
HAL Id: hal-03745170
https://hal.science/hal-03745170

Submitted on 3 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A method for design and valuation of manufacturing
system control architecture

Bruno Denis, Jean-Jacques Lesage, Jean-Marc Roussel

To cite this version:
Bruno Denis, Jean-Jacques Lesage, Jean-Marc Roussel. A method for design and valuation of man-
ufacturing system control architecture. 1995 IEEE International conference on systems, man and
cybernetics, Jan 1995, Vancouver, Canada. �10.1109/icsmc.1995.538501�. �hal-03745170�

https://hal.science/hal-03745170
https://hal.archives-ouvertes.fr

1 / 6

ABSTRACT

In the control design of complex manufacturing systems, the
design of a control architecture is required. This paper deals
with an integrated framework to make the design of control
architecture as formal as possible. Models used in this
framework are presented, and a valuation method of control
architecture is constructed.

1. INTRODUCTION

The performance of manufacturing systems and that of their
computerized control systems are closely connected.
Furthermore, a higher automatization, a better reactivity, and
a higher flexibility level are required for manufacturing
systems. This positions the control system development at a
strategic place both from technical and economical points of
view. The focus of this paper is the development of the
control architecture of manufacturing systems.

Fig.1 : example of the hardware point of view of control
architecture (from [6])

This kind of systems includes component such as general
purpose computers, industrial boards, Digital Controller
System (DCS), and Programmable Logic Controller (PLC). A
control architecture is often presented as in figure 1, but only
the hardware point of view is described.
The design of a control architecture needs to be done early in
the development of the whole system, precisely at the

beginning of the control system life cycle. The designer
therefore must:

- study and formalize requirements in details enough to
propose a good control architecture so as to decide how
appropriate the project is (to do that, the designer must
sense a large part of the whole control system).

- study the control architecture briefly enough to prevent
study costs before being sure that the project will be
carried on.

Only engineer experience can bypass this paradox. With
former similar study cases (i.e. expert knowledge), he is able
to propose a solution accurate enough, after a short study.
Nevertheless a computer aided architecture design and
architecture evaluation could allow to:

- rationalize and homogenize the expert knowledge of each
company

- perpetuate and share the built-up knowledge of previous
studies

- increase quality of designed control architectures and
succeed in managing higher complexity of manufacturing
systems

- increase engineer reactivity against fast evolution of the
component market as previous projects cannot help the
design of control architecture which use new
components

- increase productivity of the design activity of control
architecture at the beginning of the project development
cycle.

So the context of the design of control architecture is
complex and submitted to continuous evolution. Models and
method have to be proposed to handle complexity and to
increase the quality of designed architectures. The next
session presents our framework for the control architecture
designer.

2. METHODOLOGY TO DESIGN CONTROL ARCHITECTURES

The proposed framework handles the design of control
architecture from the general specifications of the system to
the hardware architecture (fig. 2).

During the first stage of the method, components of system
requirement are extracted to build the Implementation model.
All the components which need to be implemented in a
hardware equipment are concerned. This way, our framework
is independent from requirement specification models (for
example SA, SADT, OOA…)

M
A

P
 3

.0

C
ar

ri
er

b
an

d

IBM PC

Process/
Product

IBM PC

Operator I/F
Process

IBM PC
Business
Services

IBM PC

Dialogue
Services

DNC
Robot
Control

DNC
Robot

Control

RS232 RS232

Area Control
Level

Cell Control
Level

Production
Process

Level

A Method for Design and Valuation of
Manufacturing System Control Architecture

Bruno DENIS, Jean-Jacques LESAGE and Jean-Marc ROUSSEL

e-mail: {denis, lesage, roussel}@lurpa.ens-cachan.fr
LURPA, ENS de Cachan, 61 av. du Pt Wilson, 94235 Cachan Cedex, France

