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processes via closed-form density expansions
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Abstract

When a continuous-time diffusion is observed only at discrete times with measurement
noise, in most cases the transition density is not known and the likelihood is in the form
of a high-dimensional integral that does not have a closed-form solution and is difficult
to compute accurately. Using Hermite expansions and deconvolution strategy, we pro-
vide a general explicit sequence of closed-form contrast for noisy and discretely observed
diffusion processes. This work allows the estimation of many diffusion processes. We
show that the approximation is very accurate and prove that minimizing the sequence
results in a consistent and asymptotically normal estimator. Monte Carlo evidence for
the Ornstein-Uhlenbeck process reveals that this method works well and outperforms the
Euler expansion of the transition density in situations relevant for financial models.

Keywords: M-estimator; Deconvolution; Least Square Method; Parametric approach; Diffusion
Processes, Hermite Expansion.

1 Introduction
Statistical inference of one-dimensional diffusion processes with ergodic properties and when
the sample path is discretely and observed without measurement errors has been the subject
of many papers. The continuous time paradigm has proved to be an immensely useful tool in
many applications as for example in financial models where diffusion processes are widely used
for instance, to represent the stochastic dynamics of asset returns, exchange rates, interest rates
and more generally in economy and biology. Many refinements and extensions are possible, but
the basic dynamic model for the variable interest Xt is a stochastic differential equation (SDE){

dXt = bθ(Xt)dt+ σθ(Xt)dWt

X0 = η,
(1)

where b and σ are the nonanticipative drift and volatility functions depending on Xt at time
t and on an unknown parameter vector θ belonging to Θ, a compact subset of Rr and η a
real random variable independent of the increment of a standard Wiener process dWt. The
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process (Xt)t≥1 is an unobserved real-valued Markov chain belonging to X = (l, r) where l
could possibly be −∞, and r might be +∞. Besides its initial distribution, the chain (Xt)t≥1

is characterized by its transition, i.e., the distribution of Xt+1 given Xt and by its stationary
density fθ. The observations consist of the discretized trajectory (Xi∆)1≤i≤n observed with
measurement errors at dates {ti = i∆, i = 0, . . . , n} where ∆ is generally small but fixed as n
increases. For instance, the series could be weekly or monthly. Collecting more observations
means extending the time period over which data are stored, without shortening the time
interval between existing successive observations. Hence, at time ti = i∆ we have at disposal
noisy data of the sample path, i.e., we observe Yi∆ = Xi∆ + εi∆ with (εi∆)i≥0 a sequence of
independent and identically distributed (i.i.d.) random variables.

Assuming that the model is correctly specified (i.e., θ belongs to the parameter space
Θ ⊂ Rr, with r ∈ N∗), we aim to estimate the vector of parameters θ given the measurements
Y(1:n)∆ = (Y1∆, . . . , Yn∆).

For most estimation strategies relying on discretely sampled data, we need to be able to infer
the implications of the infinitesimal time evolution of the process for the finite time intervals
at which the process is actually sampled, say weekly or monthly. The transition function
plays a key role in that context, but unfortunately, it is, in most cases, unknown. Ignoring the
approximation of the transition density leads to inconsistent estimators unless the discretization
happens to be an exact one, i.e., the density should be known in closed form. For some of the
few exceptions, this transition density is available in closed form, that is if a strong solution
of the underlying SDE process is available, meaning that the SDE can be solved analytically
in Itô form, one can cite the Black and Scholes model, Ornstein-Uhlenbeck (OU) process and
Cox-Ingersoll and Ross (CIR) process (see [52]).
If sampling of the process were continuous and made without measurement noise, the situa-
tion would be simpler since the likelihood function for continuous records can be obtained by
means of a classical change of measure using Girsanov’s Theorem for known volatility func-
tion σ. Because diffusions are observed with measurement errors, the log-likelihood function of
observations from such a process sampled at finite time intervals do not reduce to the sum of
the log-transition function of successive pairs of observations even if the transition density is
known, but induces a high-dimensional intractable integral.
This is an important motivation for the study of the theory of estimating functions that provide
an alternative method of inference. In fact, inference based on the optimal estimating function
can be seen as an approximation of likelihood inference.

Different kinds of estimating functions have been studied for diffusions observed without
measurement errors: minimum contrast estimators, simulation based methods, see [20, 41, 32,
49, 2] for large sampling intervals and [53, 21, 31] for small sampling. For noisy observations,
in a Bayesian setting, various results are already stated and most of them are based on Monte
Carlo (MC) inference (see [8, 47] and [46]). More recently, in [43] the authors propose to use
Approximate Bayesian Computation for accelerating inference for nonlinear SDE with measure-
ment errors and large sample size. In this paper, we do not consider the Bayesian approach, the
model (1) with measurement noise is known in this case as the so-called convolution diffusion
model. If we focus our attention on (semi)-parametric models and low frequency data, few
results exist. In [25] the author proposes an estimator based on a contrast method to esti-
mate parameters appearing on the volatility function σ for diffusions processes with additive
Gaussian noises. In the same perspective, in [6], the authors propose a Maximum Likelihood
Estimator (MLE) for integrated diffusion processes observed with additive noises. They pro-
posed a simulated Expectation-Maximization algorithm to obtain MLE of the parameters in
the volatility function. For high frequency data, one can cite the works of [18, 19] where the



Parametric estimation of diffusion processes 3

author proposes a contrast approach to estimate θ inspired by the works of Kessler (see [31])
and Gloter (see [24] and [26]).

In this paper, we propose a new estimation approach which provides a consistent estima-
tor with a parametric rate of convergence for nonlinear diffusions processes as (1) observed
discretely with measurement errors. Our approach is to construct appropriate and explicit
functions of the observations to replace either the log-likelihood or the score function by a
contrast function with the following form:

∑n
i=2 gθ(Yi∆, Y(i−1)∆).

Since the transition density is usually unknown, we construct a closed-form sequence of
approximations, hence a sequence of approximations to the true unknown contrast function.
These closed-form expressions lead to a computationally efficient alternative to the MLE for dif-
fusions observed with measurement errors. With a given ∆, many methods are available in the
literature to compute the transition density. The simplest is based on the Euler approximation
of the SDE. The resulting discretization leads to a conditionally Gaussian transition density. A
related approach is based on the moment equations for the first two moments (see [48]). Again
a conditionally Gaussian scheme is obtained. Alternatively, some of the approaches involve
either solving numerically the Kolmogorov partial differential equation known to be satisfied
by the transition density (see [40]), or simulating a large number of sample paths along which
the process is sampled very finely (see [42], [28], and [10]). Neither of these methods, however,
produces a closed-form expression to be minimized over θ, and the calculations for all the pairs
(x, y) must be repeated separately every time the value of θ changes. In addition, while these
approximations may be useful for small sampling intervals where the transition density deviates
only slightly from normality, for larger sampling intervals, corrections are required that take
into account the higher order characteristics of the true density. Examples of such approaches
include [2, 39, 38] and [12]. In [30] the author compares many different schemes and shows that
the Hermite polynomial expansion outperforms these competitors.
In this paper we consider a Hermite expansion with leading Gaussian term but with corrections
terms taking into account higher order moments of the true density. This approximation leads
to a closed-form expression for the transition density and make possible to minimize the ex-
pression in the true contrast with the closed-form approximation. This method has been shown
to be very accurate, even when the series are truncated after only a few terms, for a variety of
diffusion models, in the univariate case see for example [1, 30, 50, 29] and [3] for multivariate
diffusion processes.
Taking these corrections into account is all the more important in the context of data collected
with measurement noise. Indeed, we have seen that most approximation schemes lead to a
conditionally Gaussian transition density which is not the most favorable situation in any de-
noising procedure. The approach in practice is facilitated by Gaussian noise since it leads to an
analytical expression of estimating functions and their derivatives, but the convergence results
are not optimal in this case. In particular in the context of deconvolution, the smoother the
function, the slower the convergence. Thus, any approach that allows these approximations
schemes to be corrected by taking into account higher order moments of the true transition
density will improve the results as we will see in the numerical simulations.

We provide in this paper the expression of our contrast for general diffusion processes, e.g.,
for SDE with a volatility function σθ(x) dependent and independent of the state x. Such a
study allows the estimation of many diffusion processes in various fields. We show in this work
that in the context of deconvolution, a significant approximation error of the transition density
in the time domain is all the more amplified in the frequency domain by using the Fourier
transform (FT) and so the numerical simulations show that the Hermite expansion contrast
gives better results than the same contrast based on a simple Euler discretization.
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The paper is structured as follows. We briefly recall in Section 2 the Hermite expansion of
the transition density. Then, in Section 3 we detail the construction of our contrast and explore
its asymptotic statistical properties, in particular consistency and central limit theorem (CLT).
In Section 4 we shape this contrast for general diffusion processes. A complete analysis of this
approach is carried out for the OU process in Section 5. The technical proofs are postponed in
Section 6.

2 A sequence of expansion of the transition function

2.1 Notations and assumptions

To define the Hermite polynomials approach, we introduce the following notation. We de-
note by ∇xg the vector of the partial derivatives of g with respect to (w.r.t) x, i.e., ∇xg =
(∂x1g, . . . , ∂xdg)′ where ∂xig denotes the partial derivative of g w.r.t. xi for i = 1, . . . , d. The
Hessian matrix of g w.r.t x is denoted by ∇2

xg. For any matrix A = Ai,j, the Frobenius norm
is defined by ‖A‖ =

√∑
i

∑
j |Ai,j|2.

For ease of exposition, we introduce some technical assumptions which are conventionally
proposed in the study of the existence of a solution of the SDE (1) with a transition density that
is sufficiently regular to define our approximate contrast estimator shortly thereafter. Weaker
conditions on the volatility function close to the boundary of the state space can be considered,
e.g., at zero for positive diffusions (see [44] and [2]).

