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DISCRETE SELF-SIMILAR AND ERGODIC MARKOV
CHAINS

LAURENT MICLO', PIERRE PATIE, AND ROHAN SARKAR

ABSTRACT. The first aim of this paper is to introduce a class of Markov
chains on Z4 which are discrete self-similar in the sense that their semi-
groups satisfy an invariance property expressed in terms of a discrete
random dilation operator. After showing that this latter property re-
quires the chains to be upward skip-free, we first establish a gateway
relation, a concept introduced in [26], between the semigroup of such
chains and the one of spectrally negative self-similar Markov processes
on Ry. As a by-product, we prove that each of these Markov chains,
after an appropriate scaling, converge in the Skorohod metric, to the
associated self-similar Markov process. By a linear perturbation of the
generator of these Markov chains, we obtain a class of ergodic Markov
chains, which are non-reversible. By means of intertwining and inter-
weaving relations, where the latter was recently introduced in [27], we
derive several deep analytical properties of such ergodic chains including
the description of the spectrum, the spectral expansion of their semi-
groups, the study of their convergence to equilibrium in the ¢-entropy
sense as well as their hypercontractivity property.
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1. INTRODUCTION

Self-similar processes are ubiquitous in the theory of Markov processes and
they have been studied intensively over the last three decades, both from
theoretical and applied perspectives. A Markov process on R is called self-
similar of index 1 if for all a > 0, one has the following commutation type
relation

(11) Qtda = daQat

where Q = (Q¢)>0 is the semigroup associated with the process and d,, f(x) =
f(ax) is the dilation operator, that satisfies the semigroup property d.dg =
dap for all a, 5 > 0. Motivated by limit theorems, Lamperti [24] obtained a
complete characterization of these processes.

In this paper, we first aim at introducing continuous-time Markov processes
with state space the set of all nonnegative integers that also enjoy a scaling
type property. Naturally, one cannot expect to hold in this setting,
because the set of integers is not stable by the dilation operators as de-
fined above. However, in [26], the authors introduced the following signed
Binomial kernel defined by

Daf(n) = kzo () a1 = e

which resembles the dilation operator through the multiplicative semigroup
property D,g = D,Dg for all a, 8 > 0, which will be proved in Proposition
below. Furthermore, they showed that the linear birth-death Markov
chain, see Remark below for definition, satisfies the following commuta-
tion type relation

Qt]Da = IDOc Qat

where Q) is the associated semigroup. Motivated from this result, we in-
troduce a class of continuous-time Markov chains on Z, that satisfy the
scaling property as above and are upward skip-free, that is, at any instant
the Markov chains do not jump more than one step above and name them
discrete self-similar Markov chains, see Definition This class of
Markov chains, to the best of our knowledge, have not been identified be-
fore. Moreover, we want to understand their connections with self-similar

Markov processes. To this end, we resort to intertwining relationship
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between Markov processes. More specifically, for two Markov semigroups P
and @), we say that they are intertwined if, for all ¢ > 0,

PA = AQ;

for some linear operator A. Note that when the underlying processes have
different state spaces, one lattice and the other one continuous, we use the
terminology gateway relation, coined in [26], to emphasize the unexpected
two-sided connection between the two worlds. The term duality is also used
in a fast growing and fascinating literature on this topic related to differ-
ential operators arising in statistical mechanics, see e.g. [3|, 12], 18] 33, 19]
and references therein. More generally, the concept of intertwining relation
goes back to Dynkin [16] who used it to construct new Markov semigroups
from a reference one. These ideas were extended by Rogers and Pitman
in [32], leading to the characterization of Markov functions; that is, mea-
surable maps that preserve the Markov property. With the help of the
intertwining relationship, we prove the Feller property of the discrete self-
similar Markov chains, see Theorem and obtain the spectrally negative
self-similar Markov processes as the scaling limit of these Markov chains, see
Theorem . The use of intertwining relations to prove limit theorems
is not new and, in fact, a general framework was built up by Borodin and
Olshanski [10], where they apply it to construct a class of Markov chains
on the Thoma cone. Unfortunately, their strategy is not applicable in our
situation because their conditions are too stringent for us, namely the set
of finitely supported functions are not invariant with respect to the discrete
self-similar Markov semigroups. Nonetheless, still resorting to the inter-
twining relation, we are able to derive explicit formulas for the moments
of these Markov chains and we identify their scaling limits by the method
of moments. We emphasize that there are many instances of the appear-
ance of positive self-similar Markov processes as the scaling limits of models,
such as coalescence-fragmentation processes, see Bertoin [7], random planar
maps, see Le Gall and Miermont [25]. We also mention the recent paper by
Bertoin and Kortchemski [9] where the authors introduce a class of discrete-
time Markov chains whose appropriate scaling limits are positive self-similar
Markov processes. It appears that our work offers another class of Markov
chains in the domain of attraction of such self-similar Markov processes,
with the additional surprising feature that the connection between the two
objects goes, thanks to the gateway relation, in both directions.

We proceed by introducing another class of ergodic Markov chains which
are obtained by a linear first order perturbation of the generators of the
discrete self-similar Markov chains. We name them skip-free Laguerre
chains. The motivation behind this comes from the fact that their continuous

analogue are the generalized Laguerre processes, studied in [29], which are
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also constructed by perturbation of the generator of self-similar processes
by a linear convection term, that is a first order differential operator with a
linear coefficient. We show that they generate a class of Feller semigroups
of ergodic Markov chains which intertwine with the class of the generalized
Laguerre semigroups. Using this connection, we develop the spectral theory,
including the spectrum and the eigenvalues expansions, in the Hilbert space
22 of nonnegative integers weighted with the invariant distributions ng of the
semigroups of these non-reversible chains. As by-product, and under some
mild conditions, we prove compactness and also obtain a hypercoercivity
estimate for the £%(ng) convergence to equilibrium, which is given explicitly
as a perturbed spectral gap inequality. This part involves a deep theory
of non-self-adjoint operators as developed in [29], see Section for more
details.

We continue our analysis of these skip-free Laguerre semigroups by inves-
tigating the entropy decay to equilibrium as well as the hypercontractivity
property. For self-adjoint Markov semigroups, these two phenomena are
equivalent to the (modified) log-Sobolev inequalities. Unfortunately, in our
context, this relation fails due to the non-self-adjointness of the semigroups.
However, resorting to the idea of interweaving relation, introduced recently
in [27], we relate the skip-free Laguerre semigroups with the self-adjoint dif-
fusion Laguerre semigroups and deduce, up to some universal random time,
both the entropy decay and the hypercontractivity. Finally, showing that
this random time is infinitely divisible, we develop a thorough analysis of the
skip-free Laguerre semigroups subordinated with the associated subordina-
tor, which generate a class of ergodic Markov chains with two-sided jumps,
for which all the results described above are obtained explicitly.

The remaining part of the paper is organized as follows. Most of the fre-
quently used notations are defined in Section while Section [2| contains
all the main results of the paper. We provide some examples in Section
and Section [4] is devoted to the proofs of the main results. Some aspects of
spectral theory for non-self-adjoint operators have been reviewed in Subsec-
tion and the results related to interweaving relations have been proved
in Subsection [{.14]

1.1. Notations and Preliminaries. For any locally compact topological
space E we write C(F), Cy(F), C.(F) and Cy(E) to denote the class of
continuous functions (the set of all functions when E = Z.), class of all
bounded continuous functions, class of all compactly supported continuous
functions and class of all continuous functions vanishing at infinity on E
respectively. In addition, when E' = R or Ry, we write C;°(E) to denote
the class of all bounded smooth functions with bounded derivatives on F.
4



Next, for any nonnegative sigma-finite measure g on Ry and p € [1,00],
L?(u) denotes the LP space with weight . When p = 2, the correspond-
ing Hilbert space is endowed with the inner product denoted by (f,g), =

fR+ f(z)g(x)pu(dr). When p is the Lebesgue measure, we simply write

L?(u) = L?(R,) associated with the inner product (-,-). If the underlying
space is the set of all integers Z., then for any nonnegative discrete mea-
sure m on Z,, we write /(m) to denote the weighted ¢? space on Z and
for p = 2, the inner product is written as (f,g)m = >_,cz, f(n)g(n)m(n).
When m is the counting measure, we use the notation ¢?(Zy) = £?(m). For
any measurable function f > 0 or f € LY(E, i), we write uf = I fdp.

For any two Banach spaces By, Ba, Z(B1, B2) denotes the set of all bounded
linear operators defined from B; to By. Finally, for any operator A (possibly
unbounded) defined on some Banach space, D(A) denotes the domain of the
operator and we represent the operator as (4, D(A)) and in case of Hilbert
spaces, we denote the adjoint of A by A.

We denote the complex plane by C and for any z € C, Re(z), Im(z) denote
the real and imaginary part of z respectively. Next, for any S C R, we write
Cs = {z € C; Re(z) € S}. In particular, when S = R (resp. R_), we
simply write C (resp. C_).

For two functions f, g defined on the real line, we use the following notation.

f(x)

f = ¢ means that 3¢ > 0 such that, for all z, ¢™! < @ <c
f ~ g means that lim @) =1 for some a € [0, ]
z=a g(z)
f(z) £ O(g(x)) means that E g((i; < 00
f(z) £ o(g(x)) means that Jljli)r(ll gég =0.

2. MAIN RESULTS

2.1. Discrete dilation and discrete self-similar Markov chains. We
start by introducing a transformation on C(Z; ), which we name the dis-
crete dilation operator. For any a > 0 and f € C(Z.), we define

(2.1) Daf(n) = zn: (”) a’(1 — a)"f(r).

r
r=0

It should be noted that D,, is well defined on C(Z.) for all &« > 0 and it is a
Markov kernel when « € [0,1]. When « > 1, D,f may not be bounded even
5



if f is bounded. For instance, taking f(n) = (—1)", for any n € Z,, we have
|IDof(n)] = (2a — 1)™, which grows exponentially with respect to n. The
operator D shares the multiplicative semigroup property with the dilation
operator, that is, for all a, 8 > 0, we have D,g = ID,Dg, see Proposition
below. Next, we introduce the discrete self-similar Markov chains which are
defined in terms of the operator D,,.

Definition 2.1. We say that the semigroup Q = (Q:):>0 of a continuous-
time Markov chain X with state space Z. is discrete self-similar if for all
t >0, € 0,1], the following identity

(2'2) Qt]Da - IDaQat
holds on Cy(Z).

In terms of the law of the Markov chain X = (X(¢,n),n € Z4)¢>0, where
X(t,n) means that it is issued from n, the discrete self-similarity can be
interpreted by the following identity in distribution, for any a € [0,1], ¢ > 0
and n € Z,

(2.3) B(X(t,n),a) ¥ X(at, B(n, )

where B(n, ) is a Binomial random variable with parameter n and «, and

X(t,B(n, ))) is the chain at time ¢ with initial law the one of B(n, a).

Next, we consider the class of triplets (m, o2, II) such that m,o? > 0 and II
is a non-negative measure on R, that satisfies

(2.4) | waim < .

that is II is a Lévy measure with a finite first moment away from 0. To each
of these triplets, we associate the so-called Bernstein function defined as

(2. o =m+otut [T )y
0
where TI(y) = II(y, o) is the tail of the measure II. Let B denote the class

of all functions of the form ([2.5)).

We are now ready to introduce a class of discrete operators on Z,., which is
the central object of this paper. For any ¢ € B associated with the triplet
(m,0?,11) and f € C.(Z), we define
(2.6)  Ggf(n) = o®n(0s + 0_)f(n) + (m + 02)04f(n) + Guf(n)
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where 04f(n) =f(n+1) — f(n) for all n € Z4 and

(2.7)
Grrf(n) = — /O D, of(n+ 1) — f(n+ 1) + y(n + 1)osF(n)] TI(dy).

n+1

We are now ready to state our first main result.

Theorem 2.2. The operator (G4, C.(Z4)) generates a Feller Markov chain
on Zy, denoted by Xy = (Xy4(t,n),n € Z1)i>0 which is self-similar, and
C.(Z4) serves as a core for Gg.

This theorem is proved in Section 4.1

Remark 2.3. When II = 0, X is the reversible linear birth-death chain with
invariant measure
F'n+m+1)
I'(n+1)

For a detailed account on such Markov chains, we refer to [26].

,n€Z+.

Remark 2.4. In , we restrict a € [0, 1] as Dy, is, in this case, a Markov
kernel. However, since Dopi(n) = ofpp(n), for all @ > 0 and k,n € Z,,
where pg is defined in below, Theorem also below, yields that for
all ¢ € B and t > 0, Qf]])apk(n) = ]DaQﬁtpk(n), where Q is the discrete
self-similar semigroup generated by Gg. This reveals that the discrete self-
similarity property also holds in a more general framework than the one

given in (2.2)).

A continuous-time Markov chain is called upward skip-free if it does not
jump more than one step above at any instant, that is, for any n € Z4
and [ > n + 2, G(n,l) = 0 where G is the generator of the Markov chain.
It can be easily shown that the discrete self-similar Markov chain X, with
generator Gy is upward skip-free, see below. In the next theorem we
show the converse claim that is any discrete self-similar Markov chains must
be upward skip-free.

Theorem 2.5. Let X be any continuous-time discrete self-similar Markov
chain on Z. Then X is upward skip-free.

