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Abstract—Over the last decade, signal processing on graphs
has become a very active area of research. Specifically, the
number of applications, for instance in statistical or deep
learning, using frames built from graphs, such as wavelets on
graphs, has increased significantly. We consider in particular the
case of signal denoising on graphs via a data-driven wavelet
tight frame methodology. This adaptive approach is based on a
threshold calibrated using Stein’s unbiased risk estimate adapted
to a tight-frame representation. We make it scalable to large
graphs using Chebyshev-Jackson polynomial approximations,
which allow fast computation of the wavelet coefficients, without
the need to compute the Laplacian eigendecomposition. However,
the overcomplete nature of the tight-frame, transforms a white
noise into a correlated one. As a result, the covariance of
the transformed noise appears in the divergence term of the
SURE, thus requiring the computation and storage of the frame,
which leads to an impractical calculation for large graphs. To
estimate such covariance, we develop and analyze a Monte-Carlo
strategy, based on the fast transformation of zero mean and
unit variance random variables. This new data-driven denoising
methodology finds a natural application in differential privacy.
A comprehensive performance analysis is carried out on graphs
of varying size, from real and simulated data.

Index Terms—Chebyshev polynomial approximation, Monte-
Carlo methods, differential privacy, graph signal processing,
Stein’s unbiased risk estimate

I. INTRODUCTION

Data acquired from large-scale interactive systems, such as
computer, ecological, social, financial or biological networks,
become increasingly widespread and accessible. In modern
machine learning, the effective representation, processing or
analysis of these large-scale structured data with graphs or
networks are some of the key issues [5], [31]. The emerging
field of Graph Signal Processing (GSP) highlights connections
between signal processing and spectral graph theory [33], [36],
while building bridges to address these challenges. Indeed,
GSP has led to numerous applications in the field of machine
learning: convolutional neural networks (CNN) on graphs [6],
[12], [24], semi-supervised classification with graph CNN
[22], [28] or community detection [39] to name just a few.
We refer the reader to [14] for a recent review providing new
perspectives on GSP for machine learning including, for in-
stance, the important role it played in some of the early designs
of graph neural networks (GNNs) architectures. Moreover, the
recent study in [19] shows that popular GNNs designed from
a spectral perspective, such as spectral graph convolutional

networks or graph attention networks, are implicitly solving
graph signal denoising problems.

In the past decades, sparse approximation with respect to
a frame played a fundamental role in many areas such as
signal compression and restoration, data analysis, and GSP
in general. Indeed, over-complete representations like wavelet
frames have several advantages and offer more flexibility over
orthonormal bases. One representative family of over-complete
systems derived form the orthonormal Diffusion Wavelets
of [8] is the so-called Spectral Graph Wavelet Transform
(SGWT) of [23] constructed from a general wavelet frame. In a
denoising context, SGWT has recently been adapted by [21] to
form a tight frame using the Littlewood-Paley decomposition
inspired by [9]. Based on SGWT, [11] proposed an automatic
calibration of the threshold parameter by adapting Stein’s
unbiased risk estimate (SURE) for a noisy signal defined on
a graph and decomposed in a given wavelet tight frame. Even
if this selection criterion produces efficient estimators of the
unknown mean squared error (MSE), the main limitation is
the need for a complete eigendecomposition of the Laplacian
matrix, making it intractable for large-scale graphs.

We propose here to extend this methodology to large sparse
graphs by avoiding this eigendecomposition, thus extending its
range of application. Different strategies have been proposed
in the context of GSP, one of the most popular is based on
Chebyshev polynomial approximations [23]. However, even if
Chebyshev expansions are a good choice in many scenarios,
approximations of discontinuous or non-periodic functions
suffer from the Gibbs phenomenon. A simple strategy com-
monly used in GSP [37] to reduce possible spurious oscilla-
tions without additional computational cost is the introduction
of Jackson’s damping coefficients [13], [27] which allows for
higher orders of approximation.

As SURE can be evaluated in the wavelet domain, its
calculation benefits directly from these efficient numerical
approximations. In order to make it suitable for large sparse
graphs, the only problematic step is the computation of the
weights appearing in its expression. Indeed, since the SGWT
is no longer orthogonal a white Gaussian noise in the graph
domain is transformed into a correlated one thus involving
the covariance of the transformed noise in the resulting SURE
divergence term. The latter requires the explicit computation
and storage of the frame in order to be calculated. Inspired by



the estimation of the correlation between wavelets centered
at different nodes proposed in [39], our contribution is to
take advantage of the interpretation of the SURE weights as
the covariance between wavelet transforms of random signals
in order to estimate them with Monte-Carlo approximation.
We then plug this weight estimator in the SURE formula to
obtain an estimator of SURE that extends well to large graph
signals. In addition, we provide expressions for the variance
of our proposed estimators and show that drawing Monte-
Carlo samples from the centered Rademacher distribution
gives a smaller variance compared to the standard Gaussian
distribution. Our approach is in line with other methods [35],
[41] that also use Monte-Carlo strategy, but to estimate the
entire divergence term involved in the calculation of SURE,
in the case of uncorrelated noise.

