
HAL Id: hal-03450251
https://hal.science/hal-03450251v2

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability regions of systems with compatibilities, and
ubiquitous measures on graphs

Jocelyn Begeot, Irène Marcovici, Pascal Moyal

To cite this version:
Jocelyn Begeot, Irène Marcovici, Pascal Moyal. Stability regions of systems with compatibilities, and
ubiquitous measures on graphs. Queueing Systems, 2023, 103 (3-4), pp.275-312. �10.1007/s11134-023-
09872-0�. �hal-03450251v2�

https://hal.science/hal-03450251v2
https://hal.archives-ouvertes.fr


STABILITY REGIONS OF SYSTEMS WITH COMPATIBILITIES,

AND UBIQUITOUS MEASURES ON GRAPHS

JOCELYN BEGEOT, IRÈNE MARCOVICI AND PASCAL MOYAL

Abstract. This paper addresses the ubiquity of remarkable measures on

graphs, and their applications. In many queueing systems, it is necessary
to take into account the compatibility constraints between users, or between

supplies and demands, and so on. The stability region of such systems can then

be seen as a set of measures on graphs, where the measures under consideration
represent the arrival flows to the various classes of users, supplies, demands,

etc., and the graph represents the compatibilities between those classes. In

this paper, we show that these ‘stabilizing’ measures can always be easily con-
structed as a simple function of a family of weights on the edges of the graph.

Second, we show that the latter measures always coincide with invariant mea-

sures of random walks on the graph under consideration. Some arguments in
the proofs rely on the so-called matching rates of specific stochastic matching

models. As a by-product of these arguments we show that, in several cases,
the matching rates are independent of the matching policy, that is, the rule

for choosing a match between various compatible elements.

1. Introduction

Queueing models with compatibilities have recently gained an increasing interest,
both from a theoretical and from an applied standpoint. In the original skill-based
routing problems, customers and servers are bound by compatibility constraints,
and it is the role of the routing algorithm to determine which customer should be
matched to which server upon arrival. See the classical references [32], and then
[33, 2, 20] or the recent survey [15].

However, in many applications, customers and servers may play symmetric roles,
such as in peer-to-peer applications, job search, dating websites, housing programs,
organ transplant allocations, supplies and demands, and so on. In all such applica-
tions, the system is basically just an interface used by the elements, to be matched,
and to depart the system by pairs.

To account for this variety of applications, in [14] (see also [1]), a variant of
skill-based systems was introduced, commonly referred to as ‘Bipartite matching
models’ (BM): Couples (customer, server) enter the system at each time point (or
are investigated one by one, from left to right in an infinite sequence), and servers
and customers play symmetric roles: As soon as they find a match, they leave the
system right away by couples (customer, server). A (bipartite) graph, representing
the class of users, supplies, demands, etc., determines the compatibility between
customers and servers. Each time a couple (customer, server) is formed, the couple
leaves the system right away. The matching policy addressed in the seminal works
[14, 1] is ‘First Come, First Served’ (FCFS). Interestingly, the stationary state in
such cases is shown to enjoy a remarkable product form (see [3], and the subsequent
performance analysis in [17]), that can be generalized to a wider class of systems
with compatibilities, such as matching queues implementing the so-called FCFS-
ALIS (Assign the Longest Idling Server) service discipline - see e.g. [2], [4] and [5]
for an overview of various extensions of BM models or redundancy models. Let us
also mention other approaches to such bipartite models, such as fluid and diffusion
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limits for systems with compatibility probabilities [11], applications to taxi hubs
[10], or ride-sharing. The original settings of [14, 1] have then been generalized to
the case of non-independent arrivals and other matching policies (extended bipartite
matching (EBM) model - see [12, 28]).

To take into account applications such as assemble-to-order systems, dating web-
sites, car-sharing and cross-kidney transplants, a variant of this model has been
more recently introduced, in which arrivals are made one-by-one, and the compat-
ibility graph is general, i.e. not necessarily bipartite: This is the so-called General
stochastic matching model (GM), introduced in [26]. Reference [27] shows that
the GM model under the First Come, First Matched matching policy also enjoys a
product form in steady state. Then, the GM model was studied along various an-
gles, among which, fluid limits of a continuous-time variant [29], optimization [30]
or optimal control [22, 13], matching models on hypergraphs [31], on graphs with
self-loops [8], or models with reneging, see [9, 24, 6]. Recently, GM models have
been shown to share remarkable similarities with order-independent loss queues,
see [16].

For all BM, EBM and GM models studied in the existing literature, the stability
region is expressed as a set of measures on nodes representing the arrival rates to
each class of users, such that the system is positive recurrent. (These measures are
probability measures for discrete-time models, and arrival intensities for continuous-
time models.) As will be specified below, the conditions on these measures typically
take the form of a constraint on the arrival rates to all independent sets of nodes,
to be less than the arrival rates to the subset of the neighboring nodes - a condition
that is reminiscent of the Hall condition for the existence of a perfect matching
on bipartite a graph, see [23]. This condition was shown to be necessary for the
stability of EBM (respectively, GM) models, and sufficient for EBM (resp., GM)
models under the ‘Match the Longest’ (ML) matching policy (see respectively [12]
and [26]). This sufficiency result has then been extended to all policies of the ‘Max-
weight’ type (generalizing the ML policy - see a precise definition below), for GM
models with possible reneging in [24]. The above condition is also sufficient for the
stability of designated GMmodels implementing priority policies, see [26]. However,
[29] shows that, for a wide class of compatibility graphs, there always exist priority
and random policies such that the latter condition is not sufficient for stability. In
[3] (respectively, [27]), it is also proven that the same condition is sufficient for the
stability of BM (resp., GM) models under the ‘First Come, First Matched’ (FCFM)
matching policy, and that under this condition the stationary distribution can be
expressed in a product form (but the sufficiency for EBM models remains an open
problem). Similar results are obtained for matching queues under the FCFS-ALIS
discipline and for redundancy models, see e.g. [2], [4] and the recent survey [5].

In all these models, the stability regions are thus expressed as sets of measures on
the set of nodes of the compatibility graph. However, the aforementioned references
do not provide general explicit construction procedures of such sets, that is, of the
arrival rates that stabilize the corresponding system. This is a crucial problem, for
instance, for designing access control procedures into these systems.

In this work, we characterize exactly these sets of measures. While in such
systems, the typical procedure is to construct an optimal control (a Markovian
matching policy, for instance) that is able to optimize a given criterion given the
arrival rates (that are thus seen as a constraint to the problem), hereafter we
somehow reverse this procedure: Having fixed a control that is able to achieve
stability (along the cases, a ‘Max-weight’ policy, or the ‘First Come First Matched’
policy, for instance), we make explicit the construction procedure of a set of arrival
rates rendering the system stable. This aim is natural for practical purposes: The
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explicit construction of a set of arrival rates rendering the considered system stable,
provides the feasible admission controls for a given graph topology, and a given
Markovian control of the system.

We obtain two remarkable results: (i) We show that, in the wide range of systems
ruled by compatibility constraints that are introduced in Section 3, the ‘stabiliz-
ing’ arrival rates of the considered system can always be constructed as a simple
weighted measure on the edges of the graph, and (ii) we deduce from this, that
a stabilizing set of arrival rates always coincides with an invariant measure of a
random walk on the graph. As a by-product of (i), for some graph topologies we
are able to determine uniquely the matching rates of the various edges, defined as
the frequency of matchings executed on the various edges over time, independently
of the matching policy.

Beyond its practical interest for admission control, this ubiquity of the stabi-
lizing measures of matching models establishes an insightful connection between
stochastic matching models and random walks on graphs which, we believe, opens
the way for an interesting avenue of research.

This paper is organized as follows. After some preliminaries in Section 2, in Sec-
tion 3 we present the stability regions of a wide class of service systems with com-
patibilities, including various stochastic matching models and skill-based queues.
Then, in Section 4 we present our main results, establishing various representations
of these stability regions in terms of sets of weighted measures - a notion that will
be properly defined below. Proofs for our two main results are provided respec-
tively in Sections 5 and 8. In Sections 6 and 7 we study the matching rates of
general and bipartite stochastic matching models, and connect these objects with
the previous discussion. Last, in Section 9 we show how our main results can be
applied, to show the insensitivity of the matching rates to the matching policy of
the considered matching model.

2. Preliminaries

2.1. General notation. We denote by R the set of real numbers, by R+ the set of
non-negative real numbers and by R∗

+ the subset of positive real numbers. Likewise,
we denote by N the set of non-negative integers and by N∗ the subset of positive
integers. For a and b in N, we denote by Ja; bK the set [a; b]∩N. For any finite set A,
we denote by |A| the cardinality of A and by P(A) the power set of A, namely, the
set of all the subsets of A. For any set E, we denote by 1E the indicator function
of E.

The set of finite positive measures having full support on A is denoted by M(A),
whereas the set of probability measures having full support on A is denoted by
M(A). For any µ ∈ M(A), we denote by µ̄ ∈ M(A), its normalized counter-

part, namely µ̄(.) = µ(.)
µ(A) . Let us also denote by M≥0(A), the set of non-negative

measures on A having support included in A.
For a real matrix M , we let tM denote the transpose of M .

2.2. Multigraphs. Hereafter, a multigraph is given by a couple G = (V, E), where
V is the (finite) set of nodes and E ⊂ V × V is the set of edges. All multigraphs
considered hereafter are undirected, that is, (u, v) ∈ E =⇒ (v, u) ∈ E , for all
u, v ∈ V. We write u−v or v−u for (u, v) ∈ E , and u̸−v (or v−̸u) else. Elements
of the form (v, v) ∈ E , for v ∈ V, are called self-loops. A multigraph having no
self-loop is simply a graph. With respect to the classical notion of multigraphs, we
assume hereafter that all the edges are simple.

For any multigraph G = (V, E) and any U ⊂ V, we denote

E(U) ≜ {v ∈ V : ∃u ∈ U, u− v}
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the neighborhood of U , and for u ∈ V, we write for short E(u) ≜ E({u}).
An independent set of G is a non-empty subset I ⊂ V which does not include

any pair of neighbors, i.e.: ∀(i, j) ∈ I2, i−̸j. We let I(G) be the set of independent
sets of G. For any subset V1 of V, we denote

(1) I(V1) = {I ∩ V1 : I ∈ I(G)} .
A graph G = (V, E) is said bipartite if the set of its vertices V can be partitioned
into two independent sets V1 and V2, namely, each edge connects an element of V1

to an element of V2.
Throughout this paper, all considered (multi)graphs have at least two nodes and

are connected, that is, for any u, v ∈ V, there exists a subset {v0 ≜ u, v1, v2, . . . , vp ≜
v} ⊂ V such that vi−vi+1, for any i ∈ J0; p− 1K.

2.3. Weighted measures on a multigraph. For any multigraph G = (V, E), we
say that a family α = (αi,j)(i,j)∈E of real numbers is a family of weights on E if for
all (i, j) ∈ E , αi,j = αj,i > 0. Hereafter, a family of weights α on E will be seen as
an element of the set M(E), and for any such α and any edge e = (i, j) ∈ E , we
will write indifferently αe, αi,j or αj,i.