A 1. Existence & Regularity:

(i) (Smoothness): The functions b and σ in the SDE (1) are infinitely differentiable in x and
three times continuously differentiable in θ.

(ii) (Non-degeneracy of the diffusion): There exists a constant c such that σθ(x) > c > 0 for
all x ∈ X and θ ∈ Θ.

Under Assumption A 1, the SDE (1) admits a weak solution, unique in probability law, for
every distribution of its initial value X0. Furthermore, X admits a transition density denoted
Πθ,X(∆, x0, x) which is continuously differentiable in ∆ > 0, infinitely differentiable in x and
x0 and three times continuously differentiable in θ ∈ Θ (see [2]). This latter will serve us for
the statistical study of our estimator.

2.2 The Hermite expansion

We follow steps similar to [2]. First, we transform the underlying process X defined in the
SDE (1) to another process U , whose transition density becomes closer to the Normal density.
Next, we perform another transformation from U to Z, which is sufficiently close to a standard
Gaussian random variable. We then find a convergent density expansion for Z with standard
normal density serving as a leading term. Further, we obtain the density expansion for X by
a change of variable. More specifically, first consider a transformed process also known as the
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Lamperti transformed process1:

ρθ(x) =

∫ x

x∗

1

σθ(s)
ds,

where x∗ is arbitrary. This transformed process is applied to obtain the diffusion process of
Ut = ρθ(Xt). Since σθ > 0, the transformation ρθ is increasing, and by Ito’s formula one can
easily see that this transformed process satisfies the following unit diffusion:

dUt = µθ,U(Ut)dt+ dWt,

where µθ,U(u) = bθ(ρ
−1
θ (u))/σθ(ρ

−1
θ (u))− ∂xσθ(ρ−1

θ (u))/2.
Under Assumption A 1 and the Jacobi formula, the transition density is given by

Πθ,X(∆, x0, x) = σθ(x)−1Πθ,U(∆, ρθ(x0), ρθ(x)), (2)

and has the same regularity properties as the original SDE (1).
The transform X → U ensures that the tail of the transition density Πθ,U(∆, u0, u) of Ut

will generally vanish exponentially fast so that the Hermite series approximation will converge.
However, Πθ,U(∆, u0, u) may get peaked at u0 when the sample frequency gets smaller. To avoid
this, Aït-Sahalia considers a further transformation, that is the pseudo-normalized increment
of U and instead of expanding the transition density of U , i.e., the conditional density of Ut
given U0 = u0, we expand the conditional density of the normalized increment

Zt = ∆−1/2(Ut − u0),

given U0 = u0. Thus, we have

Πθ,U(∆, u0, u) = ∆−1/2Πθ,Z(∆,∆−1/2(u− u0)|u0), (3)

where Πθ,Z(∆, z|u0) is the conditional density of Z given that U0 = u0.
We can now obtain an approximation to the transition density of X, by expanding the

conditional density Πθ,Z of Z given U0 = u0 in terms of Hermite polynomials up to order K:

ΠK
θ,Z(∆, z|u0) = ϕ(z)

K∑
k=0

ηθ,k(∆, u0)Hk(z), (4)

where ϕ(z) is the standard and centered normal density, and Hk(z) is the kth Hermite polyno-
mial defined as

Hk(z) = (−1)kez
2 ∂k

∂zk
e−z

2

, k = 0, 1, . . . , K,

and computed sequentially from the recursive relation Hk+1(z) = zHk(z) − kHk−1(z), k > 0.
These polynomials are orthogonal on the real line with respect to the weight function e−z2 :∫

R
Hl(z)Hm(z)e−z

2

dz = 2ll!
√
πδl−m,

where δl−m corresponds to the Kronecker function. Using this orthogonality property, the
coefficients ηθ,k’s in (4) are obtained from the following conditional expectation

ηθ,k(∆, u0) =
1

k!
E
[
Hk

(
∆−1/2(U∆ − u0)

)∣∣∣∣U0 = u0

]
.

1In this paper we consider univariate diffusion processes so reducible processes since it can be transformed
into a unit diffusion by Lamperti transformation. Hence, the Hermite method in [2] can be applied to get the
equivalent approximate transition density. However for multivariate processes one can generalize our approach,
using the approximate transition expansions obtained by the irreducible method established in [3] and [16].
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By inserting the expansion (4) in (3) and (2), we obtain the following approximations of
the transition densities Πθ,U and Πθ,X

ΠK
θ,U(∆, u0, u) = ∆−1/2ϕ(∆−1/2(u− u0))

K∑
k=0

ηθ,k(∆, u0)Hk(∆
−1/2(u− u0)),

and

ΠK
θ,X(∆, x0, x) =

ϕ

(
ρθ(x)−ρθ(x0)√

∆

)
√

∆σθ(x)

K∑
k=0

ηθ,k(∆, ρθ(x0))Hk

(
ρθ(x)− ρθ(x0)√

∆

)
. (5)

Under Assumption A 1, the convergence as K tends to infinity of the approximation ΠK
θ,X to

the exact transition density Πθ,X is proved in [2].

3 A sequence of approximations to the minimum contrast
estimator

3.1 Notations

In what follows, we denote by θ0 the true value of the parameter, i.e., the value of the pa-
rameter which rules the observation. The FT of an integrable function u is denoted by
u∗(t) =

∫
e−itxu(x)dx. We set 〈u, v〉f =

∫
u(x)v(x)fθ0(x)dx with vv = |v|2. The norm of the op-

erator T is defined by ‖T‖f =
(∫∫
|T (x, y)|2fθ0(x)dxdy

)1/2. Let us recall that, by the properties
of the FT, we have (u∗)∗(x) = 2πu(−x). We set Yi∆ = (Yi∆, Y(i+1)∆) and yi∆ = (yi∆, y(i+1)∆)
is a given realization of Yi∆ and we denote GY the joint distribution of Yi∆.

In the following, for the sake of conciseness, P,E,Var and Cov denote respectively the
probability Pθ0 , the expected value Eθ0 , the variance Varθ0 and the covariance Covθ0 when the
true parameter is θ0.
For the purposes of this study, we work with Π(∆, x, y) the transition density of X(i+1)∆ = y
given Xi∆ = x on a compact subset A = A1 × A2. For more clarity, we omit the subscript
X in Πθ,X and write Πθ instead of Πθ1A. This restriction of the transition function on the
compact subset is purely theoretical since in practice the computation of all integrals and FTs
are truncated and thus carried out on compact of R of large size.

3.2 Minimum contrast estimation

Hereafter, we propose explicit estimators of θ, based on the minimization of suitable functions
of the observations, called contrasts. We refer to [13, Chapter 3] for a general account of this
notion. For the purpose of this study, we consider the contrast function initially introduced by
[34] in a nonparametric setting, inspired by regression-type contrasts and later used in various
works (see, e.g., [11, 35, 36, 37]), that is

γθ,n(∆) =
1

n

n∑
i=1

gθ(Yi∆),

where gθ(y) is a real function defined on Θ× R2 as follows

gθ(yi∆) = K1
Π2
θ,X

(yi∆)− 2K2
Πθ,X

(yi∆), (6)
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where the functions K1 and K2 are two operators defined for any function h ∈ L1(R) as

K1
h(x) =

1

2π

∫
eixu

h∗(u, 0)

f ∗ε (−u)
du and K2

h(x, y) =
1

4π2

∫∫
ei(xu+yv) h∗(u, v)

f ∗ε (−u)f ∗ε (−v)
dudv, (7)

and they are chosen to verify the following Lemma (see [35, 6.1. Proof of Lemma 2] for the
proof):

Lemma 3.1. For all i ∈ {1, . . . , n+ 1} and any function h ∈ L1(R), we have

1. E[K2
h(Yi∆)|X1∆, . . . , X(n+1)∆] = h(Xi∆, X(i+1)∆).

2. E[K1
h(Yi∆)|X1∆, . . . , X(n+1)∆] =

∫
h(Xi∆, y)dy.

3. E[K2
h(Yi∆)] =

∫∫
h(x, y)Πθ,X(∆, x, y)fθ(x)dxdy.

4. E[K1
h(Yi∆)] =

∫∫
h(x, y)fθ(x)dxdy.

We study the associated minimum contrast estimators θ̂n as any solution of

θ̂n = arg min
θ∈Θ

γθ,n(∆). (8)

Before explaining such a choice of contrast, we define the assumptions necessary for its existence
and its asymptotic study.

3.3 Assumptions

Let us consider the one-dimensional process which is defined by the SDE in (1). For the
statistical study, the key assumption is that the diffusion (1) has to be a strictly stationary
ergodic process on an interval (l, r) with stationary distribution fθ. Assumption A 2 gives
conditions on functions bθ and σθ, ensuring it.

A 2. Stationary & ergodicity:

(i) For all θ, ∃Kθ,∀x ∈ (l, r), |bθ(x)| ≤ Kθ(1+ |x|) and |σ2
θ(x)| ≤ Kθ(1+ |x2|). For x0 ∈ (l, r)

and for all θ ∈ Θ, define the scale and the speed densities of diffusion (Xt),

ςθ(x) = exp

(
− 2

∫ x

0

bθ(z)

σ2
θ(z)

dz

)
, mθ(x) =

(
ςθ(x)σ2

θ(x)
)−1

.