This theorem is proved in Section [4.2
7



2.2. Connections with self-similar Markov processes: gateway rela-
tion and scaling limit. Self-similar Markov processes on the positive real
line are well studied as they appear as the weak limits of various Markov pro-
cesses, see Lamperti [23]. When these processes are spectrally negative,
that is, they do not have any positive jumps, and with 0 as an entrance-
non-exit boundary, Lamperti [24] showed that they are in bijection with the
subset of Bernstein functions B defined in and moreover, the generator
of these processes are of the form

(28)  Gof() =02/ (x) + (m +0)f'(a)
(29) o [T £@) = @)+ g @)

where ¢ is defined in terms of the triplet (m,o?2,II), see and f €
CX(R4). The careful reader will have noticed that the operator G in
is the discrete analogue of the operator G, revealing that the former is a
natural approximation of the latter. However, we provide below a deeper
connection between these class of Markov processes (operators) by establish-
ing a gateway relation between their semigroups, a concept introduced in
[27], meaning that the connection goes in both directions. As a by-product,
we show that discrete self-similar Markov chains, after scaling appropriately,
converge to the self-similar Markov processes in the Skorohod’s J;-topology.

Theorem 2.6. (1) Gateway relation. For any ¢ € B, let Q¢ and Q?
denote the Feller semigroups generated by Gy and Gy respectively.
Then, for any f € Co(Z4) and t > 0,

(2.10) OAf = AQYF

where Af(x) = E[f(Pois(x))], Pois(x) being a Poisson random vari-
able with parameter x > 0.

(2) Scaling limit. For any ¢ € B, let Xy (resp. Xy = (Xo(t,2))i>0) be

the discrete self-similar Markov chain (resp. the positive self-similar
Markov process issued from x), then, for all x > 0,

(2.11) <iX¢(nt, na j)>t>0 s (Xt 2)) s

in Skorohod’s Jy-topology.

Remark 2.7. As mentioned to us by an anonymous referee, the gateway
relationship (2.10|) has the following neat probabilistic interpretation, using
the notation of item above,

(2.12) X,(t, Pois(x)) 2 Pois(X,(t,z))
8



which is valid for any ¢,z > 0. Using the self-similarity property of X, this

identity yields, for any fixed ¢,z > 0 and large integer n (but not for |nz|),

1X,(t, Pois(nz)) @ 1 Pois(Xy(t, nx)) 9 LPois(nXy(t,z)) — Xy(t,z) in

distribution. Moreover, the identity (2.12)) boils down when z tends to 0 to

X,(t,0) @ Pois(X,(t, 0))

where X4(t,0) stands for the entrance law of X, which is known to exist as
m > 0, see e.g. [29].

The intertwining relation in is proved in Proposition and the
scaling limit in is proved in Section

2.3. Discrete Laguerre chains from discrete self-similar Markov
chains. Let us now consider a perturbation of the discrete self-similar Markov
chains, that is, we introduce a new family of discrete operators on C.(Z)
defined by

(2.13) Lyf(n) = Gyf(n) + no_f(n)

where ¢ € B and Gy is defined in (2.6). Alternatively, the operator IL4 can
be represented, for any f € C.(Z.), as follows

n+1
(2.14) Lgf(n) = Ly(n, DF(D)
=0

where
Gy(n,l) ifl£n,n—1
(2.15) Ly(n,l) =9 Gg(n,n—1)+n ifl=n—-1
Gy(n,n) —n ifl=n

with G¢(n, l) = G¢5l(n) and ; n) = l{l:n}'

Theorem 2.8. (1) For any ¢ € B, the operator (ILy, Co(Z4.)) generates
a Feller Markov semigroup on Co(Z,), which we denote by K.

(2) We have, for any f € Co(Zy) and t >0,
(2.16) K{f = Q%,_,D,f.

(8) The semigroup K?® has a unique invariant distribution denoted by ng
and ng(n) > 0 for all n € Z,. Moreover, ngy has moments of all
orders and it is moment determinate.

(4) Finally, the semigroup K is self-adjoint in %(ng) if and only if
#(u) = m + ou for some m,c? > 0.
9



Remark 2.9. In Propositions[d.11]and [£.12] we provide additional properties,
including several representations, of the invariant measure n.

We have omitted the proof of the item (1)) since it can be obtained by follow-
ing a line of reasoning similar to the proof of Theorem from the claims
given in Proposition [I.11] Item [2]is proved after this latter Proposition. The
properties of the invariant distribution in item are proved in Proposi-

tion (4. and Proposition 4. tem 1s proved 1n Proposition 4. .
ion |4.11{(2 dP ition|4.12] T 4)) i din P ition |[4.11|({4)

We name the Markov semigroup K? (resp. the Markov chain) the skip-
free Laguerre semigroup (resp. skip-free Laguerre chain). This is
motivated by the following observation. The operator L, can be viewed as
the discrete analogue of the generalized Laguerre operator on R, studied
in [29], and defined by

Lyf(z) =Gy f(z) — zf'(z)

(2.17) =2z f"(z) + (m+ o? — z) f'(x)
(218) o [ et @) = @)+ e @) )

where G is defined in (2.8) and (o, 3,1I) is the characteristic triplet of ¢.

We now aim to derive the spectral properties, convergence to the equilibrium
and hypercontractivity phenomenon of K.

2.4. Spectral expansion and the spectrum of the skip-free Laguerre
semigroups. Since the semigroup K? has invariant distribution ng, we can
extend it on the Hilbert space £*(ng). If ¢ is as in (2.5), let o1 be defined
as follows

o2 ifo2>0
9.19 _
(2.19) o1 {1 if 02 = 0.

We now introduce a sequence of discrete (acting on Z;) polynomials defined,
for k,n € Z4, by

k
_1\—k 1\ k pT’(n)
(2.20) (1+07")2 ;( 1) <T> Wolr 1)
where Wy(k +1) = [TF_, ¢(r), Wy(1) =1 and p,(n) = % Since the

invariant distribution ny has finite moments of all order, see Theorem ,
it is plain that, for all k € Z, P,f € 62(n¢). Next, for k,n € Z,, we define

140713 L2 , (k+n—r)!
et Vi = S oy e S )

10



Theorem 2.10. (1) Spectrum. For any ¢ € B,t > 0 and k € Z,
VY € 2(ny), and
K/PY = e™MPP,  KJV) = e kv
where K¢ is the %(ngy)-adjoint of K?. Hence, {e "k € Z,} C

Specp(]Kf) N Specp(f(f), where for an operator T', Spec,(T') denotes
the point spectrum of T.

(2) Biorthogonality. (P;?)kzo and (Vf)kzo are biorthogonal sequences
in (*(ng), that is, for all k,l € Z,

<P57V7)> = L=y
g

(3) Spectral expansion. If 0> > 0, then, for all f € (*(ny) and t >
% log (1 + 0_2),

(o]
(2.22) Kf =Y e " (£ V) Y.
k=0 ne
(4) Compactness. If o> > 0, then, for all t > %log (1 +J_2), ]Kf is
compact and, denoting by Spec(]Kf) the spectrum of ]Kf), we have

Spec(K{) \ {0} = Spec,(K7) = {e "k € Z.}.

(5) Transition probabilities. If (]Kf(-,~))t20 denotes the transition
probabilities of the skip-free Laguerre chain and o® > 0, then, for all
t> %log (1 =+ 0*2) and n,l € Z,, we have

K{(n,1) = > _ e MPL(n)V} (g (1)
k=0
where the sum on the right-hand side of the above identity converges

absolutely.
This theorem is proved in Section

Remark 2.11. It should be noted that in the above theorem is dif-
ferent from the result in the case of generalized Laguerre semigroups on
Ry, their continuous analogue. Indeed, from [29, Theorem 1.22, 4(d)],

ek ¢ Specp(f(f)) only if k € Zy (see (4.57) for the definition of Zg)
and ekt € Specr(f?f) if k& ¢ Zg, where Specr(]Kf) stands for the resid-
ual spectrum of ]Kf . However, for the discrete Laguerre semigroup IK?,

ekt ¢ Specp(]?{f) for all k € Z,..
11



2.5. Convergence to equilibrium. In Theorem we have seen that
the non-self-adjoint skip-free Laguerre chains have an unique invariant dis-
tribution. In this section, we start by studying the rate of convergence to
their invariant distributions via spectral gap inequality, which comes as a
by-product of the spectral expansion obtained in the previous theorem. We
proceed with explicit rate of convergence to equilibrium in the ®-entropy
sense, which is a consequence of a more subtle relation with the self-adjoint
birth-death Laguerre chain, namely an interweaving relation discussed in
Section Before stating the result, let us introduce a few additional
objects related to the Bernstein functions. For any ¢ € B let us define

(2.23) dy = min{u > 0; ¢(—u) = —o0, ¢(—u) = 0} € [0, xa].
If (m, 02 1) is the triplet associated to ¢, let us write

ou) — o®u  m+ I(0)

(2.24) my = ull)rrolo g = >
where H fo 0o)dy. The quantity mg is finite whenever a2 >0

and TI(0) € [o,oo).

Next, for an open interval I C R, we say that a function ® : I — R is
admissible if

1
2.25 & € C*(I) with both ® and —— convex.
( Q)//

Given an admissible function ®, and a probability measure p on R, we write
for any f: R, — I with f,®(f) € L(u)

(2.26) Ent?(f) = n®(f) — (uf)

for the so-called ®-entropy of f. When ®(z) = 22,1 = R, is equal
to Var,(f) and when ®(z) = zlogz,I = Ry, yields the Boltzmann
entropy of f with respect to . From Jensen’s inequality it is plain that the
d-entropy is always nonnegative. We are now ready to state the following.

Theorem 2.12. Let ¢ € B be associated with the triplet (m, 02 1I) such
that 02,dy > 0 and I1(0) < co. Then, the following holds.

1) Hypocoercive estimate. For all f € (*(ny) and t > 0, we have
¢

b (mg +1)(1+ 02) ol
(2.27) H]Kf n¢fH - \/ et T) If = n4fll 2, -

12




(2) Entropy decay. For all B > my, t > 0 and f such that f,®(f) €
(Y (ng), we have

(2.28) Ent?, (Kﬁmf) < e 'Ent? (f)

where, we recall that ]KerTBf(n) = E[f(Xy(t + 73,n)] and 15 is an
infinitely divisible positive random variable whose Laplace transform
s given by

(2.29) / e “P(rg € ds) = e %Wy >0,
0
) — I'(u 1
with 93(u) = ulog (1+02) + log (L),

Item of the above theorem is proved in Section and item is
proved in Section

Remark 2.13. The estimate in gives the hypocoercivity, in the sense of
Villani [36], for the skip-free Laguerre semigroups. This notion continues
to attract a lot of interests, especially in the area of kinetic Fokker—Planck
equations; see e.g. Baudoin [6] and Dolbeault et al. [I5] and the references
therein. Unlike this literature, we are able to identify the hypocoercive con-
stants, namely the exponential decay rate as the spectral gap and the con-
stant in front of the exponential, which is greater than 1 as with o2, dg >0
we have mg > dg, is a measure of the deviation of the spectral projections
from forming an orthogonal basis. Note that in general, the hypocoercive
constants may be difficult to identify and may have little to do with the spec-
trum. Results in the spirit of have already been obtained by Achleitner
et al. [I], Patie and Savov [29] as well as in Patie and Vaidyanathan [31]
where a general framework based on intertwining relation is developed.

2.6. Hypercontractivity. A Markov semigroup defined on the state space
FE with invariant distribution y is said to be hypercontractive if there exists
a > 0 such that

1 Pelle2 2,y mrton (g, < 1
where p(t) = 1 + ¢! and

1Pl e (2, ) eten () = sup (| Befllueten (,p0)-
finHLQ(E,H):l
It is readily seen that the hypercontractivity reflects the regularity of the
semigroup. For self-adjoint Markov semigroups, hypercontractivity can be
interpreted in terms of their (modified) log-Sobolev constants, see [5, The-
orem 5.2.3] and references therein. Nonetheless, even for the self-adjoint
13



birth-death Laguerre chain, it is difficult to obtain a precise value of the
(modified) log-Sobolev constant. Using the concept of interweaving, see
Section [4.14] we circumvent this issue, and in fact, we are able to obtain the
hypercontractivity estimates for (non self-adjoint) skip-free Laguerre semi-
groups up to a random warm-up time.

Theorem 2.14. If 6 > 0 and ﬁ(O) < 00, then, for all B > my = mtg(o)
andt >0,

H‘ ]K?Jr‘rg

where T3 is defined in (2.29).

<
£2(ng) () (ny)

This theorem is proved in Section

2.7. Bochner subordination of skip-free Laguerre chains. In the pre-
vious two sections we have seen that Theorem [2] and Theorem 2.14] hold for
skip-free Laguerre semigroups up to a random warm-up or delay time de-
noted by 73. However, applying a time-change on the skip-free Laguerre
chains, we can obtain a new class of skip-free Markov chains for which the
above theorems hold with a deterministic warm-up or delay time. In other
words, we obtain a new class of Markov chains (with two sided-jumps of
arbitrary size) for which the quantity 73 can be replaced by a deterministic
number. Since 75 is an infinitely divisible random variable with ¢ € B as its
Lévy-Khintchine exponent, one can consider the subordinator (75(t),t > 0)

d
such that 75(1) @ 73. With an abuse of notation, we still denote this sub-
ordinator by 73. Now, let us consider the subordinated Laguerre semigroup
defined by

(2.30) K™ = / K? P(75(t) € ds).
0

Since limy—,o 75(t) = oo almost surely, the semigroup K?75 has the same
invariant measure ng. Below, we provide the spectral expansion, the ®-
entropy convergence and the hypercontractivity property of IK#75.

