%0 Journal Article %T Large inverted band gap in strained three-layer InAs/GaInSb quantum wells %+ Laboratoire Charles Coulomb (L2C) %+ Institut d’Electronique et des Systèmes (IES) %+ Composants à Nanostructure pour le moyen infrarouge (NANOMIR) %+ Matériaux (MAT) %A Avogadri, C %A Gebert, S %A Krishtopenko, S, S %A Castillo, I %A Consejo, C %A Ruffenach, S %A Roblin, C %A Bray, C %A Krupko, Y %A Juillaguet, S %A Contreras, S %A Wolf, A %A Hartmann, F. %A Höfling, S %A Boissier, G %A Rodriguez, J-B %A Nanot, S %A Tournié, E %A Teppe, F %A Jouault, B %Z Terahertz Occitanie Platform %Z IRP “TeraMIR” %< avec comité de lecture %@ 2643-1564 %J Physical Review Research %I American Physical Society %V 4 %N 4 %P L042042 %8 2022 %D 2022 %R 10.1103/physrevresearch.4.l042042 %Z Physics [physics]/Condensed Matter [cond-mat] %Z Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsJournal articles %X Quantum spin Hall insulators (QSHIs) based on HgTe and three-layer InAs/GaSb quantum wells (QWs) have comparable bulk band gaps of about 10-18 meV. The former, however, features a band gap vanishing with temperature, while the gap in InAs/GaSb QSHIs is rather temperature independent. Here, we report on the realization of a large inverted band gap in strained three-layer InAs/GaInSb QWs. By temperature-dependent magnetotransport measurements of gated Hall bar devices, we extract a gap as high as 45 meV. By combining local and nonlocal measurements, we detect edge conductivity at temperatures up to 40 K, possibly of topological origin, with equilibrium lengths of a few micrometers. Our results pave the way for the manipulation of topological edge states at high temperatures in QW heterostructures. %G English %2 https://hal.science/hal-03939599v2/document %2 https://hal.science/hal-03939599v2/file/2022%20Large%20inverted%20gap%20trilayer_L2C_IES_UW%C3%BC.pdf %L hal-03939599 %U https://hal.science/hal-03939599 %~ CNRS %~ IES %~ OPENAIRE %~ L2C %~ UNIV-MONTPELLIER %~ ANR %~ UM-2015-2021 %~ UM-EPE %~ TEST3-HALCNRS