(ii) For all θ ∈ Θ,
∫∞
l
ςθ(x)dx =

∫ r
−∞ ςθ(x)dx = +∞ and

∫ r
l
mθ(x)dx = Cθ < +∞. A 2(i)

leads to ensure the uniqueness-in-law of the solution of (1) and we denote this law by Pθ
(see [45]). Furthermore, under A 2(ii), the process X is ergodic on R and, with respect
to the Lebesgue measure, its invariant measure has density denoted by fθ and given by

fθ : x ∈ (l, r) 7→ 1

Cθ
mθ(x).

(iii) The initial random variable η has distribution fθ(dx) = fθ(x)dx.

Assumption A 2(iii) provides the strict stationarity.
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(iv) limσθ(x)mθ(x) = 0 as x ↓ l and x ↑ r and 1/βθ(x) has a finite limit as x ↓ l and x ↑ r
where βθ(x) = ∂xσθ(x)− 2bθ(x)/σθ(x).

Assumption A 2(iv) is needed to study the mixing property. Note that, in view of A 2(ii),
A 2(iv) is not a strong assumption (see [23]). This assumption is needed for the further
central limit theorem of the paper. In particular, under A 2(i)-A 2(iv), there exists a
positive constant c2 such that for all t > 0, αX(t) ≤ e−c2t/4, meaning that the process
is geometrically α-mixing (see, [22] and [23]).

Using the Lebesgue dominated convergence and [23, Theorem 2.4] we also have that the
discretely sampled process (Xi∆, i ≥ 0) inherits the same properties.

Remark 3.1. A lot of diffusion processes satisfy this mixing assumption. There are simple
conditions for geometric α-mixing for one dimensional diffusions. These conditions rely on the
eigenvalues of the generator of the diffusion process (see [27]). In particular, ergodic diffusions
with a linear drift −ζ(x− η), ζ > 0 as for example OU, CIR processes and Pearson’s diffusions
are geometrically α-mixing with c2 = ζ.

According to the classical deconvolution scheme, the following assumptions are needed.

A 3. Regularity Assumptions:

(i) (εi∆)i≥0 a sequence of i.i.d. random variables satisfying E[εi∆] = 0 and E[ε2
i∆] = σ2

ε and
independent of (Xi∆)i≥1. For identifiability issues, we assume that ε1∆ admits a known
density with respect to the Lebesgue measure denoted by fε2.

(ii) the density of εi∆, fε belongs to L2(R), and for all x ∈ R, f ∗ε (x) 6= 0;

(iii) the function Πθ belongs to L1(A) ∩ L2(A) and is twice continuously differentiable w.r.t
θ ∈ Θ for any x and measurable w.r.t x for all θ in Θ. Additionally, each coordinate of
∇θΠθ and each coordinate of ∇2

θΠθ need to belong to L1(A) ∩ L2(A).

(iv) The functions K1
Π2
θ
and K2

Πθ
defined in (7) are integrable.

The assumption A 3(ii) on fε is quite common when considering deconvolution estimation
and is essential for identifiability of the model. On the other hand, as we show in Section 5,
the variance of measurement noises σ2

ε can be estimated from the observations (Yi∆)1≤i≤n. Fur-
thermore, A 3(iii) allows us to define the FT and to exchange the integral and the expectation
and A 3(iv) can be understood as “Π∗θ (resp. (Π2

θ)
∗) has to be smooth enough compared to f ∗ε ”.

Let us explain the choice of such contrast: under assumptions A 2(ii) and A 3(i)–(iii) we
have that our empirical contrast γθ,n(∆) converges in probability as n tends to infinity to the
true unknown contrast γθ(∆). And, by using Lemma 3.1 we have

γθ(∆) = E[gθ(Y1∆)] = E[Π2
θ(∆, X1∆)]− 2E[Πθ(∆,X1∆)]

=

∫∫
Π2
θ(∆, x, y)fθ0(x)dxdy − 2

∫∫
Πθ(∆, x, y)Πθ0(∆, x, y)fθ0(x)dxdy

= ‖Πθ‖2
f − 2〈Πθ,Πθ0〉f = ‖Πθ − Πθ0‖

2
f − ‖Πθ0‖

2
f .

Then, this contrast is an empirical counterpart of the distance ‖Πθ−Πθ0‖f . Since Πθ(∆, ., .)

is known in rare instances, we construct a closed-form sequence γ(K)
θ,n (∆) of approximations to

2Note that the variance of the measurement error σ2
ε is an extra parameter that can be consistently estimated

by using (1/2n)
∑n−1
i=1 (Y(i+1)∆ − Yi∆)2 which is half of the quadratic variation of the observations.
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the contrast function γθ,n(∆) where we use the sequence Π
(K)
θ (∆, ., .) of approximations to the

transition density defined by (5) in Section 2. We define the Hermite approximate contrast
estimator as

θ̂(K)
n = arg min

θ∈Θ
γ

(K)
θ,n (∆). (9)

We will see in Section 4 that this contrast is greatly simplified for constant volatility function
where in this case the contrast reduces only to the computation of the operator K2.

3.4 Asymptotic properties of the minimum contrast estimator

We study the properties of the sequence of the minimum contrast estimators θ̂(K)
n derived

from minimizing over θ in Θ the approximate contrast function. We will then show that θ̂(K)
n

converges as K tends to infinity to the true but unknown contrast estimator θ̂n. The strategy
we employ to study the asymptotic properties of θ̂(K)

n is to first determine those of θ̂n (see
Theorem 3.1) and then show that θ̂(K)

n share the same asymptotic properties as θ̂n provided
that K tends to infinity with n (see Theorem 3.2).

To establish the asymptotic study of our estimator, we define the following estimating
equation:

Sθ,n(∆) =
1

n

n∑
i=1

sθ(Yi∆),

where sθ is a r-dimensional function given by,

yi∆ 7→ sθ(yi∆) = K1
∇θΠ2

θ
(yi∆)− 2K2

∇θΠθ
(yi∆).

To make an analogy with the likelihood estimator, one can see the quantity Sθ,n(∆) as the
score vector. Under assumptions A 2(ii) and A 3(i)–(iii) we have that Sθ,n(∆) converges in
probability as n tends to infinity to Sθ(∆). And, by using Lemma 3.1 and the same strategy
of deconvolution we obtain

Sθ(∆) = E[sθ(Y1)] = 2
〈
∇θΠθ,Πθ − Πθ0

〉
f
.

Let us now introduce the matrix Σθ(∆) given by

Σθ(∆) = V−1
θ (∆)Ωθ(∆)V−1′

θ (∆) with Ωθ(∆) = Ωθ,0(∆) + 2
+∞∑
j=2

Ωθ,j−1(∆),

where Vθ(∆) denotes the Hessian matrix of γθ(∆), i.e., Vθ(∆) = E[∇θsθ(Y1∆)] and Ωθ,0(∆) =
Var (sθ(Y1∆)) and Ωθ,j−1(∆) = Cov (sθ(Y1∆), sθ(Yj∆)).

To obtain our asymptotic results, that is, the consistency and the asymptotic distribution
of our estimator, we further assume that the following assumptions hold true.

A 4. Asymptotic statistical assumptions: The parameter value θ0 ∈ int(Θ) and a neigh-
borhood U of θ0 ∈ Θ exists such that

(i) The mapping θ 7→ γθ(∆) admits a unique minimum at θ = θ0 and its Hessian matrix
Vθ(∆) computed at θ0 is invertible.

(ii) The function sθ has to be continuously differentiable on U for all y1∆ and integrable with
respect to GY for all θ ∈ U .
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(iii) There exists an integrable function h such that ‖sθ(y1∆)‖ ≤ h(y1∆) for all θ ∈ J a
compact subset of Θ.

(iv) The function y1∆ 7→ ‖∇θsθ(y1∆)‖ is dominated for all θ ∈ U by a function which is
integrable with respect to GY.

(v) (CLT assumption):
√
nSθ,n(∆) converges in law to N (0,Ωθ(∆)) under Pθ0 for any θ ∈ Θ

for which Sθ(∆) = 0.

Let us explain what Assumptions A 4(ii) imply for the integrability of the two operators
K1 and K2. Each coordinate of K1

∇θΠ2
θ
and K1

∇2
θΠ2

θ
have to be integrable. In the same way, each

coordinate of K2
∇θΠθ

and K2
∇2
θΠθ

have to be integrable as well. This assumption is the analogous
of Assumption A 3(iii). Furthermore, Assumptions A 4(iii) and (iv) imply local dominance
conditions of the first two derivatives of K1 and K2.

A sufficient condition ensuring the CLT assumption A 4(v) with Ωθ(∆), given in Corollary
3.1, is that the diffusion process (1) is stationary ergodic and geometrically α-mixing, which
is given by assumptions A 2(i)-A 2(iv), that Ωθ(∆) converges and is strictly positive definite
and for some ε > 0, E[(∇θsθ(Y1∆))2+ε] <∞ (see [15] for more details).

For models where integrability assumptionsA 3(iii) andA 4(ii) are not satisfied, we propose
to insert a weight function ϕ or a truncation Kernel as in [14, p. 285] to circumvent the issue
of integrability. More precisely, we define the operators as follows

K1
h?NBn

(x) =
1

2π

∫
eixu

(h ? NBn)∗(u, 0)

f ∗ε (−u)
du, (K2)∗h?NBn =

(h ? NBn)∗

f ∗ε ⊗ f ∗ε
,

where N∗Bn is the FT of a density deconvolution kernel with compact support and satisfies
|1−N∗Bn(t)| ≤ 1|t|>1 and Bn is a sequence which tends to infinity with n. The contrast is then
defined as

γθ,n(∆) =
1

n

n−1∑
i=1

K1
Π2
θ?N

(Yi∆)− 2K2
Πθ?N

(Yi∆).