Theorem 2.15. Let ¢ € B be associated with the triplet (m, o?, 1I).

(1) Spectral Expansion. If 0> > 0 then for all B > 0, f € £*(ny) and
t > % we have
é,T, s _
K f = e s t(E Vi), PY.

k=0
14



(2) ®-entropy decay. If o> > 0, ﬁ(O) < oo and B > my, then for
all admissible (see (2.25) for definition) function ® and f such that
f, ®(f) € (1(ng), we have, for all t > 0,

b, _ _
Enti (]Kt Bf) < e~ 91+ Entf:d)(f)
where t4 = max(t,0).

3) Hypercontractivity. If o> > 0, I1(0) < co and 8 > my, then, for
@
all t >0,

¢7Tﬁ
&

2(ng)—0rM(ng) —
where p(t) = 1+ €.

3. EXAMPLES

3.1. The discrete Laguerre chains and the Meixner polynomials.
Let us consider the Bernstein function ¢(u) = o?u 4+ m where 2 > 0,m >
0. If K? is the skip-free Laguerre semigroup associated with ¢, then the
generator is given by

o’n+m+o?+1 ifl=n+1
(1+0%)n ifl=n-1
Ly(n,l
s(n.) —(1+20n-m—-o0?-1 ifl=n
0 otherwise.

From Proposition the unique invariant distribution of L is given by

I'(n+ +1) __ m_
np(m) = T A g g
r (02 + 1) n!
The semigroup K¢ is self-adjoint in 62(n¢) and it follows from Theorem m
that the eigenfunctions P,f) of ]Kf) corresponding to its eigenvalue e * form
an orthogonal sequence in 62(n¢). More specifically, writing 8 = 75, for all
keZs,

k
P,f)(n) (1+U B—F Z <>M

r=

?&“

= (L4+0 ) 23F (—n,~k,B+1;—07?)

where

Z L(r+a)'(r+b)z"

3.1 Fy(a,b; —.
(3.1) 2Fifa, b c;z) L(r+c¢ !

=0
15



From [21] Equation (7)], it follows that

2
[
JP:

= ()"

2(ng)

where for any a > 0, ¢x(a) = % Finally, for all f € ¢2(ng) and

t > 0, we have, in 62(n¢),

o0

K= (Z5) e (F, P,f>n¢P,f.

k=0

3.2. The perturbed Laguerre skip-free chain. Consider the Bernstein
function defined for m > 1 by
(u+m+1D(u+m—1) m?-1

Pm(u) = wtm i +u +/0 (1—e"")e ™dy.

Let Gg, be the generator of the discrete self-similar Markov semigroup
associated with ¢n. Then, according to [2.6), 0? = 1,m = % and
II(dy) = me™™dy. So, the infinitesimal generator Gy, is given by

( mD(l+m)T(n—1+2) .
Mw if I € [0,n — 2]
2 . B
(”+1)(”+1’$(n+m+1) +n ifl=n-1
Cop(n 1) = Sm— Lo et
1 . B
(e erremy R iFl=n
0 if Il >n+1.

\

Now, the corresponding skip-free Laguerre chain has the generator Ly, given
by

Gn(n,l) ifl £n,n—1
Lg.(n,1) = Gu(n,n—1)+n ifl=n-1
Gu(n,n) —n if l =n.
From Proposition the unique invariant distribution of L™ is given by

(TL +m+ 1>F<TL + m) 2_(n+m+1)
(m+ 1)I'(m)n!

ny,.(n) = , NELy.
Let us compute the eigenfunctions and co-eigenfunctions of the semigroup
K% generated by L. Denoting the eigenfunction (resp. the co-eigenfunction)

of ]Kf‘“ corresponding to the eigenvalue (resp. co-eigenvalue) e~** by P,f’ "
16



(resp. Vi“‘), we have

bm ok ()
Pe™(n) 2" Z pr(n)

W¢>m rr1)’

k
2

= 27 [(m—|—1)2F1( k‘ —n,m+1;—1)—2F1 (—k,—n,m—i—Q;—l)],
m 2_5 (n+k+m)
Vom(n) = R ((n+ m+ k)2 Fy (—k, —n, —n — k — m; 2)

+oF (=k,—n,—n —k —m+ 1;2))

where 9 F] is the hypergeometric function defined in (3.1)).

3.3. The Beta skip-free chain. We consider the Bernstein function ¢y
corresponding to a compound Poisson process with exponential jumps which
is defined, for m > 1 and u > 0, by

U oo
=—— = 1—e")e ™dy.
) = st = [ = ey
Therefore, according to (2.5)), 02 = 0,m = 0, II(dy) = me ™ dy and ¢y (c0) =
i. If Ly, denotes the generator of the Laguerre semigroup corresponding to
¢n in continuous state space, we have for all f € C°(R;),

m

Louf@) = =o' (@)+ 2 [ (flea) = @) + yas () ey

x
The Bernstein-gamma function associated with ¢y is

Fm+1I'(k+1)
n*T(k+14m) ’

From [29, Proposition 2.6(1)], the semigroup generated by Ly, admits an
unique invariant measure vg, which is absolutely continuous with moment
sequence (W, (k +1)),-, and given by

1
Vg, (dr) = m?(1 —mz)™ e, 0 <z < o

Now coming back to the corresponding skip-free Laguerre chain in the dis-
crete state space, (4.39)) implies that the unique invariant distribution of its
17



semigroup K% is

(="

r!

1 [e.e]
ng, () =— > W, (n+7+1)
" r=0

Z m+1 n—l—r—f—l)(—l)?"
"l "t I'(n+r+m+1) 7!

1 F( +1) 1
m”F(n+m+1)1 1(n,n+m,m>

where 1 F] is an hypergeometric function. Finally, from Proposition [4.17]
the eigenfunction of ]Kf‘“ corresponding to e~ is given by

k
k . k
Pr(n) =272 (~1) (r) o) ok <k —nm 11 —m)

—0 W¢m(7’ + 1)
where 3£ (CL, b, c; d; IL') = I‘(a)II:((igF(c) Z;.'OZO F(T+a)£((:—QJ—FS§F(T+C) % and Vim s

given by (2:21).

4. PROOF OF THE MAIN RESULTS

We begin this section with some useful facts about to the discrete dilation
operator.

Proposition 4.1. (1) For all o> 0 and f € Cy(Zy),
(4.1) doAf = AD,f

where do f(x) = f(aux) is the usual dilation operator on Ry and A is
as in Theorem [2.6.

(2) For allf € C(Zy), and o, f > 0, Dogf = Do Dgf.
(3) Dy =1d and for all o« > 0, D' =Dy .

(4) (De—t)e>0 (resp. (de—t)i>0 form a semigroup on (*(Z.) (resp. on
L2(R,)) with generator 0" = nd_ (resp. O% = —x%) with 0"\ =
A" on C.(Zy).

Remark 4.2. There are several analogies between the two dilation operators
which make our choice of the discrete one natural. Indeed, as its continuous
analogue, the discrete dilation operator is a multiplicative semigroup, and,
the generator of its associated additive semigroup is the discrete analogue
of the continuous one, see item [dl However, unlike in the continuous case,
D, does not have bounded inverse when a € (0,1).

18



Proof. The first item follows from [26, Proposition 1]. Next, we note that,
for any f € Cy(Z4) and o > 0,

(4.2) Daf(n)] < [(2a = )] [|f]|oo-
Then, (4.2) implies that both AD,f and d,Af are well defined. Now,
yields

AD.g = dosA = dodgA = dyADDg = AD,Dg.
Since A : Cyp(Z4) — Cp(R4) is injective, see [26l Lemma 4(4))], item
follows. Item is a direct consequence of item . For item , it

is immediate from item (2)) that (D.-¢);>0 is a translation semigroup on
Co(Z4). Moreover, from (4.1) we have that for all ¢ > 0 and f € Cy(Z4)

do—t Af = AD —f.
Differentiating the above identity with respect to ¢ when f € C.(Z;) and

noting that d,—+ = €'" one obtains that
d
OAf = A&]Deftf‘t:()

where we used that A is a bounded operator. However, from |26, Lemma 4.5],
after observing that A = V=1, we have 0*Af = A9"f whenever f € C.(Z.).
Since A is injective on C.(Z;.), we conclude that for all f € C.(Z.) one has

d n
D= 0nf

which proves item . O

4.1. Proof of Theorem It is not difficult to see that the operator Gy
can be simplified as follows. We can write G f(n) = Y17 G(n, )f(I) where

(4.3)

1
Jo wi (nj >€_ly(1 —e V) I(dy) i e [0,n 1]
Gr(n,l) = S (et 1y (n 4 1)y) I(dy)  ifl=n+1
0 ifl>n+1

and Gri(n,n) = —>_, ., Gn(n, ).

To show that G is a Markov generator, we need to show that Gg(n,l) >0
for all n # [. From the expression of Gy in , it is enough to show
that Gri(n,l) > 0 for all [ # n, a fact which follows readily from (4.3)). To
get that G, generates a Feller semigroup on Cy(Z4), we wish to combine
Theorem 3.2 with Corollary 3.2 from [I7, Chapter 8]. To this end, the
following four conditions need to be checked
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: |Gy (n,n)]
§ SUPpez, — i1 <X

)
(ii) limp—o0 Gg(n,1) =0 for all [ € Zy
)

(111 SupTLGZ+ ZlEZJr %G(ﬁ(n? l) < 00

(iv) suPpez, 777 Yorez, (1 = n)Gy(n,1) < co.
First, we note that

o?(n+1)+m+Gu(n,n+1) ifl=n+1

Gy, 1) = o?n + Gr(n,n — 1) ifl=n-1
oN —20%n — 02 —m + Gr(n,n) ifl=n
Gr(n,1) otherwise.

It is plainly sufficient to check all four conditions above for Gy merely. From
the definition of Gri(n,n), we get that, for all n € Z,

) n—1 n
Gr(n,n) = —/0 n—1F 0 (1 - Z < 7;1> e W1 — ey)nl+1> T(dy)

=0

[e'e} 1 —(n
—/0 (1= eI (0 Dy)T(dy).

1
Since for any y > 0, 377} (THZ_ >€—ly(1 — e Y)" 1=l — 1, the above ex-
pression reduces to
[e o]
(4.4) Cr(n,n) = / (e — e~ (DY _ ) TI(dy).
0
Next, noting that

|67ny o e*(ﬂ‘i’l)y N y’ _

n+1
/ y(l —e ")dr

<(2n + 1)921{y§1} +ylyys1ys
the integral in (4.4)) is finite due to (2.4 and therefore,

Tim |G¢(n,n)|
n—soo N+ 1

1
<20% + 2/ y*TI(dy) < oo.
0

This verifies condition . Then, for any [ € Z, and sufficiently large n,

1 [ /n+1\ _ e
Gn(n,l):n+1/0 (”l >e W(1 — =¥y (dy).

When [ = 0,
1

(4.5) Gn(n,0) = ——

/0 T (1= ey (dy)
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and clearly n — [;°(1 — e ¥)"t!I(dy) is a decreasing sequence. Thus,
lim;, oo Gr1(n,0) = 0. When [ > 1, let us define, for all n € Z, with
n>1+1,

1
a= [ et ey ),
0

by = / e (1 — e V)L I(dy).
1

We note that both a,,, b, are well defined if n > [+ 1. Since, for alln > [+1,
ani1 < (1 — e Yay, we have that a, < a;1(1 — e 1)1 and thus

1
lim <n—i— )an = 0.
n—00 l

On the other hand, observing that, for any y > 0,

1
lim <n—l|— >ely(1 — efy)"flJrl =0

n—o0

sup (n + 1) e W1 — eyttt <1,
n>1\

a dominated convergence argument entails that

lim <"+ 1>bn )
n—00 [

which verifies condition . For condition , we first observe that for any
y>0and l,n € Zy with | <n+ 1, the following identity

z_: l - : (n =+ 1> e_ly (1 o e_y)'n,—l-l-l

1 n+1

D) Z(l — e_y
j=1

f(n+1) _
n e 1+ (TL + 1)y) + (e—ny - e—(n-i—l)y o y)
n+ 2
holds. As a result of the above identity and invoking (4.3]) one gets
(4.6)
ntl n+1

n+1 1 o 1 ;
"Tla l 1—e ¥ — —_— 1 — e YYI(dy).
> Gninl) = el AT e 0y

Since for y >0, [1—e ¥V —y| <y A %, using (2.4), we get

o) 1.2 o)
/ [1—e™ —ylll(dy) < / %H(dy) + / yl(dy) < oo
0 0 1

21



and, for all 2 < j <n+1,

[e’) 1 (e’
— e YY) 2 0.
/0 (1 — e V)TI(dy) < / yPTI(dy) + / M(dy) <

Therefore, condition is satisfied as well. Finally, the last condition
follows since, plainly,

n+1
1 >
. B o —y _
nhm — lgzo (I —n)Gu(n,l) = nhm p——g] /0 (e 1+ y)II(dy) = 0.

Therefore, G, generates a Feller semigroup on Co(Zy) with C.(Zy) as its
core.

Next, to prove the discrete self-similarity property of the generated semi-
group above, we need the following.

