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Abstract : This paper proposes a piecewise autoregression for general integer-valued time series. The

conditional mean of the process depends on a parameter which is piecewise constant over time. We derive

an inference procedure based on a penalized contrast that is constructed from the Poisson quasi-maximum

likelihood of the model. The consistency of the proposed estimator is established. From practical applications,

we derive a data-driven procedure based on the slope heuristic to calibrate the penalty term of the contrast; and

the implementation is carried out through the dynamic programming algorithm, which leads to a procedure of

O(n2) time complexity. Some simulation results are provided, as well as the applications to the US recession

data and the number of trades in the stock of Technofirst.

Keywords: Multiple change-points, model selection, integer-valued time series, Poisson quasi-maximum

likelihood, penalized quasi-likelihood, slope heuristic.

1 Introduction

We consider a N0-valued (N0 = N ∪ {0}) process Y = {Yt, t ∈ Z} where the conditional mean

λt = λt(θ
∗
t ) = E(Yt|Ft−1) (1.1)

is a function (see below) of the whole information Ft−1 up to time t − 1 and of an unknown parameter θ∗t
belongs to a compact subset Θ ⊂ Rd (d ∈ N). The inference in the cases where θ∗t = θ∗ is constant or the

distribution of Yt|Ft−1 is known have been studied by many authors in several directions; see for instance,

Fokianos et al. (2009), Fokianos and Tjøstheim (2011, 2012), Davis and Liu (2016), Douc et al. (2017) among

others, for some recent works. We consider here a more general setting where θ∗t is piecewise constant (multiple

change-point problem) and that the distribution of Yt|Ft−1 is unknown. We refer to Franke et al. (2012),

Kang and Lee (2014), Doukhan and Kengne (2015), Leung et al. (2017) and the references therein for some

tests for change-point detection in integer-valued time series.
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2 Piecewise autoregression for count time series

Let (Y1, · · · , Yn) be a trajectory generated as in model (1.1) and assume that the parameter θ∗t is piecewise

constant. Also, assume that ∃K∗ ∈ N, θ∗ = (θ∗1 , · · · , θ∗K∗) ∈ ΘK∗ and 0 < t∗1 < · · · < t∗K∗−1 < n such

that, {Yt, t∗j−1 < t ≤ t∗j} is generated from the jth stationary regime ; i.e., it is a trajectory of the process

{Yt,j , t ∈ Z} (which are not actually observed for j = 1, · · · ,K∗, see Section 2 for some details) satisfying:

E(Yt,j |Ft−1) = f(Yt−1,j , Yt−2,j , · · · ; θ∗j ), ∀ t∗j−1 < t ≤ t∗j (1.2)

where Ft = σ(Ys,j , s ≤ t, j = 1, · · · ,K∗ − 1) is the σ-field generated by the whole information up to time

t and f is a measurable non-negative function assumed to be known up to the parameter θ∗t . K∗ is the

number of segments (or regimes) of the model; the jth segment corresponds to {t∗j−1 + 1, t∗j−1 + 2, · · · , t∗j}
and depends on the parameter θ∗j . t∗1, · · · , t∗K∗−1 are the change-point locations; by convention, t∗0 = −∞ and

t∗K∗ =∞. To ensure the identifiability of the change-point locations, it is reasonable to assume that θ∗j 6= θ∗j+1

for j = 1, · · · ,K∗ − 1. The case K∗ = 1 corresponds to the model without change. In the sequel, we assume

that the random variables Yt, t ∈ Z have the same (up to the parameter θ∗t ) distribution P and denote by

P (·|Ft−1) the distribution of Yt|Ft−1. For instance, for an INGARCH(p∗, q∗) representation, we have

λt = α∗0,j +

q∗∑

i=1

α∗i,jYt−i +

p∗∑

i=1

β∗i,jλt−i, for all t∗j−1 < t ≤ t∗j ,

where α∗0,j > 0, α∗1,j , · · · , α∗q∗,j , β∗1,j , · · · , β∗p∗,j ≥ 0. The parameters vector of the jth regime is θ∗j =

(α∗0,j , α
∗
1,j , · · · , α∗q∗,j , β∗1,j , · · · , β∗p∗,j). Therefore, Θ is a compact subset of (0,∞) × [0,∞)p

∗+q∗ such that

for all θ = (α0, α1, · · · , αq∗ , β1, · · · , βp∗) ∈ Θ,
∑q∗

i=1 αi +
∑p∗

i=1 βi < 1. For all j = 1, · · · ,K∗, we as-

sume that θ∗j ∈ Θ; hence, there exists a sequence of non-negative real numbers (ψk(θ∗j ))k≥0 such that

λt = ψ0(θ∗j ) +
∑
k≥1 ψk(θ∗j )Yt−k. Then, f(y1, y2, · · · ; θ∗j ) = ψ0(θ∗j ) +

∑
k≥1 ψk(θ∗j )yk for any (y1, y2, · · · ) ∈ N∞0 .

For instance, if the distribution P is Poisson, negative binomial or binary, then we get respectively a Poisson,

negative binomial, binary INGARCH process; see some examples in Section 4.

Our main focus of interest is the estimation of the unknown parameters
(
K∗, (t∗j )1≤j≤K∗−1, (θ

∗
j )1≤j≤K∗

)

in the model (1.2). This can be viewed as a classical model selection problem. Assume that the observations

Y1, · · · , Yn are generated from (1.2). Let Kmax be the upper bound of the number of segments (note that

Kmax < n). Denote by Mn the set of partitions of J1, nK into at most Kmax contiguous segments. Set

m = {T1, · · · , TK} a generic element of K segments in Mn. Consider the collection {Sm, m ∈ Mn} where,

for a given m ∈Mn, Sm is the families of sequence (θt) which are piecewise constant on the partition m. Any

ϑ = (θt) ∈ Sm depends on the parameter θ = (θ1, · · · , θK) which is the piecewise values of θt on each segment.

Set S = ∪m∈Mn
Sm. Denote by ϑ a generic element of S, with partition m and parameter θ. |θ| = K denotes

the number of the piecewise segments, also called the dimension of ϑ. The true model ϑ∗ with dimension K∗,

depends on a partition m∗ and the parameter θ∗.

For any ϑ ∈ S, set λϑt =
∑K
k=1 λt(θk)1t∈Tk

and denote by P (·|Ft−1, ϑ) the distribution of Yt|Ft−1, ϑ;

let p(·|Ft−1, ϑ) = p(·;λϑt ) be the probability density function of this distribution. For ϑ ∈ S, let Pn,ϑ be

the conditional distribution of (Y1, · · · , Yn)|Fn−1, ϑ. We consider the log-likelihood contrast conditioned to

Y0, Y−1, · · · : ∀ϑ ∈ S,

γn(ϑ) := γn(Pn,ϑ) = − logPn,ϑ(Y1, · · · , Yn) = −
n∑

t=1

log p(Yt|Ft−1, ϑ) = −
n∑

t=1

log p(Yt;λ
ϑ
t ).
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Thus, the minimal contrast estimator ϑ̂m of ϑ∗ on the collection Sm is obtained by minimizing the contrast

γn(ϑ) over ϑ ∈ Sm; that is, ϑ̂m = argmin
ϑ∈Sm

γn(ϑ). The main approaches of the model selection procedures

take into account the model complexity and select the estimator ϑ̂mn such that, mn minimizes the penalized

criterion

critn(m) = γn(ϑ̂m) + penn(m), for all m ∈Mn (1.3)

where penn :Mn → R+ is a penalty function, possibly data-dependent. We now address the following issues.