For any family of weights α ∈ M(E), we define the associated positive measure
on nodes µα ∈ M(V), by

(2) µα(i) ≜
∑

j∈E(i)

αi,j , i ∈ V,

and the associated probability distribution µ̄α ≜ µα ∈ M(V), by

(3) µ̄α(i) =

∑
j∈E(i)

αi,j∑
l∈V

∑
j∈E(l)

αl,j
, i ∈ V.

The measures µα and µ̄α, α ∈ M(E), will be called hereafter weighted measures,
and we let

W(G) ≜ {µα : α ∈ M(E)} ;(4)

W(G) ≜ {µ̄α : α ∈ M(E)} ,(5)

be respectively the set of weighted measures on the multigraph G, and the sets of
their associated probability measures.

3. Stability regions of various stochastic models on (multi-)graphs

In this section we introduce several stochastic systems studied in the recent
literature, and defined on a multi-graph. These are service systems that all depend
on compatibilities constraints between items (users, requests, customers, supply,
demands, etc.), that are precisely represented by a multi-graph. As will be recalled
below, the stability regions of these systems, defined as the sets of arrival rates of
items such that the considered systems reach a steady state, all have a similar form.
The main aim of this paper is to characterize these sets, and to construct explicitly
the corresponding arrival rates, so as to achieve stability.

3.1. General stochastic matching model. We first consider the matching model
introduced in [26] (and generalized in [8] for multigraphs): Take a connected multi-
graph G = (V, E), where elements of V represent classes of items. We say that two
items of respective classes i and j ∈ V are compatible if (i, j) ∈ E , that is, if i and j
are neighbors in G. Items enter the system one by one in discrete-time, and, for all
n ∈ N∗, we denote by Vn ∈ V the class of the item entering the system at time n.
The sequence {Vn}n∈N∗

is supposed to be IID, of common distribution µ̄ ∈ M(V).
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In other words, at any time point, for any i ∈ V, µ̄(i) is the probability that the
incoming item is of class i.

Then, upon the arrival of an element, say, of class i, we investigate whether
there is in line a compatible element with the incoming item (and possibly an item
of the same class, if the corresponding node has a self-loop). If this is the case,
then the incoming i-item is matched with one of these elements (if there are more
than one), following a fixed criterion called matching policy, and the two matched
elements leave the system right away. The matching policy is denoted by Φ, and
depends only on the arrival dates of the stored items, their classes, and possibly on
a random draw that is independent of everything else - we then say that the policy
is admissible. For instance:

• For the First Come, First Matched policy Φ = fcfm, the oldest compatible
item in line is chosen as the match of i.

• In a Max-weight policy Φ = mw, the i-item choses its match among the
stored items of class j, for

j = Argmax {X(k) + wki : k ∈ E(i)} ,

where we denote for all k as above, by X(k) the number of k-items in line
upon the arrival of the i-item, and where the weights wki, (k, i) ∈ E , are
fixed non-negative real numbers, and possible ties are broken by a uniform
draw that is independent of everything else. As a particular case, if wki = 0
for all (k, i), the policy is Φ = ml for Match the Longest, that is, j is simply
chosen as a member of the class having the largest amount of stored items
in line.

See [26, 8] for formal definitions, and other examples of admissible matching policies.
The system is then fully characterized by the triple (G,Φ, µ̄).

For any fixed connected multigraph G, any fixed admissible matching policy Φ
and any fixed probability measure µ̄, the system can be represented by the Markov
chain

{
WΦ,µ̄

n

}
n∈N, valued in the space W of words on the alphabet V, where for

any n and any word w = w1w2 · · ·wp of length p in W, we set WΦ,µ̄
n = w if, just

before time n, the oldest item in line is of class w1, the second oldest is of class w2,
and so on, and wp is the class of the most recent item in line (again, see [8]).

The primary question of stability for such models is thus translated in the fol-
lowing terms: For a given compatibility graph and a given control of the matches,
represented by the matching policy Φ, what is the set of measures rendering the
latter Markov chain positive recurrent? For any connected multigraph G = (V, E)
and any admissible matching policy Φ, we thus define the stability region associated
to G and Φ as the set of measures

stab(G,Φ) ≜
{
µ̄ ∈ M (V) :

{
WΦ,µ̄

n

}
n∈N is positive recurrent

}
,

and one aims at a precise characterization of the set stab(G,Φ). Following results
established for (simple) graphs in [26], it was shown, first, in Proposition 4.3 of [8],
that for any admissible matching policy Φ,

stab(G,Φ) ⊂ N (G),

where the set of probability measures N (G) is defined by

(6) N (G) ≜
{
µ̄ ∈ M (V) : ∀ I ∈ I(G), µ̄ (I) < µ̄ (E (I))

}
,

and moreover, that the two sets coincide, for Φ = fcfm (Theorem 1 in [27] for
graphs and Theorem 4.5 in [8] for multigraphs), and Φ = mw (Theorem 4.7 in
[8]).
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3.2. Continuous-time matching model. A continuous-time matching model as-
sociated to the triple (G,Φ, µ), for µ ∈ M(V), is defined exactly as its discrete-time
analogue, except that arrivals to each node i are given by a Poisson process of inten-
sity µ(i), independently of everything else - see e.g. [29] for details. Then, Section
2.3 in [29] shows that for any matching policy Φ, the continuous-time model as-
sociated to (G,Φ, µ) is stable if and only if the discrete-time model associated to
(G,Φ, µ) is itself stable. In other words, a measure µ ∈ M(V) belongs to the
stability region stab(G,Φ) of the continuous-time model if the normalized proba-
bility measure µ̄ is an element of stab(G,Φ), and µ̄ ∈ stab(G,Φ) if any measure
µ = Kµ̄, for K > 0 is an element of stab(G,Φ). Then, the uniformization argu-
ments showing this statement remain valid whenever G is a multigraph. So the
results of Section 3.1 remain valid in this context, replacing N (G) by N (G), where

N (G) ≜ {µ ∈ M (V) : ∀ I ∈ I(G), µ (I) < µ (E (I))} .(7)

3.3. (Extended) Bipartite stochastic matching models. In the so-called ex-
tended bipartite matching model, as introduced in [12], we are given a connected
bipartite graph G = (V1∪V2, E). As above, elements of V1 and V2 represent classes
of items, and we say that two items i ∈ V1 and j ∈ V2 are compatible if there is
an edge between i and j. In an extended bipartite matching model, exactly one
element of class in V1, and one element of class in V2, enter the system at each time
point, in other words the arrivals are done two-by-two. The sequence {Vn}n∈N∗

rep-

resents the couples of classes of incoming items; namely, for any n ∈ N∗, Vn = (i, j)
for i ∈ V1 and j ∈ V2, means that an element of class i and an element of class j
enter the system together at time n. The sequence {Vn}n∈N∗

is supposed to be IID,

of common distribution µ̃ ∈ M(V1 × V2), with marginals µ̃1 and µ̃2 respectively.
(With some abuse, we then denote µ̃ = (µ̃1, µ̃2).) Then, upon the arrival of each
couple, say of a couple (i, j), we first investigate whether there is in line an element
of class in V1 that is compatible with the incoming j-item. If this is the case, then
the incoming j-item is matched with one of these elements (if there are more than
one), that is chosen following a given matching policy Φ, and the two elements leave
the system right away. Then we apply the exact same procedure to the incoming
i-item. If one of the two incoming items did not find a match while the other did,
then the element is stored in the buffer. If none of the two did find a match in
the buffer, then, either the two incoming items are compatible and then they are
matched and leave the system right away, or they are both stored in the buffer.
Again, the matching policy Φ is supposed to be admissible, i.e. to depend only on
the arrival dates of the stored items, their classes, and possibly on a random draw
independent of everything else. For instance, for Φ = fcfm, the oldest compatible
item in line is chosen or, for Φ = ml (‘Match the Longest’), an item of the compat-
ible class having the largest number of elements in line is chosen, ties being broken
uniformly at random. See again [12] for formal definitions, and other examples of
matching policies. Altogether, the system is again fully characterized by the triple
(G,Φ, µ̃).

For any fixed connected bipartite graph G = (V1 ∪ V2, E), any fixed admissi-
ble matching policy Φ and any fixed probability measure µ̃, the bipartite match-
ing model associated to (G,Φ, µ̃) can be fully represented by the Markov chain{
Y Φ,µ̃
n

}
n∈N valued in the space Y gathering all couples of the form (u, v), where

u and v are two words, respectively over the alphabets V1 and V2. For any n and
any such couple (u, v), we denote Y Φ,µ̃

n = (u, v) if, just before time n, the oldest
item in line having class in V1 is of class u1, the second oldest having class in V1

is of class u2, and so on, and the oldest item in line having class in V2 is of class
v1, the second oldest having class in V2 is of class v2, and so on. See again [12].
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Similarly to the discussion above, the stability problem amounts to determining,
for any G = (V1 ∪ V2, E) and any admissible Φ, the stability region associated to
G, defined as

stabeb(G,Φ) ≜
{
µ̃ ∈ M (V1 × V2) :

{
Y Φ,µ̃
n

}
n∈N is positive recurrent

}
.

It was shown in Lemma 3.2 of [12] that for all Φ, stabeb(G,Φ) is included in the
set

(8) N eb(G) ≜

{
µ̃ = (µ̃1, µ̃2) ∈ M (V1 × V2) :{

∀ I1 ∈ I(V1)\{V1}, µ̃1 (I1) < µ̃2 (E (I1))
∀ I2 ∈ I(V2)\{V2}, µ̃2 (I2) < µ̃1 (E (I2))

}
.

Moreover, it can be shown that the two sets stabeb(G,Φ) and N eb(G) actually
coincide for Φ = ml (see Theorem 7.1. in [12]).

The bipartite stochastic matching model introduced in [14], is defined similarly to
the extended bipartite model, except that the measure µ̃ now satisfies µ̃ = µ̃1⊗ µ̃2,
that is, the classes of the two elements of each entering couple are independent.
Similarly to the above discussion, we define the corresponding stability region

stabb(G,Φ) ≜
{
µ̃ = µ̃1 ⊗ µ̃2 ∈ M (V1 × V2) :

{
Y Φ,µ̃
n

}
n∈N is positive recurrent

}
.

Then, it is shown in [1] that the set stabb(G,Φ) coincides with the set

(9) N b(G) ≜

{
µ̃ = µ̃1 ⊗ µ̃2 ∈ M (V1 × V2) :{

∀ I1 ∈ I(V1)\{V1}, µ̃1 (I1) < µ̃2 (E (I1))
∀ I2 ∈ I(V2)\{V2}, µ̃2 (I2) < µ̃1 (E (I2))

}
,

and Theorem 1 in [3] shows that this condition is also necessary and sufficient for
the existence of a unique matching of two bi-infinite streams of elements of V1 and
of V2.