This contrast still works under AssumptionsA 2–4 by taking NBn(t)∗ = 1|t|≤Bn with Bn → +∞.
The identifiability assumptionA 4(i) is based on the strictly convex character of the contrast

function γθ(∆) and on the following condition on the drift and volatility functions:

bθ(x) = bθ0(x) and σθ(x) = σθ0(x) for fθ almost all x imply θ = θ0.

The invertibility of Vθ(∆) requires to study the invertibility of the matrix (〈∂θkΠθ, ∂θjΠθ〉)j,k
for j, k ∈ {1, . . . , r}. This suggests that the transition function Πθ must not be uniformly flat
in the direction of any one of the parameters θk. Otherwise, ∂Πθ/∂θk ≡ 0 for all (x, y) and the
vector of parameters cannot be identified.

Theorem 3.1. Under Assumptions A 2–A 4, and for ∆ ∈ (0,∆) with ∆ > 0, let θ̂n be the
contrast estimator defined in (8). Then we have

θ̂n → θ0 in probability as n→∞.

Moreover, √
n(θ̂n − θ0)→ N (0,Σθ0(∆)) in law as n→∞.

Furthermore, if the function sθ is locally dominated integrable3 w.r.t. GY and Sθ(∆) 6= 0 for
all θ 6= θ0, then the estimator θ̂n is the unique estimator on any bounded subset of Θ containing
θ0 with probability approaching one as n→∞.

3Locally dominated integrability w.r.t. GY means that, for all θ1 ∈ Θ there exists a neighborhood Uθ1 of θ1

and a non-negative GY-integrable function hθ1 such that |sθ(y1∆)| ≤ hθ1(y1∆) for all (y1∆, θ1).
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The proof of Theorem 3.1 is provided in Subsection 6.1.
The following corollary gives an expression of the matrices Ωθ0(∆) and Vθ0(∆) defined in

Σθ0(∆) of Theorem 3.1.

Corollary 3.1. Under assumptions A 2–A 4, the matrix Ωθ0(∆) is given by

Ωθ0(∆) = Ωθ0,0(∆) + 2
+∞∑
j=2

Ωθ0,j−1(∆),

where

Ωθ0,0(∆) =E[(K1
∇θΠ2

θ
(Y1∆))2] + 4E[(K2

∇θΠθ
(Y1∆))2]−

(
E
[ ∫
∇θΠ

2
θ(∆, X1∆, y)dy

]2

+4E
[
∇θΠθ(∆,X1∆)

]2

− 4E
[ ∫
∇θΠ

2
θ(∆, X1∆, y)dy

]
E[∇θΠθ(∆,X1∆)]

)
,

and, the covariance terms are given by

Ωθ0,j−1(∆) =Cov
(∫
∇θΠ

2
θ(∆, X1∆, y)dy,

∫
∇θΠ

2
θ(∆, Xj∆, y)dy

)
+ 4Cov (∇θΠθ(∆,X1∆),∇θΠθ(∆,Xj∆))

− 4Cov
(∫
∇θΠ

2
θ(∆, X1∆, y)dy,∇θΠθ(∆,Xj∆)

)
,

where the differential ∇θΠθ is taken at point θ = θ0.
Furthermore, the Hessian matrix Vθ0(∆) is given by(

[Vθ0 ]j,k (∆)
)

1≤j,k≤r
= 2

(〈
∂θkΠθ, ∂θjΠθ

〉)
j,k

at point θ = θ0.

The proof of Corollary 3.1 stems mainly from Lemma 3.1 and assumptions A 2–A 4. For a
complete detail see [17].

If one wants to use Corollary 3.1 to build confidence sets, one needs to construct consistent
estimator of the corresponding matrix Σθ0(∆). Since, by assumption Vθ(∆) is a continuous
function of θ, Vθ̂n(∆) is a consistent estimator of Vθ0(∆) under our assumptions. This result is
given in Corollary 3.2. Another possible way to estimate Σθ(∆) is to use a bootstrap method,
following, for instance [7] when the hidden variables form a Markov chain.

Corollary 3.2. Under Assumptions A 4(i)–(v), we have

Vθ,n(∆) =
1

n

n∑
i=1

∂θsθ(Yi∆)→ Vθ0(∆) in probability as n → +∞, (10)

where Vθ,n(∆) is computed at θ̂n a consistent estimator of θ0. The probability that Vθ,n(∆) is
invertible approaches one as n→∞. If, moreover, the function y1∆ 7→ ‖sθ(y1∆)‖ is dominated
for all θ ∈ U where U is a neighborhood of θ0 ∈ Θ by a function which is square integrable with
respect to GY, then

Ωθ,0,n(∆) =
1

n

n∑
i=1

sθ(Yi∆)sθ(Yi∆)′ → Ωθ0,0(∆) in probability as n → +∞,

where Ωθ,0,n(∆) is computed at θ̂n a consistent estimator of θ0.
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The proof of Corollary 3.2 is given in Subsection 6.2 and results from the Uniform Law of
Large Numbers (ULLN).

The following theorem shows that θ̂(K)
n inherits the asymptotic properties of the uncom-

putable θ̂n.

Theorem 3.2. Under Assumptions A 2–A 4, and for ∆ ∈ (0,∆) with ∆ > 0,

• Fix the sample size n. Then as K →∞, θ̂
(K)
n → θ̂n in probability.

• As n → ∞, there exists Kn such that θ̂(Kn)
n − θ̂n = op

(
Σ
−1/2
θ0

(∆)
)
under Pθ0 which then

makes θ̂(Kn)
n and θ̂n share the same asymptotic distribution.

The proof is given in Subsection 6.3.

4 Expression of the Hermite contrast for general diffusions

Let us consider the SDE given in (1). We give a general expression of the FT of the Hermite
approximation density, which allows us to calculate our contrast approach. We consider the
two following cases:

1. constant volatility function, meaning that the function σθ is independent of the state x;

2. state dependent volatility function.

Theorem 4.1. The FT of the Hermite transition density approximation in (5) are given by:

((ΠK
θ )2(∆, x, 0))∗ =

1√
π∆

K∑
k=0

2k−1k!(η2
θ,k(∆, ρθ(x)))∗ for case 1 and 2,

and,

(ΠK
θ (∆, x, y))∗ =

{
ϕ(y, 0, 1)

∑K
k=0(−i)kHk(

√
∆σ2

θy)[ηθ,k(∆, ρθ(x+ y))]∗ for case 1∑K
k=0 Lθ,k(∆, x, y) for case 2

with

Lθ,k(∆, x, y) =
1√

2π∆

∫∫
e−iuxηθ,k(∆, ρθ(u))e−iyρ

−1
θ (
√

∆t+ρθ(u))ϕ(t, 0, 1)Hk(t)dtdu,

where ϕ(t, 0, 1) corresponds to the standard zero mean Gaussian density and ρθ the Lamperti
function defined in Subsection 2.2.

The proof is given in 6.4.
For SDE with a constant volatility function (case 1), the Lamperti function ρθ is linear w.r.t.

x which involves that the Hermite contrast can be easily obtained and quickly computed.
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5 Numerical simulation
In this section, we study empirical behavior of our strategy of estimation for parametric models
on the hidden diffusion Xt commonly used in several applications. We consider the OU model
where the transition is known in closed form in order to compare the performance of the Hermite
contrast estimator with the true contrast and with the Euler contrast which consists in a simple
discretization of the continuous-time SDE. This process is widely used in many applications in
finance or biology and satisfies the following SDE

dXt = −φ0Xtdt+ σ0,XdWt, (11)

where θ0 = (φ0, σ0,X) and X = (−∞,+∞). The diffusion term is independent of the state, so
we are in the first case of Theorem 4.1. The transition density Πθ0(∆, x, y) is Gaussian with
mean mθ0,X,∆(x) = xe−φ0∆ and variance γ2

θ0,X,∆
(x) = (1 − e−2φ0∆)σ2

0,X/(2φ0) (independent of
x) and is continuously infinitely differentiable w.r.t. x and θ. Furthermore, for φ0 > 0 the
process is ergodic and the speed of convergence to equilibrium is exponential, meaning that the
process is geometrically ergodic. Indeed, let us denote by ‖.‖TV the total variation norm and
by D(g||h) the Kullback-Leibler divergence, we have

2‖Πθ0 − fθ0‖2
TV ≤ D(Πθ0||fθ0),

where fθ0 corresponds to the invariant density of the OU process (11), a Gaussian density with
zero mean and variance σ2

0,X/2φ0. Furthermore, for two Gaussian densities g, h with mean and
variance respectively m1 (resp. m2) and v1 (resp. v2) we have

D(g||h) =
(m1 −m2)2

2v2

+
1

2

(
v1

v2

− 1− ln
v1

v2

)
.

Applying this to the OU process, we obtain that

2‖Πθ0 − fθ0‖2
TV ≤

φ0

σ2
0,X

x2e−φ0∆ − 1

2

(
e−2φ0∆ + ln(1− e−φ0∆)

)
≤ Cθ0xe

−φ0∆ +O(e−φ0∆).

All moment conditions are satisfied for the Gaussian density of the OU process but integrability
assumptions A 3(iii) and A 4(ii) are not satisfied. For the simulations, we have opted for the
introduction of a weight function ϕ as detailed in Section 6.7.

5.1 Comparison of the FTs of the Hermite and Euler approximations
of the closed-form density

Before comparing the different contrasts obtained by different approximations of the transition
density, it is interesting to first compare the FTs of the approximate transition densities since
our contrast is essentially based on this deconvolution strategy.

The Euler approximation corresponds to a simple discretization of the continuous-time SDE
where the differential equation (11) is replaced by

Xt+∆ −Xt = (1− φ∆)Xt + σX
√

∆ηt+∆,

with ηt+∆ ∼ N (0, 1). Hence the Euler transition density is also Gaussian with mean (1−φ∆)x
and variance ∆σ2

X . The Hermite transition density is given in the following Lemma.
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Figure 1: Comparison of the uniform error of the FT of the approximations densities with
the FT of the closed form density for different sampling interval ∆ ∈ {1/5, 1/12, 1/252} and
different order K ∈ {0, . . . , 4}.