(i) Semi-parametric setting. Kashikar et al. (2013) have carried out structural breaks in Poisson INAR

process from the MCMC and Gibbs sampling approach. Cleynen and Lebarbier (2014 and 2017) have recently

considered the change-point type problem (1.2) with i.i.d. observations; in their works, the distribution

P is assumed to be known and could be Poisson, Negative binomial or belongs to the exponential family

distribution. From the practical viewpoint, we consider the case where P is unknown and deal with the

Poisson quasi-likelihood (see for instance, Ahmad and Francq (2016)). So in the sequel, γn is the Poisson

quasi-likelihood contrast and ϑ̂m is the Poisson quasi-maximum likelihood estimator (PQMLE).

(ii) Multiple change-point problem from a non-asymptotic point of view. This question is tacked

by model selection approach. Numerous works have been devoted to this issue; see among others, Lebarbier

(2005), Arlot and Massart (2009), Cleynen and Lebarbier (2014 and 2017), Arlot and Celisse (2016).

In this (quasi)log-likelihood framework, it is more usual to consider the Kullback-Leibler risk. For any ϑ ∈ S,

the Kullback-Leibler divergence between Pn,ϑ∗ and Pn,ϑ is

KL(ϑ∗, ϑ) := KL(Pn,ϑ∗ , Pn,ϑ) = E
[

log
Pn,ϑ∗(Y1, · · · , Yn)

Pn,ϑ(Y1, · · · , Yn)

]
=

n∑

t=1

E
[

log
p(Yt|Ft−1, ϑ

∗)
p(Yt|Ft−1, ϑ)

]

=
n∑

t=1

E
[

log p(Yt;λ
ϑ∗
t )
]
−

n∑

t=1

E
[

log p(Yt;λ
ϑ
t )
]
,

where E denotes the expectation with respect to the true distribution of the observations. In the case where

γn is the likelihood contrast, we get KL(ϑ∗, ϑ) = E[γn(ϑ) − γn(ϑ∗)]. The ”ideal” partition m(ϑ∗) (the one

whose estimator is closest to ϑ∗ according to the Kullback-Leibler risk) satisfying:

m(ϑ∗) = argmin
m∈Mn

E[KL(ϑ∗, ϑ̂m)].

The corresponding estimator ϑ̂m(ϑ∗), called the oracle, depends on the true sample distribution, and cannot

be computed in practice. The goal is to calibrate the penalty term, such that the segmentation m̂ provides an

estimator ϑ̂m̂ where the risk of ϑ̂m̂ is close as possible to the risk of the oracle, namely such that

E[KL(ϑ∗, ϑ̂m̂)] ≤ C E[KL(ϑ∗, ϑ̂m(ϑ∗))] (1.4)

for a non-negative constant C, expected close to 1. This issue is addressed in the above mentioned papers,

and the results obtained are heavily relied on the independence of the observations. In our setting here, it

seems to be a more difficult task. But, we believe that the coupling method can be used as in Lerasle (2011)

to overcome this difficulty. We leave this question as the topic of a different research project.

(iii) Multiple change-point problem from an asymptotic point of view. The aim here is to

consistently estimate the parameters of the change-point model. This issue has been addressed by several
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authors using the classical contrast/criteria optimization or binary/sequential segmentation/estimation; see

for instance, Bai and Perron (1998), Davis et al. (2008), Harchaoui and Lévy-Leduc (2010), Bardet et al.

(2012), Davis and Yau (2013), Davis et al. (2016), Ma and Yau (2016), Yau and Zhao (2016), Inclan and Tiao

(1994), Bai (1997), Fryzlewicz and Subba Rao (2014), Fryzlewicz (2014), among others, for some advanced

towards this issue. These works and many other papers in the literature on the asymptotic study of multiple

change-point problem are often focused on continuous valued time series; moreover, the case of a large class of

semi-parametric model for discrete-valued time series (such as those discussed earlier) have not yet addressed.

We consider (1.2) and derive a penalized contrast of type (1.3). We assume that there exists a partition

τ∗ of [0, 1] such that [τ∗n] = m∗, where [τ∗n] is the corresponding partition of J1, nK obtained from τ∗. We

provide sufficient conditions on the penalty penn, for which the estimators m̂ and ϑ̂m̂ are consistent; that is:

(
|m̂|, m̂

n
, ϑ̂m̂

) P−→
n→∞

(
K∗, τ∗, ϑ∗

)

where m̂
n is the corresponding partition of [0, 1] obtained from m̂.

The paper is organized as follows. In Section 2, we set some notations, assumptions and define the Poisson

QMLE. In Section 3, we derive the estimation procedure and provide the main results. Some simulations

results are displayed in Section 4 whereas Section 5 focus on applications on the US recession data and the

daily number of trades in the stock of Technofirst. Section 6 is devoted to a summary and conclusion. The

Supporting Information provides the proofs of the main results.

2 Notations and Poisson QMLE

We set the following classical Lipschitz-type condition on the function f .

Assumption Ai(Θ) (i = 0, 1, 2): For any y ∈ NN
0 , the function θ 7→ f(y; θ) is i times continuously differentiable

on Θ and there exists a sequence of non-negative real numbers (α
(i)
k )k≥1 satisfying

∞∑
k=1

α
(0)
k < 1 (or

∞∑
k=1

α
(i)
k <∞

for i = 1, 2); such that for any y, y′ ∈ NN
0 ,

sup
θ∈Θ

∥∥∥∂
if(y; θ)

∂θi
− ∂if(y′; θ)

∂θi

∥∥∥ ≤
∞∑

k=1

α
(i)
k |yk − y′k|;

where ‖ · ‖ denotes any vector, matrix norm.

In the whole paper, it is assumed that for j = 1, · · · ,K∗, there exists a stationary and ergodic process

{Yt,j , t ∈ Z} satisfying

E(Yt,j |Ft−1,j) = f(Yt−1,j , Yt−2,j , · · · ; θ∗j ), ∀ t ∈ Z (2.1)

where Ft,j = σ(Ys,j , s ≤ t) is the σ-field generated by {Ys,j , s ≤ t}; and

∃C > 0, ε > 1, such that ∀t ∈ Z, EY 1+ε
t,j < C. (2.2)

{Yt,j , t ∈ Z} is a stationary solution of the jth regime. The focus process Y = {Yt, t ∈ Z} is modelled by

these stationary regimes; that is, for any j = 1, · · · ,K∗, {Yt, t∗j−1 < t ≤ t∗j} is a trajectory of the process

{Yt,j , t ∈ Z}. Note that, the main assumption here is that, the observations on each segment j are stationary

and depend on θ∗j . Therefore, the process Y is then constructed such that for any j = 1, · · · ,K∗, Yt = Yt,j
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for t∗j−1 < t ≤ t∗j . This stationary assumption on each segment has been discussed in the literature. In the

classical autoregressive models (including ARMA and GARCH process), Bardet et al. (2012) have avoided this

assumption by an approximation study between the stationary and the nonstationary regime. As pointed out

by Doukhan and Kengne (2015) (see Remark 4.1), such study can be carried out in the Poisson autoregressive

model. But, it seems to be not easy (or not possible) in the general class of model considered here, since the

conditional distribution is assumed to be unknown.

Ahmad and Francq (2016) (Section 3) have discussed about the stationarity and the ergodicity issues. In

many classical integer-valued time series, the assumption A0(Θ) allows the existence of a stationary and

ergodic process satisfying (2.1) (see for instance, Doukhan et al. (2012, 2013), Davis and Liu (2016)).

2.1 Notations

Assume that a trajectory (Y1, · · · , Yn) of Y is observed; with 0 < t∗1 < · · · < t∗K∗−1 < n. By convention

t∗0 = −∞ and t∗K∗ =∞. We will use the following notations.

• For any finite set A, |A| denotes the cardinality of A.

• For a, b ∈ R (with a ≤ b), Ja, bK = N ∩ [a, b] is the set of integers between a and b.