3.4. General matching model with reneging. We now consider a continuous-
time general stochastic matching model with reneging, as defined in [24]: The model
is exactly the one in Section 3.2, except that G = (V, E) is a graph, and for a given
subset V1 of V, elements of V \ V1 have a random and integrable finite lifetime
in the system, after which they are immediately discarded, if they did not find a
match before that. This assumption naturally accounts for various applications
of matching models in which the elements abandon, if they waited too long before
finding a match: This abandonment may represent the death of patients waiting for
a transplant, the expiration of organs that were not transplanted quickly enough,
the balking of candidates looking for a job, and so on. Recalling (1), it is shown in
Theorem 1 of [24] that for all G and Φ, the stability region of this model is included
in the set of measures

(10) NV1(G) ≜ {µ ∈ M (V) : ∀ I ∈ I(V1), µ (I) < µ (E (I))} ,
and that the two sets coincide for Φ = mw. The region NV1(G) is thus a superset of
N (G), defined as a restriction of the condition in (7) to the classes of ‘non-reneging’
nodes. Using uniformization as above, one can easily show that the same results
hold for the corresponding discrete-time matching model with reneging, replacing
NV1

(G) by the set of probability measures

(11) NV1
(G) ≜

{
µ̄ ∈ M (V) : ∀ I ∈ I(V1), µ̄ (I) < µ̄ (E (I))

}
.
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3.5. Skill-based queues. Various manufacturing systems are modeled by the so-
called multi-type jobs and multi-type servers, as introduced in [33]: Consider a
bipartite graph G = (V1 ∪ V2, E). There are |V1| independent Poisson processes
of respective intensities µ(i), i ∈ V1, and the i-th process represents the arrival of
jobs of type i. The jobs request i.i.d. service times of exponential ε(1) distribution.
There are |V2| servers, and server j ∈ V2 can only serve jobs of types in E(j), at
rate γ(j) (whatever the class of the job in E(j)). Similarly, jobs of type i can be
served only by a server of a class in E(i). Customers are put in line in a single
queue, and are chosen (by compatible servers) in a First Come, First Served order.
If a given job finds several idle servers in E(i), it choses a server amongst them, at
random. We view µ = (µ(1), ..., µ(|V1|)) and γ = (γ(1), ..., γ(|V2|)) as measures of
M(V1) and M(V2), respectively. It is then shown in Theorem 2 of [33] that the
model can be stable only if µ belongs to the set

(12) NV1,γ(G) ≜ {µ ∈ M(V1) : ∀ I1 ∈ I(V1) µ(I1) < γ(E(I1))} ,

and that this condition is also sufficient if the random assignment of jobs follows a
given assignment condition, see section 3.6 of [33]. The set NV1,γ(G) can thus be
seen as the subset of NV1(G) (for a bipartite G) containing only measures whose
restriction to V2 is γ. In [2], the stability region is also shown to coincide with
NV1,γ(G) in the case of a queueing system having the same structure, and ruled
by the so-called fcfs-alis policy, namely, customers are queued in a single line
and chosen by compatible server in First Come, First Served order, but customers
finding several idle servers upon arrival are assigned to the server that has been
idling for the longest period of time (Assign Longest Idle Server). Surprisingly, it
is shown that both models then have the same stationary distribution, expressed
in a product-form.

The so-called multi-class and multi-pool queue (see e.g. the survey [15]) is a
generalization of this class of models, in which:

• For all j ∈ V2, there are sj ∈ N∗ indistinguishable servers of class j;
• Whenever they are served by a server of class j ∈ V2, the service times of
customers of class i ∈ V1 are exponentially distributed with a parameter
γ((i, j)) > 0 that might depend on both i and j.

It is shown in [32] that for any measure γ ∈ M(E) and any (sj)j∈V2
∈ (N∗)

V2 , the
stability region of the model is included in the set of measures

(13) NV1,γ,s(G) ≜

{
µ ∈ M(V1) : ∃π ∈ M(E) s.t.

− ∀i ∈ V1, µ(i) =
∑

j∈V2

γ((i, j))sjπ((i, j))

− ∀j ∈ V2,
∑
i∈V1

π((i, j)) < 1

 ,

within a set of admission controls (deciding the classes of servers the incoming
customers are assigned to) and service policies (determining the classes of customers
the available servers choose to serve) termed sbr (for Skill-based routing) policies.
Moreover, it is also shown in [32] that the stability regions is precisely NV1,γ,s(G)
whenever the so-called Maximum Pressure Policy mpp is implemented - such a
policy is then termed throughput optimal.

3.6. Redundancy models. In [21], a skill-based service system similar to the one
introduced in Section 3.5 is considered, in which redundancy is allowed: Each server
has its own queue, and jobs may be replicated in several copies, in the queues of
several compatible servers, and served contemporarily by several servers. It is then
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shown in Theorem 1 of [21] that this system again has the same stability region
NV1,γ(G) (and then the same product form stationary distribution) as the one in
Section 3.5. We refer to [20] and [5], for a survey of an even wider class of skill-
based queueing systems having the same stability region NV1,γ(G). This class also
includes e.g. the so called order independent (loss) queues (see [7, 25], and insightful
connections with matching systems in [16]).

3.7. Towards exact characterizations of the stability regions. In most of
the stochastic matching and queueing models presented above, the stability regions
are included in, and sometimes coincides with, sets of measures that roughly have
the same form, and are reminiscent of Hall’s condition. They are respectively given
by (6), (7), (8), (9), (10), (11) and (12). In all cases, it must then be checked that
for any independent set (possibly in a given subset of nodes), the measure of the
set must be less than the measure of the set of its neighboring nodes. Guaranteeing
stability for given arrival rates, and a given matching policy, amounts to checking
that this condition holds for all independent sets, a task that becomes more and
more cumbersome as the size of the graph G grows large. Specifically, it is indicated
in Proposition 1 in [26] (resp., Proposition 3.5 in [12]), that checking that a given
measure µ belongs to N (G) defined by (6) (resp., to N eb(G) defined by (8)) can be
done in the order of O(|V|3) operations. Hence the need to precisely characterize,
and possibly to explicity construct these measures. Corollaries 1 and 2 below, show
that these sets coincide with sets of weighted measures on the considered multi-
graphs. In other words, any measure that might stabilize the considered system can
be obtained by just assigning weights to the edges of G - and any such procedure
leads to a ‘stabilizing’ measure.

4. Results

In this section we present our main results, which characterize the stability re-
gions of the systems presented in Section 3. As we will show in Section 4.2, these
regions can be identified with sets of weighted measures. But, as we first demon-
strate in Section 4.1, the latter sets coincide in turn with sets of invariant measures
of weighted random walks on multi-graphs. Aside from their interest for the admis-
sion control of the systems introduced in Section 3, these results establish a deep
and insightful connection between these two, apparently disjoint, classes of models.

4.1. Weighted random walk on a multi-graph. Given a multigraph G =
(V, E), a random walk on G is a discrete time Markov chain on the vertices of
G such that for i, j ∈ V, a transition is allowed from i to j only if there is an edge
relying i and j. Formally, we say that a stochastic matrix P = (P (i, j))(i,j)∈V2

defines a random walk on the edges of the multigraph G = (V, E) if P (i, j) = 0 as
soon as (i, j) ̸∈ E . We say furthermore that the random walk is reversible if the
associated Markov chain admits a reversible invariant measure. Recalling (4), we
easily obtain the following result.

Proposition 1. Let G = (V, E) be a connected multigraph, and µ ∈ M(V). Then,
µ is invariant for a reversible random walk on G if, and only if µ ∈ W(G), that is,
µ is a weighted measure. In that case, µ̄ is the unique stationary distribution of the
chain.

Proof. Let α ∈ M(E). We define the corresponding weighted random walk, as the
Markov chain on V of transition Pα, defined by

Pα(i, j) =
αi,j∑

l∈E(i) αi,l
, i ∈ V, j ∈ E(i).
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We show that the measure µα is a reversible invariant measure for that weighted
random walk. Let us indeed consider two vertices i, j ∈ V. If (i, j) ̸∈ E , it is
immediate that µα(i)Pα(i, j) = 0 = µα(j)Pα(j, i). And if (i, j) ∈ E , using αi,j =
αj,i, we have

µα(i)Pα(i, j) =
( ∑

l∈E(i)

αi,l

) αi,j∑
l∈E(i) αi,l

=
( ∑

l∈E(j)

αj,l

) αj,i∑
l∈E(j) αj,l

= µα(j)Pα(j, i).

Conversely, if µ is a reversible invariant measure for the random walk of matrix P ,
then we can set

αi,j = µ(i)P (i, j) = µ(j)P (j, i)

and check that µ is the weighted measure associated to the family of weights
(αi,j)(i,j)∈E . In such case, as the Markov chain is clearly irreducible on V, µ̄α

is the unique stationary probability of the random walk. □

4.2. Main results. Our main result is the following,

Theorem 1. Let G = (V, E) be a connected multigraph. Then, the set of weighted
measures W(G) defined by (4) coincides with:

• The set N (G) defined by (7), if G is not a bipartite graph;
• The set

(14) N2(G) ≜

{
µ ∈ M (V) :

{
∀ I ∈ I(G) \ {V1,V2}, µ (I) < µ (E (I))
µ(V1) = µ(V2)

}
,

if G is a bipartite graph of bipartition V = V1 ∪ V2.

Theorem 1 is proven in Section 5. In the statement above, the set N2(G) appears
as a counterpart of N (G), in the case where G is a bipartite graph. As a matter
of fact, the set N (G) is empty whenever G is bipartite, of bipartition V = V1 ∪ V2.
Indeed, for any µ in the latter set, we would have µ(V1) = µ (E(V2)) > µ (V2), and
symmetrically µ(V2) > µ(V1). Specifically, from Proposition 4.2 in [8] we obtain
that the set N (G) is non-empty if and only if G is not a bipartite graph.

Theorem 1 has the following primary consequence,

Corollary 1. Let G = (V, E) be a connected multigraph that is not a bipartite graph,
and let µ ∈ M(V). Then the following properties of the measure µ are equivalent:

(i) It is invariant for a reversible random walk on the edges of the multigraph G.
(ii) It is a weighted measure, that is, there exist a family of weights α =

(αi,j)(i,j)∈E on E such that µ = µα.
(iii) The general stochastic matching models associated to (G, fcfm, µ̄) and (G,mw, µ̄)

are stable.
(iv) The continuous-time general stochastic matching models associated to (G, fcfm, µ)

and (G,mw, µ) are stable.

Proof. We know that (i) ⇐⇒ (ii) from Proposition 1. Then, it follows from
Theorems 4.5 and 4.7 in [8] (respectively for fcfm and mw) that assertion (iii) is
equivalent to µ̄ ∈ N (G), where N (G) is defined by (6). This is in turn, clearly
equivalent to writing that µ ∈ N (G) which, from Theorem 1, is equivalent to
assertion (ii). Last, the equivalence (iii) ⇐⇒ (iv) was shown in Section 2.3 in
[29], following a simple uniformization argument. □

Example 1. Consider the graph of Figure 1. The set of independent sets of G is
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Figure 1. A multigraph with a self-loop

{{2}, {3}, {4}}, and so the set N (G) reads

N (G) =

{
µ ∈ M(V) : µ(2) <

1

2
, µ(3) < µ(2) + µ(4) and µ(4) < µ(2) + µ(3)

}
.

Let α = (a, b, c, d, e) represent a family of weights on the edges of E. The corre-
sponding weighted measure µα reads

µα(1) = a+ b

µα(2) = b+ c+ d

µα(3) = c+ e

µα(2) = d+ e.

