
HAL Id: hal-03638447
https://hal.science/hal-03638447

Submitted on 12 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Exact computation of an error bound for the balanced
linear complementarity problem with unique solution

Jean-Pierre Dussault, Jean Charles Gilbert

To cite this version:
Jean-Pierre Dussault, Jean Charles Gilbert. Exact computation of an error bound for the balanced
linear complementarity problem with unique solution. Mathematical Programming, 2023, 199 (1-2),
pp.1221-1238. �10.1007/s10107-022-01860-1�. �hal-03638447�

https://hal.science/hal-03638447
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Exact computation of an error bound for the balanced linear

complementarity problem with unique solution

Jean-Pierre Dussault
† and Jean Charles Gilbert

‡

This paper considers the balanced form of the standard linear complementarity prob-
lem with unique solution and provides a more precise expression of an upper error
bound discovered by Chen and Xiang and published in 2006. This expression has at
least two advantages. It makes possible the exact computation of the error bound
factor and it provides a satisfactory upper estimate of that factor in terms of the data
bitlength when the data is formed of rational numbers. Along the way, we show that,
when any rowwise convex combination of two square matrices is nonsingular, the ℓ∞
norm of the inverse of these rowwise convex combinations is maximized by an extreme
diagonal matrix.
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1 Introduction

Error bounds play a prominent role in the analysis of mathematical problems and the
algorithms to solve them, in particular in numerical optimization [28]. This paper focuses
on error bounds discovered by Chen and Xiang [8; 2006] for the linear complementarity
problem with a P-matrix and simplifies the expression of its upper factor. The paper also
deduces some consequences of this new expression.

In its standard form [11], the linear complementarity problem (LCP) reads

0 6 x ⊥ (Mx+ q) > 0, (1.1)

where the unknown is x ∈ R
n (the set of real vectors with n components), while M ∈ R

n×n

(the set of real matrices of order n) and q ∈ R
n are data. Inequalities on vectors must be

understood componentwise (for example x > 0 in (1.1) means xi > 0 for all i ∈ [1 :n], the
set of the first n integers). The compact writing of the problem in (1.1) means that one has
to find a vector x in R

n
+ := {x ∈ R

n : x > 0} such that Mx+ q > 0 and xT(Mx + q) = 0
(the superscript “T” is used to denote vector or matrix transposition).

A matrix M ∈ R
n×n is said to be a P-matrix if all its principal minors are positive

(i.e., the determinant detMII > 0, for all I ⊆ [1 :n]; by convention detM∅∅ = 1). One
denotes by P the class of P-matrices. It is known that problem (1.1) has a unique solution,
whatever q is, if and only if M ∈ P [32; 1958]. There are many other characterizations of
the P-matricity [11], including algorithmic ones [2, 3].
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For the sake of generality and for taking advantage of its symmetric formulation, which
allows us to shorten some proofs, this paper considers an LCP in a slightly more general
form than (1.1), namely

0 6 (Ax+ a) ⊥ (Bx+ b) > 0, (1.2)

where A, B ∈ R
n×n and a, b ∈ R

n are the data. By comparison with problem (1.1), we
name this problem the balanced LCP. This is a special case of the so-called (extended)
vertical LCP, which uses more than two matrices and vectors in its formulation (see [10,
33]). Throughout this work, we assume that problem (1.2) has a unique solution x̄.

An error bound associated with a set S is an estimate of the distance to S by quantities
that are easier to evaluate than this distance, usually those that are used to define the set.
The set considered in this paper is the solution set of the LCP (1.2), which has been said
to be reduced to the singleton {x̄}, while the quantity used to estimate the distance to x̄
is defined as follows.

Let ‖ · ‖ denote an arbitrary norm on R
n. The natural residual [22, 23] associated

with the linear complementarity problem (1.2) is the function r : Rn → R
n whose value at

x ∈ R
n is given by

r(x) := min(Ax+ a,Bx+ b), (1.3)

where the minimum operator “min” acts componentwise (for two vectors u, v ∈ R
n and

i ∈ [1 :n]: [min(u, v)]i = min(ui, vi)). It is clear that x solves (1.2) if and only if r(x) = 0,
since min(Ax+ a,Bx+ b) = 0 if and only if, for all i ∈ [1 :n], (Ax+ a)i > 0, (Bx+ b)i > 0
and either (Ax + a)i or (Bx+ b)i vanishes. Therefore ‖r(x)‖ is a possible measure of the
proximity of x to x̄. In this paper, we consider error bounds of the form

∀x ∈ R
n : β̌ ‖r(x)‖ 6 ‖x− x̄‖ 6 β ‖r(x)‖,

where β̌ and β are positive constants (independent of x), that we call the lower and upper

error bound factors, respectively. Error bounds for the LCP have been the subject of many
contributions, see [30, 26, 24, 22, 23, 21, 8, 9, 12, 20, 7] for entry points.

For P and Q ∈ R
n×n, we define

[P,Q] := {X ∈ R
n×n : P 6 X 6 Q},

where the inequalities act again componentwise (i.e., P 6 X 6 Q means Pij 6 Xij 6 Qij

for all i, j ∈ [1 : n]). Hence, for the identity matrix I, [0, I] is a compact notation for the set
of diagonal matrices with diagonal elements in the interval [0, 1]. Note also that the set of
extreme points of [0, I], denoted by ext[0, I], is the set of diagonal matrices with diagonal
elements in {0, 1} (see [31; p. 162] for the definition of an extreme point of a convex set;
one can use [14; proposition 2.12] for a meticulous proof of this claim).