• For any (p, q) ∈ N2, Mp,q(R) denotes the set of matrices of dimension p× q with coefficients in R.

• For K ∈ N, Mn(K) =
{
t = (t1, . . . , tK−1) ; 0 < t1 < . . . < tK−1 < n, tj+1 − tj > un for j =

1, · · · ,K − 1 and n − tK−1 > un
}

for some sequence (un) with values in N (see Subsection 3.1); in

particular, t∗ =
(
t∗1, . . . , t

∗
K∗−1

)
∈ Mn(K∗) is the true vector of the locations of breaks. When K = 1,

Mn(1) corresponds to the model with no break.

In the sequel, any configuration t = (t1, . . . , tK−1) ∈Mn(K) is also used as a partition {T1, T2, · · · , TK}
of J1, nK into K contiguous segments, where T1 = {1, · · · , t1}, Tj = {tj−1+1, · · · , tj} for j = 2, · · · ,K−1,

TK = {tK−1 + 1, · · · , n}. In particular, T ∗1 = {1, · · · , t∗1}, T ∗j = {t∗j−1 + 1, · · · , t∗j} for j = 2, · · · ,K∗ − 1

and TK∗ = {tK∗−1 + 1, · · · , n}. Mn(K) corresponds to the set of partitions of J1, nK into K contiguous

segments.

• For K ∈ N∗ and t ∈ Mn(K) fixed, we set nk = |Tk| for 1 ≤ k ≤ K. In particular, n∗j = |T ∗j | for

1 ≤ j ≤ K∗. For 1 ≤ k ≤ K and 1 ≤ j ≤ K∗, let nk,j = |T ∗j ∩ Tk|.

• Let θ∗ = (θ∗1 , · · · , θ∗K∗) ∈ ΘK∗ be the vector of the true parameters of the model (1.2).

Throughout the sequel, the following norms will be used:

• ‖f‖Θ := supθ∈Θ (‖f(θ)‖) for any function f : Θ −→Mp,q(R);

• ‖x‖m = max
1≤i≤K

|xi| for x = (x1, · · · , xK) ∈ RK ;

• if Y is a random vector with finite r−order moments, we set ‖Yt‖r = E (‖Y ‖r)1/r
.
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2.2 Poisson QMLE

Let (Y1, . . . , Yn) be a trajectory generated from the model (1.2). Since the conditional distribution is assumed

to be unknown, the likelihood of the model is unknown. The estimation procedure of the parameters θ∗j is

based on the Poisson quasi-maximum likelihood introduced by Ahmad and Francq (2016). The conditional

Poisson (quasi)log-likelihood of the model (1.2) computed on a segment T ⊂ {1, . . . , n} is given (up to a

constant) by

L̂n(T, θ) :=
∑

t∈T
(Yt log λ̂t(θ)− λ̂t(θ)) =

∑

t∈T

̂̀
t(θ) with ̂̀t(θ) = Yt log λ̂t(θ)− λ̂t(θ) (2.3)

where λ̂t(θ) = f̂θt = f(Yt−1, · · ·Y1, 0, · · · , 0; θ).

According to (2.3), the Poisson quasi-likelihood estimator (PQMLE) of θ∗j computed on T is defined by

θ̂n(T ) := argmax
θ∈Θ

(L̂n(T, θ)). (2.4)

Now, for j = 1, · · · ,K∗, define the Poisson (quasi)log-likelihood of the jth regime by

Ln,j(T
∗
j , θ) :=

∑

t∈T∗j

(Yt,j log λt,j(θ)− λt,j(θ)) =
∑

t∈T∗j

`t,j(θ) with `t,j(θ) = Yt,j log λt,j(θ)− λt,j(θ)

where λt,j(θ) = fθt,j = f(Yt−1,j , Yt−2,j , · · · ; θ). It can be approximated by

L̂n,j(T
∗
j , θ) :=

∑

t∈T∗j

(Yt,j log λ̂t,j(θ)− λ̂t,j(θ)) =
∑

t∈T∗j

̂̀
t,j(θ) with ̂̀t,j(θ) = Yt,j log λ̂t,j(θ)− λ̂t,j(θ) (2.5)

where λ̂t,j(θ) = f̂θt,j = f(Yt−1,j , · · · , Yt∗j−1+1,j , 0 · · · 0; θ).

According to (2.5), the PQMLE of θ∗j computed on T ∗j is defined by

θ̃n(T ∗j ) := argmax
θ∈Θ

(L̂n,j(T
∗
j , θ)). (2.6)

Let us stress that θ̂n(T ) is the PQMLE of the parameter computed on the segment T from the model with

multiple change-point ; i.e., λ̂t(θ) (used in L̂n(T, θ)) depends on the observations of all the previous regimes;

whereas θ̃n(T ∗j ) represents the PQMLE of the parameter computed from the jth stationary regime ; i.e., λ̂t,j(θ)

(used in L̂n,j(T
∗
j , θ) ) depends on only the observations of the jth stationary regime.

To avoid the problems of parameter identifiability and to study the asymptotic normality of the PQMLE,

we shall assume:

(A0): for all (θ, θ′) ∈ Θ2,
(
f(Yt−1, Yt−2, · · · ; θ) = f(Yt−1, Yt−2, · · · ; θ′) a.s. for some t ∈ N

)
⇒ θ = θ′;

moreover, ∃c > 0 such that inf
θ∈Θ

f(y1, y2, · · · ; θ) ≥ c, for all y ∈ NN
0 .

In order to ensure the consistency and the asymptotic normality of the PQMLE, we set the following assump-

tions for each segment j = 1, · · · ,K∗ (see also Ahmad and Francq (2016)):

(A1): θ∗j is an interior point of Θ ⊂ Rd;

(A2): at,j
a.s−→ 0 and Yt,jat,j

a.s−→ 0 as t→∞, where at,j = sup
θ∈Θ

∣∣∣λ̂t,j(θ)− λt,j(θ)
∣∣∣;

(A3): Jj = E
[

1
λt,j(θ∗j )

∂λt,j(θ∗j )

∂θ

∂λt,j(θ∗j )

∂θ′

]
<∞ and Ij = E

[
Var(Yt,j |Ft−1)

λ2
t,j(θ∗j )

∂λt,j(θ∗j )

∂θ

∂λt,j(θ∗j )

∂θ′

]
<∞;
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(A4): for all c′ ∈ R, c′
∂λt,j(θ∗j )

∂θ = 0 a.s ⇒ c′ = 0;

(A5): there exists a neighborhood V (θ∗j ) of θ∗j such that: for all i, k ∈ {1, · · · , d},

E

[
sup

θ∈V (θ∗j )

∣∣∣∣
∂2

∂θi∂θk
`t,j(θ)

∣∣∣∣

]
<∞;

(A6): bt,j , bt,jYt,j and at,jdt,jYt,j are of order O(t−h) for some h > 1/2, where

bt,j = sup
θ∈Θ

{
E

[∥∥∥∥∥
∂λ̂t,j(θ)

∂θ
− ∂λt,j(θ)

∂θ

∥∥∥∥∥

]}
and dt,j = sup

θ∈Θ
max

{
E

[∥∥∥∥∥
1

λ̂t,j(θ)

∂λ̂t,j(θ)

∂θ

∥∥∥∥∥

]
,E
ï∥∥∥∥

1

λt,j(θ)

∂λt,j(θ)

∂θ

∥∥∥∥
ò}

.

These aforementioned assumptions hold for many classical models, see Ahmad and Francq (2016). These

authors have established that the estimator θ̃n(T ∗j ) is strongly consistent, for each regime j ∈ {1, · · · ,K∗};
that is,

θ̃n(T ∗j )
a.s.−→
n→∞

θ∗j .