Our proposed method can remove noise from any signal
defined on a graph, this includes images [36] and 3D meshes
[32] which can have a large number of vertices. Here, we focus
on an interesting application in differential privacy [17] whose
purpose is to protect sensitive data used by algorithms. Such
privacy guarantees are usually achieved by adding white noise
to the signal which inevitably reduces its statistical utility as
the relevant information it contains is perturbed. This utility
can be partially recovered through denoising on the condition
that no information about the original signal is used. As our
proposed data-driven methodology lends itself well to this
usage for graph signals, we incorporate it in our numerical
experiments. These give an evaluation of our Monte-Carlo
estimator of SURE and its weights, along with the overall
denoising methodology on both small and large graphs. In
summary, the contributions of this paper are as follows:

• We propose a Monte-Carlo estimation of Stein’s unbiased
risk estimate (SURE) that extends to signals defined on
large-scale graphs. This method avoids the computation-
ally expensive eigendecomposition of the graph Laplacian
matrix required to compute weights that appear in the
SURE expression.

• Provided expressions for the variance of our estima-
tors show that Monte Carlo samples drawn from a
Rademacher distribution is more efficient than with a
Gaussian distribution. This theoretical result is illustrated
through numerical experiments that compare both distri-
butions.

• A performance analysis of the proposed graph signal
denoising methodology shows its performance on real
data protected with differential privacy and simulated
large graph signals.

The paper is structured as follows. We introduce our nota-
tion of graph signals and briefly recall the SGWT definition of
[23], its construction by [21] and polynomial approximations
in Section II. Our proposed Monte-Carlo estimators of SURE
and its weights along with their respective variance are pre-
sented in Section III. In Section IV we present the notion of
differential privacy from [17] and two methods to achieve it in
the context of graph signals. Finally, we numerically evaluate

our estimators and compare our methodology to the DFS fused
lasso introduced in [25] for small and large graphs in Section
V.

II. GRAPH SIGNAL DENOISING

Consider a signal f ∈ RV defined on an undirected
weighted graph G, with set of vertices V of cardinality n, and
weighted adjacency matrix W with entries (wij)i,j∈V . The
(unnormalized) graph Laplacian matrix L ∈ RV×V associated
with G is the symmetric matrix defined as L = D − W ,
where D is the diagonal matrix with diagonal coefficients
Dii =

∑
j∈V wij . We present here our methodology with this

particular Laplacian matrix but it can be easily adapted to
its normalized and random walk counterparts like presented
below in Section II-C.

The noise corruption model can be written as

f̃ = f + ξ,

where ξ ∼ N (0, σ2In). The purpose of denoising is to build
an estimator f̂ of f that depends only on f̃ .

A simple way to construct an effective non-linear estimator
is obtained by thresholding the SGWT coefficients of f on
a frame (see [23] for details about the SGWT). Given the
Laplacian and a given frame, denoising in this framework can
be summarized as follows:
• Analysis: compute the SGWT transform W f̃ ;
• Thresholding: apply a given thresholding operator (e.g.,

soft or hard) to the coefficients W f̃ ;
• Synthesis: apply the inverse SGWT transform to obtain

an estimate f̂ of the original signal.
This procedure can be viewed as an extension of the wavelet

denoising methodology from Donoho and Johnstone [15] to
the SGWT.

A. Spectral Graph Wavelet Transform

The SGWT decomposes a signal into a frame F = {ri}i∈I
of vectors of RV with frame bounds A, B > 0 satisfying for
all f ∈ RV

A‖f‖22 ≤
∑
i∈I
|〈f, ri〉|2 ≤ B‖f‖22.

When A = B = 1, the above inequality becomes Parseval’s
identity and such a frame is said to be tight.

As L is a symmetric matrix, its spectral decomposition is
given by L =

∑
` λ`〈χ`, ·〉χ`, where λ1 ≥ λ2 ≥ · · · ≥ λn =

0 are the (ordered) eigenvalues of L and (χ`)1≤`≤n are the
associated eigenvectors. Then for any function ρ : sp(L)→ R
defined on the spectrum of L, we have the functional calculus
formula ρ(L) =

∑
` ρ(λ`)〈χ`, ·〉χ`.

We build a tight frame following [21], [29] with a finite
partition of unity (ψj)j=0,...,J on the compact [0, λ1] defined
as follows: let ω : R+ → [0, 1] be some continuous function
with support in [0, 1], satisfying ω ≡ 1 on [0, b−1], for some
b > 1, and set

ψ0(x) = ω(x), ψj(x) = ω(b−jx)− ω(b−j+1x),



for j = 1, . . . , J , where J = blog λ1/ log bc + 2. In our
numerical experiments, we use the following piecewise linear
function ω:

ω(x) =


1 if 0 ≤ x ≤ b−1
b

1−bx+ b
b−1 if b−1 < x ≤ 1

0 if x > 1

,

with parameter b = 2. An alternative ω function is the
C∞ function hc(x) = gc(x + 1)gc(1 − x) where gc(x) =
f(x)/(f(x) + f(c − x)) and f(x) = e−1/x1{x>0}. Another
choice is to take a C3 piecewise polynomial plateau function
like the authors of [21]. Figure 1 illustrates the ω and hc
functions with parameters b = 2 and c = 1, respectively.
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Fig. 1. ω and hc functions on [0, 1]

The partition of unity (ψj)j=0,...,4 on [0, λ1] obtained with
the graph presented in the first experiment from Section V is
shown in Figure 2.
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Fig. 2. Finite partition of unity on [0, λ1]

Using Parseval’s identity, we can show that the following
set is a tight frame:

F =
{√

ψj(L)δi, j = 0, . . . , J, i ∈ V
}
.