For D ∈ [0, I], we denote by

CD := (I −D)A+DB (1.4)

the rowwise convex combination of the matrices A and B ∈ R
n×n. The LCP (1.2) has a

unique solution whatever the vectors a and b are, if and only if [1, 27, 34, 35]

∀D ∈ [0, I] : CD is nonsingular. (1.5)
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Then, the following lower and upper error bounds hold [8, 35]:

∀x ∈ R
n :

(

max
D∈[0,I]

‖CD‖

)−1

‖r(x)‖ 6 ‖x− x̄‖ 6

(

max
D∈[0,I]

‖C−1
D ‖

)

‖r(x)‖, (1.6)

where ‖ · ‖ denotes a norm on R
n and the induced matrix norm.

In this paper, we are interested in giving more precision on the way the lower and upper
error bound factors appearing in (1.6) can be computed, when the ℓ∞ norm is used. If the
lower bound factor is easy to evaluate (see section 3.1), the upper bound factor

β := max
D∈[0,I]

‖C−1
D ‖∞ (1.7)

raises more difficulty. This concern makes perfect sense because, as far as we know, this
upper error bound factor is the best one obtained so far for the LCP (1.1) with M ∈ P;
in particular, it is smaller, hence better, than the one of Mathias and Pang [24] (see [8;
theorem 2.3]). We shall show that the evaluation of β can be simplified since one has

β = max
D∈ext[0,I]

‖C−1
D ‖∞. (1.8)

This extends to higher dimensions the simple observation that, when n = 1, the map
D ∈ [0, 1] 7→ ‖C−1

D ‖∞ is monotone, so that it attains its maximum on [0, 1] at a point
in {0, 1}. For n > 1, however, Dkk ∈ [0, 1] 7→ ‖C−1

D ‖∞ may be nonmonotone, so that an
analysis along this line is troublesome. Furthermore, this map can be neither convex nor
concave (see [13]). For these reasons, we shall present a specific, rather long and indirect,
proof of (1.8). The simplification (1.8) of (1.7) may look minor at first glance, but it may
be interesting for reasons that are discussed in section 4: it provides a way of computing β
exactly, it simplifies its computation for small n and it may be crucial for giving an upper
estimate of β in terms of the data bitlength in some complexity analysis.

The paper is organized as follows. The next section presents two results that will play
an important role in getting the expression (1.8) of β: the first one deals with the norm of
a matrix inverse and the second deals with min-max duality in optimization. Section 3 is
dedicated to the proof of (1.8). We conclude by some thoughts on complexity issues.

This paper is an abridged version of the more detailed report [13].

Notation

The unit closed ball associated with a norm ‖ · ‖ is denoted by B̄ := {x : ‖x‖ 6 1} and
the unit sphere by ∂B := {x : ‖x‖ = 1}.

2 Preliminaries

This section presents two results that will play a major part in our strategy to get the
desired result in section 3. The first one (lemma 2.1) gives an expression of ‖A−1‖, for a
nonsingular matrix A ∈ R

n×n, in terms of an optimization problem. Consequences of this
expression for the ℓ∞ norm are given in corollary 2.2 and in the technical lemma 2.3. The
second result (lemma 2.4) highlights conditions to have strong duality on a product space
X × [1 : p] for a pairing function that has a separable property.
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2.1 Norm of a matrix inverse

For a given nonsingular matrix function z ∈ R
p 7→ A(z) ∈ R

n×n, analyzing the map
‖[A(·)]−1‖ is often more difficult than analyzing ‖[A(·)‖. It is possible, however, to toggle
from one map to the other thanks to the following lemma (formula (2.1a) can be found
in [18; problem 5.6.P46]; a proof of the lemma is given in [13]).

Lemma 2.1 (norm of a matrix inverse) If A ∈ R
n×n is a nonsingular square ma-

trix and if ‖ · ‖ denotes a vector norm and its induced matrix norm, then

min
‖v‖=1

‖Av‖ = ‖A−1‖−1. (2.1a)

In addition, v̄ solves the problem in the left-hand side of (2.1a) if and only if w̄ :=
‖A−1‖Av̄ solves the problem in the left-hand side of

max
‖w‖=1

‖A−1w‖ = ‖A−1‖. (2.1b)

In the sequel, the infinity vector and its induced matrix norms, both denoted by ‖ · ‖∞,
are used. For this reason, we consider this case in corollary 2.2 below and bring some
precision. We denote by ei the ith basis vector of Rn and set e :=

∑

i∈[1 :n] e
i, which is the

vector of all ones. By definition and computation [17; § 5.6.5] (see also (2.7a)-(2.7d) in the
proof of corollary 2.2 below), for a matrix A ∈ R

n×n, one has

‖A‖∞ := max
‖w‖∞=1

‖Aw‖∞ = max
i∈[1 :n]

‖Ai :‖1, (2.2)

where Ai : := (ei)TA denotes the ith row of A and ‖v‖1 :=
∑

i∈[1 :n] |vi| denotes the ℓ1-norm
of v ∈ R

n. We also denote by “sign” the maximal monotone multifunction R ⊸ R that is
the subdifferential of the absolute value function: it associates with t ∈ R the following set
of R:

sign t :=







{−1} if t < 0
[−1, 1] if t = 0
{1} if t > 0.