They have also proved the asymptotic normality of θ̃n(T ∗j ); that is,

»
n∗j (θ̃n(T ∗j )− θ∗j )

D−→
n→∞

N (0,Σj), ∀j = 1, · · · ,K∗,

where Σj := J−1
j IjJ

−1
j . Under the above assumptions, for any j = 1, · · · ,K∗, the matrix Σj can be consistently

estimated by

Σ̂j = Ĵ−1
j Îj Ĵ

−1
j , where (2.7)

Ĵj =
1

n

n∑

t=1

1

λ̂t,j(θ̃n(T ∗j ))

∂λ̂t,j(θ̃n(T ∗j ))

∂θ

∂λ̂t,j(θ̃n(T ∗j ))

∂θ′
,

Îj =
1

n

n∑

t=1

( Yt

λ̂t,j(θ̃n(T ∗j ))
− 1
)2 ∂λ̂t,j(θ̃n(T ∗j ))

∂θ

∂λ̂t,j(θ̃n(T ∗j ))

∂θ′
.

If we consider the process {Yt, t ∈ Z}, these properties are also verified on the segment T ∗1 since it is easy to

see that {(Yt, λt), t ∈ T ∗1 } is a stationary process while {(Yt, λt), t > t∗1} is not.

The following proposition establishes the consistency of the estimator θ̂n(T ∗j ), for any j ∈ {1, · · ·K∗}.

Proposition 2.1 Assume that (A0)-(A2) and (A0(Θ)) hold. Then

θ̂n(T ∗j )
a.s.−→
n→∞

θ∗j , ∀j = 1, · · · ,K∗.

The results of this proposition have been obtained by Ahmad and Francq (2016) when (Yt, λt) is strictly

stationary.

3 Estimation procedure and main results

In this section, we carry out the estimation of the number of breaks K∗ − 1 and the instants of breaks t∗ by

using a penalized contrast. Some asymptotic studies are also reported.
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3.1 Penalized Poisson quasi-likelihood estimator

For any configuration of regimes K ≥ 1, t ∈Mn(K) and θ = (θ1, · · · , θK) ∈ ΘK , we define the contrast

(QLIK) Ĵn(K, t, θ) := −2
K∑

k=1

L̂n(Tk, θk). (3.1)

According to the proprieties of the PQMLE, whenK∗ is known, a natural estimator of (t∗, θ∗) = ((t∗j )1≤j≤K∗−1, (θ
∗
j )1≤j≤K∗)

for the model (1.2) is therefore the PQMLE on every interval [tj + 1, · · · , tj+1] and every parameter θj , for

1 ≤ j ≤ K∗. But, since K∗ is assumed to be unknown, we cannot directly use such method. To take into

account the estimation of K∗, the most classical solution is to penalize the contrast by an additional term

κnK, where κn represents a regularization parameter.

Now, define the penalized contrast QLIK, called penQLIK, by

(penQLIK) J̃n(K, t, θ) := Ĵn(K, t, θ) + κnK, (3.2)

with κn ≤ n and κn −→
n→∞

+∞.

The estimator of (K∗, t∗, θ∗) is defined as one of the minimizers of the penalized contrast:

Ä
K̂n, t̂n, θ̂n

ä
∈ argmin

1≤K≤Kmax

argmin
(t,θ)∈Mn(K)×ΘK

Ä
J̃n(K, t, θ)

ä
and τ̂n =

t̂n
n
. (3.3)

We will also carry out a data-driven method, based on the slope heuristic procedure (see Baudry et al. (2010))

to calibrate the penalty term. In this procedure, it is expected that the criteria QLIK is a linear transformation

of the penalty (here the number of regimes K) for the most complex models (with K close to Kmax). Two

times the slope of the linear part of −QLIK(K) with K ≤ Kmax should be close to the ”optimal” penalty term

(which the corresponding estimator fulfills an oracle inequality as (1.4)). Note that, in practice, a numerical

algorithm can be used to compute the estimator on each segment; therefore, a minimum size is needed for

the numerical computation of the criteria. Thus, we consider only the segments of length larger than some

un and we can a priori fix Kmax smaller than [n/un], where (un) is a sequence with values in N, satisfying

un −→
n→∞

∞. The complete procedure can be summarized as follows:

1. For each 1 ≤ K ≤ Kmax, draw
(
K,−mint,θ QLIK(K)

)
. Then compute the slope of the linear part: this

slope is κ̂n/2.

2. Using κn = κ̂n, draw
(
K,−mint,θ penQLIK(K)

)
1≤K≤Kmax

. This curve has a global minimum at K̂n.

Let us point out that the theoretical validity of this slope heuristic procedure has been established in some

model selection problem; see for instance, Arlot and Massart (2009), Lerasle (2011). The theoretical validity

in a large class of semi-parametric model for integer-valued time series considered here has not yet been

established. But this heuristic has been successfully applied for change-point detection in some settings (see

for example, Baudry et al. (2010), Bardet et al. (2012)).

3.2 Asymptotic behavior

Under some assumptions, we will establish the asymptotic behavior of the estimator (K̂n, t̂n, θ̂n). Throughout

this article, we set the following classical assumption in the problem of break detection:
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Assumption B. min
1≤j≤K∗−1

∥∥θ∗j+1 − θ∗j
∥∥ > 0. Also, there exists a vector τ∗ = (τ∗1 , · · · , τ∗K−1) with 0 < τ∗1 <

· · · < τ∗K−1 < 1, called the vector of breaks such that t∗j =
[
nτ∗j

]
, for j = 1, · · · ,K (where [·] is the integer

part).

The following theorem gives the consistency of (K̂n, t̂n, θ̂n).

Theorem 3.1 Assume that Kmax > K∗ and (A0)-(A2), B. If Ai(Θ) (i = 0, 1, 2), (2.2) (with ε > 1) hold

and (κ`) satisfies
∑

`≥1

1

κ`

∑

k≥`
α

(0)
k <∞, (3.4)

then Ä
K̂n, τ̂n, θ̂n

ä P−→
n→∞

(K∗, τ∗, θ∗) .

By convention, throughout the sequel, if the vectors t̂n and t∗ do not have the same length, complete the

shorter of the two vectors with 0 before computing the norm
∥∥̂tn − t∗

∥∥
m

. The following theorem establishes

the rates of convergence of the estimator τ̂n.

Theorem 3.2 Assume that Kmax > K∗ and (A0)-(A2), B. If Ai(Θ) (i = 0, 1, 2), (2.2) (with ε > 1), (3.4)

hold and ∑

`≥1

1√
`

∑

k≥`
α

(i)
k <∞, for i = 1, 2, (3.5)

then the sequence
Ä∥∥̂tn − t∗

∥∥
m

ä
n>1

is uniformly tight in probability; that is,

lim
δ→∞

lim
n→∞

P
Ä∥∥̂tn − t∗

∥∥
m
> δ
ä

= 0.

This result implies that for any sequence of non-negative real numbers (wn)n such that wn →∞, ‖̂tn− t∗‖m =

oP (wn); that is, a convergence rate close to OP (1). As pointed out by Bardet et al. (2012), this is the rate

obtained when (Yt)t is a sequence of independent random variables.

Now, we give the convergence in distribution of the estimator θ̂n. By convention, if K̂n < K∗, set T̂j = T̂K̂n
,

for j ∈
¶
K̂n, · · · ,K∗

©
. The following theorem establishes the asymptotic normality of θ̂n(T̂j).