As assertion (i) of Theorem 1 demonstrates, any such measure µα is an element of
N (G). Moreover, according to Corollary 1, for any α the continuous-time match-
ing models (G,mw, µα) and (G, fcfm, µα), and the discrete-time matching models
(G,mw, µ̄α) and (G, fcfm, µ̄α) are stable. Reciprocally, any measure rendering
these models stable, can be constructed in such a way.

On another hand, for any α the measure µα is invariant for the reversible Markov
chain on {1, 2, 3, 4} having transitions

P (1, 1) = a
a+b ; P (1, 2) = b

a+b ;

P (2, 1) = b
b+c+d ; P (2, 3) = c

b+c+d ; P (2, 4) = d
b+c+d

P (3, 2) = c
c+e ; P (3, 4) = e

c+e ;

P (4, 2) = d
d+e ; P (4, 3) = e

d+e .

Moreover, any invariant measure of a reversible random walk on G can be con-
structed in such a way.

Corollary 1 has an immediate practical interest for admission control, in the wide
class of systems described above: It allows to determine the exact set of arrival
rates (or probabilities) for which the corresponding system can be stabilizable,
and provides a simple way to construct such arrival rates, and so to calibrate the
admission control of the corresponding arrivals into the system. For this, it is
necessary and sufficient to set any family α of weights on the edges of G, and then
to set µ (resp. µ̄) in function of α according to (2) (resp. (3)). Moreover, an
explicit representation of the family of weights α such that µ = µα is provided in
the proof of Theorem 1, as a simple function of the matching rates of the related
general stochastic matching model, see (19), (20) and Corollary 4.

Hereafter, for a bipartite graph G = (V1 ∪ V2, E) and a measure µ ∈ M(V), let
us define the measures µ̃1 ∈ M(V1) and µ̃2 ∈ M(V2), by

(15) µ̃1(i) =
µ(i)

µ(V1)
, i ∈ V1 and µ̃2(j) =

µ(j)

µ(V2)
, j ∈ V2,
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Figure 2. A bipartite graph

and recall that we denote by µ̃ = (µ̃1, µ̃2), a probability measure of M(V1 × V2)
having first (resp. second) marginal µ̃1 (resp. µ̃2). We have the following corollary
to Theorem 1,

Corollary 2. Let G = (V = V1 ∪ V2, E) be a bipartite graph, and let µ ∈ M(V) be
such that µ(V1) = µ(V2). Then the following properties of µ are equivalent:

(i) It is invariant for a reversible random walk on the edges of G.
(ii) It is a weighted measure, that is, there exists a family of weights α on E

such that µ = µα.
(iii) The extended bipartite matching model associated to (G,ml, µ̃) is stable.
(iv) The bipartite matching model associated to (G, fcfm, µ̃1 ⊗ µ̃2) is stable.

Proof of Corollary 2. First observe that the equivalence (i) ⇐⇒ (ii) proven in
Theorem 1 is not peculiar to the non-bipartite case, and remains valid in the present
context. Then, we show that

(16) N2(G) =

µ ∈ M (V) :

 ∀ I1 ∈ I(V1) \ {V1}, µ (I1) < µ (E (I1))
∀ I2 ∈ I(V2) \ {V2}, µ (I2) < µ (E (I2))
µ(V1) = µ(V2)

 .

The left inclusion being trivial, let us focus on the converse. Let µ be an element
of the right-hand set, and let I be an independent set of G that is different from
V1 and V2. Then, as V1 and V2 form a bipartition of G we have that

µ(I) = µ (I ∩ V1) + µ (I ∩ V2) < µ (E (I ∩ V1)) + µ (E (I ∩ V2))

= µ (E (I) ∩ V2) + µ (E (I) ∩ V1) = µ (E (I)) .

Hence µ is an element of N2(G), which completes the proof of (16).
Now, from Theorem 7.1 of [12], the set stabeb(G,ml) coincides with the set

N eb(G) defined by (8). Second, Theorem 1 in [3] shows that stabb(G, fcfm)
coincides with the setN b(G) defined by (9). We conclude by observing that, for any
µ ∈ M(V) such that µ(V1) = µ(V2), µ ∈ N2(G) is equivalent to (µ̃1, µ̃2) ∈ N eb(G)
and to µ̃1 ⊗ µ̃2 ∈ N b(G), from (16).

□

Example 2. Consider the “W” graph of Figure 2. The set N2(G) then reads

N2(G) =

{
µ ∈ M(V) : µ(1) + µ(2) + µ(3) = µ(4) + µ(5); µ(1) < µ(4),

µ(3) < µ(5), µ(1) + µ(2) < µ(4) + µ(5), µ(2) + µ(3) < µ(4) + µ(5),

µ(4) < µ(1) + µ(2), µ(5) < µ(2) + µ(3)

}
.
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Let α = (a, b, c, d) represent a family of weights on the edges of E. The corresponding
weighted measure µα reads 

µα(1) = a

µα(2) = b+ c

µα(3) = d

µα(4) = a+ b

µα(5) = c+ d.

From assertion (ii) of Theorem 1, any such measure µα is an element of N2(G).
Second, recalling (15) we define the measures µ̃α

1 on {1, 2, 3} and µ̃α
2 on {4, 5}, as

µ̃α
1 (1) = a

a+b+c+d ;

µ̃α
1 (2) = b+c

a+b+c+d ;

µ̃α
1 (3) = d

a+b+c+d ;

{
µ̃α
1 (4) = a+b

a+b+c+d ;

µ̃α
1 (5) = c+d

a+b+c+d ,

and set µ̃α = (µ̃α
1 , µ̃

α
2 ). Then, in view of Corollary 2 the extended bipartite matching

model (G,ml, µ̃α) and the bipartite matching model (G, fcfm, µ̃α
1 ⊗ µ̃α

2 ) are stable,
and any measure rendering these models stable can be constructed in such a way.

On another hand, the measure µα is invariant for the reversible random walk
having transitions 

P (1, 4) = 1;

P (2, 4) = b
b+c ; P (2, 5) = c

b+c ;

P (3, 5) = 1;

P (4, 1) = a
a+b ; P (4, 2) = b

a+b ;

P (5, 2) = c
c+d ; P (5, 3) = d

c+d ,

and any invariant measure of a reversible random walk on G can be constructed in
such a way.

Corollary 2 can, again, be easily exploited for the admission control of bipartite
stochastic matching models, and matching queues: It is necessary and sufficient to
set any family α of weights on the edges of G, to define µα in function of α according
to (2), and then to deduce µ̃α from µα as in (15) to obtain an extended bipartite
matching model that is stabilizable by the policy ml, or a bipartite matching model
that is stabilizable by fcfm. Moreover, as above, an explicit representation of the
family of weights α is provided as a simple function of the matching rates of the
related extended bipartite matching model, see (23) and Corollary 5.

We now turn to our second main result,

Theorem 2. For any connected graph G = (V, E) and any non-trivial partition
V1 ∪ V2 of V, the set NV1

(G) defined by (10) coincides with

W≺,V2(G) ≜

{
µ ∈ M(V) : ∃α ∈ M(E) s.t.

{
∀i ∈ V1, µ

α(i) = µ(i)
∀j ∈ V2, µ

α(j) < µ(j)

}
.

In Section 8, two different proofs of Theorem 2 are given. One using Theorem 1
whereas the other is self-contained, and involves flow network theory. Theorem
2 readily implies that the set of probability measures NV1

(G) defined by (11),
coincides with{

µ̄ ∈ M(V) : ∃α ∈ M(E) s.t.
{

∀i ∈ V1, µ̄
α(i) = µ̄(i)

∀j ∈ V2, µ̄
α(j) < µ̄(j)

}
.

Therefore, recalling the discussion of Section 3.4, the stability region of continuous-
time and discrete-time matching models with reneging are fully characterized, and
easy to construct, using weighted measures.
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We now focus again on the case where the graph G = (V, E) is bipartite, of
bipartition V = V1 ∪ V2. As a matter of fact, the stability region NV1,γ(G) of skill-
based service systems (sections 3.5 and 3.6), defined by (12), appears as a particular
case of NV1,γ(G), whenever the restriction of the measure µ to the subset V2 is fixed,
and set to γ. The following result then immediately follows from Theorem 2,

Corollary 3. For any connected bipartite graph G = (V1 ∪ V2, E), for any γ ∈
M(V2), NV1,γ(G) coincide with the set{

µ ∈ M(V1) : ∃α ∈ M(E) s.t.
{

∀i ∈ V1, µ
α(i) = µ(i)

∀j ∈ V2, µ
α(j) < γ(j)

}
.

Example 3 (Example 2, continued). Consider again the “W” graph of Figure 2,
and fix γ(4) and γ(5), two positive numbers. The stability region NV1,γ(G) of the
corresponding skill-based queues then reads

NV1,γ(G) =

{
µ ∈ M(V) : µ(1) < γ(4), µ(3) < γ(5),

µ(1) + µ(2) < γ(4) + γ(5), µ(2) + µ(3) < µ(4) + µ(5)

}
.

From Corollary 3 (setting V1 = {1, 2, 3} and V2 = {4, 5}), the above set can be fully
characterized as the set of measures µ such that there exists a family of weights
α = (a, b, c, d) on E satisfying

µ(1) = µα(1) = a
µ(2) = µα(2) = b+ c
µ(3) = µα(3) = d

µα(4) = a+ b < γ(4)
µα(5) = c+ d < γ(5).

Now, observe the following immediate characterization of the maximal stability
region of multi-class and multi-pool queues, as a set of weighted measures on V1,

Proposition 2. Let G = (V1∪V2, E) be a connected bipartite graph. Then, for any

measure γ ∈ M(E) and any (sj)j∈V2 ∈ (N∗)
V2 the set NV1,γ,s(G) defined by (13)

equals {
µ ∈ M(V1) : ∃α ∈ M(E) s.t.

{ ∀i ∈ V1, µ
α(i) = µ(i)

∀j ∈ V2,
∑

i∈E(j)

αi,j

γ((i,j)) < sj

}
.

Proof. For the left inclusion, it suffices to set αi,j = γ((i, j))sjπ((i, j)) for all i ∈ V1

and j ∈ V2. As for the right inclusion, just set

π((i, j)) =
αi,j

γ((i, j))sj
1{i−j}, i ∈ V1, j ∈ V2.

□

In the particular case where service times depend only on the classes of servers
and not on the classes of customers they serve (i.e., γ((i, j)) = γ(j) for all (i, j) ∈ E),
by gathering Corollary 3 and Proposition 2 we immediately obtain the following
characterization of the maximal stability region,

Proposition 3. Let G = (V1 ∪ V2, E) be a connected bipartite graph, γ ∈ M(V2)

and (sj)j∈V2
∈ (N∗)

V2 . Let γ̂ ∈ M(V2) and γ̃ ∈ M(E) be respectively defined by
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γ̂(j) ≜ sjγ(j) for all j ∈ V2, and by γ̃((i, j)) ≜ γ(j) for all (i, j) ∈ E. Then, the
sets NV1,γ̃,s(G), NV1,γ̂(G) and{

µ ∈ M(V1) : ∃α ∈ M(E) s.t.
{

∀i ∈ V1, µ
α(i) = µ(i)

∀j ∈ V2, µ
α(j) < sjγ(j)

}
coincide.