Decomposing a signal f ∈ RV into this frame results in its
SGWT along the (J + 1) scales:

Wf =
(√

ψ0(L)fT , . . . ,
√
ψJ(L)fT

)T
∈ Rn(J+1).

With the tightness property of the frame, the inverse transform
is directly given by the application of the adjoint matrix to the
wavelet coefficients:

W∗
(
ηT0 , η

T
1 , . . . , η

T
J

)T
=
∑
j≥0

√
ψj(L)ηj .

B. SGWT Polynomial Approximation

Direct computation of the SGWT entails functional calculus
on the graph Laplacian matrix L and thus the computation of
its eigenvectors and eigenvalues. This limits applications to
reasonably sized graphs that have less than a few thousand
nodes. For larger ones, the computationally expensive eigen-
decomposition can be avoided through a fast transform based
on Chebyshev polynomial approximation [23].

The Chebyshev polynomials of the first kind Tk(x) are
obtained from the recurrence relation Tk(x) = 2xTk−1(x) −
Tk−2(x), with T0(x) = 1 and T1(x) = x. They form an or-
thogonal basis of the Hilbert space L2([−1, 1], dy/

√
1− y2).

Any filter ρ can be approximated with the truncated Chebyshev
expansion of degree K

ρK(L) =

K∑
i=0

θi(ρ̃)Ti(L̃),

where θi(ρ̃) is the i-th coefficient of the Chebyshev expansion
of function ρ̃(x) = ρ(λ1

2 (x + 1)) and Ti(L̃) is the i-degree
Chebyshev polynomial computed for L̃ = 2

λ1
L − In. This

transformation of L extends the expansion to any Laplacian
matrix by mapping [0, λ1] into [−1, 1]. According to [23], for
all filter ρ defined on sp(L) and all signal f , the approximation
ρK(L)f is close to ρ(L)f .

While this first approximation is more practical than the
complete SGWT, it is subjected to the Gibbs phenomenon.
A solution is to include Jackson coefficients gKi as damping
multipliers in the Chebyshev expansion:

ρK(L) =

K∑
i=0

gKi θi(ρ̃)Ti(L̃).

An expression of these damping factors can be found in [27],
a shorter form proposed in [13] is given by

gKi =
sin(i+ 1)αK

(K + 2) sin(αK)
+

(
1− i+ 1

K + 2

)
cos(iαK),

where αK = π/(K+2). This Chebyshev-Jackson polynomial
approximation reduces Gibbs oscillations resulting in a better
convergence as the degree K increases.

C. Extension to Other Laplacian Matrices

As previously mentioned, this methodology also adapts well
to the normalized and random walk (or asymmetric) Laplacian
matrices, respectively defined as Lnorm = D−

1
2LD− 1

2 and
Lrw = D−1L. These have been used as an alternative to the
unnormalized graph Laplacian L in other related methods such
as the graph Fourier transform [20].

The normalized Laplacian matrix is real symmetric like
L which means it is diagonalizable and therefore suited for
our approach. As its spectrum sp(Lnorm) = {µ1, . . . , µn} is
always contained in the interval [0, 2], its maximum eigenvalue
µ1 is bounded by 2. This represents a special case of the
construction described above and requires a few modifications.
First, the formula J = blogµ1/ log bc + 2 that determines
the number of scales in the wavelet decomposition restricts



the choice of parameter b to the interval (1, 2] in order to
get more than J + 1 = 3 scales. Then, the polynomial ap-
proximation consists of the truncated Chebyshev expansion of
function ρ̃(x) = ρ(x+ 1) with the appropriate transformation
L̃norm = Lnorm − In.

On the other hand, the random walk Laplacian matrix
is not symmetric but is diagonalizable nonetheless as it is
similar to the normalized Laplacian: Lnorm = D

1
2LrwD

− 1
2 .

Its eigenvalues and eigenvectors are easily obtained from the
eigendecomposition of Lnorm:

Lnormu` = µ`u`

D
1
2LrwD

− 1
2u` = µ`u`

Lrw(D−
1
2u`) = µ`(D

− 1
2u`),

where u` is the eigenvector of Lnorm associated with µ`.
We see that Lrw has exactly the same spectrum as Lnorm

and its set of eigenvectors is given by {D− 1
2u`}`=1,...,n.

Since these form an orthonormal basis for Rn with the inner
product 〈x, y〉D = x>Dy, we have the spectral decomposition
Lrw =

∑
` µ`〈D−

1
2u`, ·〉DD−

1
2u`. The functional calculus

formula for any function ρ defined on the spectrum of Lrw

is thus ρ(Lrw) =
∑
` ρ(µ`)〈D−

1
2u`, ·〉DD−

1
2u`. Chebyshev

polynomial approximation can then be applied in the same
way as for the normalized Laplacian matrix.

