was able to detect all the 892 self-modifying
malwares as malicious, and to determine that benign programs are benign.
We report in Table B some partial results of our experiments. Column
Size is the number of control locations, Column Result gives the result of
our algorithm: Yes means malicious and No means benign; and Column
cost gives the cost to apply our LTL model-checker to check one of the
LTL properties (Column Formula) described above. For every program,
we consider all the formulas mentionned above. A program is declared
malicious if it satisfes at least one of the formulas.

2. Second, we abstract away the self-modifying instructions and proceed as
if these instructions were not self-modifying. In this case, we translate the
binary codes to standard pushdown systems as described in [d]. By using
PDSs as models, none of the malwares that we consider was detected as
malicious, whereas, as reported in Table B, using self-modifying PDSs as
models, and applying our LTL model-checking algorithm allowed to detect
all the 892 malwares that we considered.

Remark. Note that checking the formulas ¢,, ¢4, and ¢y, could be done
using multiple pre* queries on SM-PDSs using the pre* algorithm of [@]. How-
ever, this would be less efficient than performing our direct LTL model-checking
algorithm, as shown in Table B, where Column Size gives the number of control
locations, Column LTL gives the time of applying our LTL model-checking al-
gorithm; and Column Multiple pre* gives the cost of applying multiple pre* on

2Self-modifying instructions are embedded into these programs.
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Table 4: Detection rate: Our tool vs. well known antiviruses

SM-PDSs to check the properties ¢k, ¢pas, and ¢g,. It can be seen that apply-
ing our direct LTL model checking algortihm is more efficient. Furthermore, the
appending virus formula ¢,, cannot be solved using multiple pre* queries. Our
direct LTL model-checking algorithm is needed in this case. Note that some of
the malwares we considered in our experiments are appending viruses. Thus,
our algorithm and our implementation are crucial to be able to detect these
malwares.

5.2.8. Comparison with well-known antiviruses.

We compare our tool against well-known and widely used antiviruses. Since
known antiviruses update their signature database as soon as a new malware is
known, in order to have a fair comparision with these antiviruses, we need to
consider new malwares. We use the sophisticated malware generator NGVCK
available at VX Heavens [87] to generate 205 malwares. We obfuscate these mal-
wares with self-modifying code, and we fed them to our tool and to well known
antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360,
Baidu, Avast, and Symantec. Our tool was able to detect all these programs
as malicious, whereas none of the well-known antiviruses was able to detect
all these malwares. Table B reports the detection rates of our tool and the
well-known anti-viruses.

6. Conclusion and discussion

In this paper, we propose a direct LTL model checking algorithm for SM-
PDSs. Our algorithm is based on reducing the LTL model checking problem
to the emptiness problem of Self Modifying Biichi Pushdown Systems (SM-
BPDSs). Intuitively, we obtain this SM-BPDS by taking the product of the
SM-PDS with a Biichi automaton accepting an LTL formula ¢. Then, we solve
the emptiness problem of an SM-BPDS by computing its repeating heads. This
computation is based on computing labelled pre* configurations by applying a
saturation procedure on labelled finite automata.

We implemented our techniques in a tool for self-modifying code analysis.
We successfully used our tool to model-check more than 900 self-modifying
binary codes. In particular, we applied our tool for malware detection, since
malwares usually use self-modifying instructions, and since malicious behaviors
can be described by LTL formulas. In our experiments, our tool was able to
detect 895 malwares and to prove that 200 benign programs were benign. It
was also able to detect several malwares that well-known antiviruses such as
Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to
detect.

Malware detection is nowadays a big challenge. This work brings just a stone
to the building, and helps dealing with self-modifying code. However, a lot of
work remains to be done in order to have a robust tool for malware detection.
Indeed, as mentionned in Section EZ3I, this work assumes that if instruction i
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is replaced by io, then i; and i, must have the same number of operands. This
of course does not hold for all malicious programs. Moreover, to disassemble
programs, we use Jakstab [Z6]. This tool has a lot of limitations and offers
sometimes rough translations, as discussed in [Z6]. Another limitation of our
tool is that currently it considers only the four malicious behaviors described
in Section BZ0. Several other malicious behaviors can be found in malwares.
Thus, we need to study these behaviors and specify them as LTL formulas. To
this aim, we plan to apply machine learning techniques in order to extract the
maximum number of malicious behaviors from malwares.
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