5. Proof of Theorem 1

We now prove our main result. Let G be a connected multigraph.

Case 1: G is not a bipartite graph. We first show that W(G) is included in
N (G), an inclusion that was shown in Lemma 11 in [16] whenever G is a graph.
We can easily extend that proof to multigraphs, as follows: For any subset X ⊂ V,
denote by AX ⊂ E the set of edges of the graph having at least one extremity in X
(including self-loops (i, i) for i ∈ X ). Let α ∈ M(E) be a family of weights, and fix
an independent set I ∈ I(G). Then, first observe that AI ⊊ AE(I). Indeed, for any
(a1, a2) ∈ AI , we have either a1 ∈ I and thus a2 ∈ E(I), or the other way around,
and in both cases, (a1, a2) ∈ AE(I). Therefore, we have that AI ⊂ AE(I). On
another hand, as G is connected and non-bipartite, there exists an edge e connecting
an element of E(I) to an element of Ic, otherwise we would have E(E(I)) = I and,
since I ∈ I(G), (I, E(I)) would form a bipartition of G. In particular, as I is an
independent set, we have that e ∈ AE(I) ∩ (AI)

c
, entailing that AI ⊊ AE(I). We

obtain that

(17) µα(I) =
∑
i∈I

∑
e∈Ai

αe =
∑
e∈AI

αe <
∑

e∈AE(I)

αe ≤
∑

i∈E(I)

∑
e∈Ai

αe = µα(E(I)),

where the second equality holds due to the fact that the set I is independent. This
shows that µα ∈ N (G).

We now show the converse inclusion. We will show that N (G) is included in the
set of weighted measures with non-negative weights, that is,{

µ ∈ M(V) : ∀I ∈ I(G), µ (I) < µ (E (I))
}

⊂
{
µ ∈ M(V) : ∃(αi,j)(i,j)∈E ∈ RE

+, ∀i ∈ V, µ(i) =
∑

j∈E(i)

αi,j

}
.

By taking the interior on each side of the inclusion, we will obtain the desired
inclusion. Indeed, the set N (G) on the left of the inclusion is open so that it
is equal to its interior, and it can be seen that the interior of the polyhedral cone
defining the set of right-hand side above coincides with the set of weighted measures
with positive weights.

Let µ ∈ M(V) be a measure. We will reason by contraposition and show that
if µ is not a weighted measure with positive or null weights, then there exists an
independent set I of G such that µ (I) ≥ µ (E (I)). Let A be the matrix indexed
by V × E such that for (v, e) ∈ V × E , Av,e = 1 if the vertex v is an extremity of
the edge e, and Av,e = 0 otherwise. Introduce the vector b = (µ(v))v∈V , and, for
a given family of weights α ∈ M≥0(E), introduce the vector xα = (αe)e∈E . With
these notations, the measure µ is the weighted measure associated to the family of
weights α if and only if Axα = b. The rest of the proof will rely on Farkas’ lemma
(see [18]), that asserts that one and only one of the following linear systems has a
solution:

(1) the system Ax = b, for x indexed by E satisfying x ≥ 0 ;
(2) the system tAy ≥ 0, for y indexed by V satisfying tby < 0.
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Let us consider the matrix tA, indexed by E × V. On the line indexed by the
edge e,

- if e is not a self-loop, there are exactly two occurrences of the value 1, at
the positions corresponding to the two extremities of e,

- if e is a self-loop, there is exactly one occurrence of the value 1, at the
position corresponding to the vertex having the self-loop e.

It follows that the equation tAy ≥ 0 is equivalent to:

- for any edge e = (i, j) which is not a self-loop, y(i) + y(j) ≥ 0,
- for any self-loop e = (i, i), y(i) ≥ 0.

Let us assume that µ is not a weighted measure, that is, that the system Ax =
b, x ≥ 0 has no solution. Then, by Farkas’ lemma, the system tAy ≥ 0, tby < 0 has
at least one solution, which means that there exists a vector y satisfying tAy ≥ 0,
and such that

∑
i∈V µ(i)y(i) < 0. Let us choose a solution y of the system such

that the |y(i)|, i ∈ V, take as few different values as possible.

• If the |y(i)|, i ∈ V, take a single value c > 0, we let

V+ ≜ {i ∈ V : y(i) = c} and V− ≜ {i ∈ V : y(i) = −c}.

In view of the constraints that y must satisfy on the edges, one can check
that V− is an independent set, and that E(V−) ⊂ V+. Furthermore,
the condition

∑
i∈V µ(i)y(i) < 0 implies that µ(V+) < µ(V−), so that

µ(E(V−)) < µ(V−). Thus, the measure µ is not an element of N (G).
• Otherwise, let p be the largest absolute value of a coordinate of y, and let
q be the second largest absolute value. We introduce the sets

Vp
+ ≜ {i ∈ V : y(i) = p} and Vp

− ≜ {i ∈ V : y(i) = −p}.

Again, the constraints on the edges imply that Vp
− is an independent set,

and we have E(Vp
−) ⊂ Vp

+, so that µ(E(Vp
−)) ≤ µ(Vp

+).
– Let us first assume that µ(Vp

+) ≤ µ(Vp
−). Then, V

p
− is an independent

set such that µ(E(Vp
−)) ≤ µ(Vp

−), so that µ ̸∈ N (G).
– Let us now assume that µ(Vp

+) > µ(Vp
−). Then, let us modify y by

assigning the value q to all the vertices of Vp
+, and the value −q to all

the vertices of Vp
−. To begin with, let us show that the new vector y′

then defined still satisfies the constraints on the edges and self-loops.
First, if an edge (i, j) has no extremity in Vp

−∪Vp
+, then y′(i)+y′(j) =

y(i) + y(j) ≥ 0. Second, if i ∈ Vp
−, then any adjacent vertex j of i

belongs to Vp
+, so that y′(i)+y′(j) = −q+q = 0. Third, if i ∈ Vp

+, then
for any adjacent vertex j we have that y′(i) + y′(j) = q + y′(j) ≥ 0,
since q is the largest value |y′(j)| can possibly take. Last, for any self-
loop e = (i, i), we have y(i) ≥ 0, and since y′(i) has the same sign as
y(i) we also have that y′(i) ≥ 0. Furthermore, observe that∑
i∈V

µ(i)y′(i) =
∑
i∈V

µ(i)y(i)− (p− q)(µ(Vp
+)− µ(Vp

−)) < 0.

This shows that y′ is also a solution to the system tAy ≥ 0 and tby < 0.
We have thus a contradiction with the fact that the |y(i)|, i ∈ V, takes
as few different values as possible.

Case 2: G is a bipartite graph. Let us now assume that G = (V1 ∪ V2, E) is a
connected bipartite graph. Fix α ∈ M(E). First, it is immediate that

µα(V1) =
∑
e∈E

αe = µα(V2).
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Then, we can apply the same arguments as above, showing that W(G) ⊂ N (G) if
G would not be a bipartite graph, by replacing the generic independent set I by
an independent set I1 ∈ I(V1)\{V1}. This leads to the conclusion that µα(I1) <
µα(E(I1)). By a symmetric argument, we also have that µα(I2) < µα(E(I2)), for
any I2 ∈ I(V2)\{V2}. Using (16), this shows that µα ∈ N2(G).

We now prove the converse inclusion. By a similar approach to the case where G
is not a bipartite graph, based on Farkas’ lemma, we will prove that if a measure µ
belongs to N2(G), then it is a weighted measure with non-negative weights. Again,
by taking the interior of these sets of measures (within the affine hyperplane of
measures satisfying µ(V1) = µ(V2)), the result also follows for positive weights.

We keep the same notation as above, and let µ ∈ N2(G). We reason similarly: If
µ is not a weighted measure, then, by Farkas’ lemma, the system tAy ≥ 0, tby < 0
has at least one solution, which means that there exists a vector y satisfying tAy ≥ 0
and such that

∑
i∈V µ(i)y(i) < 0. Then, by choosing again a solution y whose

components |y(i)|, i ∈ V, take as few different values as possible, we have the
following alternative:

• If the components |y(i)|, i ∈ V, take a single value c, then the exact same
argument as above lead to the construction of an independent set V− of G
that is such that µ(E(V−)) < µ(V−), a contradiction.

• Otherwise, we let again p, q, Vp
+ and Vp

− be defined as above. Then, again,
Vp
− is an independent set that is such that µ(E(Vp

−)) ≤ µ(Vp
+).

– If µ(Vp
+) ≤ µ(Vp

−), then, V
p
− is an independent set such that µ(E(Vp

−)) ≤
µ(Vp

−), so as µ is an element of N2(G), we can assume without loss of
generality that Vp

− = V1. This implies that

E(Vp
−) = E(V1) = V2 ⊂ Vp

+,

and hence |y(i)| equals p for all i ∈ V, a contradiction.
– If now µ(Vp

+) > µ(Vp
−), then we can apply the exact same argument

as in the non-bipartite case, leading to the same contradiction.

6. On the matching rates of general stochastic models

We now provide an alternative proof of the implication (iii) =⇒ (ii) in Corol-
lary 1, relying on the matching rates of a related stochastic matching model, defined
as the long-run frequency of matchings executed on each given edge of the consid-
ered graph. Specifically, as will be shown in Corollary 4, for any probability measure
µ̄ in the stability region of such a model, we can explicitly define the rates α such
that µ̄ = µ̄α, in terms of the asymptotic matching rates of the considered model, see
(22). Moreover, from this characterization we can deduce interesting properties of
the matching models at stake, among which, invariance properties of the matching
rates with respect to the matching policy, as will be shown in Section 9.

6.1. Asymptotic matching rates.

Definition 1. For a general matching model associated to any fixed (G,Φ, µ̄), for
any time n ≥ 1 and any i, j ∈ V, we set

Mn[i, j] ≜ Number of matchings (i, j) performed up to and including time n,

where the above is set as null if (i, j) ̸∈ E. Then, the matching rate of i with j (or
equivalently, of j with i) up to n is defined as the proportion Mn[i, j]/n.

In the sequel, for any fixed couple (G,Φ), any i ∈ V and any j ∈ E(i), we set

(18) Ai→j ≜ {states of W s.t. an incoming i-item gets matched with a j-item}.
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Lemma 1. For any stable general matching model associated to (G,Φ, µ̄) and any
(i, j) ∈ E, the asymptotic matching rates satisfy

Mn[i, j]

n

a.s.−−−−−→
n→+∞

ΘΦ,µ̄[i, j],

where

(19) ΘΦ,µ̄[i, j] ≜ µ̄(i)ΠΦ,µ̄
W (Ai→j) + µ̄(j)ΠΦ,µ̄

W (Aj→i)1{i ̸=j},

and ΠΦ,µ̄
W represents the unique stationary distribution of the chain

{
WΦ,µ̄

n

}
n∈N.

Proof. Fix an edge (i, j) ∈ E with i ̸= j. Then, we have a.s.

Mn[i, j]

n
=
1

n

n∑
k=1

1{a match (i, j) is performed at time k}

=
1

n

n∑
k=1

[
1{Vk=i}1{WΦ,µ̄

k−1∈Ai→j} + 1{Vk=j}1{WΦ,µ̄
k−1∈Aj→i}

]
=:

1

n

n−1∑
k=0

fi,j

(
WΦ,µ̄

k , Vk+1

)
.