In proceedings of 1995 IEEE International conference on systems, man and cybernetics
pp. 4486-4491, Vancouver, British Columbia, Canada, 22-25 October 1995
DOI: 10.1109/ICSMC.1995.538501

2

Fig.2 : framework to design control architecture

In the second stage, the designer has to propose an
acceptable control architecture. This view of architecture is
called the hardware model. A third stage consists in mapping
implementation model components onto hardware model
components. The result is an architecture solution called the
mapping model. With the rigorous design of control
architecture we propose, it is now possible to evaluate
solutions and choice against checked and evaluated control
architectures. Session 4 of this paper deals with models and
methods to evaluate computerized control architecture of
manufacturing systems.

3. MODELIZATION OF THE ARCHITECTURE OF CONTROL
SYSTEMS

Implementation model

The aims of the implementation model are:
- to group and integrate all interesting data related to the

control architecture design and that into a single model.
For example, the function which appears in functional
requirement of the control system has to be integrated to
the functional model.

- to specify events which activate a control function. For
example, functions appear in specification requirements
as components receiving and producing data. The
implementation model specifies which conjunctions of
events can start the function i.e. "when is the function
supposed to be computed?"

- to specify how long the data life is. Indeed, the life
duration of a data could be limited to the duration
necessary to carry it from its source to its target function.
But the designer could also decide to keep data stored.

To build implementation models, the designer must reason
as if the control architecture is a one single computer. The
implementation model is a stage between control system
specifications and the design of control architecture. In
control system specifications there is no reference to any
architecture, and the implementation model is built as if the
final control architecture was a one single computer.

The implementation model must specify all processes which
are required to compute control functions, stores, data flows
and synchronization rules. The chosen language is based on
the data flow diagram for two reasons: it is a well-known
language to model control systems [3], and numerous works
have proposed extensions [2] [7] [10].
The implementation model is a network of processes, linked
with data flows. The model is built upon four components:
processes, stores, flows, and externals.

Fig.3 : example of implementation model

In the implementation model, three kinds of processes
appear as regards the way they can be computed.

- transformation processes (T): a finite sequence of
instructions to transform input data into output data,

- reactive processes (R): a finite state machine to transform
input events into output events according to its own
current state,

- control processes (dashed lines), which activate and
disactivate control transformation processes and reactive
processes.

Data stores can take all kinds and sizes of data into account.
From the point of view of processes, stores are servers
offering read and write data services.

Externals are processes which are not inside the designed
control system, but which are source and/or destination of
data flows.
Data flows allow processes to exchange data. Three kinds of
flows are used in the implementation model according to the
nature of flowing data.

- data flows are oriented links between processes and
flows. They show how processes read and write data.

- message flows transport both events and data from
process to process. By sending a message, processes
are able to trigger off other processes (with event
component of messages) and send data.

- control flows are produced by control processes to
activate regular processes such as transformation and
reactive processes.

On this data flow model, an extended semantic specifies how
processes are activated. The aims of these extensions are to
show conditions required for processes to be computed (i.e.
conditions to send a CPU time request), and data and
message flows sent after current activation conditions.

The behavior of transformation processes such as in figure 4
is described as follows. The process runs when an event
conjunction appears from messages. When the process is
finished, a set of messages (called disjunction) is sent out.
Stores do not participate to process synchronization.

Hardware
Model

Implementation
Model

Mapping Model

Path
research

Identification
of new

processes

Model for
evaluation

Specification models
of a manufacturing

system

specification models of
each hardware

components of control

evaluated
architecture

control
process

3

Store

transacti
on

1
T

reactive
process

4
R

transacti
on

2
T

External

External

activate /
disactivate

3

Nevertheless processes can read data in stores just after
being activated by a message conjunction, and write in stores
just before sending a message disjunction. The couple

 completes the description of transformation
processes with:

- set of conjunctions associated with the p process
- set of disjunctions associated with the p process

Where , c is the couple such as:
- set of messages of conjunction d required to start

the process p,
- set of read stores after the disjunction d at the

beginning of process p,

And where , d is the couple such
as:

- set of written stores before the disjunction d at the
end of process p,

- set of sent messages of disjunction d at the end of
process p,

A transformation process verifies the following properties:
- the p process is activated when the boolean equation (1)

is true, i.e. when there exists a conjunction such as all its
messages are present

(1)

- , when disjunction d
appears, one datum is sent in each store in , and
then all messages in the disjunction are sent.