Proposition 4.3. (1) Let Q% and Q? denote the Feller semigroups gen-
erated by Gy and Gy respectively. Then, for any f € Co(Zy) and
for allt >0,

(4.7) QI Af = AQYF

where we recall that Af(x) = E[f(Pois(x))] with Pois(z) a Poisson
random variable with parameter x > 0.

(2) The counting measure on Z,, denoted by m, is an excessive mea-
sure for the semigroup Q?. Hence Q? can be extended uniquely to
a strongly continuous contraction semigroup on (*(Z.), which we
again denote by Q2.

(3) The operator A can be extended uniquely to an operator (also denoted
by A) in B(*(Zy),L2(Ry)). Keeping the same notation for the
extension of Q% on L%(R.), we have, for all f € (*>(Z,) and t >0,

(4.8) QYAf = AQYT.

Moreover, A is a quasi-affinity, that is, it is bounded, injective and
has dense range.

We split its proof into several parts.

4.1.1. Proof of Proposition [4.3|[1)). First, let us write

2

Gy =G o2 +Gn = 029:% + (m + 02)% + Gn

Gy =G, 02 + G = (°n+m+02)04 +nd- + Gn
22
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where, for all f € CZ(Ry),

Guf(x) = i/ooo(f@e—y) — f(z) + yaf'(2))(dy).

Let P, be the vector space of functions defined on R which are of the form
e *P(x), P being a polynomial. We define the linear operator V : P, —
C.(Z) as follows

dTL
(4.10) Vin) = -5 (" f(2))(0).
Lemma 4.4. For any f € P,,
GyVf =VGuf.

Proof. From [26, Lemma 3], it is known that, for all f € P,
Gy, 2V =VG,, 2 f.

Thus, it suffices to prove this lemma replacing G, Gy by G, Gri respec-
tively. For y > 0, let J, denote the Dirac measure at y. Taking Il = ¢, and
writing G, and G, simply as Gy, G, respectively, we get

(4.11) Gyf () = 2 (Flae™) ~ f(o) + yof'(2)
and
(4.12)
A (T ema e e o
Gy(n,l) = ﬁ(e—(m—l)y —1+(n+1)y) ifl=n+1

with G (n n) belng such that E"H Gy(n,l) = 0 Then, observing that
Gr(n,l) = [3° Gy(n,D)I(dy) as well as Guf(z) = [;° Gyf(x)dy for all
f € C}(Ry). We claim that it suffices to show that, for all y > 0 and
f € P€7

(4.13) G,Vf=VG,f.
Indeed, when f € P,
n+1 n+1

GnVf(n ZGanw Zw /an (dy)

- /0 G,V £(n)T1(dy).
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On the other hand,

VG = (@G @)0) = o (¢ [ G ) o,

Since P, C Cp°(Ry), the above integration and differentiation can be inter-
changed, therefore yielding

VGuf(n / VG, f(n)II(dy).

We now proceed to show (£.13). Since P, = Span{z — e %z';l € Z,}, it
suffices to prove (|4.13]) only for f(z) = hy(z) := e 2!, Now, for [>1,

da" -
(4.14)  VGyhy(n) = e [ez(lfxe Nttt — g1 4y (lzt! — xl)] (0).

When [ € [1,n — 1], applying Leibniz rule we get

VGyhy(n) =e™" Z ( ) S (@ 7H(0) df;t (=) (0)
(4.15) (" (1— D1 — e—y)n—l+1
-1
)
:(n " 1)!e_ly(1 — e y)yniHl = NGy(n,l).

Also, (4.14)) entails
gy VO =T =) ) = G
' VGyhni1(n) =nl(e” MY —nl 4 (n+1)y) = (n+ 1)!CGy(n,n + 1).

Finally,

(4.17)

VG, ho(n) = T (Le==e _ 1)) (0) = —L(1 — =¥+ = G, (n, 0)
yo dzn \ z n-+1 yrm e

On the other hand for all l E Z4, GyVhi(n) = l!Gy(n,l). Therefore, com-

bining (4.15) and , we conclude that, for all n,1 >0,
GyVhl(n) = VGyhi(n).

This completes the proof of the lemma. O

The next lemma is a variant of [26, Lemma 4].

Lemma 4.5. V : P, — C.(Z.) is bijective with inverse A such that Af(z) =
E[f(Pois(x))] for allf € C.(Zy). Moreover, A extends to a bounded operator
from Co(Z4) to Co(R).
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We also need the following useful result.

Lemma 4.6. For all $ € B, P. C D(Gy4) where D(Gy) is the domain of
the generator of the Feller semigroup Q°.

Proof. Denoting the Dynkin characteristic operator of the semigroup Q%
by Gg, it follows from [24, Proposition 6.1] that P, C D(Gf). Also, for
all f € P, Ggf = Gyf. In light of [?, Theorem 5.5, Chapter V.3], it
suffices to show that for all f € P., G4f € Cy([0,00)). Since any function
f € P. is of the form f(z) = e *P(z) for some polynomial P, clearly
G0z f € Co([0,00)). Now, for any f € P, we have

Gufa) = 1 [~ [flee™) = f(@) + o f (@)(dy)

- /Oo [f(we™) = f(z) = (e7¥ = Daf'(z)TI(dy)
0

T f(a) /0 SV 14 y)I(dy)

= Ai(x) + As(x).

Since f € P, it implies that f € Cy([0,00)) and therefore As(z) — 0 as
x — o0o. To deal with Ay, by means of Taylor expansion of f up to order 2
we obtain that

I _ _

— | [flze™) = f(z) = (e7¥ = D)af'(x)| I(dy)

T Jo

1
(4.18) <7 / sup |f(H)](1 - e~)*TI(dy).
0 tele Ya,x]
We note that any function f € P,, f is either eventually increasing or
decreasing, depending on the sign of the leading coefficient of the polynomial
associated with the function. Without loss of generality, we assume that f is
eventually decreasing. Since for all y € [0,1], e¥ > e~ 1, for all large values
of x, we have supye(e-vy o |f”(t)] < |f"(e7 )|, as f € P, implies f” € P..
Thus, the right-hand side of goes to 0 as £ — co. On the other hand,

i\f(we_y) —f@) = (e =Daf' (@) < A=) lloc < Yllf o
Using the dominated convergence theorem, we obtain that
fim - [ 1) = 1(@)+ (7 = D (@)](y) =0,

This shows that As(z) — 0 as © — oo which completes the proof of the
lemma. g
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Let D(Gy) denote the domain of the Feller generator G4. Now, coming back
to the proofs of Proposition Lemma [4.4] Lemma and Lemma,
imply that, for all f € C.(Z4),

(4.19) Af € P, C D(G,) and GyAf = AG4f.

Since C.(Z4.) is a core for the generator G, for any f € D(Gy) there exists
a sequence {f,} C C.(Z4) such that ||f, —f|cc = 0 and ||Gyf, —Gyf||ec — 0.
Therefore, thanks to Lemma [4.5

|Af, — Af|loo = 0, [[AGgf, — AGyf|joc — O.

Thus, (4.19) entails that G4Af,, converges in Co(Ry) which implies that
Af € D(Gy) as (Gy,D(Gy)) is a closed operator, and, for all f € D(Gy),

(4.20) GoAf = lim GyAf, = lim AG4f, = AGf.

n—oo

Using Kolmogorov’s forward and backward equations, we get, for all f €
D(Gy), t > 0 and s € [0, 1],

d
LQAQLF = QIGAQL, - QIAG,QYf

QLGN - AGAIQ7f
=0

which is due to (4.20)) together with the fact that Qfﬁsf € D(Gy). Integrat-
ing the above identity, we obtain, for all f € D(Gy),

OAf = AQYT.

Finally, using the density of D(Gg) and the boundedness of the operators
Q%, Q% and A, [@.7) follows.

4.1.2. Proof of Proposition [4.3][2)). It is plain that, for any n € Z,

o0 n

T

e f—dr=1,
0 n'

which implies that yuA = m where p is the Lebesgue measure on Ry. Also,
A being a positive operator, for any f € Co(Z4) with f > 0, we have

mf = pAf > pQf Af = pAQYF = mQPf

where the second inequality in the above line holds as p is an excessive
measure for Q?. This shows that m is an excessive measure for Q.
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4.1.3. Proof of Proposition [4.33). For any f € C.(Z),

00 n 2
IAF|22z ) = /0 (Af(z))2dz = /0 <Ze—sz!f(n)> dz

n=0
- 0 c ) 00 _xxnd
_Z (n) ; e " —ydz
n=0

=> () = [fll72(z, -
n=0

Using the density of C.(Zy) in ¢?(Z.), A extends uniquely to a bounded
operator from ¢?(Z,) to L?(Ry). Finally, for any f € Co(Zy) N £2(Zy),
Af € Co(Ry)NL2(R,). Thus, for all f € Co(Zy)N%(Zy), item (1) ensures
that

QY Af = AQYT.
Again, using the density of C.(Z) in ¢?(Z,), (4.8) follows. Now, it remains

to show that A is a quasi-affinity. Boundedness of A follows from item ,
and one easily checks that, for all f € ¢*(Z,),

Af(z) = Z e_x%f(n) a.e.
n=0 )

Therefore, ker(A) = {0}, which proves the injectivity. The density of
Range(A) follows by observing that A : L?(R,) — ¢(Z, ), the adjoint of A,
takes the following form

Rfn) = % /Ooo F(z)e*a"dz = E[f(Gamma(n + 1))]

where Gamma(n + 1) is a gamma random variable with n + 1 as the scale
parameter and 1 as the rate parameter. Approximating the L?(R,) func-
tions by compactly supported continuous functions, it can be shown that
A is an injective operator, which proves that Range(A) is dense in L2(R,).
Hence, item is proven, which completes the proof of Proposition

Corollary 4.7. For any f : Z4 — R with f > 0, we have
Qf Af(x) = AQf(x)
for all x > 0.

Proof. For any nonnegative function f, we can find {f,} C C.(Z4) such
that f,, T f pointwise. Then, Proposition yields, for all z > 0,

QY A, (z) = AQYf, ().
27



Since A is a Markov kernel, Af,, 1 Af as well. Writing Qfg(x) =E.[g(Xy(t))]

and Qf g(n) = E,[g(X4(t))] and invoking the monotone convergence theo-
rem, the proof follows. O

End of the Proof of Theorem From the proof of Proposition ,
we already have that

QﬁtAf = AQﬁtf
for all f € Cy(Z4). By a density argument, the above identity extends for
all functions in Cy(Z4). Now, for a € [0, 1], multiplying by d, both sides of
the above equation, we obtain that, for all f € Cy(Z.),

AQYDLf = QPADLf = QPdo Af = dy Q2 Af = doAQZ,f = AD,QC,f

where we used the intertwining relationship between d, and D, given in
Proposition By means of the injectivity of A on Cy(Z4), we complete
the proof. O

4.2. Proof of Theorem Let G denote the generator of the discrete
self-similar Markov chain X. Then, from the definition of the discrete self-
similarity, for any « € [0, 1], we have

GD, = aD,G on D(G).

Recalling that, for any m,n € Z,, Dy(m,n) = Dyd,(m) = (m) a™(1 —
n

)" "<y We have, for all [,n € Z,

(4.21) ZG(n, k)<l> (1—a)* Za”l )"IG(5,1).

k>l i<n

Taking n = 0 and [ = 1 in the above equation, we obtain, for all k € Z,,
that

D G0, k)a(l - ) = aG(0,1).

k>1
Using the fact that G(0,%k) > 0 for all £ > 0, we conclude that G(0,k) =0
for all £ > 2. We now use an induction argument to prove that G(n, k) =0
for all k > n+2. Let us assume that for all n < N € Z4, G(n, k) = 0 for all
k >n+2. Now pluggingn = N,l=N+1in and using the induction
hypothesis, we have

Z G(Na k)< ' )OZN+1(1 B a)k_N_l = 05N+1G(N, N + 1)
N+1

k>N+1

Again invoking the nonnegativity of G(N, k) for k # N, we conclude that

G(N,k) = 0 for all kK > N + 2. This completes the induction step and

therefore the theorem is proved. O
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4.3. Factorial moments of discrete self-similar Markov chains. Let
us recall that the skip-free Markov chain associated to ¢ is denoted by Xy. In
the spirit of the work of Bertoin and Yor [8, Proposition 1(i)] on the integer
moments of the continuous analogues, we provide an explicit formula for the
factorial moments of X4(t). For z € C, we recall that p, : Zy — C is the
function defined by

'n+1
(4.22) pz(n) = F(n(—i—l—)z)
It is well-known that, for any n,k € Z,,
k
(.23) =3 {5 )
j=0

where {I;} are the Stirling numbers of second kind, see [34], p. 81].

Theorem 4.8. For any n,k € Z4 and t > 0,

W¢ k—i—l)

tk—l
W¢l+1)p( )

k
(424)  Elpe(Xs(t,n))] = QFpr(n Z<>

1=0
where, for alln € Z,, Wy(n+ 1) = [Ti_; #(k) and Wy(1) =

Proof. Defining py(z) = z¥, from [8, Proposition 1(i)], we have, for all
k€ Zy and t > 0,

prk( ) = E[(X¢(t x) =k + Z ( >¢ —1)--plk—1+ 1)$k—ltl
MR\ Welk+1)
(4.25) = ; <l> mxltk L

On the other hand, it is easy to see that, for all z > 0, Apg(x) = pr(z).
Applying Corollary [£.7) with f = py, yields, for all ¢,z > 0,

Q7pr(e) = Q7 Api(z) = AQ7pi(x).
Recalling that V = A1, see [26, Lemma 4], we get

mn

Elpy (Xo(t )] = Qfpi(n) = VQ{peln) = = (" Qfpe(a)) (0).