(2.3)

One finds other definitions of sign(0), in particular to make the map “sign” a single-valued
function, but our choice of definition is important for the sequel, like in the formulas (2.4b)
below. Recall that ‖ · ‖1 is the dual norm of ‖ · ‖∞ with respect to the Euclidean scalar
product, which means that

‖v‖1 = max
‖w‖∞=1

vTw = max
‖w‖∞=1

|vTw|. (2.4a)

The solution sets of these maximum problems are

Argmax
‖w‖∞=1

vTw = (sign v) ∩ ∂B∞ and Argmax
‖w‖∞=1

|vTw| = (± sign v) ∩ ∂B∞, (2.4b)
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where, for a vector v ∈ R
n, sign v := (sign v1)×· · ·×(sign vn) ⊆ R

n (hence sign 0Rn = B∞),
± sign v := (sign v)∪ (− sign v) and the boundary ∂B∞ of B∞ is present only to deal with
the case where v = 0. For a nonsingular square matrix A, we adopt the following notation

W∞(A) := Argmax
‖w‖∞=1

‖A−1w‖∞ = {w ∈ ∂B∞ : ‖A−1w‖∞ = ‖A−1‖∞}, (2.5a)

V∞(A) := Argmin
‖v‖∞=1

‖Av‖∞ = {v ∈ ∂B∞ : ‖Av‖∞ = ‖A−1‖−1
∞ }. (2.5b)

The second equality in (2.5a) comes from the definition of the induced matrix norm ‖ · ‖∞
in (2.2), while the second equality in (2.5b) is deduced from the identity (2.1a). The next
corollary gives other expressions of these sets.

Corollary 2.2 (ℓ∞-norm of a matrix inverse) Suppose that A ∈ R
n×n is a non-

singular matrix. Set β := ‖A−1‖∞ and α := 1/β. Then,

W∞(A) =
⋃

{

± sign(A−Tei) : ‖(A−1)i :‖1 = β
}

, (2.6a)

V∞(A) = αA−1
(

W∞(A)
)

. (2.6b)

Proof. [(2.6a)] Observe first that

β = max
‖w‖∞=1

‖A−1w‖∞ [definition of the matrix norm ‖ · ‖∞] (2.7a)

= max
‖w‖∞=1

max
i∈[1 :n]

|(ei)TA−1w| [definition of the vector norm ‖ · ‖∞] (2.7b)

= max
i∈[1 :n]

max
‖w‖∞=1

|(ei)TA−1w| [the max’s commute] (2.7c)

= max
i∈[1 :n]

‖A−Tei‖1 [(2.4a)]. (2.7d)

We can now establish the identity (2.6a).

[⊆] If w̄ ∈ W∞(A), w̄ solves the problem in (2.7a)-(2.7b), by definition. Let ı̄ ∈ [1 :n]
be a solution to the inner problem max{|(ei)TA−1w̄| : i ∈ [1 :n]} appearing in (2.7b).
Then, the pair (w̄, ı̄) maximizes the map (w, i) ∈ ∂B∞ × [1 :n] 7→ |(ei)TA−1w|. It
follows that ı̄ solves to the problems in (2.7c)-(2.7d) and w̄ is a solution to the inner
problem max{|(ēı)TA−1w| : ‖w‖∞ = 1} appearing in (2.7c). Hence, by (2.4b), w̄ ∈
± sign(A−Tēı) and, by (2.7d), β = ‖A−Tēı‖1 = ‖(A−1)̄ı :‖1.

[⊇] Suppose now that w̄ ∈ ± sign(A−Tēı) for some ı̄ ∈ [1 :n] satisfying ‖A−Tēı‖1 = β.

– By this last identity, ı̄ solves the problem in (2.7d), hence the problem in (2.7c).
– By the nonsingularity of A−T, one component of A−Tēı does not vanish, so that
w̄ ∈ ± sign(A−Tēı) ∩ ∂B∞. By (2.4b), this implies that w̄ solves the problem
max{|(ēı)TA−1w| : ‖w‖∞ = 1}.

It results from these last two observations and (2.7a)-(2.7c), that w̄ solves the problem
in (2.7a)-(2.7b). We have shown that w̄ ∈ W∞(A).
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[(2.6b)] This is a consequence of the last claim in lemma 2.1, according to which
v̄ ∈ V∞(A) if and only if v̄ = αA−1w̄ with w̄ ∈ W∞(A). ✷

We conclude this section by synthesizing in the following lemma a mechanism that, de-
spite its innocuous appearance, plays a major part in the proof of proposition 3.1 below. As
shown in the lemma’s proof, this mechanism is only operational when some element of A−1

vanishes, but this fact is revealed indirectly, through a property of a vector v ∈ V∞(A).

Lemma 2.3 (technical) Suppose that A ∈ R
n×n is nonsingular, that α := ‖A−1‖−1

∞

and that v ∈ V∞(A) has the property that |(Av)k| < α for some k ∈ [1 :n]. Then, there

exists a v′ ∈ V∞(A) such that (Av′)k = 0.

Proof. Let β := 1/α. Since v ∈ V∞(A), the vector defined by w := βAv is in W∞(A),
by (2.6b). By assumption, (Av)k ∈ (−α,α), so that wk ∈ (−1, 1). These two facts on w
and (2.6a) imply that there must be some index i such that

w ∈ ± sign(A−Tei), ‖(A−1)i :‖1 = β and (A−1)ik = 0.