Lemma 5.1. For the OU process defined in (11), the Hermite approximation of the transition
density has the following form

ΠK
θ (∆, x, y) =

1√
2π∆σX

exp

(
− (y − x)2

2∆σ2
X

)( K∑
k=0

ηθ,k(∆, x)Hk

(
y − x
σX
√

∆

))
.

The proof and expressions of terms ηθ,k, k = 1 up to 3 are postponed in Subsection 6.5, their
expressions for general diffusions are given in [1].

To examine the accuracy of the expansion of the FT of ΠK
θ with the FT of the true

transition probability density of the underlying process we use as in [1] and [39] the uni-
form error between the K-th order expansion and the true density as a measure of approx-
imation error defined as maxy |eKθ (∆, x, y)| over the range D = [−5, 5] where eKθ (∆, x, y) =
(ΠK

θ (∆, x, y))∗ − (Πθ(∆, x, y))∗.
Figure 1 displays the approximation errors of the expansion for the OU process. Two

general patterns arise in the experiment results. First, for a fixed order K, the error of the FT
of the density approximation decreases as the observational time interval ∆ shrinks. When the
observation frequency changes from monthly to daily (∆ from 1/12 to 1/252), the uniform error
of the density approximation reduced very significantly. Second, when we fix the observation
frequency ∆, the expansion with a larger K will lead to a smaller approximation error. These
patterns for the FT of the density approximation corroborate the theoretical statements in [2,
Theorem 1 p.232] and [3]. Moreover, whatever the frequency of observation ∆, the Hermite
approximation gives better results than the Euler approximation from K ≥ 1.

5.2 Comparison of the Hermite and Euler approximation contrast
estimators with the true contrast

The following proposition gives the theoretical unknown contrast γθ(∆) defined in (6) for the
OU process (11).

Proposition 5.1. For the OU process defined in (11), the theoretical contrast function is

γθ(∆) = −1 +
γθ,X,∆ + γθ0,X,∆

2
√
π∆γ2

θ,X,∆γ
2
θ0,X,∆

−
√

2

π∆(γ2
θ0,X,∆

+ γ2
θ,X,∆)

exp

(
− ∆

2

(φ0 − φ)2

(γ2
θ0,X,∆

+ γ2
θ,X,∆)

)
,

with γ2
θ,X,∆ the variance of the OU process transition density.
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Figure 2: Contrast functions with Gaussian noises fε. (a): γ as a function of the parameters
φ and σ2

X for one realization of (12), with n = 2000,∆ = 1. (b): γn. (c): γEn . (d): γKn with
K = 2. (e)-(h): Corresponding contour lines. The red circle represents the global minimizer θ0

of γ(θ) and the blue circle, the one of γn, γEn and γKn respectively.

Proof is provided in Section 6.6.

Proposition 5.2. From Theorem 4.1, it is straightforward to see that the empirical Hermite
contrast can be obtained from the following quantities, whatever the FT of the noises density
f ∗ε .

((ΠK
θ )2(∆, x, 0))∗ =

1√
π∆σ2

X

K∑
k=0

2kk!

(
η2
k

(
x

σX

))∗
. (12)

And,

(ΠK
θ (∆, x, y))∗ = ϕ(y, 0, 1)

K∑
k=0

(−i)kHk(
√

∆σ2
Xy)

(
ηk

(
x+ y

σX

))∗
.

Proof. The proof is essentially a consequence of Theorem 4.1 and the fact that the Lamperti
transform function ρ for the OU process is ρθ(x) = x/σX , which is linear in x (case 1).

5.3 Numerical results

Study of the contrasts: We study the behavior of the true contrast estimator of θ0 (which is
computable in this example since the transition function is known in closed form) and compare
it with the Euler and Hermite contrast estimators. r, we do not report the results here.

Figure 2 (resp. Figure 3) plots the true theoretical contrast γ defined in (12), the empirical
true contrast γn, the Euler contrast γEn and γKn computed with the Hermite transition density
given in Proposition 5.2, when we take a Gaussian density noise fε (resp. Laplace density). We
illustrate the corresponding estimators θ̂n, θ̂En and θ̂Kn with the true value θ0. For the simulation
we take n = 2000, θ0 = (0.7, 0.08) and ∆ = 1. For measurement errors, we consider a signal-
to-noise ratio denoted SNR and defined as σ2

X/σ
2
ε equal to 10, so a high noise level and we

make only one MC replication for these illustrations. For integrability condition, all these
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Figure 3: Contrast functions with Laplace noises fε. (a): γ as a function of the parameters
φ and σ2

X for one realization of (12), with n = 2000,∆ = 1. (b): γn. (c): γEn . (d): γKn with
K = 2. (e)-(h): Corresponding contour lines. The red circle represents the global minimizer θ0

of γ(θ) and the blue circle, the one of γn, γEn and γKn respectively.

contrasts are computed on a large truncated intervals. For the Gaussian case, [−10, 10] yields a
calculation that is both accurate and fast. From these simulations, we note a much larger bias
can already be noted with the Euler scheme. This bias is not surprising since, on the one hand,
we have seen that the FT approximation was less accurate than that of the Hermite scheme.
Unlike Euler’s scheme, Hermite’s approximation takes into account higher order moments than
the first two moments. On the other hand, it can be noted that for Laplace measurement noise,
the results are still as good with the Hermite estimator and remain unchanged, contrary to
the Euler estimator which presents better results than those when the measurement errors are
Gaussian (see Figure 3).
Monte-Carlo experiments: Considering the following decomposition

(θ(K)
n − θ0) = (θ(K)

n − θ̂n) + (θ̂n − θ0).

We identify two sources of errors contributing to the estimation error of the Hermite expansion.
The first one is (θ̂n − θ0), the discrepancy between the true contrast estimator θ̂n and the
parameter θ0. This quantity measures the error caused intrinsically by the contrast approach,
which is independent of the proposed Hermite approximation. The other one is (θ̂

(K)
n − θ̂n)

which is affected by the accuracy of the density approximation. Since the true density for the
OU process is explicitly known, we can compute the true contrast θ̂n and thus distinguish the
impact of these two error sources. We tabulate the mean and the standard deviations of these
errors in Table 1. This Table shows that when the time step ∆ gets smaller, or as the order of
approximation K increases, the approximate contrast θ̂(K)

n defined in (9) gets closer to the true
uncomputable contrast, and thus to the true parameter. While keeping the time step ∆ fixed,
the approximation error (θ

(K)
n − θ̂n) decreases and is dominated by the intrinsic estimation error

(θ̂n − θ0) as K increases.
Sensibility of the results w.r.t. σ2

ε : In Figure 4 we report the comparison of the various
approximations when one considers the half of the quadratic variation of the observations as
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Table 1: Monte-Carlo Evidence for the OU process with different order of expansion. The
number of simulation trials is MC = 100 and the number of observations is n = 1000.

θ0 θ̂n − θ0 θ̂
(1)
n − θ0 θ̂

(2)
n − θ0 θ̂

(3)
n − θ0

∆ = 1/252
φ0 = 0.7 0.219 0.032 0.022 0.0134

(0.314) (0.045) (0.031) (0.0141)
σ2

0,X = 0.08 0.00041 0.000032 0.000021 0.000015
(0.015) (0.00038) (0.000014) (0.000008)

∆ = 1/12
φ0 = 0.7 0.191 0.028 0.013 0.009

(0.124) (0.049) (0.021) (0.009)
σ2

0,X = 0.08 0.0008 0.00007 0.000011 0.000006
(0.015) (0.00024) (0.000054) (0.000051)

∆ = 1/5
φ0 = 0.7 0.374 0.056 0.042 0.031

(0.222) (0.06) (0.038) (0.025)
σ2

0,X = 0.08 0.0045 0.00032 0.00028 0.00015
(0.047) (0.0054) (0.0037) (0.0014)

True Contrast Hermite Euler

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

(a)

True Contrast Hermite Euler

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

(b)

Figure 4: (a) Boxplot of φ̂n, φ̂Kn with K = 2 and φ̂En . (b) Boxplot of σ̂X,n, σ̂KX,n with K = 2 and
σ̂EX,n

an estimator of σ2
ε (see [51])

σ̂2
ε =

1

2n

n∑
i=2

(Yi∆ − Y(i−1)∆)2.

We report the Boxplot of each estimator of φ and σ2
X for a number of observations n = 2000,

∆ = 1 and N = 100 replications. For the Hermite contrast we take an order K = 2. We note
that our approach still works when the variance of measurement noise is estimated. The results
are better for the Hermite contrast where the boxplot size is smaller than the Euler contrast.
Moreover, we note for the Euler approximation that the drift seems to be significantly more
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difficult to estimate. This may in part be explained by the large sampling interval and would
support the known results highlighting the significant bias in drift estimation when the sampling
interval does not tend towards zero for this approach (see [20]).