Finally using the expression in (4.25) together with the Leibniz rule, the
result follows. (]
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Remark 4.9. Using (4.23) and the above theorem, E[Xg(t,n)} can be also
computed explicitly for all n,k € Z,.

4.4. Proof of Theorem [2.6/2). For showing the weak convergence, we

need to check the following two facts. First, the tightness property of the

sequence ((Y;,(t) = 2Xy(nt, |nz|))i>0) and the finite-dimensional conver-

“n
gence of (Y,,) to X4. For the tightness property, applying [20, Theorem 16.1]
together with the strong Markov property of (Y},), it is enough to show that

Y, (hy) Ky (in probability) whenever h, — 0. We will in fact show that
E[(Y(hn) — )% = 0 as n — oo. From Theorem we obtain for all £ > 0,

B[V, (1)] = ~E[Xy(nt, n))] = “Elpy(Xo(nt, [nz]))] = ~(|na] + (1))
and
E[V2(1)] = Elpa(Xy(nt, [ne))) + p1 (X (nt, [na])]
= (pa((nz]) + 20t na| + S(1)S@)? + |nar| + 6(1)n).

Since h,, — 0, the last two equations imply E[Y,,(h,)] — z and E[Y,?(h,)] —
22 as n — oo. Therefore, E[(Y,,(h,)—)?] — 0, which proves the tightness of
(Y,,). Next, to get the finite-dimensional convergence, it is enough to prove
that, for all 0 < ¢; <t9 < --- <t} and (a1, 9, -, k) e 7k,

(4.26)

lim E [V, (1), (t2) - Y (8)] = B [ X5 (b1, 2)X§2 (t2,2) -+ X (b, )

n—oo

as the finite-dimensional distributions of X4 are moment determinate. To
prove the above assertion, we need the following lemma.

Lemma 4.10. For anyt >0 and k € Z,

(4.27) lim E [(Yn(t) — X,(t, x))k} ~0.

n—0o0

Proof. From Theorem it is clear that for any ¢ > 0 and k € Z,, the
sequence (Y,¥(t)),>o is uniformly integrable and, for each k € Z,

B[V (1)) = E[XK(n, [na))]

= (BIpe(Xy(nt, [n )] + o))
30



Therefore,

lim E[YE()] = lim —Elpi(X(nt, [nz])]

n—00 n—oo N

k
_nh_{go F (p;.C nx|) + ; ( )Hl)pk_l(tmcj)n t

=z +Z( )% A :E[Xéf(t,a?)].

Since the random variable X (¢, x) is moment determinate, the above iden-
tity indicates that for each ¢ > 0, as n — oo,

Yo (t) —55 Xy(t, ).

This together with the uniform integrability mentioned above proves the
lemma. O

Now, coming back to the proof of the main theorem, we prove (4.26) by
induction. Indeed, (4.26)) is satisfied for £ = 1, thanks to Lemma
Moreover, if for some k € Z; and (a1, g, -+ , o) € Z% (#26]) holds, then,
by an uniform integrability argument as in the proof of the lemma, one can
show that

(4.28) lim E {(Yfl(tl) Y () — XSt ) ..ng(tk,m))z] = 0.

n—oo
Now, writing

Mn,k = YT?I (tl) s Ynak(tk), Mk = Xgl (tl, x) cee ng (tk,m),

for any (a1, a0, -+ ,ax41) € forl, we have
k41 k41
E H Ynai (tl) - H X:;i(tia'r)]
i=1 i=1

=K [Mnjkyak'*‘l (tgs1) — MngkH (tk+1,x)} ’

= E |:Mn7kYak+l — Mkyak+1 (tk+1) + MkYOék+1 (tk+1) — Mquo;kJrl (tk+17 a;)] ‘
(4.29)
<\JE[(My . — Mi)2JE[Y 20541 (t4)

+ \EIMZE(Y 54 (t41) — X5 (b1, )7,

In view of Lemma (4.26)) and (4.28)), the expression on the right-hand
side of (4.29) tends to 0 as n — oo. This completes the induction step of our
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hypothesis, therefore proving (4.26|) for £ + 1. This completes the proof of
the finite-dimensional convergence of the process (Y;,),>0, which concludes
the proof of the theorem. O

4.5. Intertwining of the skip-free Laguerre and generalized La-
guerre semigroups. In this section we establish the connection between
the generalized Laguerre semigroups as defined in [29] and the skip-free
Laguerre semigroups introduced therein. From Theorem 1.6(2) in the afore-
mentioned reference, it is known that, for any ¢ € B, the generalized La-
guerre semigroup K on R, has a unique invariant distribution vy that is
absolutely continuous and moment determinate. In the next result we show
that the intertwining relationship in is retained for the Laguerre semi-
groups as well. In the next proposition, we use the fact that the semigroup
K? has a unique invariant distribution denoted by ng, which is proved in

Proposition below.

Proposition 4.11. (1) Let ¢ € B, then we have, for all t > 0 and
fe Co(Z4),

(4.30) KPAf = AKOf
where we recall that Af(z) = E[f(Pois(z))].
(2) ng = vy is an invariant distribution of K?, and, for alln € Z.,

e
ny(n) = /0 e “a"vy(x)de.

Tl

(3) The Feller semigroup IK? extends uniquely to a strongly continuous
Markov semigroup on 62(n¢), which is again denoted by K?®. Fur-
thermore, the operator

A: Co(Zy) — Co(Ry)

has a unique extension in B(1*(ny), L*(vy)), and, for allt >0 and
fe fz(nqﬁ),

(4.31) KPAf = AKF.

Moreover, taking the adjoint in the above identity, one gets, for all
t>0 and f € L%(vy),

(4.32) KyAgf = AsK7 f
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where /A\d, : L (vg) — (%(ny) is the adjoint of A, and, for all f €
L(vg),

1(n) /OOO e “a"vy(x) f(x)de.

(4.33) Ay f(n) = o

(4) K® is self-adjoint in €*(ng) if and only if p(u) = oc*u+m for some
a%,m > 0.

Proof. Since ¢ = Gy +no- and LY = Gy — x%, it suffices to show that,
for all f € C.(Zy),

d
(4.34) - x%Af(x) = A(no-) f(x).
From [26, Lemma 23], (4.34) readily follows by considering the reverse in-
tertwining relationship (i.e., taking the inverse of A in (45) of the aforemen-
tioned reference). Thus, we conclude that, for all f € C.(Z.),

LOAf = ALLf.
The rest of the proof follows similarly as in the proof of Theorem .

Next, from the intertwining relation in , we deduce that, for all f €
Co(Z+),
VoMK = vy KO Af = vy Af

implying that ng = vgA is an invariant finite measure for K?. Now, for any
n e Z+,

1 [ee]
— / e “a"vy(x)dr >0
0

n!

(4.35) n¢(n) = V¢A(5 =

and
nZ:On¢(n) = /000 vg(x)dr = 1.

Hence, ny is the invariant distribution of K?. The uniqueness of the in-
variant distribution will be proved in Proposition . To prove ,
we note that since Co(Z4) is dense in ¢?(ng) and A : Co(Z4) — Co(Z4)
is a Markov kernel, A can be uniquely extended to a bounded operator in
B(1*(ny),L*(v4)). Also, using the density of Co(Z4.) in £?(ng) and item (I,

the identity (4.31) follows. Now, to compute the adjoint Ay of A, let us first

show that the right-hand side of (4.33) as a function of n belongs to ¢(n).
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Using Young’s inequality and item one has

oo

> e (L exjffw)f(x)dx) ) < 3 [ P

= HfHL2(,/¢)‘
Now, writing f(n) = > 7, mfooo e *a" f(x)vy(x)dx, we have, for all
g € (ny),

Zf n)ng(n) = Z ni /00 e a" f(x)vy(x)da
_ /0 " Ag(@)f (@) (a)da

where the third equality is justified by Fubini theorem. This shows that
Ay f = f which proves (4.33). Finally, to justify , we note that, for a
¢ € B, K¢ is self-adjoint in ¢%(ng) if and only if, for all ,n € Z,

(4.36) L?(n, )ny(n) = L2(1,n)ny(1).

Since I(n,l) = 0 whenever [ > n + 2 and ng(n) > 0 for all n € Z; (see
the proof of item (2)), the above identity holds only if L%(n,l) = 0 for
all I # n,n — 1,n 4+ 1. This happens only if ¢(u) = o?u + m for some
a2, m > 0. U

4.6. Proof of Theorem . First, we recall that, for all ¢ > 0 and

feCoRy), KOf = th_lde—tf, see e.g. [29]. Then, from (4.30), we have
for allt > 0 and f € Cy(Z+),

AKYf = KPAf=QY% | d,Af=Q% AD,.f = AQY,_ D, f

where we used, from the third identity onwards, successively (4.7 . and ([4.1]).
We conclude the proof by invoking the Feller property of the semigroups as
well as the injectivity of A on Cy(Z4), see [20, Lemma 4(4))].

4.7. The invariant distribution of the skip-free Laguerre semigroup.
We now show that the invariant distribution ny in Proposition is
unique and provide several useful representations. We recall that, for any
¢ € B, Wy is the so-called Bernstein-gamma function which is defined as a
solution to the following functional equation

Wy(z+ 1) =p(2)Wy(z) Vz € Cy, Wy(1) =1

The above functional equation has a unique solution in the class of Mellin
transforms of probability measures on R;. For a detailed account of these
functions, we refer to [30].
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Proposition 4.12. (1) For all ¢ € B, the invariant distribution ny of
K? is unique and is determined by its factorial moments

(4.37) ngpg = W¢(k‘ + 1)
where py is defined in (4.22)).

(2) For anyn € Zy and 0 < c <n+1+dy,

1 1 c+ioco

(4.38) ny(n) = [(z)Wy(n — 2+ 1)dz

n' 27T1 c—ioco

where dy = min{u > 0; ¢(—u) = —o0, p(—u) = 0} € [0, ).

(3) If 0 < 02 < 1, then, for anyn € Z,,

(4.39) = Z M

Let us first derive the factorial moments of the skip-free Laguerre chains.

Lemma 4.13. For anyt >0 and k € Z,

k
® Wo(k+1) et (1 — o=tk
(4.40) K¢ pr(n ;;( > A pi(n)e " (1 )

Proof. Let us recall that Q? denote the spectrally negative self-similar semi-
group associated to ¢, and, for any ¢t > 0, x > 0 and f > 0,

KPf(2) = Q% dot f(2),

and, writing py(z) = z*, 2 > 0, we have, from [§], that, for all k € Z .,

k

Qfpr(z) = (?) ‘I}/VVZ((I;i 11)) alth

=0

Therefore,

k
o(E+1) _ k1
K9 (] _ et )
= ()R - o
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Recalling that V = A~ and Vp; = p; for all [ € Z, it follows that
K7pr(n) = K{Vpr(n) =VK{'pi(n)

k
k’) Wk +1) _y t\ k-l
= Z e (1 —e ) Vpi(n)
— (l We(l+1)
k
k) Wolk +1) Ly i
= Z e (1 —e ) pi(n)
= (l W¢<l +1)
which completes the proof. O

4.8. Proof of Proposition From Lemma we observe that, for
all k‘, n e Z+,

: ¢ _
tllglo Kipr(n) = Wy(k + 1).
On the other hand, recalling that Apy = pi where pg(z) = z* and vypy, =
Wy (k + 1), see [29, Proposition 2.6(1)], we get
ngpi = veAp = vepr = Wy(k + 1).

Now it remains to show that ng is determined by its moments. Let us write
¢a(n) = €. Then, applying Tonelli theorem we get

ealy = Y e"ny(n) :/ ey L Zf) vy(z)de = / el Ty (2)da.
n=0 0 n=0 n' 0
Next, we have
00 o 1)p 0 (ea o 1)7"
/ e VT (x)dz = Z We(r + 1>T

0 r=0

where we used the fact that f0¢(°o) 2"vg(x)dr = Wy(n+1) , see [29, Propo-
sition 2.6(1)], and thus e,n, < 0o as soon as (e® — 1) < o2, that is for at
least any 0 < a < log(1 4+ ¢~2). This provides the moment determinacy of

ng. Next, to prove and , we observe, from Proposition , that
foralln € Z,

¢(o0)
ny(n) :/0 e Tx"vy(x)d.

Expanding the exponential function in the identity above and using a classi-
cal Fubini argument, see e.g. [35, Section 1.77], combined with the expression

(4.37) of the moment of vy, we get

R 1 &
(4.41)  mny(n) = /0 e x%(g;)dxzmgom(nwﬂ)

- nl

(="
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where the series is absolutely convergent as soon as

lim M: lim @:02<1.