III. MONTE-CARLO ESTIMATION OF WEIGHTS

From [11], SURE for a general thresholding process h :
Rn(J+1) → Rn(J+1) is given by the following identity

SURE(h) = −nσ2 +‖h(F̃ )− F̃‖2 +2σ2

n(J+1)∑
i,j=1

γ2ij∂jhi(F̃ ),

(1)
where F̃ =W f̃ is the wavelet transform of the noisy signal f̃ .
In [11], the weights γ2ij = (WW∗)ij , i, j = 1, . . . , n(J + 1),
are computed from the full reduction of the Laplacian matrix
which is no longer tractable for large graphs. However, as
shown in [23], the SGWT can be efficiently approximated by
using Chebyshev polynomials. Besides, it is clear from the
probabilistic interpretation given in [11, Th. 1] that

∀i, j = 1, . . . , n(J + 1), γ2ij = E[(Wε)i(Wε)j ].

where ε = (ε1, . . . , εn) are i.i.d. random variables with
zero mean and variance one. Thus, taking advantage of this
identity, we propose to estimate the weights with Monte-Carlo
approximation as follows:
• generate (εik)i=1,...,n,k=1,...,N of i.i.d. random variables

such that E[εik] = 0 and V(εik) = 1;
• compute

γ̂2ij =
1

N

N∑
k=1

(Wεk)i(Wεk)j ,

where εk = (εik)i=1,...,n are random signals.
Generally speaking, whereas Monte-Carlo are simple meth-

ods to implement and can be easily parallelized, they suffer
from their slow rate of convergence. In practice, a well-chosen

distribution for the random variables εik can result in a lower
variance of the estimator V[γ̂2ij ] whose expression is given
below. In fact, it is even more interesting to compute the
variance of SURE when the estimator γ̂2ij is plugged in place
of the weights γ2ij in (1).

A. Variance of γ̂2ij .

A straightforward computation gives the expectation of γ̂2ij

E[γ̂2ij ] = E

[(
n∑
p=1

Wipεp1

)(
n∑
p=1

Wjpεp1

)]

=

n∑
p,q=1

WipWjqE[εp1εq1] =

n∑
p=1

WipWjp = γ2ij .

The variance of γ̂2ij is given by the following result and its
computation is derived in Appendix A.

Proposition 1:

V[γ̂2ij ] =
1

N

{
V[ε211]

n∑
p=1

W2
ipW2

jp

+ 2E[ε211]2
n∑

p,q=1,
p 6=q

WipWiqWjpWjq

}
.

Note the usual rate of convergence
√
N from Monte-Carlo

estimation. In many papers in the literature ε11 is chosen
to be distributed as a standard Gaussian random variable so
that V[ε211] = 2. However, if ε11 has a centered Rademacher
distribution with probability mass function 1

2δ−1 + 1
2δ1, then

ε211 is deterministic and V[ε211] = 0. With such a choice, the
variance of γ̂2ij is then reduced to

V[γ̂2ij ] =
2

N

n∑
p,q=1,
p 6=q

WipWiqWjpWjq.

This trick is actually well known in the literature [26]. This
computation somehow provides arguments in favor of the
Rademacher distribution.

Another way to further reduce the variance of γ̂2ij is to take
advantage of the SGWT localization property. Let us denote
by bxc the integer part of a real x ∈ R. Then, for any i ∈
{1, . . . , n(J + 1)} and any p ∈ {1, . . . , n}

|Wip| =
∣∣∣〈√ψbi/nc(L)δi−bi/nc, δp

〉∣∣∣ ≤ ‖ψbi/nc(L)‖22 ≤ 1.

Since the SGWT is localized both in the space and the
frequency domain, Wip vanishes as the geodesic distance
between i − bi/nc and p grows. Thus, the performance of
the Monte-Carlo estimation could be improved by a suitable
calibration of the partition of unity. As a consequence, most
terms in the expression of V[γ̂2ij ] are small thanks to the
localization properties of SGWT.



B. Variance of ŜURE

The SURE plug-in estimator is obtained by replacing the
weights γ2ij with their Monte-Carlo estimators γ̂2ij :

ŜURE(h) = −nσ2 +‖h(F̃ )− F̃‖2 +2σ2

n(J+1)∑
i,j=1

γ̂2ij∂jhi(F̃ ).

Given the observed wavelet coefficients F̃ , this estimator of
SURE has no bias as it is a linear function of the unbiased
weight estimators γ̂2ij . The following proposition presents
its conditional variance whose computation is detailed in
Appendix B.

Proposition 2:

V[ŜURE(h)|F̃ ] =
4σ4

N

n(J+1)∑
i,j,k,`=1

∂jhi(F̃ )∂kh`(F̃ )

{

V[ε211]

n∑
p=1

WipWjpWkpW`p

+ E[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkpW`q

+ E[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkqW`p

}
.

Here again, the Rademacher distribution reduces the variance
compared to the Gaussian distribution.

C. Computational Complexity

The polynomial approximation of all random signal wavelet
transformsWεk is of orderO(N(mK+n(J+1)K)), where m
is the number of edges in the graph [23]. Then, computing ev-
ery (γ̂2ij)i,j=1,...,n(J+1) term requires O(n2(J + 1)2(2N −1))
operations. The computation of all the weights is useful
when performing block thresholding on the wavelet coeffi-
cients W f̃ [11] which shows good denoising performance
but is relatively computationally expensive. Alternatively, a
coordinate-wise thresholding process only needs the diagonal
weights (γ̂2ii)i=1,...,n(J+1) whose computation is reduced to
O(n(J + 1)N) operations.

After this initial weight estimation, the computational com-
plexity for the approximated wavelet transform of the noisy
signal f̃ is O(mK+n(J+1)K). The coordinate-wise thresh-
olding step has an average cost of O(n(J + 1) log(n(J + 1)))
according to [15]. Finally, the approximated inverse transform
has the same complexity as the forward transform.