Conclusion
A new approach based on Hermite expansions is presented in this paper and makes an alter-
native practical option to the intractable MLE for the estimation of parameters in discretely
sampled diffusion models observed with measurement errors. This approach is useful in many
applications where the underlying process is unobservable or partially observed, for example
application of this approach to derivative pricing under stochastic volatility models is inter-
esting since the estimation of the parameters of the dynamics of the unobservable volatility
is done without using a proxy variable of the latter as in [4] and more precisely without the
need to have option prices upstream of the estimation of the parameters to calculate the proxy.
The consistency and CLT is proved and a thorough comparison of this approach is made with
the same construction of the contrast when it is computed from a Euler-Maruyama time dis-
cretization of the continuous time process. We show the superiority of the Hermite’s expansion
whatever the observation frequency and for a reasonable order of approximation K. Several
extensions of this work are possible. On the one hand, the investigation of a rule of thumb
allowing to choose the parameter K based on a penalized criterion. On the other hand, an
extension to the multivariate framework by considering the approach proposed in [5] which
allows to avoid the computation of the Lamperti transformation, which is not always possible
in a multidimensional setting.
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6 Proofs

6.1 Proof of Theorem 3.1

For the reader convenience we split the proof of Theorem 3.1 into two parts: in Subsection 6.1.1,
we give the proof of the existence of our contrast estimator defined in (6). In Subsection 6.1.2,
we prove the consistency and the asymptotic normality of our estimator.

6.1.1 Proof of the existence and measurability of the M-estimator

By assumption, the function gθ(yi∆) = K1
Π2
θ
(yi∆)− 2K2

Πθ
(yi∆) is continuous w.r.t θ. Hence, the

function γθ,n(∆) = 1
n

∑n
i=1 gθ(Yi∆) is continuous w.r.t θ belonging to the compact subset Θ.

So, there exists θ̃ belongs to Θ such that infθ∈Θ γθ,n(∆) = γθ̃,n(∆).

6.1.2 Proof of the consistency and the asymptotic normality

The proof of the consistency relies on [33, Theorem 1.58 p 87]. It remains to verify that under
our assumptions, the function θ 7→ Vθ defined in Assumption A 4(i) and explicitly given in
Corollary 3.1 is continuous and verifies the following ULLN

sup
θ∈J
‖ 1

n

n−1∑
i=1

∇θsθ(Yi∆)− Vθ)‖ →Pθ0 0,

where J is a compact subset of Θ.
The continuity of Vθ is given by the dominated convergence theorem and in particular Vθ

is uniformly continuous on the compact set J . To prove the ULLN, define for ξ > 0:

κ(ξ; y1∆) = sup
θ1,θ2∈J :‖θ2−θ1‖≤ξ

‖∇θsθ2(y1∆)−∇θsθ1(y1∆)‖.

For convenience, we will denote κ(ξ) the function (y1∆) 7→ κ(ξ; y1∆).
By AssumptionA 4(iv), κ(ξ) ≤ 2h and thanks to the dominated convergence theorem E[κ(ξ)]→
0 as ξ →∞. Since Vθ(∆) is uniformly continuous w.r.t. θ, for any given ε > 0, we can choose
ξ > 0 such that E[κ(ξ)] ≤ ε and such that ‖θ2− θ1‖ ≤ ξ implies that ‖Vθ1(∆)−Vθ2(∆)‖ ≤ ε for
θ1, θ2 ∈ J . Define the Balls Bθ1,ξ = {θ2 such that ‖θ2 − θ1‖ ≤ ξ}. Since J is compact, there
exists a finite covering

J ⊆
m⋃
j=1

Bθj ,ξ,

where θ1, . . . , θm ∈ J , hence we can find θr, r ∈ {1, . . . ,m} such that θ ∈ Bθr,ξ. Hence, let

Hn(θ,∆) =
1

n

n−1∑
i=1

∇θsθ(Yi∆).
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We have

‖Hθ,n(∆)− Vθ(∆)‖ ≤ ‖Hθ,n(∆)−Hθr,n(∆)‖+ ‖Hθr,n(∆)− Vθr(∆)‖+ ‖Vθr(∆)− Vθ(∆)‖

≤ 1

n

n−1∑
i=1

κ(ξ,Yi∆, ) + ‖Hθr,n(∆)− Vθr(∆)‖+ ε

≤
∣∣∣∣ 1n

n−1∑
i=1

κ(ξ,Yi∆)− E[κ(ξ)]

∣∣∣∣+ |E[κ(ξ)]|+ ‖Hθr,n(∆)− Vθr(∆)‖+ ε

≤ Tn + 2ε,

where

Tn =

∣∣∣∣ 1n
n−1∑
i=1

κ(ξ,Yi∆)− E[κ(ξ)]

∣∣∣∣+ max
1≤r≤m

‖Hθr,n(∆)− Vθr(∆)‖.

By the Ergodic Theorem, we have Pθ0(Tn > ε)→ 0 as n→∞. Hence,

Pθ0
(

sup
θ∈J
‖Hθ,n(∆)− Vθ(∆)‖ > 3ε

)
→ 0,

for all ε > 0.
Furthermore, by the local dominated integrability of sθ we have that sθ satisfied the ULLN:

sup
θ∈J
|Sθ,n(∆)− Sθ(∆)| → 0 under Pθ0 .

Hence, by Assumption A 4 (the local dominated integrability, the dominated convergence
and identifiability assumption) we obtain

inf
J\Bθ0,ε

|Sθ(∆)| > 0,

for all ε > 0, where Bθ,ε is the closed ball with a radius ε centered at θ. Hence, for any sequence
(θ̂n) of estimators

Pθ0
(
θ̂n ∈ J \Bθ0,ε

)
→ 0 as n→∞, for every ε > 0. (13)

Let θ̂′n be an estimator, and define another estimator θ̂′′n as θ̂′′n = θ̂′n1θ̂′n∈J + θ̂n1θ̂′n /∈J where θ̂n
is the consistent estimator. Hence, by (13) θ̂′′n is consistent and thanks to [33, Theorem 1.58],
Pθ0(θ̂n 6= θ̂′′n)→ 0 as n→∞. So, θ̂n is eventually the unique estimator on J .

The asymptotic normality follows from [33, Theorem 1.60 p.88] and AssumptionA 4(v).

6.2 Proof of Corollary 3.2

Let D be a compact subset of U such that θ0 ∈ int(D). By the ULLN,

1

n

n∑
i=1

∇θsθ(Yi∆)→ Vθ0(∆) in probability as n → +∞,

uniformly for θ ∈ D. This implies (10) because θ̂n converges in probability to θ0. The invert-
ibility of Vθ,n(∆) follows from the invertibility assumption A 4(i) of Vθ(∆). Also, the uniform
convergence in probability for θ ∈ D of

1

n

n∑
i=1

sθ(Yi∆)sθ(Yi∆)′ →Pθ0 Ωθ0,0(∆),

follows from the ULLN.
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6.3 Proof of Theorem 3.2

The proof is based on the following Lemma.

Lemma 6.1. Under Assumption A 1 there exists ∆ > 0 such that for every ∆ ∈ (0,∆), θ ∈ Θ
and (x, x0) in X 2:

ΠK
θ,X(∆, x0, x)→ Πθ,X(∆, x0, x) as K → +∞.

Moreover, the convergence is uniform in θ ∈ Θ, in x0 over compact subsets of X and uniform
in x over the entire domain X .

For the proof of Lemma 6.1 see [2, Theorem 1 p.232].
Assumptions A 1–A 3 and Lemma 6.1 lead to

γ
(K)
θ,n (∆)→ γθ,n(∆) in probability as K → +∞ uniformly in θ ∈ Θ.

So, the convergence in probability of the respective arg min θ̂Kn towards θ̂n as K → +∞ is then
an application of standard methods since the respective contrasts γ(K)

θ,n (∆), γθ,n(∆) and their
derivatives are both continuous in θ for all n and K. This proves the first part of Theorem 3.2.
For the second part, that is, for the convergence as n → +∞, one can see that from the first
part, one can find a value Kn for each n to render |θ̂Knn − θ̂n| arbitrarily small in probability.
Hence, one can select Kn → +∞ such that θ̂Knn − θ̂n = op(Σ

−1/2
θ0

) as n→ +∞.

6.4 Proof of Theorem 4.1

For the proof we will use the following Lemma about some orthogonality properties of Hermite
polynomials w.r.t. the weight factor e−s2 on the interval R (see [9]).

Lemma 6.2. ∫
R
Hl(s)Hk(s)e

−s2ds =

{
0 if l 6= k

2kk!
∫
R e
−s2ds = 2kk!

√
π for l = k

Proof. Let l < k, using the definition of Hk(s) given in Section 2.2 and integration by part we
have

(−1)k
∫
R
Hl(s)Hk(s)e

−s2ds =

∫
R
Hl(s)

∂k

∂sk
e−s

2

ds

=

[
Hl(s)

∂k−1

∂sk−1
e−s

2

]
R
−
∫
∂sHl(s)

∂k−1

∂sk−1
e−s

2

ds

= −
∫
∂sHl(s)

∂k−1

∂sk−1
e−s

2

ds.

Now, using the fact that ∂sHl(s) = 2lHl−1(s) and repeating the integration by part l times we
obtain ∫

R
Hl(s)Hk(s)e

−s2ds = (−1)1+k2l

∫
R
Hl−1(s)

∂k−1

∂sk−1
e−s

2

ds

= (−1)l+k2ll!

∫
R
H0(s)

∂k−l

∂sk−l
e−s

2

ds

= (−1)l+k2ll!

[
∂k−l−1

∂sk−l−1
e−s

2

]
R

= 0,
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whereas in the case l = k the result is given by∫
R
H2
k(s)e−s

2

ds = 2kk!

∫
R
e−s

2

ds = 2kk!
√
π.