Moreover, for all k ∈ N, WΦ,µ̄
k and Vk+1 are independent, and

{
WΦ,µ̄

k

}
k∈N

is an

ergodic Markov chain of stationary distribution ΠΦ,µ̄
W . Thus,

{(
WΦ,µ̄

k , Vk+1

)}
k∈N

is an ergodic Markov chain onW×V, whose unique stationary distribution is given

by ΠΦ,µ̄ ≜ ΠΦ,µ̄
W ⊗ µ̄. As fi,j is bounded by 1, it is integrable with respect to ΠΦ,µ̄

and the ergodic theorem for Markov chains gives that a.s.,

lim
n→+∞

(
1

n

n−1∑
k=0

fi,j

(
WΦ,µ̄

k , Vk+1

))
=

∑
w∈W

∑
v∈V

fi,j(w, v)Π
Φ,µ̄(w, v)

=
∑
w∈W

1{w∈Ai→j}Π
Φ,µ̄
W (w)

∑
v∈V

1{v=i}µ̄(v)

+
∑
w∈W

1{w∈Aj→i}Π
Φ,µ̄
W (w)

∑
v∈V

1{v=j}µ̄(v)

= µ̄(i)ΠΦ,µ̄
W (Ai→j) + µ̄(j)ΠΦ,µ̄

W (Aj→i) ,

and the computation is the same without the second term, in the case i = j. □

By combining the result above and the strong law of large numbers, we get
the following result, which formalizes the intuitive fact that in steady state, the
probability of arrival to each node must equate the sum of the asymptotic matching
rates of all the adjacent edges to that node. Specifically,

Lemma 2. For any stable general matching model associated to (G,Φ, µ̄), we have

(20) µ̄(i) =
∑
j∈V

(
1 + 1{j=i}

)
ΘΦ,µ̄[i, j], for all i ∈ V.

Proof. Consider an item i ∈ V and denote, for all n ∈ N∗, by An(i) and Dn(i) the
number of arrivals and the number of departures of i-items up to and including
time n, respectively. By the strong law of large numbers, we have

An(i)

n
=

1

n

n∑
k=1

1{Vk=i}
a.s.−−−−−→

n→+∞
µ̄(i).
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Moreover, Lemma 1 entails that

Dn(i)

n
=

2Mn[i, i]

n
+

∑
j∈V\{i}

Mn[i, j]

n

a.s.−−−−−→
n→+∞

2ΘΦ,µ̄[i, i] +
∑

j∈V\{i}

ΘΦ,µ̄[i, j] = ΘΦ,µ̄[i, i] +
∑
j∈V

ΘΦ,µ̄[i, j].

Comparing the two limits above, it remains to prove that

An(i)−Dn(i)

n

a.s.−−−−−→
n→+∞

0.

For this, observe that we have a.s., for all n ≥ 1,

(21)
∣∣WΦ,µ̄

n

∣∣
i
= An(i)−Dn(i) +

∣∣∣WΦ,µ̄
0

∣∣∣
i
,

where |w|i denotes the number of occurrences of i in the word w. Let us suppose
that, on some event Ω′ ⊂ Ω with P(Ω′) > 0, we have

lim
n→+∞

An(i)−Dn(i)

n
̸= 0.

Fix a realization ω ∈ Ω′. First, if

lim
n→+∞

An(i)(ω)−Dn(i)(ω)

n
> 0,

from (21), there would exist a rank M(ω) such that
∣∣WΦ,µ̄

n (ω)
∣∣
i
> 0 for all n ≥

M(ω). Likewise, if we have that

lim
n→+∞

An(i)(ω)−Dn(i)(ω)

n
< 0,

then in view of (21), for some M(ω) we would have that
∣∣WΦ,µ̄

n (ω)
∣∣
i
< 0 for all

n ≥ M(ω). All in all, we get that Ω′ ⊂ lim infn→∞
{
ω ∈ Ω :

∣∣WΦ,µ̄
n (ω)

∣∣
i
̸= 0
}
, an

absurdity in view of the recurrence of
{
WΦ,µ̄

n

}
n∈N. This concludes the proof. □

6.2. Alternative proof of (iii) =⇒ (ii) in Corollary 1. We deduce from
Lemma 2, the following result, from which the implication (iii) =⇒ (ii) of Corol-
lary 1 directly follows,

Corollary 4. For any connected multigraph G = (V, E) and any admissible match-
ing policy Φ, recalling (5) we have

stab(G,Φ) ⊂ W(G).

Specifically, we have that

µ̄ ∈ stab(G,Φ) =⇒ µ̄ = µ̄αΦ,µ̄

,

where

(22)
αΦ,µ̄ : E −→ R∗

+

(i, j) 7−→
(
1 + 1{i=j}

)
ΘΦ,µ̄[i, j],

for ΘΦ,µ̄ defined by (19).

Proof. Fix a connected multigraph G = (V, E) and a matching policy Φ. Let
µ̄ ∈ stab(G,Φ) (if the set is empty, the result is trivial), in a way that the general
stochastic matching model associated to (G,Φ, µ̄) is stable. Then, for the family
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of weights αΦ,µ̄ ∈ M(E) defined by (22), recalling (3) and in view of Lemma 2, we
have that for all i ∈ V,

µ̄αΦ,µ̄

(i) =

ΘΦ,µ̄[i, i] +
∑
j∈V

ΘΦ,µ̄[i, j]

∑
l∈V

(
ΘΦ,µ̄[l, l] +

∑
j∈V

ΘΦ,µ̄[l, j]

) =
µ̄(i)∑

l∈V
µ̄(l)

= µ̄(i),

which concludes the proof. □

7. Matching rates of extended bipartite matching models

As will be shown below, the arguments of Section 6 can be adapted to bipartite
matching models. Specifically, we show hereafter that any measure in the stability
region of a given extended bipartite model can be represented as a weighted mea-
sure, associated to a family of weights that are explicitly defined in function of the
matching rates of the corresponding model - thereby providing an alternative proof
of implication (iii) =⇒ (ii) in Corollary 2.

We first define the matching rates in extended bipartite stochastic matching
models as follows,

Definition 2. For any extended bipartite matching model associated to a triple
(G = (V1 ∪V2, E),Φ, µ̃), for any time n ≥ 1 and any couple (i, j) ∈ V1 ×V2, we set

Meb
n [i, j] ≜ Number of matchings (i, j) performed up to time n included,

where the above is set as null if (i, j) ̸∈ E. Then, the matching rate of i with j up
to n is defined as the proportion Meb

n [i, j]/n.

As above, for any fixed bipartite graph G = (V1 ∪ V2, E) and any admissible Φ,
for any i ∈ V1 and j ∈ V2, we define the following sets:

Aeb
i→j ≜ {buffers s.t. an incoming i-item gets matched with a stored j-item} ,

Aeb
i↔j ≜ {buffers s.t. an incoming (i, j)-couple gets matched together}.

(Observe that the latter sets are non-empty only if (i, j) ∈ E , and that the second
one does not depend on Φ.) The following result, whose proof is analogous to that
of Lemma 1, makes precise the asymptotic matching rates in a stable bipartite
matching model,

Proposition 4. Consider an extended bipartite matching model associated to the
triple (G = (V1∪V2, E),Φ, µ̃) such that µ̃ ∈ stabeb(G,Φ). Then, for any (i, j) ∈ E,
we have that

Meb
n [i, j]

n

a.s.−−−−−→
n→+∞

ΘΦ,µ̃
eb [i, j]

≜ µ̃((i,V2 \ {j}))Π̃Φ,µ̃
W

(
Aeb

i→j

)
+ µ̃((V1 \ {i}, j))Π̃Φ,µ̃

W

(
Aeb

j→i

)
+ µ̃((i, j))Π̃Φ,µ

W

(
Aeb

i↔j

)
,

where Π̃Φ,µ̃
W is the unique stationary probability distribution of the positive recurrent

Markov chain
{
Y Φ,µ̃
n

}
n∈N.

We can then equate the arrival rates to the cumulative matching rates of the
nodes. The following result can be proven similarly to Lemma 2,
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Lemma 3. For an extended bipartite matching model associated to any (G = (V1∪
V2, E),Φ, µ̃), such that µ̃ ∈ stabeb(G,Φ) of marginals µ̃1 and µ̃2, we have that

(23)


µ̃1(i) =

∑
j∈E(i)

ΘΦ,µ̃
eb [i, j], for all i ∈ V1;

µ̃2(i) =
∑

j∈E(i)
ΘΦ,µ̃

eb [i, j], for all i ∈ V2.

Let us introduce the two following probability distributions,

Definition 3. For any fixed connected bipartite graph G = (V1 ∪ V2, E) and any
fixed family of weights α ∈ M(E), we define the conditional probability measures
µ̃α
1 ∈ M(V1) and µ̃α

2 ∈ M(V2) as follows: for any i ∈ V,

µ̃α
1 (i) ≜

∑
j∈E(i)

αi,j∑
l∈V1

∑
j∈E(l)

αl,j
, i ∈ V1 and µ̃α

2 (i) ≜

∑
j∈E(i)

αi,j∑
l∈V2

∑
j∈E(l)

αl,j
, i ∈ V2.

As (V1,V2) realizes a bipartition of V, we can deduce that

(24) ∀i ∈ V1, µ̄
α(i) =

µ̃α
1 (i)

2
and ∀j ∈ V2, µ̄

α(j) =
µ̃α
2 (j)

2
,

and thus

(25) µ̄α(V1) = µ̄α(V2) =
1

2
and µα(V1) = µα(V2) =

µα(V)
2

·

Corollary 5. Let G = (V1 ∪ V2, E) be a connected bipartite graph. Then, for any
admissible matching policy Φ, we get that

stabeb(G,Φ) ⊂
{
µ̃ ∈ M(V1 × V2) of marginals µ̃α

1 and µ̃α
2 : α ∈ M(E)

}
.

Proof. Fix a connected bipartite graph G = (V1 ∪ V2, E), an admissible policy Φ,
and let µ̃ be a measure of stabeb(G,Φ) of marginals µ̃1 and µ̃2, in a way that the
bipartite matching model associated to (G,Φ, µ̃) is stable. Let us also define the

family of weights αΦ,µ̃
eb ∈ M(E), by

(26)
αΦ,µ̃
eb : E −→ R∗

+

(i, j) 7−→ ΘΦ,µ̃
eb [i, j].

From Lemma 3, for all i ∈ V1, we have that

µ̃
αΦ,µ̃

eb
1 (i) =

∑
j∈E(i)

ΘΦ,µ̃
eb [i, j]∑

l∈V1

∑
j∈E(l)

ΘΦ,µ̃
eb [l, j]

=
µ̃1(i)∑

l∈V1

µ̃1(l)
= µ̃1(i).