To justify the contour integral representation in (4.38]), we consider two
cases. Assume first that o2 > 0 and we recall that for large |Im(2)],

(4.42) ID(2)] ~ Cro(z) |Tm(z)[Fe) 75731 Re(2) > 0,
(Wy(n — 2+ 1)] < Cppeye 2™ Re(2) < n+1+dy,

where here and below Cge(;) > 0 is a constant depending only on Re(z) > 0.
Note that the first estimate is the classical Stirling formula, see e.g. [28|
(2.1.8)], whereas the second bound follows from [29, Theorem 6.2(2b)].
Therefore, the mappings z +— I'(z) and z — Wy(n — z + 1) are both in
L%(R) and holomorphic in the strip 0 < Re(z) < n+ 1 + dg, see [29, Theo-
rem 6.1(2)]. Moreover z — Wy(n+z) and z — I'(2) are the Mellin transform
of & — z"vy(x), see [29], and = — e~ 7, respectively. Consequently, both of
these functions are in L2(R,). An application of Parseval identity for the
Mellin transform yields
1 c+ioo oo

— F(z)Wy(n — 2+ 1)dz = / e a"vy(x)de,

2mi c—ioco 0
from where we easily derive the expression for 02 > 0. Next, we
consider the other case, that is 2 = 0, which ensures that the series repre-
sentation of ny(n) is valid for all n € Z,. Then, using the facts that
the mappings z — I'(z) and z — Wy(n — z+1) are both holomorphic in the
strip 0 < Re(z) < n+ 1+ dy4 and within this strip, (4.42)) still holds and

[We(n — 2+ 1) < Cpe(2))-

This implies that for all n € N, the integral (4.38)) is absolutely convergent
and an application of Cauchy theorem, see [28] for the detailed computation,
yields that the contour integral can be expanded as follows

1 c+ioco oo (_1)7'
ol T(2)Wy(n — 2z +1)dz = ;) Wo(n+r+1)—=,
which completes the proof of (4.39)). O

4.9. Intertwining between skip-free Laguerre semigroups. It has been

shown in [29, Theorem 2.1] that for any ¢ € B, the generalized (non

self-adjoint) Laguerre semigroup K? is intertwined with the diffusive (self-

adjoint) Laguerre semigroup K (when ¢(u) = u) and the intertwining op-

erator is a multiplicative Markov kernel corresponding to the exponential

functional of the subordinator associated with ¢. An analogous result holds
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for the skip-free Laguerre semigroups as well (see Theorem below), al-
though, we prove it under the assumption that o2 in is positive. The
following proposition describes the intertwining operator I, that links the
semigroups corresponding to skip-free (non-reversible) and the reversible La-
guerre chains respectively. Let P = Span {px, k € Z+} and for any ¢ € B
associated with the triplet (m, o2 1I), let I, : P + P be defined by

(443 Lf() = E e )] = D60 () B (1,0 1)
r=0

k
with E [1¥ | = W(Z(liklil) for all k € Z, where o7 is defined in (2.19) and we

recall that Wy (k +1) = [1F_, 6(r), Wye(1) = 1.

Theorem 4.14. (1) For any ¢ € B, we have the intertwining relation
on P

(4.44) KT, = I4KS
where K7t = K? with ¢(u) = oyu.

(2) Moreover, if 02 > 0, then Ly : £2(n,2) — €%(ny) is a linear operator
that is bounded, injective with a dense range and for all f € £?(n,2),

(4.45) ITfllez(ng) < Iflle2n,o)

where n, 2 s the unique invariant distribution of ]K"z, and, for all
t>0, f e ?(n,e),

(4.46) K{T,f = T,IK9 f.

As a consequence of the above theorem, we obtain the intertwining relation-
ship among the class of discrete self-similar Markov semigroups.

Corollary 4.15. For ¢ € B with 0® > 0, we have
QT = 15Qu2

both on Co(Z,) and (*(Z,), where we recall that Q% (resp. Q) is the discrete
self-similar semigroup corresponding to the Bernstein function ¢ (resp. ¢p(u) =

We need the following lemma to prove the above theorem.

Lemma 4.16. Recall the definition of p, in (4.22)). Then, for allk,n € Z,
we have

k
Iypr(n) = o1k )Pk(n)

Wk + 1
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where o1 is defined in (2.19).

Proof. Recalling the definition of I in (4.43), we have, for all k,n € Z,

(147)  Typur Zpk () [17,(1— 1)) = E [ps (B(n, I,))]

where B denotes the Blnomlal random variable with the parameters written
in the parentheses and the moments of I, are given in . Also, invoking
the definition of the discrete dilation operator D, we can write the above
quantity as

e
E [p(B(n, I,,))] = E[D = E[rf )= %
P, )] = EIDx,, pe(rm)] = pe(m)ELLS ]| = 7% opi)
where the last equality follows from (4.43]). This proves the lemma. O

4.10. Proof of Theorem From Lemma and Lemma we
have, for all t > 0 and k € N,

!

) __ % ¢
KiTopk =3 (k+1)Ktpk
k
K\ Wk +1)
Wk: 126 (z)wzﬁ”
ok +1) = s(l+1)
k 1
__kpy ~tl( Ykl
=kl Ze (z)w¢(z+1)pl(”)‘

On the other hand, recalling that Kt = K¢ with ¢(u) = oqu, we have

k
_ e w1 R\ E!
1K p =Y e - e ot () o
=0
l

k o
et (il
which shows that for all k €N,
K{Typr = I5IK7 i
and therefore, on P,
KT, = T4K7"

To prove now , it is plain, from Lemma that I4(P) = P. Then,

under the condition o? > 0, we have that P(I» € [0,1]) = 1, see [29)

Proposition 6.7] (note that I, = 021¢, where I is the exponential functional
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defined in the aforementioned paper) and thus I4 is a Markov operator. By
means of Holder’s inequality, one obtains, for any f € £2(n,2),

(4.48) Msfll2ng) < 6Pl gy = DsToF

Now, for all k¥ € Z, using Lemma and Proposition 4.12|(1]), we obtain
o2k k!

ngllype = Y ng(n)Ispr(n) = > ng(n)pr(n) 37

TLGZ+ TLGZ+ d)(k; + 1)

= 0%k k! = ppny2

which shows that nglly = n,2 as ng,n,2 are moment determinate. There-
fore, entails that I, is a bounded operator from ¢?(n,2) to £*(ng)
when 02 > 0. Hence, by the density of P in ¢?(n,2), the intertwining re-
lation given by extends to £2(n,2). This completes the proof of the
proposition. [l

4.11. Hilbert sequences and spectral expansion. In this section, we
introduce a few notions from non classical harmonic analysis which have been
shown recently to be central in the understanding of the spectral expansions
of non self-adjoint operators in Hilbert spaces, see e.g. [29]. Two sequences
(Pr)k>0 and (Vg)r>o are said to be biorthogonal in the Hilbert space ¢?(m)
if for any k,l € Z,

(4.49) (Pe, Vi) = Lig=ty-

Moreover, a sequence that admits a biorthogonal sequence will be called
minimal and a sequence that is both minimal and complete, in the sense
that its linear span is dense in £?(m), will be called exact. It is easy to show
that a sequence (Py)x>0 is minimal if and only if none of its elements can be
approximated by linear combinations of the others. If this is the case, then
a biorthogonal sequence will be uniquely determined if and only if (Py)r>0
is complete. We proceed with some basic notions related to the concept of
frames in Hilbert spaces. A recent and thorough account on these Hilbert
space sequences can be found in the book of Christensen [14]. A sequence
(Pr)k>0 in £2(m) is a frame if there exist A, B > 0 such that the frame
inequalities

(4.50) AllF 12y < D 1EPr)ml® < BllF 1)
k=0

hold, for all f € ¢*(m). If only the upper bound exists, (Px)g>o is called

a Bessel sequence. A frame sequence is always complete in the Hilbert

space and when it is minimal, it is called a Riesz sequence. The latter are

very useful objects as they share substantial properties with orthonormal

sequences. Indeed, a Riesz sequence always admits a unique biorthogonal

sequence (Vj)r>0 which is also a Riesz sequence and both together form the
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so-called Riesz basis. Moreover, the expansion in terms of the Riesz basis of
any element of the Hilbert space is unique and convergent in the topology of
the norm. When (Py)x>0 is merely a Bessel sequence, that is only the upper
frame condition in is satisfied, then the so-called synthesis operator,
that is the linear operator S : ¢2(Zy) — ¢2(m) defined by

(4.51) S:ic=(crhz0S(0)=> P
k=0

is a bounded operator with (operator) norm ||S||m < Vv B, that is, the series
is norm convergent for any sequence in £2(Z. ). However, S is not in principle
onto as the (Py)x>0 does not form in general a basis of the Hilbert space.

Proposition 4.17. Let ¢ € B.
(1) For any k € Z, P]f € (?(ny), and, for anyt > 0,
K{P? = e kPP,
Moreover, Span{P,f, k > 0} = P which is dense in £*(ny).

(2) Assume that o> > 0. Then, (P,f)kzo is an exact Bessel sequence in
(%(ny) with bound 1 and for any k € Z.,

(4.52) I8

<1

(3) If 0> > 0 and dy > 0. Then, (\/ck(d¢)P,?)k>0 is a Bessel sequence
with, for all k € 7, B
1
é -
(ny) Ck(d¢)

_ D(k+dg+1)
where c(dg) = [T

(4.53) ‘ p¢

Proof. Let k € Z, then it is plain, from Proposition [I| that, as a polyno-
mial, P,f € (%(n,). Then, we recall, from [29, Theorem 7.3] (after multiply-

ing both sides of the next identity by (1 + Ufl)_g) that, for any ¢ > 0 and
keZs,

KfP,f = e_ktP;f

where we have set

¢ —1\— : r(k x’ 2
L) = (140775 3 (1) < >W¢<r+1> € 12(0).
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Thus, since A is injective on P C 52(n¢), the algebra of polynomials, we
have A~'p(n) = pr(n) and thus, by linearity

k k
- (14015 r ) pm1 o
(454) AT'PP(n) = (1+07") "2 ;)(_1) AT 'pe(n) = PY(n).

Finally, we observe from the gateway relationship (4.31]) and the linearity of
the operators, that

AKPP? = KPAAT'P? = KPP = e MP? — Ae HPY.

The injectivity of A on P yields the eigenfunction property. To complete the
proof of , we recall the moment determinacy of ng, stated in Proposition
, which entails, from classical results on the moment problem, the
density property of the algebra of polynomials in the weighted Hilbert space,
see [2]. Next, when 02 > 0 and ¢(u) = ou, we recall, from Example
that (P7 ’ )k>0 is an orthonormal sequence of eigenfunctions of ]K,j'2 associated
to the eigenvalues {e **};>¢. Now, from Lemma it is easily seen, from
the definition of P,f , that, for all £ > 0,

I,Py" = P

Since I, € 2 ((*(n,2),(*(ng)) whenever o2 > 0, see ([4.45)), it follows that,
for all £ > 0, one has

0.2
(4.55) 1P lle2ng) < IPY ez, o) < 1.

After recalling that (PY %) k>0 is a complete orthonormal sequence in ¢2(n,2),
we observe that, for any f € 2(ny),

> (rPE), = ;)@f, ), = WEoflian o) < o,

This shows that (P,f’ )k>0 is a Bessel sequence in ¢?(n,). Combining item ([T
with the existence of a biorthogonal sequence, see (4.60|) below, we get that
(P,j5 k>0 is exact, which proves . Finally, to prove , let de = dy — €
for some 0 < € < dy and define ¢4 (u) = qur(i). From [29, Lemma 10.3], it
follows that ¢4, € B and

lim Lde(u) =02
U—>00 u
Now, we need the following whose proof can be carried out by following a
line of reasoning similar to the one of Theorem |4.14]
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Lemma 4.18. For allt > 0,
2
(4.56) KTy, =Ty, K7 on 2(ng_,2)
where K(@7%) s the discrete Laguerre semigroup associated to ¢(u) = o(u+
dc) and ng_,2 denotes its invariant distribution.

Then, the proof of item ensures that

k
(deo?) (N _ —2\-% oy (F pr(n)
P (n) = (1+072) F(d6+1);( 1) <r>F(r+d€+l)

(d€ 702)

is an eigenfunction of K, corresponding to the eigenvalue e~ There-

2
fore, using Lemma [4.18} we have that I, Plgde’o ) is an eigenfunction of ]Kf’

kt

, and, in fact,

b <k> (=11, pr(n)

corresponding to the eigenvalue e~

Iy, P77 () =(1 4+ 072 3 T(de+ 1)y

—\r D(r+de+1)
s ke (B (CLPe(0) g
R Zo<7"> W+~ EC)

Since the sequence (\/ Ck (dE)Plgde’az)> o0 is an orthonormal sequence in £%(n,_,2),
see [21), equation (7)] or Example 7and I, is bounded, we deduce that

[ : s P2 ¢ 1 _
<\/ck(d€)Pk >k20 is a Bessel sequence in £*(ng) and ||P;||ln, < AR Let
ting € | 0, the proof of follows. O

Proposition 4.19. Let ¢ € B, and, fork € Z., Vf be defined as in (2.21)).
Then, the following holds.

(1) For all k € Zy, V' € 2(ny) and, for all t >0,
KYVY = e Fve.
(2) For all k,l € Z,

<P,f,vf>n¢ = 1.

(3) Ifo? > 0 and TI(0) < oo, then <(1 t o2

sequence in (?(ny) where we recall that mg = mtg(o) and cp(mgy) =
I'(k+mg+1)
T(mg+1)(A+1) "
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Proof. Let us recall that for ¢ € B defined by
o =m+otut [Ty
0

one has

6(00) = Tim (u) = 001 (yasgy + (TH(0) +m) Typogy
where 0 < ﬁ(O) = fooo II(y)dy. Finally, let ky = oolyy2s0y + %, and
define the set

Z if ky, =
(4.57) Zy=1 T e =00
{k € Zy; k <kg} otherwise.