The proof of Theorem 4.1 is given in turn for case 1 and case 2.
Case 1 (independent state diffusion) We have that ρθ(x) = x/σθ for all x and so

(ΠK
θ (∆, x, y))2 =

1

2
√
π∆σ2

θ

ϕ(ρθ(y), ρθ(x),
∆

2
)

( K∑
k=0

ηθ,k(∆, ρθ(x))Hk

(
ρθ(y)− ρθ(x)√

∆

))2

,

where ϕ(z, y, a) denotes the Gaussian density with mean y, variance a and is evaluated at z.
Hence,

((ΠK
θ (∆, x, 0))2)∗ =

∫
e−ixuΠ̃K

θ (∆, u)du,

with

Π̃K
θ (∆, u) =

∫
(ΠK

θ )2(∆, u, v)dv

=
1

2
√
π∆

∫
ϕ(ρθ(v), ρθ(u),

∆

2
)

1

σθ

( K∑
k=0

ηθ,k(∆, ρθ(u))Hk

(
ρθ(v)− ρθ(u)√

∆

))2

dv

=
1

2π∆

{∫
1

σθ
e−

(ρθ(v)−ρθ(u))2

∆

( K∑
k=0

ηθ,k(∆, ρθ(u))Hk

(
ρθ(v)− ρθ(u)√

∆

))2

dv

}
.

=
1

2π∆σθ

{ K∑
k=0

η2
θ,k(∆, ρθ(u))

∫
e−

(ρθ(v)−ρθ(u))2

∆ H2
k

(
ρθ(v)− ρθ(u)√

∆

)
dv

+ 2
∑

1≤k<l<K

ηθ,k(∆, ρθ(u))ηθ,l(∆, ρθ(u))×∫
e−

(ρθ(v)−ρθ(u))2

∆ Hk

(
ρθ(v)− ρθ(u)√

∆

)
Hl

(
ρθ(v)− ρθ(u)√

∆

)
dv

}
.

Let the following change of variable s = ρθ(v)−ρθ(u)√
∆

and ds = ∂vρθ(v)√
∆

dv = dv
σθ
√

∆
(for the case

1 ρθ is linear in v), we obtain

Π̃K
θ (∆, u) =

1

2π
√

∆

{ K∑
k=0

η2
θ,k(∆, ρθ(u))

∫
e−s

2

H2
k(s)ds

+ 2
∑

1≤k<l<K

ηθ,k(∆, ρθ(u))ηθ,l(∆, ρθ(u))

∫
e−s

2

Hk(s)Hl(s)ds

}
.

Using Lemma 6.2, the last term vanishes and we have

Π̃K
θ (∆, u) =

1√
π∆

K∑
k=0

2k−1k!η2
θ,k(∆, ρθ(u))

(Π̃K
θ (∆, u))∗ =

1√
π∆

K∑
k=0

2k−1k!(η2
θ,k(∆, ρθ(u)))∗.
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Let’s now consider the terms involved in the operator K2. We have

(ΠK
θ (∆, x, y))∗ =

∫∫
e−i(xu+yv)ϕ(ρθ(v), ρθ(u),∆)

σθ

K∑
k=0

ηθ,k(∆, ρθ(u))Hk

(
ρθ(u)− ρθ(u)√

∆

)
dudv.

with σθ independent of v and ρθ linear in v. By Fubini and change of variable z = v − u, this
integral becomes

∫
e−ixu

K∑
k=0

ηθ,k(∆, ρθ(u))

(∫
e−iyv

ϕ(ρθ(v), ρθ(u),∆)

σθ
Hk

(
ρθ(v)− ρθ(u)√

∆

)
dv

)
du

=
1√

2π∆σθ

∫
e−iu(x+y)

K∑
k=0

ηθ,k(∆, ρθ(u))

∫
e−iy(v−u)e−

(ρθ(v)−ρθ(u))2

2∆ Hk

(
ρθ(v)− ρθ(u)√

∆

)
dvdu

=
1√

2π∆σθ

∫
e−iu(x+y)

K∑
k=0

ηθ,k(∆, ρθ(u))

∫
e−iyze−

(ρθ(z+u)−ρθ(u))2

2∆ Hk

(
ρθ(z + u)− ρθ(u)√

∆

)
dzdu.

By the change of variable t = z√
∆σθ

and since ρθ is linear in v we obtain

(ΠK
θ (∆, x, y))∗ =

1√
2π∆σ2

θ

∫
e−iu(x+y)

K∑
k=0

ηθ,k(∆, ρθ(u))

(∫
e−iyze

− z2

2∆σ2
θHk(

z√
∆σ2

θ

)dz

)
du

=
1√
2π

∫
e−iu(x+y)

K∑
k=0

ηθ,k(∆, ρθ(u))

(∫
e−iy
√

∆σ2
θte−

t2

2 Hk(t)dt

)
du

By property of the FT of the Hermite functions hk(t) = (2kk!
√
π)−1/2Hk(t)e

− t
2

2 and in particular
h∗k(t) =

√
2π(−i)khk(t), we obtain

∫
e−iy
√

∆σ2
θte−

t2

2 Hk(t)dt =
√

2π(−i)kHk

(
y
√

∆σ2
θ

)
e−

y2

2 ,

and so

(ΠK
θ (∆, x, y))∗ =

K∑
k=0

(−i)kHk

(
y
√

∆σ2
θ

)
e−

y2

2

∫
e−iu(x+y)ηk(∆, ρθ(u))du

= ϕ(y, 0, 1)
K∑
k=0

(−i)kHk

(
y
√

∆σ2
θ

)
(ηk(∆, ρθ(x+ y)))∗,

with ϕ(y, 0, 1) the standard Gaussian density.
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Case 2 (dependent state diffusion) We have

Π̃K
θ (∆, u) =

∫
(ΠK

θ )2(∆, u, v)dv

=
1

2
√
π∆

∫
ϕ(ρθ(v), ρθ(u),∆/2)

1

σθ(v)

( K∑
k=0

ηθ,k(∆, ρθ(u))Hk

(
ρθ(v)− ρθ(u)√

∆

))2

dv

=
1

2π∆

{∫
1

σθ(v)
e−

(ρθ(v)−ρθ(u))2

∆

( K∑
k=0

ηθ,k(∆, ρθ(u))Hk

(
ρθ(v)− ρθ(u)√

∆

))2

dv

}
.

=
1

2π∆

{ K∑
k=0

η2
θ,k(∆, ρθ(u))

∫
1

σθ(v)
e−

(ρθ(v)−ρθ(u))2

∆ H2
k

(
ρθ(v)− ρθ(u)√

∆

)
dv

+ 2
∑

1≤k<l<K

ηθ,k(∆, ρθ(u))ηθ,l(∆, ρθ(u))

×
∫

1

σθ(v)
e−

(ρθ(v)−ρθ(u))2

∆ Hk

(
ρθ(v)− ρθ(u)√

∆

)
Hl

(
ρθ(v)− ρθ(u)√

∆

)
dv

}
.

Let the following change of variable s = ρθ(v)−ρθ(u)√
∆

and ds = ∂vρθ(v)√
∆

dv = dv
σθ(v)

√
∆

for the case
2 and using Lemma 6.2 we obtain as in the case 1

Π̃K
θ (∆, u) =

1

2π
√

∆

{ K∑
k=0

η2
θ,k(∆, ρθ(u))

∫
e−s

2

H2
k(s)ds

+ 2
∑

1≤k<l<K

ηθ,k(ρθ(u))ηl(∆, ρθ(u))

∫
e−s

2

Hk(s)Hl(s)ds

}
.

=
1√
π∆

K∑
k=0

2k−1k!η2
θ,k(∆, ρθ(u)),

and the FT (Π̃K
θ (∆, u))∗ is the same as the one obtained in case 1. For the computation of

(ΠK
θ (∆, x, y))∗ we have

(ΠK
θ (∆, x, y))∗ =

∫∫
e−i(xu+yv)ϕ(ρθ(v), ρθ(u),∆)

σθ(v)

K∑
k=0

ηθ,k(∆, ρθ(u))Hk

(
ρθ(v)− ρθ(u)√

∆

)
dudv,

with σθ dependent of v. By Fubini and change of variable t = ρθ(v)−ρθ(u)√
∆

such that dt =
∂vρθ(v)√

∆
dv = 1√

∆σθ(v)
dv, this integral becomes

(ΠK
θ (x, y))∗ =

∫
e−ixu

K∑
k=0

ηθ,k(∆, ρθ(u))

(∫
e−iyv

ϕ(ρθ(v), ρθ(u),∆)

σθ(v)
Hk

(
ρθ(v)− ρθ(u)√

∆

)
dv

)
du

=
1√

2π∆

∫
e−iux

K∑
k=0

ηθ,k(∆, ρθ(u))

∫
1

σθ(v)
e−iyve−

(ρθ(v)−ρθ(u))2

2∆ Hk

(
ρθ(v)− ρθ(u)√

∆

)
dvdu

=
1√

2π∆

∫
e−iux

K∑
k=0

ηθ,k(∆, ρθ(u))

∫
e−iyρ

−1
θ (
√

∆t+ρθ(u))e−
t2

2 Hk(t)dtdu

=
K∑
k=0

Lθ,k(∆, x, y).
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6.5 Proof of Lemma 5.1

Proof. To compute the Hermite polynomial approximation of the transition density we need to
compute the coefficient ηk, k = 1, . . . , K defined in Subsection 2.2 from the transformed process
µθ,U(u) and the Hermite polynomial functions Hk. For the OU process, the transformed process
µθ,U is equal to −φu.

From this transformed process we can easily compute the coefficients ηk, k = 0, . . . , K
which are obtained by a Taylor expansion at the point ρθ(x) defined in Section (2). For the
OU process, this function is equal to x/σX so we have all ingredients to compute the Hermite
density approximation. We give below the coefficients ηk for K = 1 up to K = 3 and the
associated Hermite polynomials.