Theorem 3.3 Assume that Kmax > K∗ and (A0)-(A6) and B. If Ai(Θ) (i = 0, 1, 2), (2.2) (with ε > 2),

(3.4) and (3.5) hold, then

»
n∗j
Ä
θ̂n(T̂j)− θ∗j

ä D−→
n→∞

Nd (0,Σj) , ∀ j = 1, · · · ,K∗,

where Σj := J−1
j (θ∗j )Ij(θ

∗
j )J−1

j (θ∗j ) with

Jj(θ
∗
j ) = E

[ 1

λt,j(θ∗j )

∂λt,j(θ
∗
j )

∂θ

∂λt,j(θ
∗
j )

∂θ′

]
and Ij(θ

∗
j ) = E

[Var(Yt,j |Ft−1)

λ2
t,j(θ

∗
j )

∂λt,j(θ
∗
j )

∂θ

∂λt,j(θ
∗
j )

∂θ′

]
.

Remark 3.4 The conditions on the regularization parameter (κn)n∈N can be obtained if the Lipschitzian

coefficients of f(· ; θ) and its derivatives are bounded by a geometric or Riemanian sequence:
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1. the geometric case: if α
(i)
k = O(ak) (i = 0, 1, 2) with 0 ≤ a < 1, then any choice of (κn)n∈N such that

κn ≤ n and κn →∞ satisfies (3.4) (for instance, κn of order log n as in the BIC approach). Also, (3.5)

holds.

2. the Riemanian case: if α
(i)
k = O(k−γ) (i = 0, 1, 2) with γ > 3/2, then, (3.5) holds. Moreover,

• if γ > 2, then the conditions (3.4) holds for any choice of (κn)n∈N such that κn ≤ n and κn →∞.

• if 3/2 < γ ≤ 2, then any choice such that κn = O(nδ) with δ > 2− γ or κn = O(n2−γ(log n)δ) with

δ > 1 satisfies (3.4).

4 Some simulations results

In this section, we implement the procedure on the R software (developed by the CRAN project). We will

restrict our attention to the estimation of the vector (K∗, t∗); i.e, the number of segments K∗ and the instants

of breaks t∗. For the performances of the estimator of the parameter θ∗, we refer to the works of Ahmad

and Francq (2016). For each process, we generate 100 replications following the scenarios considered. The

estimated number of segments is computed by using the QLIK criteria penalized with κn = κ̂n, κn = log n

and κn = n1/3. The value of the estimator κ̂n is calibrated by applying the slope estimation procedure (see

Baudry et al. (2010)) as described above. Once the regularization parameter κn is obtained, the dynamic

programming algorithm is used to minimize the criteria. With this algorithm, the complexity of the procedure

declines from O(nKmax) to O(n2).

4.1 Implementation procedure

We give the steps of the dynamic programming algorithm for computing the number of segments K̂n and the

optimal configuration of the break-points vector t̂. This algorithm is such that if (t1, · · · , tK−1, t) represents

the optimal configuration of Y1, · · · , Yt into K segments, then (t1, · · · , tK−1) is the optimal configuration of

Y1, · · · , YtK−1
into K − 1 segments. Assume that the regularization parameter κn is known and let ML be

the upper triangular matrix of dimension n × n with MLi,l = L̂(Ti,l, θ̂n(Ti,l)), where Ti,l = {i, i+ 1, · · · , l},
for 1 ≤ i ≤ l ≤ n. We summarize the implementation of the procedure as follows:

• The number of segments K̂n: Let C be an upper triangular matrix of dimension Kmax×n. For 1 ≤ K ≤
Kmax and K ≤ t ≤ n, CK,t will be the minimum penalized criteria of Y1, · · · , Yt into K segments. For

t = 1, · · · , n, C1,t = −2ML1,t + κn and the relation CK+1,t = minK≤l≤t−1 (CK,l − 2MLl+1,t + κn) is

satisfied. Hence, K̂n = argmin1≤K≤Kmax
(CK,n).

• The change-point locations t̂n: Let Z be an upper triangular matrix of dimension (Kmax − 1) × n. For

1 ≤ K ≤ (Kmax − 1) and K + 1 ≤ t ≤ n, ZK,t will be the Kth potential break-point of Y1, · · · , Yt.
Therefore, the relation ZK,t = minK≤l≤t−1 (CK,l − 2MLl+1,t + κn) is satisfied for K = 1, · · · , (Kmax−1).

The break-points are obtained as follows: set t̂K̂n
= n and for K = K̂n − 1, · · · , 1, t̂K = ZK,t̂K+1

.
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4.2 Results of simulations

4.2.1 Poisson-INARCH models

We consider the problem (1.2) for a Poisson-INARCH(1); i.e., (Y1, · · · , Yn) is a trajectory of the process

Y = {Yt, t ∈ Z} satisfying:

Yt|Ft−1 ∼ P(λt) ; λt = f(Yt−1, Yt−2, · · · ; θ∗j ) = α
(j)
0 + α(j)Yt−1, ∀ t ∈ T ∗j , ∀ j ∈ {1, · · · ,K∗} . (4.1)

The parameters vector is θ∗j = (α
(j)
0 , α(j)), for all j ∈ {1, · · · ,K∗}.

For n = 500 and n = 1000, we generate a sample (Y1, · · · , Yn) in the following situations:

• scenario IA0: θ∗1 = (0.5, 0.6) is constant (K∗ = 1) ;

• scenario IA1: θ∗1 = (0.5, 0.6) changes to θ∗2 = (1.0, 0.6) at t∗ = 0.5n (K∗ = 2) ;

• scenario IA2: θ∗1 = (0.5, 0.6) changes to θ∗2 = (1.0, 0.6) at t∗1 = 0.3n which changes to θ∗3 = (1.0, 0.25)

at t∗2 = 0.7n (K∗ = 3).

For the scenario IA2, we generate a series with n = 1000. Figure 1 shows the slope of the linear part of the

−QLIK criteria minimized in (t, θ). We obtain κ̂n ≈ 5.9; this value of κ̂n is data-dependent ; i.e., it is the

value that has been used for this particular realization. By using this above value for κn, we minimize the

penQLIK in (K, t, θ), with 1 ≤ K ≤ Kmax. Figure 1 also displays the points (K,mint,θ penQLIK(K)) for

1 ≤ K ≤ Kmax = 15. One can see that the estimated number of segments is K̂n = 3. Also, the estimated

instants of breaks vector is t̂n = (291, 702) (t∗ = (300, 700)) (see Figure 2).

Now, we are going to generate 100 replications of a Poisson-INGARCH(1,1) process following the scenarios

IA0-IA2. Table 1 indicates the frequencies of the number of replications where K̂n = K∗, K̂n < K∗ and

K̂n > K∗, for the regularization parameter κn = κ̂n, log n, n1/3. For the scenarios IA1 and IA2, we also

consider the replications where the true number of breaks is achieved (i.e., K̂n = K∗) and we present some

elementary statistics of the estimated instants of breaks (see Table 1).

The results in Table 1 show that for the penalties considered, the performances increase with n in all scenarios.

In accordance with Theorem 3.1, the consistency of the penalties log n and n1/3 is numerically convincing.

Moreover, the n1/3−penalty outperforms the other procedures when n = 1000.

4.2.2 Poisson-INGARCH models

We consider the problem (1.2) for a Poisson-INGARCH(1,1); i.e., (Y1, · · · , Yn) is a trajectory of the process

Y = {Yt, t ∈ Z} satisfying:

Yt|Ft−1 ∼ P(λt) ; λt = α
(j)
0 + α(j)Yt−1 + β(j)λt−1, ∀ t ∈ T ∗j , ∀ j ∈ {1, · · · ,K∗} . (4.2)

The parameters vector is θ∗j = (α
(j)
0 , α(j), β(j)), for all j ∈ {1, · · · ,K∗}.