When both TI(0) = co and ¢(c0) = oo, we have set % = 0o. Also, the
condition (2.4]) on IT implies that

/000(1 Ay)(y)dy < oo

and as a consequence, ﬁ(O) < oo whenever II(0) < co. Thus, kg < oo only
when % = 0 and II(0) < oo. It is shown in [29, Theorem 5.2], that v4 €
C(L)de’J_l(]RJr) and in [29, Theorem 1.11] that, for any k € Z, VZ’ € L?(vy),
where

(L+07")? drl@tve(@))

Vf(m) - k! vg(x)

We now assume that k € Z, and recall from [29, Theorem 8.1], that, for all
t>0,

REVE = e MV,
Now, the intertwining relationship entails that, for any t > 0,
KYA V] = AgKPVE = e M A4 VY.
Let us now characterize the quantity IA\¢V£ when k € Zy. From it can

be easily checked that /A\QL)Vg’(n) = K¢1(n) = 1. Writing 01 = 1 log(1+07"),
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for any n,k € N we have

~ 1 o0 i(atky (x))
e oV (n) Al (n )/0 e “x o dx
4. - £
(4.58) n'n¢( )k: | (e a™)z"vy(x)dx
kAn
= Z L Ooe*ma:]””*jy (x)dz
n'n¢ n)k! (n—3)"Jo ¢
kAn .
1 o (k+n—7)! ,
= —1) ‘ —ny(k+n—j
DN Ty R G

(4.59) = e_k91V2(n)
where we used, for the second identity, the fact that, for all j =1,...,k,

k—j
tim L (o ()

2—0,¢(c0) daxk—J dxi (e™"2") =0,

Indeed, these asymptotic behaviors are deduced easily from [29 Lemma
5.22], which states that for any z > 0,0 < j < kand a < d, -2 T = (2Fug(z)) <
Cx*e for some constant C' > 0. Since A¢ : L% (vg) — £%(ny) is a bounded
linear operator, see Proposition , we have that VZ) = K¢Vf €1 (ng)
and this concludes the proof of (1) when k € Zy. Now, let o2 > 0. Then, for
any k,l € Z., we have, from Propositions[d.I7and the previous computation
that both P,f,Vf’ € (*(n,) and using ([4.54) and (4.59)), we obtain

(4.60) <P1?’Vz¢>n¢ = <szafA\¢V7’>n¢ = <7’Z§»V75>V¢ = L=y

where we used that (P;f ,V,‘f)kzo is a biorthogonal sequence in L?(v,), see
[29, Theorem 1.22(2)], recall that with the notation of this paper, 73,? =
(1+ 0_2)757% and V¢ = (1 + 0_2)%Vk. This proves (2) when o2 > 0.

Next, assume that k ¢ Zy which implies that kg < oo and thus ¢(c0) < oo.
This entails that the following two-sided bounds hold for any n € Z,

¢(c0)
(4.61) e_¢(°°)W¢(n +1) < /0 e x"vy(x)dr < Wy(n+1) < ¢(o0)"

where the last inequality follows since ¢ is non-decreasing. Thus, we have

e-d’(oo)w < ny(n) < Wy(n+1) < ¢(Oo)n

n! n! -
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Hence, for any k € Z fixed, with

n

k .
Sy =3 — Z(_nﬂ'(k(“”_” ny(k+n—j)| <oo,

() \ = D — )
we have
k k‘ ) 2
oo _(ktn— .
2k HV¢H€2(H(25 (jz: (k; (n_]])l]l (k:+n]))
s k+n—g> ¢(00)* "
< Sk) + ZW¢H+1 JZ — )t (k+n—j)!
2
£4(e0) nlg(00)" ~ §(00)*
=S 2 Woln+ 1)((n— B2 (Z; (i~ )1
(4.63)

/'\

k
< S(k) + ) (Z

7=0
where the last inequality follows after observing that,

2
lim 2 — i (n + 1)¢(o0)

n—oo a,  n—oop(n+1)(n+1—k)>2 =0

where the a,,’s are the coefficient of the last series. When ¢ € B is such that
P(u) =m+ [°(1— e ")II(y)dy, let us deﬁne ¢e € B as ¢c(u) = eu+ ¢(u)
with € > 0. Then, from Proposition it follows that for small values of
€ and for all n € Z,

n¢e )

ii W¢en+7“+1)
n! =0

n+r+1)
n.Z B —

As ¢c(u) > ¢(u) for all € and u > 0, it follows that Wy (n) > Wy(n) for
all n € N. Also, Wy_ | W, pointwise as € — 0. Since, for small values of €
(eg. 0<e< ),

i%e(wnﬂ)

< 00,
r!

r=0
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the dominated convergence theorem yields the following pointwise conver-
gence as € — 0,

(464) Ny, — ny.

Hence, for any j, k € Z,

(4.65)
lim (Vi pj)n, :lii%i pi (VY (n)ng, ()
- g%fjo o5 () §<—1>k-j e (= )
(4.66) - lg(l)z::) ps(n) jzn;u)’f—j C (_k;? - Jj) TGN
- 1;%2 ps(n) g—l)’” C Y“j) ?n‘_jj),j g, (k +n = j).

In (4.66)), the first term is a finite sum and therefore

limZpJ Z 1)k (kji_n_j).! —ny (k+n—j)

e—0 = (k—7)l(n—7)iy! G
_ . - vk—j (B+n—j)! i
—gm )3 g etk =)

For the second term in (4.66|), we have

00 k
> pjiln Z j (ktn—J) (k+n—7)
j=

(k— )l — )i

k
=> (-1 .Z 7)'n¢e(k+nfj)

— !

Since ng, — ng pointwise as € — 0, the distribution ny_ converges to ny
weakly. Also, for any k € Z4, as e — 0,

Zpk‘ Ilqse W¢(]€+1)—>W¢k+1 Zpk
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Applying (4.23)) on the previous identity we obtain that, for all k € Z,, as
e — 0,

(4.67) > n'ng,(n) =) nFng(n)
n=0 n=0
Since, for any k € Z and j < k,
— i
(k+n ']). — 0"
(n —J)!

uniformly with respect to j, using a dominated convergence theorem one
can show that for each j < k,

R (k:—i—n—j) k+n ]) ‘
Thus, (4.66)) yields

. be AV
s e, (),

Now, if 02 = 0, since, for any k € Z, P,f € P = Span{p;,j € Z;} and the

coefficient of p; in Pfe converges to the same in P;f forall j € Z4, as € — 0,
applying (4.68)) it follows that, for all k,l € Z,

1 be \/Pe _ [/ p® y?
L - i ()~ (50),
where ¢(2) = eu+ ¢(u). This proves (2)) for all o2 > 0 hence for all ¢ € B.

To show that V,‘f is a co-eigenfunction of IX? when o2 = 0, we proceed as
follows. Proposition and (4.60) yield that, for I,k € Z, and ¢t > 0,

(RIVEPT)  =(VEKIPY) =™ (VPP =1y,
n ny ny
Therefore, for all ¢ € B, ¢t > 0 and k,l € Z,, we get

(Rpvy — ey, Pf>n¢ 0.

Since (P;f)kzo is dense in ¢?(ny), we deduce that, for all ¢ > 0 and k € Z.,
(4.69) eFRIVY = VY,
which proves for all ¢ € B.

To prove item (3), it is known from 29, Theorem 10.1(1)] (after multi-

plying by the factor (1 4+ o=2)~ ) that, when ¢? > 0 and I[(0) < oo,
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[STES
<
<

k

((1 +o072)” m)p(} is a Bessel sequence in L?(v,). Recalling that,

for any k > 0, IA\¢V¢ = VE, see (4.59)), and /AX¢ : L2 (vg) — £2(ny) is a con-
@
Vi is a Bessel sequence

traction, we conclude that ( (1 + 0*2)_5

in /*(ng) and for all k € Z,
ok
IVEll2(my) < (1+072)2 4/ cx(my).
(]

4.12. Proof of Theorem [2 - The proof of the item (1f) and follows
directly from Proposition [4.17|(1)) and Proposition [4.19| “.,

Finally for the proof of , we now assume that o? > 0. We recall from
[2-19) that o1 = o in this case. Then, for all f € ?(n,2) and t > 0, the
intertwining relation (4.46) yields that

KT f = ]I¢]K”2f

= H¢Ze “(F.PE) N

Cr

(4.70) = i et <f, P,§2> p?

k=0 o2

where the second identity relies on the spectral decomposition of the re-
versible birth-death chain, see Example with #(u) = o?u, whereas the
last one is justified as follows. First, since 0% > 0, I, : £*(n Uz) — (%(ng) is a
bounded hnear operator and, with the help of Lemma [4.16] and the defini-
tion of P,f in , it follows that ]I¢P,g = P,f . Moreover, from Proposition
we have that the sequence (P,;Z> )k>0 is a Bessel sequence and thus its as-
sociated synthesis operator S : (2(Z) — (?(ny), see for definition, is

bounded. Since (P,g 2)k is an orthonormal sequence in £2(n,2), it implies
>0

that for all ¢t > 0,
(ekt (f.P7") ) € A(Z.)
n,2/ k>0

and hence the series on the right hand side of - ) is in ¢*(ny). Next, as

noted before, we have that ]I¢Pk = P for all k € Z,. Now, recalling that

(Pk ,V )k>0 is biorthogonal in ¢2(ny), see Proposmon u. we have for
49



any I,k € Z4,
(), = (), = (i), =t

As (Pk"Q)kZO is orthonormal in #%(n,2) (hence biorthogonal to iteself), by

uniqueness of biorthogonal sequence we conclude that f¢Vf =P? ? for all
k € Z,. Therefore, writing g = I4f € 62(n¢), we have, for all k € Z,

<g,V;f>n¢ - <f,ﬁ¢vf>n02 - <f, P,§2>n02

Thus, from (4.70)), for g € Ran(Iy), the range of I4, one gets

oo
Kig = Y e (g Vi) Pf =Sig
k=0 ne
where the last identity serves as defining the spectral operator. Note that
since <]ng,Vi>n¢ = (g, ]KfVZ,’)nd) = e_kt<g,V2>n¢, we deduce that

Stg = Z <IK?g,V$>n¢P]?
k=0

Moreover, as the closure (in ¢%(ng)) of Ran(Iy) is £?(ny), by the bounded
linear transformation theorem, ]Kf is the unique continuous extension of the
continuous operator $; : Ran(Is) — ¢*(n,). We now extend the domain of

3 to 62(n¢). First, by means of Cauchy-Schwartz inequality, we have, for
any g € ¢*(ny) and k € N,

‘<g7v;f>l’l¢ d)

< liglem,) Vi = gl 186 VE e,

£2(ny)

IN

||g||22(n¢) va’ L2(vy)

where we used Proposition and the fact that K¢ is a bounded operator.
Next, since from [29, Theorem 10.1], we have for k large enough and all
e >0, HVZ)”LQ(%) < Ce(1+ 072)26616, with Ce > 0, this implies that for all
g € (*(ny) and t > %log (1+072),

—kt o] ) 62 7,
(& Vi, ), € ().
Finally, the Bessel property of the sequence (P,f )k>0 entails that S:g €

?(ng), which completes the proof.

For the item (), we recall from [29, Theorem 10.1] and the proof of The-
orem that, for all e > 0 and k € Z,, there exists Cc > 0 such
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that
6
(4.71) Hvk

HV¢H < C’s(l—i-J*Z)geEk
éQ(D¢ L2 (l/¢
whenever o2 > 0. Moreover, for all k € Z,, HP]ngz(%) < 1. Therefore,

(2.22)) entails that for all ¢ > %log (1 + 072), the operator le can be ap-
proximated by the sequence of finite dimensional operators

N
fro > (FV) P N2,
Ny
k=0

which proves the compactness of the semigroup. Finally, for [ € Z., let us
choose f = §; in ([2.22)). Then, for all 0> > 0, > 0 and n € Z,, we have

(4.72) K¢ (n,1) = K8, (n) Ze*ktw Ve (ng(l)

where the last identity holds in €2(n¢). Now, from Proposition , we
have that, for all k,n € Z,

P (n)*ng(n) < [IPY7a(n, < 1

while, from Jensen’s inequality and (4.71), we get, for all kI € Z,, that
there exists a uniform constant C'¢ > 0 such that for all € > 0,

473)  Vi(Ony(D)| < HVme%

Since ny(n) > 0 for all n € Z,, see , for all %log (1 + 0_2) +e<t, we
have

E
(4.74) Ze‘kt|P¢ IV g (D) <C’Z_kt C <.