IV. DIFFERENTIAL PRIVACY AND GAUSSIAN MECHANISM

We now give a definition of differential privacy [17] which
constitutes a strong standard for privacy guarantees about
algorithms that use sensitive data. Let X1, . . . , Xm be a
random vector containing the private data of m individuals we
wish to protect with a privacy mechanism. This information
is collected in a dataset X = (X1, . . . , Xm) that serves

as an input to the mechanism which returns a sanitized
output Z = (Z1, . . . , Zk) that preserves the privacy of each
individual. Let (Xm,Am) and (Z,B) be the measurable
spaces where X and Z respectively take values. A privacy
mechanism Q(·|X) corresponds to the conditional distribution
of Z given X , that is Q(A|x) = P(Z ∈ A|X = x), where
Q(·|·) : B × Xm → [0, 1] is a Markov kernel.

Let ε ≥ 0 be the privacy budget and δ ≥ 0 another privacy
parameter. The privacy mechanism Q is said to satisfy (ε, δ)-
differential privacy if for any two datasets x, x′ ∈ Xm that
differ on a single entry and for any subset of outputs A ∈ B,
we have

Q(A|x) ≤ eεQ(A|x′) + δ.

As it appears from this definition, smaller privacy parameters
lead to closer output distributions and hence a better privacy
preserving mechanism. Intuitively, differential privacy protects
individuals by ensuring the inclusion or removal of their
information from the input dataset does not affect much the
output distribution.

In this paper, we are interested in functions f : Xm → Rn
that map a dataset X to a graph signal f ∈ Rn. In order to
achieve differential privacy, a common method is to introduce
just enough uncertainty in the function response to hide the
participation of any single individual. The Gaussian mecha-
nism does so by adding white Gaussian noise ξ ∼ N (0, σ2In)
to the response where the standard deviation σ is calibrated
to the privacy parameters and a third quantity ∆ called the l2-
sensitivity. It is defined by ∆ = max ‖f(x)− f(x′)‖2 which
corresponds to the maximum impact a single individual’s
information can have on the signal f . This method yields a
sanitized output Z = f(X) + ξ that can be interpreted as a
noisy signal f̃ = f + ξ with our noise corruption model given
in Section II.

We present two Gaussian mechanisms that use different
variance formulas to sanitize a function f : Xm → Rn
with l2-sensitivity ∆. First, the classical Gaussian mechanism
proposed by [17] preserves (ε, δ)-differential privacy for any
ε, δ ∈ (0, 1) if σ ≥ ∆

√
2 log(1.25/δ)/ε. The authors of [2]

have shown that this formula is not optimal and can be further
improved to reduce the amount of noise needed to achieve
the same degree of privacy. Whereas the classical Gaussian
mechanism uses a Gaussian tail approximation to obtain a
bound for the standard deviation, their proposed approach uses
numerical evaluations of the cumulative Gaussian distribution
function Φ(x) = P(N (0, 1) ≤ x) to determine an optimal
variance. Their analytic Gaussian mechanism preserves (ε, δ)-
differential privacy for any ε ≥ 0 and δ ∈ [0, 1] if and only
if

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ.

The Gaussian mechanism offers a solution to sanitize a signal
at the expense of its utility as it is perturbed by the introduced
noise. Indeed, there is a trade-off between privacy and utility:
very small values of ε and δ ensure a strong degree of privacy
but can be detrimental to the utility of the sanitized data,



and vice versa. A valuable aspect of differential privacy is
its immunity to post-processing [18, Prop. 2.1] as long as
no knowledge about the original signal is used. Formally, the
composition of any data-independent function with an (ε, δ)-
differentially private mechanism is also (ε, δ)-differentially
private. Therefore, a data-driven denoising method such as
ours can improve the utility of a sanitized signal with no
loss of privacy. Indeed, the SGWT, SURE and their respective
approximations only require information contained in the
known Laplacian matrix L and observed noisy signal f̃ .

V. NUMERICAL EXPERIMENTS

In this section, we present an experimental evaluation of
our Monte-Carlo estimator of the SURE weights described in
Section III and graph signal denoising methodology. Specif-
ically, we are interested in the sanitization and denoising of
density maps of located events over a given period. First, we
consider signals built from real datasets gathering positions
of taxis in the cities of New York and San Francisco. The
relatively small size of their corresponding graphs enables us
to diagonalize their respective Laplacian matrices and directly
compute the SGWT and SURE in a reasonable amount of
time, thus allowing the comparison with our approximation
method. Then, we generate signals on a large graph for
which the eigendecomposition of the Laplacian matrix is not
tractable. Hereafter, wavelet transforms are performed with the
piecewise linear ω function presented in Section II-A and each
polynomial approximation is of degree K = 100.

A. Monte-Carlo Estimator of the Weights γ2ii
This experiment makes use of the New York City (NYC)

yellow taxi trip records publicly released each year by the Taxi
and Limousine Commission (TLC). These datasets contain in
particular the pickup and drop-off locations and times of each
trip whose distribution has been the subject of different GSP
applications [2], [7], [33]. In the past, a bad pseudonymization
of the taxi ID led to a privacy breach [16] for the drivers and
their passengers about where they might reside and the places
they frequent.