So we have µ̃1 = µ̃
αΦ,µ̃

eb
1 , and likewise µ̃2 = µ

αΦ,µ̃
eb

2 , which concludes the proof. □

Remark 1. Observe that these results can be easily adapted to a bipartite matching
model, as defined in Section 3.3, namely, whenever we assume that µ̃ = µ̃1 ⊗ µ̃2.
In particular, a similar result to Corollary 5 then establishes a characterization
of the weights of any stable measure for a bipartite model, associated for example
to the matching policy fcfm. This provides an alternative proof of implication
(iv) =⇒ (ii) in Corollary 2.
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8. Proof of Theorem 2

8.1. Proof using Theorem 1. We first prove Theorem 2, by using Theorem 1.
For this, in Proposition 5 we first show that for any graph G = (V, E) and any
partition V = V1 ∪ V2, the set NV1

(G) coincides with the set of weighted measures
on an augmented multigraph of G. The latter set is then shown to coincide with
W≺,V2(G).

Proposition 5. For any connected graph G = (V, E) and any non-trivial partition
V1 ∪ V2 of V, we have

NV1
(G) = W(Ĝ),

where Ĝ = (V, Ê) is the multigraph obtained from G by adding a self-loop at any
element of V2.

Proof of Proposition 5. From Theorem 1, as Ĝ is not a bipartite graph by construc-
tion, we have that W(Ĝ) = N (Ĝ). So it suffices to show that

(27) NV1
(G) = N (Ĝ).

The right inclusion in (27) is immediate: If we let µ ∈ N (Ĝ), and fix an independent
set I1 ∈ I(V1), then as I1 ⊊ V we readily obtain that

µ(I1) < µ(Ê(I1)) = µ(E(I1)),

where the second equality follows from the definition of Ê . Hence, µ ∈ NV1
(G).

We now turn to the left inclusion. Let µ ∈ NV1
(G) and fix an independent set

I ∈ I(G). Denote in the remainder of this proof, I1 ≜ I ∩ V1 and I2 ≜ I ∩ V2. We
get that

µ(Ê(I))− µ(I) = µ(Ê(I) ∩ I2) + µ(Ê(I) ∩ I1) + µ(Ê(I) ∩ Ic)− µ(I2)− µ(I1).

But by the very definition of Ĝ, we get that Ê(I) ∩ I2 = I2, Ê(I) ∩ I1 = ∅, and
that Ê(I) ∩ Ic is the disjoint union of E(I1) and E(I2) ∩ (E(I1))c. Thus we obtain

µ(Ê(I))− µ(I) = µ(Ê(I) ∩ Ic)− µ(I1) ≥ µ(E(I1))− µ(I1) > 0,

which concludes the proof. □

For any finite set A, for two measures µ, µ′ of M(A), and for a subset B ⊂ A,
we denote µ ≺B µ′ whenever µ(i) < µ′(i) for any i ∈ B, and µ(i) = µ′(i) for any
i ∈ A \B. For any V ′ ⊂ V, we define the set

W≺,V′(G) ≜ {µ ∈ M(V) : µα ≺V′ µ for some α ∈ M(E)} .

We can now prove Theorem 2.

Proof of Theorem 2. From Proposition 5, it is enough to show that

W(Ĝ) = W≺,V2
(G).

Regarding the left inclusion, for any µ ∈ W(Ĝ), letting α̂ ∈ M(Ê) be such that
µ = µα̂, and α ∈ M(E) be the restriction of α̂ to E we get that µ(i) = µα̂(i) = µα(i)
for all i ∈ V1, while for any i ∈ V2 we get

µ(i) = µα̂(i) = α̂i,i +
∑

j ̸=i: j∈E(i)

α̂i,j >
∑

j ̸=i: j∈E(i)

αi,j = µα(i),

hence µ ∈ W≺,V2(G). As for the converse, let µ ∈ W≺,V2(G), and α ∈ M(E) be
such that µα ≺V2 µ. Then, setting α̂i,j = αi,j for all i ̸= j and α̂i,i = µ(i)− µα(i)

for all i ∈ V2, we easily retrieve that µ = µα̂. Hence µ ∈ W(Ĝ), which completes
the proof. □
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8.2. Bipartite case: proof using flow theory. Interestingly enough, in the
particular case where G is bipartite of bipartition V1 ∪ V2, Theorem 2 is in fact
reminiscent of a simple flow argument. Hereafter, we give an independent proof of
this result in the bipartite case, using flow network theory, see [19]. We start with
the following result,

Proposition 6. For any connected bipartite graph G = (V = V1 ∪ V2, E) and any

measure µ ∈ NV1
(G), there exists a s− t flow graph G⃗ =

(
V⃗, E⃗

)
associated to G,

and a s− t flow f of G⃗, such that

(28)
∑
i∈V1

f(s, i) = µ(V1).

Proof of Proposition 6. Fix G = (V = V1 ∪ V2, E), and a measure µ ∈ NV1
(G). We

can then easily define a measure δ ∈ M(V2) such that

(29)

{
∀ I1 ∈ I(V1), µ(I1) < δ(E(I1));
∀j ∈ V2, δ(j) < µ(j).

We then construct a s− t flow graph G⃗ =
(
V⃗, E⃗

)
associated to G, as follows:

– We set a source s, and add the edges between s and each vertex of V1;
– We set a well t, and add the edges between each vertex of V2 and t;
– For all i ∈ V1 and j ∈ V2, we orient the edges from s to i, from j to t and
from i to j, for all edge (i, j) ∈ E ;

– We associate a capacity c to each edge as follows: For all i ∈ V1 and j ∈ V2,
we set c(s, i) ≜ µ(i), c(j, t) ≜ δ(j) and c(i, j) ≜ +∞, for all edge (i, j) ∈ E ,
see Figure 3.

µ(
1)

µ(2)

µ(3)

µ(4)

+∞

+∞

+
∞

+∞

+∞

+
∞

+∞

+∞

+∞

δ(1 ′
)

δ(2 ′
)

δ(3′)

δ(4
′ )

δ(
5
′ )

s t

1

2

3

4

1’

2’

3’

4’

5’

Figure 3. A flow graph G⃗ associated to a connected bipartite
G = (V1 ∪ V2, E), with V1 = {1, 2, 3, 4} and V2 = {1′, 2′, 3′, 4′, 5′}.

It is then easily checked by hand that we have

(30) min
(S ,T )∈Cs,t(G⃗)

c(S ,T ) = c
(
{s} , V⃗\{s}

)
= µ(V1),

where Cs,t

(
G⃗
)
is the set of all s− t cuts of G⃗. The max-flow/min-cut theorem (see

[19]) concludes the proof. □



24 BEGEOT, MARCOVICI, MOYAL

We are then able to retrieve the proof of Theorem 2 in the bipartite case.

Proof of Theorem 2 for G bipartite. Fix G = (V = V1 ∪ V2, E). We will show the
equality between the sets NV1

(G) and

W≥0
≺,V2

(G) ≜

{
µ ∈ M(V) : ∃α ∈ M≥0(E) s.t.

{
∀i ∈ V1, µ

α(i) = µ(i)
∀j ∈ V2, µ

α(j) < µ(j)

}
,

which implies in turn the equality between NV1
(G) and W≺,V2

(G), as W≥0
≺,V2

(G) is

the interior of W≺,V2(G) and NV1(G) is an open set.
In order to prove the first inclusion, let us fix a measure µ ∈ NV1(G) and define

the non-negative measure αf ∈ M≥0(E), by

∀(i, j) ∈ E , αf
i,j ≜ f(i, j),

where f is the flow of G⃗, given by Proposition 6. On the one hand, by the flow

conservation condition on G⃗ and from (29), we have that

∀j ∈ V2, µ
αf

(j) =
∑
i∈V1

αf
i,j =

∑
i∈V1

f(i, j) = δ(j) < µ(j).

On the other hand, the maximality of the flow f in Proposition 6 and the capacity
constraint implies that

∀i ∈ V1, f(s, i) = µ(i),

and it follows from the flow conservation condition, that

∀i ∈ V1, µ
αf

(i) =
∑
j∈V2

αf
i,j =

∑
j∈V2

f(i, j) = f(s, i) = µ(i).

implying that µ ∈ W≥0
≺,V2

(G).

Now, to prove the converse inclusion we consider a measure µ ∈ W≥0
≺,V2

(G). Then

there exists a non-negative measure α ∈ M≥0(E) such that

(31)

{
∀i ∈ V1, µ

α(i) = µ(i)
∀j ∈ V2, µ

α(j) < µ(j)
.

Let us consider an independent set I1 ∈ I(V1). Then, by (31) and since α ∈
M≥0(E), we have that

µ(I1) = µα(I1) =
∑

j∈E(I1)

∑
i∈I1

αi,j ≤
∑

j∈E(I1)

∑
i∈V1

αi,j = µα(E(I1)) < µ(E(I1)),

which concludes the proof. □

9. About uniqueness of the matching rates

9.1. Insensitivity of the matching rates. In Lemma 2 (resp. Lemma 3), we
have proven that the arrival rates of stable general (resp. bipartite) stochastic
matching models are given as explicit functions of the matching rates of the various
edges - see (20) (resp. (23)). Specifically, if in the bipartite case we define for any
µ̃ = (µ̃1, µ̃2) ∈ M(V1 × V2), the probability measure µ̄ on M(V), by

µ̄(i) =
1

2
µ̃1(i)1{i∈V1} +

1

2
µ̃2(i)1{i∈V2}, i ∈ V,

then both systems of equations (20) and (23) can be rewritten under the generic
form

(S) µ̄(i) =
∑

j∈E(i)

αi,j , i ∈ V,
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where the weights αi,j , (i, j) ∈ E represent the matching rates in the various cases,
or twice the matching rate for i = j. These weights depend on the matching policy,
and are not unique in general. However, for various (multi)graph geometries, they
are uniquely defined and thereby, independent of the matching policy, as we will
show hereafter.

In what follows, for a rooted tree G = (V, E , r) of root r having at least two

nodes, we denote by d ≜ d(G), the depth of G, that is, the maximal distance from
the root. For any ℓ ∈ J1; dK, we let nℓ be the number of elements of generation ℓ,
and label by ℓ1, ..., ℓnℓ

, the nodes of generation ℓ in an arbitrary manner. In that
way, nodes d1, ..., dnd

are the leaves of G that are at maximal distance from the
root. For any ℓ ∈ J1; dK and i ∈ J1;nℓK, we denote by f(ℓi), the father of node ℓi.
Notice that by construction, we have f(1i) = r for all i ∈ J1;n1K. Last, for any
ℓ ∈ J1; dK and i ∈ J1;nℓK, we denote by S (ℓi) and D(ℓi), the sets of sons and of
descendants of ℓi, respectively. Observe that the above sets are empty if and only
if ℓi is a leaf.

Lemma 4. Let G = (V, E , r) be a rooted tree having at least two nodes, and let
µ̄ ∈ M(V). Then, the system of equations

(S∗) µ̄(i) =
∑

j∈E(i)

αi,j , i ∈ V \ {r}

admits the following unique solution in W(G) defined by (5),

(32) αℓi,f(ℓi) = µ̄(ℓi) +
∑

kj∈D(ℓi)

(−1)k−ℓµ̄(kj), ℓ ∈ J1; dK, i ∈ J1;nℓK,

where sums over empty sets are understood as null.

Proof. If ℓi is a leave of G, it is immediate that we have

αℓi,f(ℓi) = µ̄(ℓi).