V(1)

Ase>0is arbltrary, the proof of the item ([5)) is completed.
4.13. Proof of Theorem [2.12|[1). From [29, Lemma 10.4], we get that

b(n) —o’n  m+ [ (y,00)dy
my = nlgglo 3 = 0 3 > de = (dp — €)1{4,—e>0}-

Let us write o = & 5 log(1+0~ 2). Then, using (2.22) along with the fact that
P =1, we obtaln for all f € £3(ny) {g € r2( n¢) nyg = O}

< |yv liz(ny) < Ce(1 +072) 2,

Kif=>e ™ (f,Vp) P
k=1 ¢
0 qu
(4.75) = ekt k(M) eke f, ehe____k ck(d¢)P,f.
1 ¢k (dy) ¢k (mg) n,



Since (N/ck (dd,)P,z5 ) o1 is a Bessel sequence with bound 1, we obtain from
the boundedness of the synthesis operator, see (4.51)), and (£.75) that, writ-

ing Vo = v for all f € £3(ny),
B Ve(mg)’ ¢

o0
KOfl2, <N -2kt Sh(06) g
” t Hﬁ(n¢) —kze Ck(d )e

2

()
ng

dg) — 2
4.76 7672&1 m¢ 020 N p2(k=1)(t—0) Ck(m¢)c1(¢' £ ekey?
( ) l; Ck(d¢)tl(m¢) < k>n¢

Now, from the proof of [29, Theorem 1.18(3)], we know that

sup 20— tMe)erlde) o 1 <m¢ + 2> o
k>1 Ck(d¢)tl(m¢) 2 dg +2

Thus, using this bound, the fact that (e‘k@Vf> - is also a Bessel sequence

(with bound 1) in ¢*(n,) and the second inequality in (4.50), we deduce
from (4.76) that, for all f € £2(n,) and t > T,

(4.77)
Qta% €1 (m¢) eithng? _ 1+ U% mey +1

]K¢f 2
H t HéQ(n¢) e C1(d¢) O'% d¢—|— 1

e [Ifl1Z

(ng)°

2 1 1 2
Whent < T, 1;}01 %e’% > I:iljil iii2 > 1asmy > dg. Therefore, (4.77))

holds for all ¢ > 0 as IK? is a contraction semigroup. Finally, noting that,
for any f € (2(ny), f — ngf € £3(ny), the proof of the theorem follows.

4.14. Interweaving between skip-free and continuous Laguerre semi-
groups. Following [27], for two Markov semigroups P, P’ defined on two

Banach spaces B, B’ respectively, we say that P has an interweaving rela-

tion with P’ if there exist two Markov kernels A : B' - B and A’ : B — B/,

and a non-negative random variable 7 such that

PA=AP on B’
P'ANN=AP on B and
AN = P, = [ PP(r € dt).

We call 7 the warm-up time or the delay and we write P <P P’ or P Lo pr
to emphasize the dependence on 7. Note that when 7 = d;, is the degenerate
random variable at ty > 0, we may simply write, when there is no confusion,
t
PP
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When 7 is in addition infinitely divisible we say that P admits an inter-
weaving relation with an infinitely divisible warm-up time with P’

and we write P <p P'. Finally, when we also have
(4.78) AN = P!

we say that there is a symmetric interweaving relation between P and
P’ and we write P «~ P’. We refer to [27] for a thorough study and several
applications of this concept that refines the one of intertwining relations.

Let now K? be the skip-free Laguerre semigroup corresponding to the Bern-
stein function ¢ associated with the triplet (m, o2, I1), see (2.5)), and K ** be
the diffusive Laguerre semigroup with generator

d2

o2 _ 2. % 2 _ i
(4.79) L —de$2+(a x)dzn'

Theorem 4.20. If 6> > 0 and ﬁ(()) = fooo II(y,00)dy < oo, then for all
B > mey = m+§(0);
K & Ko

where Tg is an infinite divisible random variable characterized, for anyu > 0,

by
00 0'2 “ u
w0 [erea - () M

2 u
= g 6_(;55(“).
1402

Before proving the theorem, let us show the following lemma.

Lemma 4.21. Let K° be the semigroup defined as above and K be the
semigroup with generator

2

+(1—- ac)i

L=
wdaz2 dx

Then, for allt >0,
Kde% =di Ky on L%(v)

where for a > 0, dof(x) = f(ax) is the dilation operator on Ry and
v(z)de = e *dx,z > 0, is the unique invariant distribution of the semi-
group K.
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Proof. It can be easily checked that if f is a polynomial, then
(4.81) L7ds f=d. Lf

Next, we recall from [29, Theorem 1.6(3)] that the set of all polynomials form
a core for L in L2(v) and d 1 Vg2 =V where v,2 is the invariant distribution

of K°°. Since

dy L (v) = L (1,2)
is an invertible operator, (4.81)) extends at the level of the corresponding
semigroups, which proves the lemma. [l

4.15. Proof of Theorem Let K(®) be the self-adjoint Laguerre semi-
group with the generator

L) = xd—Q +(1+5 —x)i.
dz? dx
From [27, Proposition 26], it is known that, for all 5 > m,
Ko T2 K8

where 7(®) is an infinitely divisible random variable with Laplace transform

given by
< r1+p8)Ir'(u+1)
uspp(7(8) = .
/0 e (77 € ds) Tutptl) u>0

More precisely, for all ¢ > 0,
K{1,B5 = 1,BsK”  on L2(vp)
Kt(ﬁ)V5 = VﬁKgs on L2(V¢)

with
(4.82) Iy f(z) = E[f(x1p)]
and, for all k € Z4, E[I fg] = W. Vp is another multiplicative Markov

kernel associated with the random variable Yz whose law is determined by
its moment sequence given, for all k € Z,, by

W (k+1)
Finally, we have Bgf = xﬁ) IS f y)x)y’ e ¥dy,x > 0, and

I¢B5V5 = wa). Now, from Proposmon we know that

(4.83) KT, = I,K? on £%(ny2)
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where K7 = K¢ with ¢(u) = o?u. On the other hand, from Proposi-
tion it is known that

(4.84) KPA = AKY on £2(ny)

and from [26], Proposition 25] along with [27, Proposition 30] and Lemmal[4.21]
we have
K Ay2 = A2 K¢ on L%(v,2)

o2 —

K{’d1 By =dy Bk on L2(vp)
Kt(ﬁ)Vﬁ = VﬁKf on L%(vy)

where v,2 (resp. vg) equals vy (the invariant distribution of the semigroup

K¢, see Proposition [4.11f[2)) with ¢(u) = o2u (resp. ¢p(u) = u+p), do f(z) =

A

f(ax) is the dilation operator and A,z : L2(v,2) — (?(n,2) is a Markov
operator defined by

2(n—1) n

-~ g T

_ —z(1402
Ay2(n,dx) = (1—1—02)”71—1—16 2 )d

Z.

By transitivity of the intertwining relation, it follows that

(4.85) K{TyA e = I4A,2 K7 on L2(v,2)

(4.86) KoY = TK? on £2(ngy)

where T = d 3, BgVsA. Now, from (4.85)) and (4.86), it remains to show

that ]I¢1AX02T = ]Kfﬁ, where 73 is defined as in the proposition.
Lemma 4.22. The operator 1y in (4.82) commutes with the dilation oper-
ator d. Moreover, if 02 > 0 then dy21sA = IgA on £*(ny).

Proof. Since Iy is a multiplicative Markov kernel, commutation with the
dilation operator follows readily. Now, for the intertwining relationship, by
density of P = Span{pi;k € Z+} in ¢*(n,), it suffices to show that, for all
ke Zs,

d021¢Apk = A]I¢pk.

However, Iypy = % and d,21yApy = dy2lgp = %, which proves

the lemma. 0
Coming back to the main proof, by an application of Lemma and
Lemma [1.22] we obtain

(4.87) AAye T = dyalyAR 2T = dpeTpAR2d s BVisA.
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Again invoking [27, Proposition 25|, we have AKO.Q = Klfg (140-2)"
0= %log(l + 072) as before, (4.87) yields

ALY =dy2Ty K d 1 BaVsh

Writing

_ Bk (8
—d021¢d712B5K§ VA
=I4BsVsKg,A
KO KO

A

—AK?,

where in the last line of the above equation, we used the fact that 754 =
78 4+ 20. By injectivity of A, it follows that I,Y = IK?B. This proves the
proposition. U

4.16. Proof of Theorem . We recall that Lo is the generator of
the self-adjoint Laguerre diffusion defined in (4.79) whose invariant distri-

1 _—z/o

bution is vy (z)dz = Hv(z/o?) = e *dz, x > 0. Let us first prove

the ®-entropy decay for K "2, the semigroup generated by L‘727 that is, for
all admissible function ® and f € L(1,2) with ®(f) € L!(v,2) one has

(4.88) Ent) (K7 f) < e 'Enty (f).

In Lemma we have shown that the semigroups K o and K are equiv-
alent via the similarity transform induced by the dilation operator d,2.
We first claim that it is enough to prove the exponential entropy decay
in replacing K o? by K. To see why, we note that for any o2 > 0,
f € LY(v,2) with ®(f) € L'(v,2), one has by the change of variable along

with Lemma that,
> o2 1 x T
/O (KT F(2))ye(a)de = /0 50 (th(,gf (§)) v (ﬁ) dz

_ /0 T O (Kodye f () () da

o0

We also observe by the change of vairable that for any f € L!(v,2), one has
O(vy2f) = ®(vd,2f). As a result, we have

Ent) | (K7 f) = Bnt} (Kidy2 f)

which proves our claim. Next, we state the following result regarding the
exponential entropy decay of the semigroup K generated by L.
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Lemma 4.23. For any ® as above and f € L'(v) with ®(f) € L(v), one
has

Ent? (K. f) < e 'Ent®(f).

Proof. Since L is a diffusion operator, from [I1, Equations (6) and (7)],
it suffices to show that for an admissible function ® and f € L!(v) with
®(f) € L(v), one has the following ®-entropy inequality

(4.89) Enty, (f) < u(®"(/)T(f))

where I' is the carré-du-champ operator, see [5, Section 1.4.2] associated to
L, that is, for smooth funcitons

L(f) = L(f*) —2fLf.
From [13 Theorem 2.1(2)] it follows that (4.89)) is equivalent to the fact that

the operator L satisfies the curvature dimension condtion C’D(%, 00), which
is indeed true from [5 Section 2.7.3]. Hence the lemma is proved. i

Now coming back to the proof of Theorem [2.12(|2)), due to the interweaving
relation in Theorem and the estimate in (4.88)), the proof of this theorem

follows directly from [27, Theorem 8. O

4.17. Proof of Theorem For ergodic self-adjoint diffusion semi-
groups, we know from [5, Theorem 5.2.3] that the hypercontractivity can
be interpreted in terms of the log-Sobolev constants corresponding to the
semigroups. Let us consider the self-adjoint Laguerre semigroup K o* de-
fined in Proposition For this semigroup, the invariant distribution is
Vg2 (z)dx = ﬁe*‘”/‘#d:ﬁ, x > 0, and the log-Sobolev constant is

. 4 fR+ zf(x)?v,2(dr)
FECH Rz g,_yy=1 Jr, f()?log(f(2)?)vg2(dz)

(4.90) CcLs =

The numerator in the above expression is four times the Dirichlet energy
associated to L°” defined by

SN =~ S = [ af @Prglie).

It was shown by Bakry [4] that ¢ = 1. Hence, by applying [5, Theo-
rem 5.2.3], we infer that for all ¢ > 0,

2
”|Kf |||L2(y02)—>LP(t)(VL,2) <1

where p(t) = 1+ ¢! and v(dz) = e *dz, x > 0. Having the above hypercon-
tractivity estimate, the rest of the proof follows from [27, Theorem 9] and

Theorem [4.201 O
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4.18. Proof of Theorem m First, we note that the semigroup K78
has the same invariant distribution ngy as K?. Let us recall that for o2 > 0,
0= %log(l +o72). Ift > %, Theorem entails that, for all s > 0 and
f € *(n,), we have

oo
(4.91) KO opf =) e7Fele™ s (f Vi), P? in %(ny).

k=0
For t > 0, let us define the random variable 75(t) such that 75(t) = 20t +
75(t). Indeed, from ([2.29) it follows that for all ¢ > 0,

F(u+p5+1) >
1+8T(u+1))"

Then, integrating both sides of (4.91) with respect to P(75(t) € ds) with
t> % we obtain

logE [e‘“%(t)] = —log <F

K)Pf = /0 K2f P(75(t) € ds) = /0 K2, 5, f P(F5(t) € ds)
- / (Z e ket ks (£ V), P,f) P(75(t) € ds)
0 \k=0

=3 e e Ve, PY /0 e FP(F5(t) € ds)
k=0

where the last equality follows due to Fubini theorem with the help of the
estimates HP;?H@(%) <1, ||VZ|]¢2(H¢) < Ceefete) for arbitrary e > 0 and
k € Z, see Proposition and the proof of Theorem . The proof
of this item is concluded by recalling that, for all k € Z,

e_zgt/ e FP(Ts(t) € ds) = e7tes(k),
0

For the next item, applying Jensen’s inequality we observe that, for all
B,t >0,

6.7 >
Ent?, (]Kt Hﬂf) < /0 Ent?, (]I(erTﬁf) P(r5(t) € ds).

Using Theorem [2, when ¢ > 0 and 8 > my, the right-hand side of the
above inequality is bounded above by

/ e_SEHtECb (F)P(15(t) € ds) = e—ﬂﬁﬁ(UEntEd) (f).
0
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This proves . Finally, for any f € Zz(nqg), we have by the triangle inequal-
ity

|&Ee

= ]Kfo]P’TtGdS
vy = | st B0 .o
< H]K‘fo P(75(t) € ds).

| 2], B € a9

Invoking Theorem[2.14] the right-hand side of the above inequality is bounded
above by

1o /O P(74(t) € ds) = [l 2,

which completes the proof.
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