Since the yellow taxis mostly operate in the borough of
Manhattan, we focus our experiment on Manhattan Island
and build an associated graph with OSMnx [4]. This Python
package automatically downloads urban networks from the
OpenStreetMap database, converts them to graph objects of
the NetworkX package and offers a variety of analysis tools.
The resulting graph consists of 4513 nodes and 9743 edges
representing street intersections and segments, respectively.

With this first graph, we evaluate the SURE weights Monte-
Carlo estimators when their samples are either drawn from a
centered Rademacher or standard Gaussian distribution. Their
SGWT are computed with the Chebyshev polynomial approx-
imation and we estimate the weights for different Monte-
Carlo sample sizes N . We focus on the diagonal weights γ̂2ii,
i = 1, . . . , n(J+1) as only these are needed in the coordinate-
wise thresholding process and compare them to the weights
obtained from the complete transform by averaging the MSE

along the n nodes and (J + 1) scales over 50 repetitions:
MSE((γ2ii)i, (γ̂

2
ii)i) = 1

n(J+1)

∑n(J+1)
i=1 (γ2ii − γ̂2ii)2.
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Fig. 3. Average MSE between the SURE weights γ2ii and their Monte-Carlo
estimators γ̂2ii over 50 repetitions.

Results are presented in Figure 3 where we see that drawing
samples from the centered Rademacher distribution gives
estimates closer to the real weights in terms of MSE for any
sample size compared to the standard Gaussian distribution.
This illustrates the gain in variance achieved with the former
distribution as mentioned in Section III-A.

B. SURE Monte-Carlo Estimator

We now present how SURE behaves when the estimated
weights γ̂2ii are plugged in. On the same graph, we build a
signal f by counting the number of taxi pickups projected
to the nearest intersection over a period of one hour. Here,
we consider the time interval between 00:00 and 01:00 on
Sept 24, 2014, as chosen by [2] to compare our results in
a similar configuration. We add some white Gaussian noise
with standard deviation σ = 1 to obtain a noisy signal and
compute its SGWT coefficients with the Chebyshev-Jackson
approximation. The denoising is done by applying the James-
Stein thresholding function τ(x, t) = xmax{1−t2|x|−2, 0} to
the coefficients with the threshold that minimizes MSE(f, f̂).
Finally, for this optimal threshold we estimate SURE between
the estimate f̂ and the original signal with known σ for
different Monte-Carlo sample sizes and both the centered
Rademacher and standard Gaussian distributions.

Figure 4 shows the average SURE estimate over 50 repe-
titions along with a 95 % empirical confidence interval. We
visualize the SURE plug-in estimator unbiasedness as it is
centered on the real SURE value. Additionally, we observe the
smaller variance of the Monte-Carlo estimator when samples
are drawn from the centered Rademacher distribution com-
pared to the Gaussian distribution, as previously mentioned in
Section III-B. As a result, we estimate SURE in the following
experiments with 10 samples from this distribution.



TABLE I
AVERAGE SNR PERFORMANCE OVER 10 REALIZATIONS OF HIGH TO LOW PRIVACY BUDGET SANITIZATION ON THE NYC GRAPH.

Classical Gaussian mechanism Analytic Gaussian mechanism
ε 0.2 0.3 0.5 1 0.2 0.3 0.5 1
σ 26.49 17.66 10.60 5.30 18.99 12.99 8.06 4.22
SNRin -12.48 ± 0.11 -8.96 ± 0.11 -4.52 ± 0.11 1.5 ± 0.11 -9.59 ± 0.11 -6.29 ± 0.11 -2.14 ± 0.11 3.47 ± 0.11
SGWTMSE 0.23 ± 0.32 1.61 ± 0.26 3.55 ± 0.23 7.0 ± 0.16 1.36 ± 0.27 2.73 ± 0.23 4.79 ± 0.18 8.29 ± 0.15
SGWTSURE 0.1 ± 0.24 1.5 ± 0.31 3.52 ± 0.2 6.94 ± 0.17 1.25 ± 0.38 2.71 ± 0.25 4.75 ± 0.2 8.24 ± 0.18
SGWTCJ

SURE, MC 0.1 ± 0.28 1.51 ± 0.34 3.52 ± 0.24 6.92 ± 0.15 1.3 ± 0.34 2.71 ± 0.25 4.74 ± 0.22 8.24 ± 0.17
DFSMSE 0.88 ± 0.02 1.18 ± 0.09 2.33 ± 0.18 5.58 ± 0.15 1.09 ± 0.09 1.72 ± 0.12 3.43 ± 0.17 6.96 ± 0.16
DFSSURE 0.85 ± 0.03 1.11 ± 0.08 2.26 ± 0.16 5.55 ± 0.14 1.02 ± 0.07 1.65 ± 0.18 3.4 ± 0.15 6.95 ± 0.16
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Fig. 4. Average SURE Monte-Carlo estimate and 95% CI over 50 repetitions.

C. Denoising of Differentially Private Graph Signals

We illustrate denoising performance with the SURE Monte-
Carlo estimator on two relatively small graphs. This allows for
the explicit eigendecomposition of their associated Laplacian
matrices and computation of the SGWT and SURE with which
we compare our proposed method.