Define the vector w′ ∈ R
n by vanishing the kth component of w:

w′
i :=

{

wi if i 6= k
0 otherwise.

Then, we also have w′ ∈ ± sign(A−Tei), implying that w′ ∈ W∞(A). The sought vector
is v′ := αA−1w′. Indeed, on the one hand, v′ ∈ V∞(A) by (2.6b). On the other hand,
Av′ = αw′ implying that (Av′)k = 0, as desired. ✷

2.2 Strong duality for separable functions

Let be given a set X and p functions ϕi : X → R̄. Usually, equality does not hold in the
weak duality inequality [16, 15, 5, 14]

inf
x∈X

max
i∈[1 : p]

ϕi(x) > max
i∈[1 : p]

inf
x∈X

ϕi(x). (2.8)

Take for example, X = R, p = 2, ϕ1(x) = (x+1)2 and ϕ2(x) = (x− 1)2, in which case the
left-hand side value is 1, while the right-hand side value is 0 (see [15; lemma 4.5] for a way
of modifying (2.8) that ensures equality). The situation is very different, more elementary
and more favorable, when X is a Cartesian product X = X1 × · · · × Xp of sets Xi and
each function ϕi only depends on the ith component xi ∈ Xi of x = (x1, . . . , xp) ∈ X;
then equality holds above with some other interesting properties. This particular situation,
which occurs below, is analyzed in the next lemma. In this one, the problems

inf
x∈X

max
i∈[1 : p]

ϕi(xi) and max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi).

are called the primal and dual problems, respectively. A primal (resp. dual) solution is a
solution to this primal (resp. dual) problem.
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The next lemma not only shows the lack of duality gap for the separable case, but also
describes the sets of primal and dual solutions. It also shows how to construct a primal
solution from the dual solutions, as well as a dual solution from the primal solutions.

Lemma 2.4 (strong duality for separable functions) Let X := X1×· · ·×Xp be

the Cartesian product of nonempty sets Xi and let ϕi : Xi → R, i ∈ [1 : p], be arbitrary

functions. An x ∈ X is written x = (x1, . . . , xp), with xi ∈ Xi for i ∈ [1 : p].

1) (No duality gap) The following identity holds

inf
x∈X

max
i∈[1 : p]

ϕi(xi) = max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi). (2.9a)

Denote by v̄ the common value of the two sides of this identity.

2) (Set of primal solutions) The set of primal solutions is the possibly empty set

X̄ := X̄1 × · · · × X̄p, where

X̄i := {xi ∈ Xi : ϕi(xi) 6 v̄}. (2.9b)

3) (Set of dual solutions) The set of dual solutions is the nonempty set

Ī := {i ∈ [1 : p] : ϕi(xi) > v̄ for all xi ∈ Xi}. (2.9c)

4) (Saddle-point property) The following properties are equivalent:

(i) (x̄, ı̄) ∈ X̄ × Ī,
(ii) (x̄, ı̄) is a saddle-point of the map (x, i) ∈ X × [1 : p] 7→ ϕi(xi), meaning that

∀ (x, i) ∈ X × [1 : p] : ϕi(x̄i) 6 ϕı̄(x̄ı̄) 6 ϕı̄(xı̄), (2.9d)

(iii) x̄ı̄ minimizes ϕı̄ on Xı̄ and ı̄ maximizes ϕi(x̄i) on [1 : p].

5) (Deducing a primal solution from the dual solutions) Suppose that, for any dual

solution ı̄ ∈ Ī, the problem inf{ϕı̄(xı̄) : xı̄ ∈ Xı̄} has a solution x̂ı̄, then the primal

problem has a solution x̄ ∈ X satisfying

x̄Ī = x̂Ī and Ī = Argmax
i∈[1 : p]

ϕi(x̄). (2.9e)

6) (Deducing a dual solution from the primal solutions) Suppose that X̄ 6= ∅. Then,

ı̄ ∈ Ī if and only if, for all x̄ ∈ X̄, ı̄ maximizes i ∈ [1 : p] 7→ ϕi(x̄i),

Proof. We only prove points 1 and 2, which are those intervening below. For a proof of
the other points, see [13].

1) By the weak duality property (2.8) and the fact that ϕi only depends on the ith
component of x, the inequality “>” holds in (2.9a). Let us prove the reverse inequality.
Let ε > 0. For any i ∈ [1 : p], there is an xεi ∈ Xi such that

ϕi(x
ε
i ) 6 inf

xi∈Xi

ϕi(xi) + ε.
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Therefore,
max
i∈[1 : p]

ϕi(x
ε
i ) 6 max

i∈[1 : p]
inf

xi∈Xi

ϕi(xi) + ε. (2.10)

It is here that the separability assumption intervenes. Since the left-hand side of (2.10) is
the value at xε := (xε1, . . . , x

ε
p) of the function x = (x1, . . . , xp) ∈ X 7→ maxi∈[1 : p] ϕi(xi),

the following inequality certainly holds

inf
x∈X

max
i∈[1 : p]

ϕi(xi) 6 max
i∈[1 : p]

ϕi(x
ε
i ).

Combining with (2.10), we get

inf
x∈X

max
i∈[1 : p]

ϕi(xi) 6 max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi) + ε.