For n = 500 and n = 1000, we generate 100 replications of the model (4.2) in the following situations:
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Figure 1: A typical example for a Poisson-INARCH(1) process in the scenario IA2 with n = 1000. The

left-hand graph is the curve of −mint,θ QLIK(K), for 1 ≤ K ≤ Kmax; the solid line represents the linear

part of this curve with the slope κ̂n/2 = 2.928. This value of κ̂n depends on this particular realization. The

right-hand side is the graph (K,mint,θ penQLIK(K)), for 1 ≤ K ≤ Kmax.

(b) 1000 observations of Poisson−INARCH(1) model with two breaks
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Figure 2: The estimation of the break-points for a trajectory of a Poisson-INARCH(1) process in the scenario

IA2. The solid lines represent the estimated instants of breaks and the dotted lines represent the true ones.

• scenario IG0: θ∗1 = (1.0, 0.2, 0.15) is constant (K∗ = 1) ;

• scenario IG1: θ∗1 = (1.0, 0.2, 0.15) changes to θ∗2 = (1.0, 0.45, 0.15) at t∗ = 0.5n (K∗ = 2) ;

• scenario IG2: θ∗1 = (0.1, 0.3, 0.6) changes to θ∗2 = (0.5, 0.3, 0.6) at t∗1 = 0.3n which changes to

θ∗3 = (0.5, 0.3, 0.2) at t∗2 = 0.7n (K∗ = 3).
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Table 1: Breaks estimated after 100 replications for a Poisson-INARCH(1) process following the scenarios

IA0-IA2. The first three columns show the frequencies of the estimation of the true, low and high number

of breaks. The last three columns give some elementary statistics of the change-point locations when the true

number of breaks is achieved.

Frequencies Mean ± s.d. Mean

Scenarios K̂n = K∗ K̂n < K∗ K̂n > K∗ τ̂1 τ̂2
∥∥τ̂n − τ∗

∥∥
IA0 n = 500 κn = κ̂n 0.72 0.00 0.28

(K∗ = 1) κn = logn 0.76 0.00 0.24

κn = n1/3 0.94 0.00 0.06
n = 1000 κn = κ̂n 0.94 0.00 0.06

κn = logn 0.90 0.00 0.10

κn = n1/3 1.00 0.00 0.00

IA1 n = 500 κn = κ̂n 0.76 0.03 0.21 0.497± 0.064 0.038
(K∗ = 2) κn = logn 0.83 0.03 0.14 0.495± 0.066 0.040

κn = n1/3 0.87 0.09 0.04 0.495± 0.064 0.038
n = 1000 κn = κ̂n 0.89 0.00 0.11 0.507± 0.033 0.019

κn = logn 0.87 0.00 0.13 0.507± 0.034 0.020

κn = n1/3 0.98 0.00 0.02 0.506± 0.032 0.019

IA2 n = 500 κn = κ̂n 0.62 0.13 0.25 0.311± 0.071 0.689± 0.060 0.061
(K∗ = 3) κn = logn 0.73 0.12 0.15 0.317± 0.073 0.690± 0.072 0.067

κn = n1/3 0.64 0.33 0.03 0.310± 0.058 0.685± 0.070 0.061
n = 1000 κn = κ̂n 0.87 0.00 0.13 0.300± 0.034 0.693± 0.030 0.034

κn = logn 0.84 0.00 0.16 0.302± 0.043 0.692± 0.030 0.038

κn = n1/3 0.93 0.05 0.02 0.300± 0.051 0.694± 0.028 0.037

Table 2: Breaks estimated after 100 replications for a Poisson-INGARCH(1,1) process following the scenarios

IG0-IG2. The first three columns show the frequencies of the estimation of the true, low and high number

of breaks. The last three columns give some elementary statistics of the change-point locations when the true

number of breaks is achieved.

Frequencies Mean ± s.d. Mean

Scenarios K̂n = K∗ K̂n < K∗ K̂n > K∗ τ̂1 τ̂2
∥∥τ̂n − τ∗

∥∥
IG0 n = 500 κn = κ̂n 0.86 0.00 0.14

(K∗ = 1) κn = logn 0.96 0.00 0.04

κn = n1/3 1.00 0.00 0.00
n = 1000 κn = κ̂n 0.92 0.00 0.08

κn = logn 0.96 0.00 0.04

κn = n1/3 1.00 0.00 0.00

IG1 n = 500 κn = κ̂n 0.75 0.05 0.20 0.515± 0.066 0.038
(K∗ = 2) κn = logn 0.70 0.03 0.27 0.514± 0.073 0.040

κn = n1/3 0.78 0.06 0.16 0.512± 0.066 0.038
n = 1000 κn = κ̂n 0.75 0.05 0.20 0.507± 0.031 0.019

κn = logn 0.58 0.00 0.42 0.508± 0.034 0.021

κn = n1/3 0.83 0.03 0.13 0.501± 0.048 0.022

IG2 n = 500 κn = κ̂n 0.53 0.41 0.06 0.299± 0.078 0.691± 0.073 0.053
(K∗ = 3) κn = logn 0.58 0.23 0.19 0.299± 0.074 0.693± 0.070 0.049

κn = n1/3 0.37 0.49 0.14 0.300± 0.076 0.697± 0.015 0.047
n = 1000 κn = κ̂n 0.62 0.26 0.12 0.293± 0.050 0.702± 0.010 0.025

κn = logn 0.60 0.06 0.34 0.293± 0.051 0.702± 0.010 0.026

κn = n1/3 0.56 0.29 0.15 0.301± 0.029 0.699± 0.011 0.016

Table 2 indicates the frequencies of the true number of breaks estimated and some elementary statistics of

the estimators of the change-point locations. It appears that the results of the n1/3-penalty and the slope

procedure are quite satisfactory except for the case of two breaks. In this later case, the n1/3-penalty and the

slope procedure over-penalize the number of breaks, while the log n-penalty under-penalizes. But, overall, the

performances of the proposed procedures increase with n and the estimation of the break-points locations is

well achieved.
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4.2.3 Negative binomial INGARCH models

We consider the problem (1.2) for a negative binomial INGARCH(1,1) (NB-INGARCH(1,1)); i.e., (Y1, · · · , Yn)

is a trajectory of the process Y = {Yt, t ∈ Z} satisfying:

Yt|Ft−1 ∼ NB(r, pt) ; r
(1− pt)
pt

= λt = α
(j)
0 + α(j)Yt−1 + β(j)λt−1, ∀ t ∈ T ∗j , ∀ j ∈ {1, · · · ,K∗} ; (4.3)

where the parameters vector is θ∗j = (α
(j)
0 , α(j), β(j)), for all j ∈ {1, · · · ,K∗} and NB(r, p) denotes the negative

binomial distribution with parameters r and p. Here, we use the probability mass function of NB(r, p) given

by

P(Y = y) =

Ç
y + r − 1

r − 1

å
pr(1− p)y, for all y = 0, 1, . . .

For r = 14 (used for transaction data, see Diop and Kengne (2017)), n = 500 and n = 1000, we generate a

sample (Y1, · · · , Yn) in the following situations:

• scenario NB-IG0: θ∗1 = (1.0, 0.2, 0.15) is constant (K∗ = 1) ;

• scenario NB-IG1: θ∗1 = (1, 0.2, 0.15) changes to θ∗2 = (1, 0.45, 0.15) at t∗ = 0.5n (K∗ = 2) ;

• scenario NB-IG2: θ∗1 = (0.1, 0.3, 0.6) changes to θ∗2 = (0.5, 0.3, 0.6) at t∗1 = 0.3n which changes to

θ∗3 = (0.5, 0.3, 0.2) at t∗2 = 0.7n (K∗ = 3).

Table 3: Breaks estimated after 100 replications for a NB-INGARCH(1,1) process following the scenarios

NB− IG0-NB− IG2. The first three columns show the frequencies of the estimation of the true, low and

high number of breaks. The last three columns give some elementary statistics of the change-point locations

when the true number of breaks is achieved.