Fig.4 : example of graphic view of transformation process

figure 4 shows an example for transformation processes. It is
activated when

(2)

Once the computation of the transformation process is done,
two disjunctions can occur:

- either writing data in store2 and sending message4 and
message5,

- or sending message5 and message6.
In other words, the graphic view shown in figure 4 must be
completed with the couple

 (3)

where ci and cj could be as follows:
-
-
-
-
-

To summarize, to build the implementation model of a
manufacturing system is to translate and enrich its
specifications. If the system specifications exist, this task can
be formalized and automated [4]

Hardware model

The aim of the hardware model is to show the physical point
of view of the control architecture design [6]. It is often the
only point of view used to design control architectures.
The hardware model is a network of processor, store system,
man-machine interfaces, and communication links.

Fig.5 : example of hardware model

We want our proposed framework to be able to tolerate
technology evolutions of hardware systems. Hence, entities
of hardware models are not market components but classes
of components.
The set of classes which is proposed here, is not
comprehensive. there are just classes implemented in our
experimental CASE tool. There can easily accept new classes
for new purposes.

Among processor classes there are:
- Programmable logic controllers (PLC),
- Numeric controllers (NC),
- computers such as embedded boards, supervision

computers and general purpose computers.
Among man-machine interfaces classes there are:

- video control panel,
- keypad and message displays,
- push-button panels.

Among communication links classes there are:
- point-to-point links which are divided into processor links

(master/slave or random access), and multipole link such
as push-button panel to PLC or between two PLC,

- networks which are divided into field busses, master/
slave access networks (for instance PLC network) and
random access network.

Mapping model

The aims of the mapping model are to allocate
implementation model components to the hardware model.
To be computed, processes will be allocated to the processor,
stores will be allocated to memories or to data bases, and
data flows will allocated to communications links.

We propose a two stage method to build the mapping model.
The first stage consists in mapping each process into a
processor. The second stage consists in finding a path in the
hardware model for data flows. An aid is proposed to
designers to find data flow paths inside of the hardware. The
hardware model is transformed into a graph, and this new
problem is actually to find a path in the associated graph

C p  D p  

C p 
D p 

c C p  M c  S c  
M c 

S p 

d D p  S d  M d  

S d 

M d 

mj
mj M ci 
 

 

ci C p 
 1=

d D p  d S d  M d  =
S d 

M d 

Store2

transacti
on

p1

T

message

Store1

message

message

message

message

messag

message1 message2 
message2 message3 
message1 message3 

+
+ 1=

C p1  D p1   c1 c2 c3   d1 d2  =

c1 message1 message2  store1  =
c2 message2 message3   =
c3 message3 message1  store1  =
d1 store2  message4 message5  =
d2  message5 message6  =

PLC 2

Supervision

NC

Computer 1 Computer 2

PLC 1

random access

master/slave access

4

Fig.6 : example of transformation
of the hardware model into graph

The hardware model transformation is as follows:
- each processor and man-machine interface are

associated to a graph node,
- each random access network is associated to a graph

node,
- for all point to point connections between two processors

(or between a processor and man-machine interfaces) an
arc between related nodes is drawn.

- for all master/slave access networks, links are drawn
between nodes relating to the master processor and
nodes relating to slaves,

- for all random access networks, arcs are drawn between
the network node and each equipment node.