Since ε > 0 is arbitrary, the inequality “6” holds in (2.9a).
2) The point x̄ = (x̄1, . . . , x̄p) is a primal solution if and only if

max
i∈[1 : p]

ϕi(x̄i) 6 inf
x∈X

max
i∈[1 : p]

ϕi(xi) = v̄ or ∀ i ∈ [1 : p] : ϕi(x̄i) 6 v̄.

This fact reads x̄ ∈ X̄ , for the given X̄. ✷

3 Finitely computable error bounds for the LCP

This section focusses on the exact computation of the lower and upper error bound factors
in (1.6). More specifically, its main result, proposition 3.1, shows that a solution to (1.7)
can always be found in ext[0, I], the set of extreme points of [0, I].

3.1 Computation of the lower error bound factor

Before focusing in section 3.2 on the main objective of this paper, which is the simplification
of the upper error bound factor in (1.6), let us mention that the lower error bound factor
in (1.6), with the ℓ∞ norm, namely

(

max
D∈[0,I]

‖CD‖∞

)−1

, (3.1)

can be easily computed.
Observe first that, for two vectors u and v and a vector norm ‖ · ‖, one has

max
t∈[0,1]

‖(1 − t)u+ tv‖) = max(‖u‖, ‖v‖) = max
t∈{0,1}

‖(1 − t)u+ tv‖). (3.2)

Next,

max
D∈[0,I]

‖CD‖∞ = max
D∈[0,I]

max
i∈[1 :n]

‖(1 −Dii)Ai : +DiiBi :‖1 [(1.4) and (2.2)]

= max
i∈[1 :n]

max
Dii∈[0,1]

‖(1−Dii)Ai : +DiiBi :‖1 [the max’s commute]

= max
i∈[1 :n]

max(‖Ai :‖1, ‖Bi :‖1) [(3.2)]

= max(‖A‖∞, ‖B‖∞) [the max’s commute]. (3.3)

This shows that (3.1) can be easily computed. Note that, in view of (3.3), the maximum
in (3.1) is obtained for D ∈ {0, I}.
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3.2 Computation of the upper error bound factor

By the compactness of [0, I] and the continuity of D ∈ [0, I] 7→ ‖C−1
D ‖∞, the maximization

problem (1.7), recalled below
β := max

D∈[0,I]
‖C−1

D ‖∞, (3.4)

has a solution, say D̄. Since CD̄ is nonsingular, β given by (3.4) is finite and positive.
Then, one can also define the positive number

α := β−1. (3.5)

The goal of this section is to show that the value β can be obtained by restricting the
feasible set of problem (3.4) to ext[0, I], the set of extreme diagonal matrices of [0, I]:

β = max
D∈ext[0,I]

‖C−1
D ‖∞. (3.6)

Proposition 3.1 (validity of (3.6)) Suppose that A and B ∈ R
n×n satisfy (1.5) and

that D̄ solves the optimization problem in (3.4). Then, if D̄kk ∈ (0, 1) for some k ∈
[1 : n], D̄ remains optimal if D̄kk is changed to any value in [0, 1]. In particular, the

value of β defined by (3.4) is also given by (3.6).

Before starting the analysis, let us observe that the objective of problem (3.4) is made of
the composition of the nonlinear smooth function D 7→ C−1

D and the convex function ‖·‖∞,
but this objective is maximized, not minimized, so that the theory developed for the class
of composite problems [6, 29, 4] does not apply. For this reason, we provide a specific
proof of proposition 3.1. This one is postponed to page 11, after the following preliminary
considerations on problem (3.4).

Part of the analysis is based on the following rewriting of β, defined by (3.4) (some
more justifications are given after (3.7e), CD is defined by (1.4)):

max
D∈[0,I]

‖C−1
D ‖∞ = max

D∈[0,I]

(

min
‖v‖∞=1

‖CDv‖∞

)−1

[(2.1a)] (3.7a)

=

(

min
D∈[0,I]

min
‖v‖∞=1

‖CDv‖∞

)−1

(3.7b)

=

(

min
‖v‖∞=1

min
D∈[0,I]

‖CDv‖∞

)−1

[the min’s commute] (3.7c)

=

(

min
‖v‖∞=1

min
D∈[0,I]

max
i∈[1 :n]

|(CDv)i|

)−1

[definition of ‖ · ‖∞] (3.7d)

=

(

min
‖v‖∞=1

max
i∈[1 :n]

min
Dii∈[0,1]

|(1−Dii)(Av)i +Dii(Bv)i|

)−1

, (3.7e)

where we have been able to switch minD and maxi from (3.7d) to (3.7e), without duality
gap, thanks to point 1 of lemma 2.4 and the fact that [0, I] = [0, 1]×· · ·× [0, 1] (n times) is
a Cartesian product and that |(CDv)i| = |(1−Dii)(Av)i +Dii(Bv)i| only depends on Dii.
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In (3.7c), we have a minimum in v (i.e., the infimum is attained), since by (3.7b) the
function (D, v) 7→ ‖CDv‖∞ has a minimizer (D̄, v̄) on [0, I] × ∂B∞, which implies that v̄
solves the problem in (3.7c) (this property of nested optimization problems is discussed
around [14; corollary 1.10]). Let us deduce some consequences of the identities in (3.7).