1) New York City taxis: Considering the number of taxi
pickups at each intersection from the last experiment as our
signal, we now apply the differential privacy mechanisms
presented in Section IV to sanitize it. Both the classical and
analytic Gaussian mechanisms are used for different values of
the privacy budget ε and therefore noise levels σ, while the
other privacy parameter is set to δ = 10−6 as in [2]. Note
that to satisfy the constraint associated with the maximum
value taken by the ε parameter, the resulting noise levels are
particularly high. We aim to protect the taxi passengers and
assume they only take a taxi once within an hour. This gives
an upper bound of their individual contribution to the signal
and thus we have an l2-sensitivity of ∆ = 1.

We compare different denoising methods using signal-to-
noise ratio SNR(f, f̂) = 20 log10(‖f‖2/‖f − f̂‖2) as a
performance measure. We also compute it between the original
and noisy signals to get a baseline of the amount of input noise
after sanitization: SNRin = SNR(f, f̃). Three denoising meth-
ods based on the application of a level-dependent James-Stein
thresholding function to wavelet coefficients are considered,

each of them uses a different criterion to select the optimal
thresholds: (1) an oracle estimator that directly computes the
SGWT and minimizes the real MSE; (2) a second estimator
that instead minimizes SURE; and (3) our proposed estimator
that approximates the SGWT with Chebyshev-Jackson poly-
nomials and estimates SURE with Monte-Carlo. As shown by
[15], for a coordinate-wise thresholding process such as James-
Stein, SURE reaches its minimum for some threshold t chosen
among the absolute values of the noisy wavelet coefficients
{|F̃i|, i = 1, . . . , n(J + 1)}. We further reduce this set to
its percentiles to find a compromise between the range and
number of candidate threshold values.

These estimators are compared to the DFS fused lasso, a
regularization method introduced in [25]. It first performs a
standard depth-first search (DFS) traversal algorithm to reduce
the initial graph to a chain graph. Then, it runs a 1-dimensional
fused lasso [38], a special case of graph trend filtering [40],
over this simpler graph. In doing so, this method avoids the
prohibitive computational cost of standard graph trend filtering
over an arbitrary graph at the expense of less statistical accu-
racy. Here, the comparison is made on unweighted graphs as
the DFS fused lasso is limited to them, whereas the SGWT can
be applied to graphs with edge weights. In the experiments,
the DFS and fused lasso are respectively conducted with the
igraph [10] and glmgen [1] R packages.

Table I summarizes the results of this experiment over 10
sanitization realizations. We observe that the wavelet trans-
form oracle estimator (SGWTMSE) performs better than the
oracle DFS fused lasso (DFSMSE) for most values of privacy
budget. When considering stronger degrees of privacy with
the classical Gaussian mechanism which requires the most
amount of input noise, the oracle DFS fused lasso presents
better results. Our approach combining Chebyshev-Jackson
polynomial approximations with SURE Monte-Carlo estima-
tion (SGWTCJ

SURE, MC) gives slightly lower SNR values than
its oracle counterpart but nevertheless shows better denoising
performance compared to the regularization method except for
the case where the noise is very high.

2) San Francisco Taxis: We check these initial results with
a second dataset that contains the GPS coordinates of 536
taxis collected over a month in the San Francisco Bay Area
[34]. Each entry consists of the taxi location and whether it
currently has passengers at a given time with approximately
one minute between updates. In a similar fashion as for



the previous experiment, we concentrate on the city of San
Francisco and get the associated graph of the street network
from OSMnx. It is about twice as large with 9573 nodes and
15716 edges, causing a longer but still practicable computation
of the SGWT.

Pickup locations are inferred by keeping the entries whose
occupancy status goes from ”free” to ”occupied”, giving an
approximation close to the minute. We build a signal by
counting these pickups projected to the nearest intersection on
the day of May 25, 2008. Sanitization is then applied with the
analytic Gaussian mechanism and parameter values δ = 10−6

and ∆ = 2. The latter is chosen by assuming the individual
passengers do a maximum of four taxi trips within a day, all
starting from distinct places.

TABLE II
AVERAGE SNR PERFORMANCE OVER 10 REALIZATIONS OF HIGH TO LOW

PRIVACY BUDGET SANITIZATION ON THE SAN FRANCISCO GRAPH.

ε 0.20 0.50 1
σ 37.98 16.12 8.45
SNRin -11.95 ± 0.05 -4.51 ± 0.05 1.1 ± 0.05
SGWTMSE 0.80 ± 0.27 4.34 ± 0.11 8.24 ± 0.07
SGWTSURE 0.77 ± 0.31 4.32 ± 0.09 8.22 ± 0.06
SGWTCJ

SURE, MC 0.76 ± 0.32 4.34 ± 0.12 8.22 ± 0.08
DFSMSE 0.22 ± 0.02 3.02 ± 0.1 6.77 ± 0.1
DFSSURE 0.17 ± 0.07 2.99 ± 0.12 6.76 ± 0.1

Results presented in Table II are in line with those obtained
above. The wavelet transform oracle estimator gives the best
overall results and our method performs again better than
the oracle DFS fused lasso for the considered privacy budget
values.

D. Denoising of Large Graph Signals

In this experiment, we apply our method on a large graph
whose scale prevents us from decomposing the Laplacian
matrix due to the prohibitive computational cost. The road
network of Pennsylvania from [30] is such a graph consisting
of 1088092 nodes and 1541898 edges. Synthetic signals are
generated on this graph following the methodology proposed
in [3]: with two parameters p ∈ (0, 1) and k ∈ N, we produce
a signal fp,k = W kxp where xp is an i.i.d. realization of n
Bernoulli random variables of parameter p. As this data is
entirely simulated and not related to the information of real
individuals, the added noise does not depend on some privacy
budget ε value and is instead directly chosen. Here, a noisy
signal f̃ = f0.001,4 + N (0, σ2In) is generated for different
values of σ.