Frequencies Mean ± s.d. Mean

Scenarios K̂n = K∗ K̂n < K∗ K̂n > K∗ τ̂1 τ̂2
∥∥τ̂n − τ∗

∥∥
NB-IG0 n = 500 κn = κ̂n 0.90 0.00 0.10
(K∗ = 1) κn = logn 0.95 0.00 0.05

κn = n1/3 0.98 0.00 0.02
n = 1000 κn = κ̂n 0.92 0.00 0.08

κn = logn 0.94 0.00 0.06

κn = n1/3 0.98 0.00 0.02

NB-IG1 n = 500 κn = κ̂n 0.60 0.09 0.31 0.512± 0.122 0.072
(K∗ = 2) κn = logn 0.55 0.04 0.41 0.514± 0.110 0.063

κn = n1/3 0.65 0.12 0.23 0.519± 0.106 0.060
n = 1000 κn = κ̂n 0.69 0.02 0.29 0.507± 0.065 0.037

κn = logn 0.56 0.00 0.44 0.500± 0.054 0.030

κn = n1/3 0.83 0.02 0.15 0.505± 0.061 0.037

NB-IG2 n = 500 κn = κ̂n 0.45 0.51 0.04 0.330± 0.084 0.696± 0.040 0.057
(K∗ = 3) κn = logn 0.41 0.13 0.46 0.319± 0.080 0.700± 0.026 0.057

κn = n1/3 0.43 0.28 0.29 0.328± 0.061 0.685± 0.066 0.055
n = 1000 κn = κ̂n 0.70 0.25 0.05 0.304± 0.060 0.699± 0.020 0.033

κn = logn 0.54 0.02 0.44 0.299± 0.066 0.699± 0.014 0.033

κn = n1/3 0.68 0.19 0.13 0.325± 0.090 0.697± 0.018 0.043

Once again, it appears in Table 3 that the performances of the proposed procedures increase with n and the

estimation of the break-points locations remain satisfactory even in this case where the Poisson quasi-likelihood

used is quite different from the true distribution of the observations.
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4.2.4 Binary Time Series

Consider the problem (1.2) for a binary INARCH(1) (BIN-INARCH(1)) time series model; i.e., (Y1, · · · , Yn)

is a trajectory of the process Y = {Yt, t ∈ Z} satisfying:

Yt|Ft−1 ∼ B(pt) ; pt = λt = α
(j)
0 + α(j)Yt−1, ∀ t ∈ T ∗j , ∀ j ∈ {1, · · · ,K∗} ; (4.4)

where the parameters vector is θ∗j = (α
(j)
0 , α(j)) (with 0 < α

(j)
0 + α(j) < 1), for all j ∈ {1, · · · ,K∗} and B(p)

denotes the Bernoulli distribution with parameter p.

For n = 500 and n = 1000, we generate a sample (Y1, · · · , Yn) in the following situations:

• scenario BIN-IA0: θ∗1 = (0.15, 0.75) is constant (K∗ = 1) ;

• scenario BIN-IA1: θ∗1 = (0.15, 0.75) changes to θ∗2 = (0.04, 0.60) at t∗ = 0.5n (K∗ = 2) ;

• scenario BIN-IA2: θ∗1 = (0.15, 0.75) changes to θ∗2 = (0.04, 0.60) at t∗1 = 0.3n which changes to

θ∗3 = (0.25, 0.35) at t∗2 = 0.7n (K∗ = 3).

The scenario BIN-IA1 is related and close to the real data example (see below).

Table 4: Breaks estimated after 100 replications for a BIN-INARCH(1) process following the scenarios

BIN− IA0-BIN− IA2. The first three columns show the frequencies of the estimation of the true, low and

high number of breaks. The last three columns give some elementary statistics of the change-point locations

when the true number of breaks is achieved.

Frequencies Mean ± s.d. Mean

Scenarios K̂n = K∗ K̂n < K∗ K̂n > K∗ τ̂1 τ̂2
∥∥τ̂n − τ∗

∥∥
BIN-IA0 n = 500 κn = κ̂n 0.84 0.00 0.16
(K∗ = 1) κn = logn 0.98 0.00 0.02

κn = n1/3 0.98 0.00 0.02
n = 1000 κn = κ̂n 0.86 0.00 0.14

κn = logn 1.00 0.00 0.00

κn = n1/3 1.00 0.00 0.00

BIN-IA1 n = 500 κn = κ̂n 0.69 0.10 0.21 0.499± 0.091 0.055
(K∗ = 2) κn = logn 0.72 0.27 0.01 0.491± 0.087 0.051

κn = n1/3 0.52 0.48 0.00 0.484± 0.091 0.054
n = 1000 κn = κ̂n 0.89 0.00 0.11 0.499± 0.036 0.020

κn = logn 0.96 0.01 0.03 0.500± 0.035 0.019

κn = n1/3 0.85 0.15 0.00 0.484± 0.091 0.054

BIN-IA2 n = 500 κn = κ̂n 0.75 0.18 0.07 0.324± 0.094 0.695± 0.044 0.060
(K∗ = 3) κn = logn 0.43 0.57 0.00 0.312± 0.044 0.694± 0.030 0.035

κn = n1/3 0.23 0.77 0.00 0.306± 0.033 0.702± 0.017 0.026
n = 1000 κn = κ̂n 0.95 0.03 0.02 0.303± 0.046 0.696± 0.019 0.028

κn = logn 0.90 0.10 0.00 0.299± 0.037 0.697± 0.017 0.025

κn = n1/3 0.52 0.48 0.00 0.296± 0.021 0.697± 0.019 0.020

Table 4 shows that the procedures provide satisfactory results with BIN-INARCH(1) model, except that the

n1/3-penalty in the case of two breaks. But, the performances of these procedures increase with n and the

break-points locations are overall well estimated.

4.2.5 INARCH(∞) models

Now, consider a Poisson-INARCH(∞); i.e., (Y1, · · · , Yn) is a trajectory of the process Y = {Yt, t ∈ Z}
satisfying:

Yt|Ft−1 ∼ P(λt) ; λt = α
(j)
0 +

∞∑

k=1

αkYt−k, ∀ t ∈ T ∗j , ∀ j ∈ {1, · · · ,K∗} , (4.5)
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where α
(j)
0 > 0 (for all j = 1, · · · ,K∗), αk ≥ 0 (for all k ≥ 1) and

∑
k≥1

αk < 1; that is, we focus on the change in

the parameter α
(j)
0 . This process corresponds to a particular case of the problem (1.2) with f(y1, y2, · · · , α(j)

0 ) =

α
(j)
0 +

∑∞
k=1 αkyk for each regime j ∈ {1, · · · ,K∗}. We deal with a scenario where the consistency of the BIC

procedure is not ensured. Therefore, we consider the Riemanian case with αk = O(k−1.7) (in the scenario

detailed below). More precisely, we consider the model (4.5) with

λt = α
(j)
0 +

1

2.2

∞∑

k=1

1

k1.7
Yt−k.

The number 1/2.2 is obtained from the values of the Riemann zeta function, and allows the condition
1

2.2

∑∞
k=1

1
k1.7 < 1. According to Theorem 3.1 and Remark 3.4, if the regularization parameter verifies

κn = O(nδ) with δ > 0.3, then the consistency holds. Thus, the consistency of the BIC penalty is not

ensured.

For n = 500 and n = 100, we generate a trajectory (Y1, · · · , Yn) of the model (4.5) in the following scenarios:

• scenario IA-INF0: α
(1)
0 = 0.5 is constant (K∗ = 1) ;

• scenario IA-INF1: α
(1)
0 = 0.5 changes to α

(2)
0 = 0.1 at t∗ = 0.5n (K∗ = 2).