According to (3.4), the value of the left-hand side in (3.7a) is β > 0 and, according
to (3.5), the optimal values of the optimization problems inside the parentheses in (3.7b)-
(3.7c) is α > 0, so that

α = min
D∈[0,I]

min
‖v‖∞=1

‖CDv‖∞, (3.8a)

= min
‖v‖∞=1

min
D∈[0,I]

‖CDv‖∞. (3.8b)

Therefore, one can write

D̄ solves (3.4) ⇐⇒ ∃ v̄ such that (D̄, v̄) solves problems (3.8). (3.9)

We also have

D̄ solves (3.4)
v̄ ∈ V∞(CD̄)

}

⇐⇒ (D̄, v̄) solves problems (3.8). (3.10)

This is because, when D̄ solves (3.4) and v̄ ∈ V∞(CD̄) (i.e., v̄ minimizes ‖CD̄v‖∞ on
∂B∞ by (2.5b)), (D̄, v̄) solves the problems in (3.8). Reciprocally, when (D̄, v̄) solves the
problems in (3.8), then D̄ solves (3.4) by (3.9) and v̄ minimizes ‖CD̄v‖∞ on ∂B∞, which
also reads v̄ ∈ V∞(CD̄) by (2.5b).

Pursuing along the vein that exploits (3.7), we see that the optimal value of the op-
timization problems inside the parentheses in (3.7d)-(3.7e) is also α > 0, so that, for a v̄
such that (D̄, v̄) solves the problems in (3.8) for some D̄ ∈ [0, I], one has

α = min
D∈[0,I]

max
i∈[1 :n]

|(CD v̄)i|, (3.11a)

= max
i∈[1 :n]

min
Dii∈[0,1]

|(1−Dii)(Av̄)i +Dii(Bv̄)i|. (3.11b)

We shall also use the following implication:

(D̄, v̄) solves problems (3.8)
D̄′ solves (3.11a)

}

=⇒

{

(D̄′, v̄) solves problems (3.8)
D̄′ solve (3.4).

(3.12)

Indeed, by the left-hand side of the implication, (D̄, v̄) minimizes ‖CDv‖∞ on [0, I]×∂B∞

and D̄′ minimizes ‖CDv̄‖∞ on [0, I]. Then, (D̄′, v̄) minimizes ‖CDv‖∞ on [0, I]× ∂B∞ or,
equivalently, (D̄′, v̄) solves problems (3.8). Next, D̄′ solves (3.4), by (3.9).

We conclude this preliminary discussion with an elementary lemma [13].
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Lemma 3.2 (elementary) Suppose that ν and µ ∈ R, that α > 0 and that

min
δ∈[0,1]

|(1− δ)ν + δµ| = α. (3.13)

Then, the solution set of the optimization problem in (3.13) is {0}, {1} or [0, 1].

Proof of proposition 3.1. Suppose that A and B ∈ R
n×n satisfy (1.5) and that D̄

solves the optimization problem in (3.4). Since the last claim of the proposition is clear,
we only focus on the first part of it, assuming that D̄kk ∈ (0, 1) for some k ∈ [1 :n].
By (3.9)-(3.10), there is a v̄ ∈ V∞(CD̄) such that (D̄, v̄) solves the problems in (3.8). The
goal of the proof is now to show that one can replace D̄kk by any value in [0, 1], to form
a diagonal matrix D̄′ that is still a solution to (3.4). Sometimes (case 1 below), this goal
will be reached with the chosen initial v̄ ; other times (case 2 below), it will be necessary
to change the optimal D̄ and v̄ ∈ V∞(CD̄) several times (infinitely often is not excluded,
with a limit argument) to reach the goal. Before introducing these cases, we highlight the
principal argument that is used in the proof.

Principal argument. Recall that the optimal value of (3.4) is denoted by β := ‖C−1
D̄

‖∞,
which is positive, and that α := 1/β = ‖CD̄ v̄‖∞ for the chosen v̄ ∈ V∞(CD̄). Now, we
want to determine the other values that the kth diagonal element D̄kk of the optimal D̄
can take, if any, while keeping the optimality of the resulting diagonal matrix. Here is the
mechanism that allows us to change D̄kk. By point 2 of lemma 2.4, for the current v̄ and
for any value D̄′

kk taken in the interval

[ak, bk] := {Dkk ∈ [0, 1] : |(1−Dkk)(Av̄)k +Dkk(Bv̄)k| 6 α}, (3.14)

the diagonal matrix D̄′ defined by

D̄′
ii :=

{

D̄′
kk if i = k

D̄ii otherwise,

is a solution to problem (3.11a). By (3.12), we get that D̄′ is a solution to problem (3.4).
In conclusion, for any v̄ ∈ V∞(CD̃) with D̃ solving (3.4), the interval [ak, bk] defined by
(3.14) is a set of optimal values for D̄kk. These intervals depend on v̄. Our objective
is to show that the union of these intervals [ak, bk] for some well chosen v̄ ∈ V∞(CD̃)

and solutions D̃ to (3.4) is [0, 1] (the reasoning only holds when D̄kk ∈ (0, 1)). In case 1
below, one has [ak, bk] = [0, 1], immediately. In case 2 below, the objective is realized by
changing v̄ and D̃, alternatively, possibly infinitely often.