Figure 5 presents the average SNR values over 5 noise real-
izations for our proposed estimator and the oracle DFS fused
lasso. We see that the results observed on small graph signals
extend well to the large-scale setting, with better performance
for the Chebyshev-Jackson polynomial approximation with the
SURE Monte-Carlo estimator on a range of input SNR similar
to the previous experiments.

Regarding computing time, the DFS fused lasso is, however,
more efficient than the approximated SGWT and estimated
SURE for this application. On a standard laptop (Intel Core
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Fig. 5. Average SNR performance over 5 realizations of each noise level
setting on the Pennsylvania graph

i5@1.70GHz-16Go DDR4@2400MHz), each of the realiza-
tions is denoised in 4 seconds by the regularization method
while it takes less about 3 minutes for the latter after an initial
estimation of the SURE weights done in 1 minute. We do not
observe a significant difference between drawing Monte-Carlo
samples from the Rademacher or the Gaussian distributions,
both take the same amount of time. In our procedure, the most
time-consuming step is the threshold optimization (2m30s),
followed by the inverse wavelet transform (25s) and the
forward transform (7s).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose an extension of SURE to large-
scale graphs in the context of signal denoising with threshold-
ing of SGWT coefficients. In particular, we use Monte-Carlo
and Chebyshev-Jackson polynomial approximation to build an
estimator of its weights in order to avoid the computationally
expensive eigendecomposition of the graph Laplacian matrix.
Provided expressions for the variance of both weights and
SURE estimators show that the Rademacher distribution is
better suited than the Gaussian one for this method. We eval-
uate our data-driven approach through numerical experiments
with an application in differential privacy to improve the
utility of sanitized graph signals. Results show the MSE can
be efficiently estimated with our extended SURE on small
and large graphs. Additionally, this methodology shows better
performance than the DFS fused lasso.

There is room for improvement in this approach to remove
noise with better precision. For instance, the thresholding
function we used can be generalized to τ(x, t) = xmax{1−
tβ |x|−β , 0} with β ≥ 1. Common choices for β include
soft thresholding (β = 1) and hard thresholding (β = ∞)
but an optimization algorithm for this parameter would be
more beneficial to further improve performance. An additional
thresholding strategy worth considering is block thresholding
which partitions wavelet coefficients within each scale to
identify localized features in the signal. Depending on the



regularity of the original signal, this can help to remove noise
with more accuracy as a different threshold value is selected
for each block. An expression of SURE provided for block
thresholding processes with SGWT coefficients by [11] could
be extended to large graphs with our approach.

Another direction for future research is to adapt our method-
ology to be run on a distributed system in order to further
reduce computing time. First, sanitization with the Gaussian
mechanism only consists of the addition of independent Gaus-
sian noise to each node of the graph. Differential privacy
in this case can thus be achieved in a distributed manner
over subgraphs of the initial graph. Threshold selection by
SURE optimization can also be computed in a distributed
manner thanks to the additive nature of the SURE formula.
But the Laplacian matrix and the SGWT cannot be directly
decomposed over separated groups of graph nodes. This yields
at least two important challenges in order to distribute 1) the
computation of the weights in the SURE formula, and 2) the
SGWT thresholding procedure. For specific graph structures
(e.g. relatively distinct subgraphs), localization properties of
the SGWT would certainly help finding accurate approxima-
tions for these distributed computations.

APPENDIX A
COMPUTATION OF V[γ̂2ij ]

The formula of the weights γ̂2ij is given by

γ̂2ij =
1
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(
n∑
p=1

Wipεpk

)(
n∑
p=1

Wjpεpk

)
.

The variance of γ̂2ij reads
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APPENDIX B
COMPUTATION OF V[ŜURE(h)|F̃ ]

From Equation (1), it follows that
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Developing each term of the sum above, it follows
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Thus, on the one hand

N2E[γ̂2ij γ̂
2
k`] = NE[ε411]

n∑
p=1

WipWjpWkpW`p

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjpWkqW`q

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkpW`q

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkqW`p

+N(N − 1)E[ε211]2
n∑

p,q=1

WipWjpWkqW`q.

On the other hand,

γ2ijγ
2
k` = E[ε211]2

(
n∑
p=1

WipWjp

)(
n∑
p=1

WkpW`p

)

= E[ε211]2
n∑

p,q=1

WipWjpWkqW`q.

Finally, the difference is given by

N2E[γ̂2ij γ̂
2
k`]−N2γ2ijγ

2
k`

= NE[ε411]
n∑
p=1

WipWjpWkpW`p

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjpWkqW`q

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkpW`q

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkqW`p

+N(N − 1)E[ε211]2
n∑

p,q=1

WipWjpWkqW`q

−N2E[ε211]2
n∑

p,q=1

WipWjpWkqW`q.

Hence,

N2E[γ̂2ij γ̂
2
k`]−N2γ2ijγ

2
k`

= NV[ε211]

n∑
p=1

WipWjpWkpW`p

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkpW`q

+NE[ε211]2
n∑

p,q=1,
p 6=q

WipWjqWkqW`p.

Summarizing,
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