An example of graph construction is presented on figure 6. To
find a path for data flows requires two steps. The first one is
to identify the two nodes relating to the source and
destination processors of data flows and the second is to
search a path between two nodes of a graph. If several paths
exist, the designer can weight arcs (for example transfer
speed weighting); then the aid gives the shortest path in the
graph, i.e. the best data flow path from the designer’s point of
view.

To transport data across several processors of control
architecture a new kind of process is required: technical
processes. They do not come from the implementation
model as they are not functional, their existence only comes
from a particular hardware structure. Though they are often
ignored by designers during the specification stage of control
architecture development, technical processes have a heavy
influence on the control system performance. We have
proposed a systematic approach to identify technical
processes, based on graph paths and reference models [5]. A
path is a succession of triplets such as source of flow
(processes or stores), communication links (random, master/
slave, or slave/master) and destination (processes or stores).

Nine different reference models have been associated to
each triplet such as a reference model using pooling
processes (technical processes) to transmit data from the
slave side to the master side of a communication link.
The study of technical processes is important as it is the
stage where the designer discovers the consequences of his
choice of hardware architecture.

When the mapping model is done, the designer has a
complete view of the control architecture. A mapping model
is a solution of control architecture of the manufacturing
system.
In the next session we propose a performance analysis of
control architectures.

4. EVALUATION OF CONTROL ARCHITECTURES

To get information about performance criteria such as
dynamic response time, a dynamic model must be used.
Timed and Colored Petri Nets (TCPN) have been chosen as
they can model manufacturing systems in a compact way
(color aspect) and allow us to simulate and validate time
performances (time aspect).
Several works have already proposed extensions to model
the dynamic behavior of system specifications [10] [7] [11],
and others proposed to model the dynamic behavior of the
hardware [1] [9].
Our assessable model is original for it is built according to the
mapping model. So it takes the functional point of view
(processes, stores…) the hardware point of view (computer,
PLC…) and also the technical processes into account.
The proposed assessable model describes the dynamic
behavior of the implementation model mapped into the
hardware model.
The proposed method is as follows:

- each type of components of the implementation model
(processes and stores) is described by a generic TCPN
(fig. 7). Each type of generic TCPN proposed admits two
different types of Input/Output. There are I/O relating to
the implementation model (message conjunctions,
message disjunction, data read and data write), and there
are I/O relating to the mapping model (requests of CPU
resources).

- each hardware equipment such as processors and
communication links is modeled by a generic TCPN too.
This model describes resources ready to answer process
and store requests

- then the whole assessable model is built by assembling
all previous generic TCPN.

PLC 2

Supervisio

NC

Computer Computer

PLC 1

random access

master/slave access

transformation of a
connection to a
master/slave

transformatio
n of

connection to
a random

processor
transformation

4 3 1

59

6

2

8 7

transformatio
n of a random

access

5

Fig.7 : generic TCPN for the behavior of store components

Generic TCPN models such as in figure 7 are not supposed to
be detailed views of hardware equipment or components of
the implementation model. The aim of these TCPN models is
to show when processes and stores obtain the hardware
resources they require. However, more detailed models are
provided for example in [9] for networks and in [8] for
computer.

The proposed dynamic model of stores is presented figure 7
and table 1. It is model of all , where S is the set of store
from the implementation model. The model is organized
around places P6 and P7. Place P7 represents idle stores, and
P6 busy ones. Places P1, P2, P3 and transition T1,T2, T3
model a FIFO stack including n(si) location. As soon as a
request get out from stack (firing T3 transition), a CPU
resource request is sent. Color means read
request (r) of si store from pj process, and this request is in
the lk location in the stack.

The proposed TCPN models have been design as generic as
possible. They set up a dynamic models library which can be
used and enriched to build a whole valuable model of control
system.

A model of a particular architecture is obtained with a token
mailing from generic TCPN models to others. Figure 8 shows
arcs and transitions which model the generic aspect of the
mailing.