By optimality of D̄ for (3.11a), we have |(CD̄v̄)k| 6 α (recall that (CD̄v̄)k = (1− D̄kk)
(Av̄)k+ D̄kk(Bv̄)k only depends on D̄kk). Therefore, either min{|(CD v̄)k| : Dkk ∈ [0, 1]} =
α or min{|(CD v̄)k| : Dkk ∈ [0, 1]} < α. We now examine these two complementary cases.

1) Case where

min
Dkk∈[0,1]

|(1 −Dkk)(Av̄)k +Dkk(Bv̄)k| = α. (3.15)

By lemma 3.2, with ν = (Av̄)k and µ = (Bv̄)k, the solution set of problem (3.15) is either
{0}, {1} or [0, 1]. From (3.14) and (3.15), this solution set is also the interval [ak, bk].

11



Therefore, by the principal argument described above, for the considered vector v̄ solving
(3.8b), the kth element of the optimal D̄ can be {0}, {1} or any value in [0, 1]. Since
D̄kk ∈ (0, 1), by asumption, one has [ak, bk] = [0, 1], which concludes the proof in
this case.

2) Case where

min
Dkk∈[0,1]

|(1 −Dkk)(Av̄)k +Dkk(Bv̄)k| < α. (3.16)

In that case, the interval [ak, bk] defined by (3.14) is not guaranteed to contain 0 or 1.
By modifying the vector v̄, however, we show that one can find intervals of substi-
tutes for D̄kk, maintaining the optimality of the diagonal matrix, that cover all the
interval [0, 1]; this is the desired result.

It suffices to extend the interval [ak, bk] of optimal values for D̄kk to the left so that it
contains 0, because, by symmetry, the interval [ak, bk] can then also be extended to the
right so that it contains 1 (switch A and B and replace D by I −D).

One can assume that ak > 0, since otherwise there is nothing to prove. This implies
that α < ‖A‖∞ (because, by optimality of D̄, one has α = ‖CD̄ v̄‖∞ 6 ‖C0v̄‖∞ =
‖Av̄‖∞ 6 ‖A‖∞ and α 6= ‖A‖∞ since otherwise |(Av̄)k| 6 ‖Av̄‖∞ = α and ak = 0 by
(3.14)).

We do this extension by an iterative procedure whose iterates, indexed by j ∈ N, are
pairs (D̄j , v̄j) verifying

(D̄j , v̄j) solves the problems in (3.8), (3.17a)

D̄j
ii = D̄ii for i 6= k, (3.17b)

(1− D̄j
kk)(Av̄

j)k + D̄j
kk(Bv̄j)k = 0, (3.17c)

0 < D̄j+1
kk 6 (1− α/(2‖A‖∞))D̄j

kk. (3.17d)

The iterative process is interrupted as soon as 0 is in the interval

[ajk, b
j
k] := {Dkk ∈ [0, 1] : |(1 −Dkk)(Av̄

j)k +Dkk(Bv̄j)k| 6 α}, (3.18)

that is, as soon as ajk = 0. It will be clear from the construction of these intervals that
their union will be formed of solutions for D̄kk. Actually, the reasoning below does not
control directly ajk but it controls D̄j

kk ∈ [ajk, b
j
k], which tends to zero by (3.17d).

r Let us determine (D̄0, v̄0) and verify (3.17a)-(3.17c) for j = 0 ((3.17d) for j = 0 will
be verified when D̄1

kk will be determined, in the next point).

When (3.16) holds, point 2 of lemma 2.4 ensures that changing D̄kk in order to
have |(CD̄ v̄)k| < α will not change the optimality of D̄, so that we can actually
assume that |(CD̄v̄)k| < α. Then, lemma 2.3 with A = CD̄ and v = v̄ ∈ V∞(CD̄)
tells us that one can find a v̄0 ∈ V∞(CD̄) such that (CD̄v̄

0)k = 0, which reads
(1− D̄kk)(Av̄

0)k + D̄kk(Bv̄0)k = 0. Therefore, setting D̄0 := D̄, we see that (3.17b)
and (3.17c) hold. Furthermore, (3.17a) also holds since, by (3.10), the fact that D̄0

solves (3.4) and that v̄0 ∈ V∞(CD̄0) implies that (D̄0, v̄0) solves the problems in (3.8).

r Let us now show how to construct (D̄j+1, v̄j+1) from (D̄j, v̄j), if this is necessary.
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Assume that ajk > 0 (otherwise, there is no reason to pursue the iterative process).

Then, 0 6= (Av̄j)k 6= (Bv̄j)k (otherwise ajk = 0) and by definition of ajk in (3.18):

(1− ajk)(Av̄
j)k + ajk(Bv̄j)k = α sign((Av̄j)k). (3.19)

Indeed, if (1−ajk)(Av̄
j)k+ajk(Bv̄j)k = α, one has, by definition of ajk, (1−t)(Av̄j)k+

t(Bv̄j)k > α for all t ∈ [0, ajk), in particular (1 − 0)(Av̄j)k + 0(Bv̄j)k > α, so that

(Av̄j)k > α > 0. Similarly, (1−ajk)(Av̄
j)k+ajk(Bv̄j)k = −α implies that (Av̄j)k < 0.