The result then follows by induction, observing that (S∗) is equivalent, for a graph
G that is a tree, to

αℓi,f(ℓi) = µ̄(ℓi)−
∑

(ℓ+1)j∈S (ℓi)

αℓi,(ℓ+1)j , ℓ ∈ J1; dK, i ∈ J1;nℓK.

□

From this, we first deduce the following result,

Proposition 7. Let G = (V, E) be a tree having at least two nodes, and let µ̄ ∈
M(V). Then, the system (S) admits a unique solution in W(G) if, and only if
µ̄(V1) = µ̄(V2) = 1

2 , where V1 ∪ V2 is the bipartition of V. Otherwise there is no
solution to (S).

Proof. Fix a root r, and let V1 and V2 be respectively given as the sets of nodes at
even and odd generations, respectively. For such G, the system (S) is equivalent to
(S∗) together with the relation

µ̄(r) =

n1∑
i=1

αr,1i .
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By the connectedness assumption, all nodes of G are descendants of the sons of r.
Therefore, from (32), we have that

µ̄(r) =

n1∑
i=1

µ̄(1i) +
∑

kj∈D(1i)

(−1)k−1µ̄(kj)


=

d∑
k=1;
k odd

nk∑
i=1

µ̄(ki)−
d∑

k=1;
k even

nk∑
i=1

µ̄(ki),(33)

which amounts to µ̄(V1) = µ̄(V2). Therefore, the system (S) admits the unique
solution given by (32) if µ̄(V1) = µ̄(V2), and no solution otherwise. □

Proposition 8. Let G = (V, E) be a cycle, and let µ̄ ∈ M(V). Then,

1. If G is of odd length, there exists a unique solution to (S).
2. If G is of even length, and if we denote by V1∪V2 the bipartition of V, then

there are infinitely many solutions if µ̄(V1) = µ̄(V2) =
1
2 , and no solution

otherwise.

Proof. Let n be the size of the cycle, and index the nodes of G by 1, ..., n. The linear
system (S) of unknown α, identified with the column matrix t

(
α1,2 α2,3 · · · αn−1,n αn,1

)
,

can be written under the form Aα = µ̄, where µ̄ is identified with the column vector
t
(
µ̄(1) µ̄(2) · · · µ̄(n)

)
and

A =



1 0 · · · 0 1
1 1 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · · 0

...
. . .

. . .
. . .

0 0 . . . 0 1 1


.

An immediate computation shows that detA = 1 + (−1)n+1. Thus the system (S)
admits the unique solution A−1µ̄ if n is odd. If n is even, then it is easily seen that
A has rank n− 1, and that the system is compatible if and only if

n∑
i=1;
i odd

µ̄(i) =

n∑
i=1;
i even

µ̄(i) =
1

2
·

In that case, there are infinitely many solutions. □

We deduce the following result:

Proposition 9. Let G = (V, E) be a graph consisting of a tree having at least two
nodes and of an additional edge, and let µ̄ ∈ M(V). Then,

1. If G is a non-bipartite graph (i.e. the additional edge forms a cycle of odd
length), then the system (S) admits a unique solution.

2. If G is a bipartite graph (i.e. the additional edge forms a cycle of even
length), the system (S) admits infinitely many solutions in W(G) if and
only if µ̄(V1) = µ̄(V2) =

1
2 . Otherwise, there is no solution to (S).

3. If the additional edge is a self-loop, then the system (S) admits a unique
solution.

Proof. Adding an edge that is not a self-loop to the tree generates a cycle C . If
the cycle is of even size, then the resulting graph is bipartite, while if the cycle is
of odd size we obtain a non-bipartite graph.
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1. First suppose that the resulting graph G is non-bipartite, and is not reduced
to an odd cycle (otherwise, assertion 1. of Proposition 8 applies). Then G
can be seen as the odd cycle C , to which are appended one or several
disconnected rooted trees. More precisely, denote by N the (odd) number
of nodes of C , by r1, ..., rp the nodes of C having a degree strictly larger
than two, and by s1, ..., sN−p the nodes of C of degree 2, if any. Then,
for any l ∈ J1; pK, to the node rl is appended a rooted tree T l of root
rl. Lemma 4 yields that the weights associated to all the edges of T l are
unique. In particular, denoting by al and bl the two neighbors of rl in C ,
(32) implies that

(34) µ̄(rl) = αrl,al + αrl,bl +

dl∑
k=1;
k odd

nl
k∑

i=1

µ̄(kli)−
dl∑

k=1;
k even

nl
k∑

i=1

µ̄(kli),

using the same notations as in (33) for T l. This is true for any l ∈ J1; pK, so
the restriction to C of any solution α to (S) solves in particular the system

(S∗∗) µ̆(ℓ) =
∑

j∈E(ℓ)∩C

αℓ,j , ℓ ∈ C ,

where
µ̆(rl) = µ̄(rl)−

dl∑
k=1;
k odd

nl
k∑

i=1

µ̄(kli) +
dl∑

k=1;
k even

nl
k∑

i=1

µ̄(kli), l ∈ J1, pK,

µ̆(sl) = µ̄(sl), l ∈ J1;N − pK.

From 1. of Proposition 8, after normalizing µ̆, the solution to (S∗∗) is unique,
and so is the solution to (S) in view of the uniqueness of the solution to
(S∗) on each tree T l, l ∈ J1; pK, from Lemma 4.

2. Suppose that the resulting graphG is bipartite and is not reduced to an even
cycle (otherwise, assertion 2. of Proposition 8 applies). Applying the same
construction as in case 1., we obtain again (34) for all l ∈ [[1; p]]. Assertion 2.
of Proposition 8 shows that the resulting system (S∗∗) on C admits no
solution unless µ̆(V1) = µ̆(V2). But this is equivalent to µ̄(V1) = µ̄(V2), as
in each rooted tree T l of G, the nodes of the even generations belong to
the same subset of the bipartition as rl. So, under that condition, (S∗∗)
and thereby (S), admit infinitely many solutions.

3. If the additional edge is a self-loop on node r, then G can be seen as a
rooted tree of root r. Then, it is immediate in view of Lemma 4 that (S)
admits a unique solution, that from (32), is given by
αℓi,f(ℓi) = µ̄(ℓi) +

∑
kj∈D(ℓi)

(−1)k−ℓµ̄(kj), ℓ ∈ J1; dK, i ∈ J1;nℓK,

αr,r = µ̄(r)−
d∑

k=1;
k odd

nk∑
i=1

µ̄(ki) +
d∑

k=1;
k even

nk∑
i=1

µ̄(ki),

which completes the proof.

□

Let us now come back to the representation of solutions of (S) as asymptotic
matching rates for corresponding matching models.

Definition 4. Let G = (V, E) be a multigraph (resp. a bipartite graph). We say
that the matching rates are policy-invariant for G, if for any µ ∈ N (G) (resp.
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Figure 4. Graphs G1 (left) and G2 (right).

any µ ∈ N2(G)), the asymptotic matching rates ΘΦ,µ̄ (resp. ΘΦ,µ̃
eb ) in the match-

ing model associated to (G,Φ, µ̄) (resp. (G,Φ, µ̃)) do not depend on Φ as long as
µ̄ ∈ stab(G,Φ) (resp. µ̃ ∈ stabeb(G,Φ)).

Recalling equations (20) and (23), and gathering Propositions 7, 8 and 9, we
readily obtain the following result.

Theorem 3. Matching rates are policy-invariant for G in the following cases:

(1) G is an odd cycle,
(2) G is a tree,
(3) G is a tree with an additional edge forming an odd cycle,
(4) G is a tree with an additional self-loop.

Furthermore, the matching rates are given by the unique solution of the system (S).

Observe that in case (2) above, since we consider a bipartite matching model,
we assume implicitly that the bipartition satisfies µ̄(V1) = µ̄(V2) =

1
2 (otherwise,

there are obviously no stable policies, so that regardless of the policy chosen, the
matching rates are not well-defined).

9.2. Examples.

9.2.1. Case with unicity. The graph G1 = (V, E) represented on the left of Figure 4
falls within case (3) above. For any µ̄ ∈ N (G1) and any Φ such that the matching
model (G1,Φ, µ̄) is stable, the matching rates on the various edges are given by
α = A−1µ̄, for

µ̄ =


µ̄(1)
µ̄(2)
µ̄(3)
µ̄(4)

 , A =


1 0 0 0
1 1 1 0
0 1 0 1
0 0 1 1

 , α :=


α1,2

α2,3

α2,4

α3,4

 .

9.2.2. Case without unicity. The graph G2 = (V, E) given on the right of Figure 4
does not satisfy the assumptions of Theorem 3, and the corresponding system (S)
does not have a unique solution. It is immediate that the measure

µ̄ =t(3/10 3/10 2/10 2/10)

is an element of N (G2), however we get that Aαx = µ̄, for

A =


1 1 0 0 0
0 1 1 1 0
0 0 1 0 1
0 0 0 1 1

 , αx :=


αx
1,1

αx
1,2

αx
2,3

αx
2,4

αx
3,4

 =


2x

3
10 − 2x

x
x

2
10 − x

 ,
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for any x ∈
(
0 ; 3

20

)
(see Figure 4). For instance, in our simulations the fcfm policy

yields approximate matching rates of α0.098.

9.3. About fairness of the matching rates. One possible way to define a notion
of fairness of a stable measure µ̄, with respect to a given policy Φ, is to say that
µ̄ is fair (for the matching rates) if ΘΦ,µ̄ is constant on E , i.e., ΘΦ,µ̄[i, j] takes the
same value for all edges (i, j) ∈ E . In other words, it means that asymptotically,
all couples of compatible items leave the system together as often as each other.

Let us assume that µ̄ ∈ M(V) is fair with respect to a given policy, with ΘΦ,µ̄

equal to a constant c. Then, as a consequence of Lemma 2, for any i ∈ E , we have

µ̄(i) =
∑
j∈V

(1 + 1{i=j}) c =
(
|E(i)|+ 1{(i,i)∈E}

)
c.

If follows that µ̄ is equal to the weighted measure µ̄α∗
defined by the family of

weights
α∗ : E → R∗

+

(i, j) 7→ 1 + 1{i=j}.

However, the measure µ̄α∗
may not be fair (in which case there exists no fair

measure). Indeed, if µ̄α∗
also coincides with µ̄α, for some α non-proportional to α∗,

the matching rates might as well be given by the family α, or by yet another family
of weights. We refer to the above discussion for the graph G2 of Figure 4: The
family α∗ corresponds to α1/10, but there are other families of weights generating
the same measure, so that the values of the matching rates cannot be directly
predicted.

Nevertheless, observe that if α∗ is the only family of weights (up to a multi-
plicative constant) that generates µ̄α∗

, then µ̄α∗
is indeed fair for any policy Φ

such that µ̄α∗ ∈ stab(G,Φ). Thanks to Theorem 3, we deduce that the weighted
measure µ̄α∗

is the one and only one to be fair in the different contexts specified in
Theorem 3, for any policy Φ such that µ̄α∗ ∈ stab(G,Φ).
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[12] Bušić, A., Gupta, V., and Mairesse, J. (2013). Stability of the bipartite matching model.

Advances in Applied Probability 45(2): 351-378.
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