Table 5: Breaks estimated after 100 replications for an INARCH(∞) process following the scenarios IA− INF0

and IA− INF1. The first three columns show the frequencies of the estimation of the true, low and high number

of breaks. The last two columns give some elementary statistics of the change-point locations when the true

number of breaks is achieved.

Frequencies Mean ± s.d. Mean

Scenarios K̂n = K∗ K̂n < K∗ K̂n > K∗ τ̂1
∥∥τ̂n − τ∗

∥∥
IA-INF0 n = 500 κn = κ̂n 0.15 0.00 0.85
(K∗ = 1) κn = logn 0.56 0.00 0.44

κn = n1/3 0.84 0.00 0.16
n = 1000 κn = κ̂n 0.17 0.00 0.83

κn = logn 0.57 0.00 0.43

κn = n1/3 0.95 0.00 0.05

IA-INF1 n = 500 κn = κ̂n 0.66 0.04 0.34 0.498± 0.0057 0.003
(K∗ = 2) κn = logn 0.49 0.02 0.49 0.498± 0.0013 0.002

κn = n1/3 0.82 0.03 0.15 0.497± 0.0062 0.003
n = 1000 κn = κ̂n 0.79 0.00 0.21 0.499± 0.0004 0.001

κn = logn 0.43 0.00 0.57 0.499± 0.0006 0.001

κn = n1/3 0.93 0.00 0.07 0.499± 0.0005 0.001

In Table 5, one can see that the n1/3-penalty uniformly outperforms the other two procedures. Moreover, the

performances of the proposed procedures increase with n, except the log n-penalty whose the performances

decrease with n. Hence, the consistency of the BIC procedure is quite questionable in this case.

5 Real data application

We apply our change-point procedure to two examples of real data series. To compute the estimator K̂n, the

κ̂n-penalty is used with un =
[
(log(n))δ

]
(where 3/2 ≤ δ ≤ 2) and Kmax = 15.
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5.1 The US recession data

Firstly, we consider the series of the quarterly recession data from the USA for the period 1855-2013 (see

Figure 4). This series (Yt) represents a binary variable that is equal to 1 if there is a recession in at least

1 month in the quarter and 0 otherwise. There are 636 quarterly observations obtained from The National

Bureau of Economic Research. These data have already been analyzed by several authors. Hudecová (2013)

has applied a change-point procedure based on a normalized cumulative sums of residuals and has found a

break in the first quarter of 1933. Recently, Diop and Kengne (2017) have applied a change-point test based

on the maximum likelihood estimator of the model’s parameter and have detected a break in the last quarter

of 1932.

We consider the INARCH(1) representation and apply the penQLIK contrast procedure. This choice is

motivated by the fact that the estimation of the last component of θ (i.e., the parameter β) is not significant in

the INGARCH(1,1) representation (see Diop and Kengne (2017)). The test of nullity of one coefficient (TNOC)

proposed by Ahmad and Francq (2016), applied a posteriori (after change-point detection) also confirms these

results. As noted in the implementation of the dynamic programming algorithm, we begin by the calibration

of the regularization parameter κn. The slope estimation procedure applied with un =
[
(log n)2

]
returns the

value κ̂n ≈ 3.21 and the estimation of the number of segments is K̂n = 2; i.e., one break is detected (see Figure

3). The location of the break-point estimated is t̂ = 313. The change detected at t̂ = 313 corresponds to the

first quarter of 1933 (see Figure 4). These results are in concordance with those obtained by Diop and Kengne

(2017) and Hudecová (2013). The estimated model with one break-point is

E(Yt|Ft−1) = λt =





0.120 + 0.749Yt−1, for t ≤ 313
(0.028) (0.215)

0.047 + 0.681Yt−1, for t > 313,
(0.013) (0.230)

where in parentheses are the standard errors of the estimators obtained from the robust sandwich matrix

Ĥ−1
j Σ̂−1

j Ĥ−1
j computed on each regime j, with Σ̂j is given by (2.7) and Ĥj = 1

n

∑n
t=1

∂2 ̂̀
t,j(θ̂n(T̂j))
∂θ∂θ′ . The

estimation of the parameters displays a distortion in term of standard errors; it can be explained by the fact

that the true distribution of the observations (which is binary), is quite different from the Poisson quasi-

likelihood used.

5.2 Number of trades in the stock of Technofirst

Secondly, we apply our change-point detection procedure to a financial time series data. We consider the

daily number of trades in the stock of Technofirst listed in the NYSE Euronext group. It is a series of 1000

observations from 04 January 2010 to 20 April 2016 (see Figure 6). The data are available online at the website

”https://www.euronext.com/en/products/equities/FR0011651819-ALXP”. These data have been analyzed by

Ahmad and Francq (2016) with the PQMLE, and have concluded that the INGARCH(1,3) is more appropriate.

We carry out an INGARCH(1,1) representation with the possibility of change in the observations.

The slope estimation procedure obtained with un =
[
(log(n))2

]
returns κ̂n ≈ 23.04 and the estimation of the

number of segments is K̂n = 3; i.e., two changes are detected (see Figure 5). The locations of the break-points

estimated are t̂1 = 230 (06 April 2011) and t̂2 = 311 (06 September 2011), see also Figure 6.
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Figure 3: The curve of −mint,θ QLIK(K) and the graph (K,mint,θ penQLIK(K)) for the US recession data

with an INARCH(1) representation. The solid line represents the linear part of this curve with slope κ̂n/2 =

1.605.
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Figure 4: The US recession data with the estimated location of the break-point t̂.

The estimated model with the change-points is

E(Yt|Ft−1) = λt =





2.436 + 0.368Yt−1, for t ≤ 230
(0.126) (0.032)

4.643 + 0.607Yt−1 + 0.032λt−1, for 230 < t ≤ 311
(0.649) (0.022) (0.033)

1.113 + 0.166Yt−1 + 0.531λt−1, for t > 311,
(0.226) (0.016) (0.071)

where in parentheses are the robust standard errors of the estimators. Let us note that, we have applied the

TNOC, which fund that the INARCH(1) representation is the most appropriate for the first regime.

6 Summary and conclusion

This paper focuses on the multiple change-point problem in a general class of integer-valued time series. A

penalized contrast estimator based on the Poisson quasi-maximum likelihood of the model is proposed. The
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Figure 5: The curve of −mint,θ QLIK(K) and the graph (K,mint,θ penQLIK(K)) for the daily number of

trades in the stock of Technofirst. The solid line represents the linear part of this curve with slope κ̂n/2 = 11.52.
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Figure 6: The daily number of trades in the stock of the Technofirst with the estimated locations of the break-

points t̂1 and t̂2.

theoretical study establishes the consistency of the proposed estimator. A data-driven procedure based on

the slope heuristic is also proposed to calibrate the penalty term of the contrast. The simulation study

based on three penalty procedures (BIC, n1/3 and slope heuristic) displays satisfactory results in the cases

of Poisson, Negative binomial and binary INARCH (except the n1/3-penalty in the case of two breaks for

BIN-INARCH); these models are the most used in practice. The performances of these procedures increase

with n and the estimated probability of detecting the true number of breaks is overall approaching 1 when

n = 1000; this is consistent with the results of Theorem 3.1. In the case of the Poisson-INARCH(∞), the

n1/3-penalty outperforms the other two procedures. This is not too surprising, since according to Theorem

3.1, the consistence of the BIC procedure is not ensured in this case. Applications to real data examples show

that these procedures work in practice. Also, for all the scenarios with break in Section 4 as well as for the

real data examples, the slope heuristic procedure provides satisfactory results. Such data-driven procedure is

today one of the most successful methods for practical calibration in the model selection problems. A possible

extension of this work is the study of the theoretical validity of a data-driven calibration procedure in such

models.
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