Now, define the diagonal matrix D̄j+1 ∈ [0, I] by

D̄j+1
ii ∈

{

(ajk + D̄j
kk)/2 if i = k

D̄ii otherwise,
(3.20)

so that (3.17b) is verified with j + 1 instead of j. Adding side by side (3.17c) and
(3.19), and using the definition (3.20) of D̄j+1, we get

(1− D̄j+1
kk )(Av̄j)k + D̄j+1

kk (Bv̄j)k =
1

2
α sign((Av̄j)k). (3.21)

Subtracting side by side (3.17c) from (3.21), using (Av̄j)k 6= (Bv̄j)k, (Av̄j)k −
(Bv̄j)k = (Av̄j)k/D̄

j
kk by (3.17c) again and finally |(Av̄j)k| 6 ‖A‖∞ yields

D̄j
kk − D̄j+1

kk =
(α/2) sign(Av̄j)k
(Av̄j)k − (Bv̄j)k

=
α/2

|(Av̄j)k|
D̄j

kk >
α

2‖A‖∞
D̄j

kk,

which is (3.17d).

We still have to determine v̄j+1 and to verify (3.17a) and (3.17c) with j + 1 instead
of j. By (3.20) and (3.17c), D̄j+1

kk ∈ [ajk, D̄
j
kk] ⊆ [ajk, b

j
k]. This implies that, like D̄j,

D̄j+1 solves problem (3.11a) with v̄ = v̄j (point 2 of lemma 2.4) and, by (3.17a) and
(3.12), (D̄j+1, v̄j) solves the problems in (3.8). Now, by (3.21),

|(1− D̄j+1
kk )(Av̄j)k + D̄j+1

kk (Bv̄j)k| < α or |(CD̄j+1 v̄j)k| < α.

Then, lemma 2.3 with

A = CD̄j+1 and v = v̄j ∈ V∞(CD̄j+1)

(the last membership comes from the fact that (D̄j+1, v̄j) solves the problems in (3.8)
and the implication “⇐” in (3.10)) tells us that one can find a

v̄j+1 ∈ V∞(CD̄j+1) such that (CD̄j+1 v̄j+1)k = 0.

The first membership implies (3.17a) with j +1 replacing j, by the implication “⇒”
of (3.10) (note that D̄j+1 solves (3.4) by the implication “⇐” of (3.10)). The second
identity reads (3.17c) with j + 1 replacing j.

By the two previous points, the iterative procedure defining (D̄j, v̄j), for j ∈ N, is well
defined, unless it is interrupted by the fact that ajk = 0 for some j ∈ N, which is a
desirable property since then D̄ is solution to (3.4) with any D̄kk ∈ [0, bk].

If the procedure does not terminate, one has D̄j
kk → 0 by (3.17d) and D̄ is optimal for

any D̄kk ∈ [D̄j
kk, bk]. Since the set of solutions to problem (3.4) is closed, we get that D̄

is optimal for any D̄kk ∈ [0, bk]. ✷
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4 Discussion

The simplification (1.8) of the error bound factor β given by (1.7) allows us to compute
it by evaluating the map D ∈ [0, I] 7→ ‖C−1

D ‖∞ at the 2n extreme points of [0, I], which
are the diagonal matrices D with diagonal entries in {0, 1}. This is an improvement.
Nevertheless, for large n, this exponential number of evaluations can make this exact
exhaustive computation approach very time consuming. Now, it is not unlikely that, for
special classes of matrices, the simplification (1.8) can yield an efficient way of computing
the error bound factor. Finally, we are also exploring the possibility to simplify this
comprehensive evaluation by a specific algorithm based on the developments made in this
paper.

Another interest of the simplified formula (1.8) of β deals with the complexity analysis
of some algorithms for solving the balanced linear complementarity problem (1.2) with
matrices A and B verifying (1.5) (equivalent to the P-matricity of M if (A,B) = (I,M))
and integer (or rational) data. When the complexity is expressed in terms of the data
bitlength, which is the number of bits required to represent the problem data in the com-
puter memory, and when the error bound (1.6) intervenes, the question may arise to know
whether the upper error bound factor can be bounded above by a formula using the data
bitlength or the bitlength of the matrix A and B, denoted L(A,B) say, since the data
bitlength is certainly larger than L(A,B). It is known from [25; paragraph straddling
pages 209-210] (probably also implicit in [19]), that, for an arbitrary nonsingular matrix
M ∈ R

n×n,
‖M−1‖∞ 6 n 2L(M)+1.

Thanks to the formula (1.8) of β, the upper error bound factor is equal to ‖C−1
D̄

‖∞, for
some D̄ ∈ ext[0, I]. Therefore, the rows of CD̄ defined by (1.4) are those of A or B. As a
result, one certainly has

L(CD̄) 6 L(A,B). (4.1)

As a result, with D̄ ∈ ext[0, I] solving the optimization problem in (1.8), one has

max
D∈[0,I]

‖C−1
D ‖∞ = ‖C−1

D̄
‖∞ 6 n 2L(CD̄)+1

6 n 2L(A,B)+1.

Without (1.8), formula (4.1) could fail to hold and the upper bound of max{‖C−1
D ‖∞ :

D ∈ [0, I]} could be in terms of L(CD̄), which could be infinite since the optimal diagonal
matrix D̄ could then have irrational numbers in some entries. Therefore, thanks to (1.8),
for the balanced linear complementarity problem (1.2), with matrices A and B verifying
(1.5), one has the error bound

∀x ∈ R
n : ‖x− x̄‖∞ 6 n 2L(A,B)+1 ‖min(Ax+ a,Bx+ b)‖∞, (4.2)

where x̄ is the unique solution to the balanced LCP.
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