Fig.8 : extract of global mailing model for CPU resource
requests

5. CONCLUSIONS

In the paper we propose a formalization of the design of
control architectures. We show the designer’s main activities
and we propose a framework to design control architectures.

The interest of the formalization of control architecture is to
allow to build a behavior model systematically, and to get a
performance analysis. A dynamic model is presented in this
paper. Our current work is on the stochastic model to study
the reliability point of view of control architectures.

6. REFERENCES

[1] M. Ajmone and G. Chiola, "Construction of generalized stochastic
petri net models of bus oriented multiprocessor systems by stepwise
refinements: a case study" in Proceedings of the International
conference modelling techniques and tools for performance
analysis, (Sophia Antipolis, France), pp. 265-278, June 1985.

[2] W. Bruyn, R. Jensen, D. Keskar, and P. Ward, "Esml: an extended
systems modeling language based on the data flow diagram"ACM
software engineering notes, vol. 13, no. 1, pp. 1-19, 1988.

[3] T. Demarco, Structured analysis and system specification.
YOURDON PRESS, englewood cliffs ed., 1979.

[4] B. Denis, J.-J. Lesage, and G. Timon, "Toward a theory of
integrated modelling" Journal of Design Science and Technology,
vol. 2, no. 1, pp. 87-96, 1993.

Tab. 1 : description of behavior model of stores

Description

f1

f2 identity

f3

f4

f5

C2

read request
write request

read done
write done

CPU resource
request

end of

P1

P2

P3

P4

P5
P6 P7

P8

T1

T2

T3

T4

C2

{<si,pj,r,l1>,<si,pj,w,l

{<si,pj,r,ln>,<si,pj,w,l

{<si,pj,r>,<si,pj,w>}

f1

f2

f3

f4

f5

proj2.proj3

M3

M7

proj2.proj3

proj2.proj3.proj

proj2.proj3.proj

proj2.proj3.projproj4

si S

si pj r lk   

f1 si pj r l1     pj si r  =
f1 si pj w l1     pj si w  =

f3 si pj w lk     pj si w lk 1+   =
f3 si pj r lk     pj si r lk 1+   =

f4 si pj r lk     si lk 1+ =
f4 si pj w lk     si lk 1+ =

f5 si pj r lk     si lk =
f5 si pj w lk     si lk =

si pj r lk    si pj w lk    k 1 n si   

M3

M7

Tab. 1 : description of behavior model of stores

Description

si lk 
j 1=

n si 

 
 
 

si S


si 
si S


read request
write request

CPU
resource

end of
execution

read done
write done

STOREPROCESSOR

CPU
resource
request

end of
execution

f1

f2

T1

T1

f3

f4

6

[5] B. Denis, Assistance à la conception et à l'évaluation de
l'architecture de conduite des systèmes de production complexes.
PhD thesis, University of Nancy I, 1994.

[6] M. Didic, "Cimosa model creation and execution for a casting
process and a manufacturing cell" Computers in Industry, vol. 24,
pp. 237-247, September 1994.

[7] R. France, "Semantically extended data flow diagrams: a formal
specification tool" IEEE transaction on software engineering, vol. 18,
no. 4, pp. 329-346, 1992.

[8] R. Lepold, Performability evaluation of degradable computer
systems based on stochastic Petri nets. PhD thesis, University of
Haute Alsace, France, 1992.

[9] A. D. Stephano, O. Mirabella, and C. Zappalà, "Featuring fddi in a
process control environment" Computer in industry, vol. 21, no. 1,
pp. 35-49, 1993.

[10] P. Ward, "The transformation schema: an extension of the data
flow diagram to represent control and timing" IEEE transaction on
software engineering, vol. 12, no. 2, pp. 198-210, 1986.

[11] J. Zaytoon, E. Neil, A. Mille, and A. Jutard, "A temporal sadt for
automated manufacturing systems" in International conference on
industrial engineering and production management, vol. 1, (Mons,
Belgium), pp. 154-164, June 1993.