ηθ,0(∆, x0) = 1; H0 = 1,

ηθ,1(∆, x0) = ∆1/2φ
x0

σX

(
(1− φ∆

2
+ φ2 ∆2

6
)

)
−∆5/2 x2

0

6σ2
X

φ3; H1 =
(x− x0)

σX
√

∆
,

ηθ,2(∆, x0) =
∆

2
φ2 x

2
0

σ2
X

(
1 + ∆ +

7

12
φ4∆2

)
+ ∆φ2

(
1

2
−∆

φ

3
− φ∆2

6

)
; H2 = H2

1 − 1,

ηθ,3(∆, x0) = φ2 ∆3/2

6

x3
0

σ3
X

(
1− 3φ2 ∆

2

)
+ φ2 ∆3/2

6

(
7

2
φ∆− 3

)
; H3 = H3

1 − 3H1.

Furthermore, the quantity 1/(
√

∆σθ(x))ϕ((ρθ(x)−ρθ(x0))/
√

∆) for the OU process corresponds
to a Gaussian density with mean x0 and variance ∆σ2

X . Hence, the Hermite approximation of
the transition density has the following form

Π
(K)
θ (∆, x0, x) =

1√
2π∆σX

exp

(
− (x− x0)2

2∆σ2
X

)( K∑
k=0

Dθ,k(∆, x0)(x− x0)k
)
,

with Dθ,k(∆, x0) parameters depending on ∆, θ and x0 and corresponding to the coefficients
terms ηθ,k, k = 1, . . . , K up to some constants.

6.6 Proof of Proposition 5.1

The calculation of the theoretical contrast defined as

γθ(∆) = ‖Πθ‖2
f − 2〈Πθ,Πθ0〉f ,

was obtained with the help of a symbolic calculation language (Mathematica). The Mathe-
matica version has been simplified and reduced to the same denominator. In this section we
give the computation of ‖Πθ‖2

f and only the main lines of the calculation of the second term
〈Πθ,Πθ0〉f . In practice, this contrast is not known since it depends on θ0, so only empirical and
approximate contrasts calculations are necessary. They are detailed in the following.

For the OU process, let mθ,X,∆ and γ2
θ,X,∆ the mean and the variance of the true transition

density Πθ(∆, x, y) respectively given by

mθ,X,∆(x) = xe−φ∆ := aθ,∆x, γ2
θ,X,∆ =

(1− e−2φ∆)σ2
X,∆

2φ
.

The square of the transition density is also Gaussian up to the parameter 1/(2
√
πγθ,X,∆) with

mean mX,∆(x) and variance γ2
θ,X,∆/2. The stationary density fθ0 is also Gaussian with zero
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mean and variance B2
θ0

= σ2
X,0/2φ0. Hence,

‖Πθ‖2
f =

∫∫
|Πθ(∆, x, y)|2fθ0(x)dxdy =

∫
fθ0(x)

(∫
|Πθ(∆, x, y)|2dy

)
dx

=

∫
fθ0(x)Π̃θ(∆, x)dx,

with

Π̃θ(∆, x) =

∫
|Πθ(∆, x, y)|2dy =

1

2
√
πγ2

θ,X,∆

1√
πγ2

θ,X,∆

∫
exp

−
(y−mθ,X,∆(x))2

γ2
θ,X,∆ dy =

1

2
√
πγ2

θ,X,∆

.

Thus,

‖Πθ‖2
f =

1

2
√
πγ2

θ,X,∆

∫
fθ0(x)dx =

1

2
√
πγ2

θ,X,∆

.

For the second part of the theoretical contrast we have

〈Πθ,Πθ0〉f =

∫∫
Πθ(∆, x, y)Πθ0(∆, x, y)fθ0(x)dxdy =

∫
fθ0(x)

∫
Πθ(∆, x, y)Πθ0(∆, x, y)dydx

=
1√

2πγ2
θ,X,∆

1√
2πγ2

θ0,X,∆

∫
fθ0(x)

∫
e
−
(

(y−mθ,X,∆(x))2

2γ2
X,∆

+
(y−mθ0,X,∆(x))2

2γ2
θ0,X,∆

)
dydx

=
1√

2πγ2
θ,X,∆

1√
2πγ2

θ0,X,∆

∫
e

(
γ2
θ0,X,∆

mX,∆(x)+γ2
θ,X,∆m0,X,∆(x)

(γ2
θ,X,∆

+γ2
θ0,X,∆

)
)2−(

γ2
θ0,X,∆

m2
θ,X,∆(x)+γ2

θ,X,∆m
2
θ0,X,∆

(x)

2γ2
θ,X,∆

γ2
θ0,X,∆

)2

× fθ0(x)

(∫
e
−

(√
γ2
θ,X,∆+γ2

θ0,X,∆
y−

γ2
θ0,X,∆

mθ,X,∆(x)+γ2
θ,X,∆mθ0,X,∆

(x)√
(γ2
θ,X,∆

+γ2
θ0,X,∆

)

)2

dy

)
dx.

Now, let u =
√
γ2
θ,X,∆ + γ2

θ0,X,∆
y we note that

∫
e
−

(√
γ2
θ,X,∆+γ2

θ0,X,∆
y−

γ2
θ0,X,∆

mθ,X,∆(x)+γ2
θ,X,∆mθ0,X,∆

(x)√
(γ2
θ,X,∆

+γ2
θ0,X,∆

)

)2

dy

=
1√

γ2
θ,X,∆ + γ2

θ0,X,∆

∫
e
−

(
u−

γ2
θ0,X,∆

mθ,X,∆(x)+γ2
θ,X,∆mθ0,X,∆

(x)√
(γ2
θ,X,∆

+γ2
θ0,X,∆

)

)2

du

=
1√

π(γ2
θ,X,∆ + γ2

θ0,X,∆
)
.

Hence,

〈Πθ,Πθ0〉f =
1√

π(γ2
θ,X,∆ + γ2

θ0,X,∆
)

1√
2πγ2

θ,X,∆

1√
2πγ2

θ0,X,∆

×
∫
e

(
γ2
θ0,X,∆

mX,∆(x)+γ2
θ,X,∆mθ0,X,∆

(x)

(γ2
θ,X,∆

+γ2
θ0,X,∆

)
)2−(

γ2
θ0,X,∆

m2
θ,X,∆(x)+γ2

θ,X,∆m
2
θ0,X,∆

(x)

2γ2
θ,X,∆

γ2
θ0,X,∆

)2

fθ0(x)dx.
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6.7 Details on the construction of the contrasts

Contrasts for the simulations: To compute the different contrasts defined in Section 5 and
taking into account the non-integrability assumption, the following quantities are essentially
required: (Π2

θ(∆, x, 0))∗,Π∗θ(∆, x, y) and f ∗ε (x) and the introduction of a weight function is
necessary.

We detail the calculation for the true transition density of the OU process but the reasoning
remains valid for the Euler and for the Hermite approximation transition density one can use
Theorem 4.1 with the Hermite coefficient given in Lemma 5.1.

For the OU process, we note that the square of the transition density is also Gaussian up
to the parameter 1/(2

√
πγ2

θ,X,∆) with mean mθ,X,∆(x) := aθ,∆x and variance γ2
θ,X,∆/2. Hence,

we are interested in computing the following FT:

(Π2
θ(∆, x, 0))∗ =

∫
e−ixu

(∫
Π2
θ(∆, u, v)dv

)
du =

∫
e−ixuΠ̃θ(∆, u)du = (Π̃θ(∆, x))∗.

By integration of the Gaussian density, we have that Π̃θ(∆, x) = 1/(2
√
πγθ,X,∆) ∀x, which is

integrable on L1(A). Nevertheless, for Gaussian noises (super-smooth noises), Assumptions
A 3(iii) and A 4(ii) are not satisfied since x 7→ (Π̃θ(∆, x))∗/f ∗ε (x) is not integrable despite
the fact that the numerator and denominator taken separately can be integrated. In this
case, we introduce a weight function ϕ belongs to S(R), where S(R) is the Schwartz space
of functions defined by S(R) = {f ∈ C∞(R), ∀α,N there exists CN,α such that |∇α

xf(x)| ≤
CN,α(1 + |x|)−N}.

Hence, ∀ϕ ∈ S(R), we have〈
ϕ, Π̃∗θ

〉
=

∫
ϕ(x)dx

∫
Π̃θ(∆, u)e−ixudu =

1

2
√
πγ2

θ,X,∆

∫
ϕ(x)dx

∫
e−ixudu

=
1

2
√
πγ2

θ,X,∆

〈
ϕ, δ0

〉
,

where δx is the Dirac distribution at point x. Hence, by taking ϕ : u 7→ ϕ̃(u)eixu/f ∗ε (−u) ∈ S(R)
with ϕ̃ : u 7→ 2πe−σ

2
εu

2 , we obtain the operator Q as follows

QΠ2
θ
(x) =

1

2π

∫
eixu

ϕ̃(u)Π̃∗θ(u)

f ∗ε (−u)
du =

〈
ϕ, Π̃∗θ

〉
=

1

2
√
πγ2

θ,X,∆

〈
ϕ, δ0

〉
=

1

2
√
πγ2

θ,X,∆

ϕ(0),

where ϕ(0) = 1 for all cases (Gaussian and Laplace noises) in Section 5. Here, we take ϕ̃
dependent of σ2

ε since we assume that this variance is known but one can take any function ϕ̃
such that ϕ̃/f ∗ε is in S.

For Π∗θ(∆, x, y) we make the same analogy, that is let Πu,θ(∆, v) the function v 7→ Πθ(∆, u, v)
∀u. For the Gaussian transition density Πθ we have ∀u,

(Πu,θ(∆, y))∗ =

∫
e−iyvΠθ(∆, u, v)dv =

∫
e−iyv

1√
2πγ2

θ,X,∆

e
−

(v−aθ,∆u)2

2γ2
θ,X,∆ dv

= e−iaθ,∆uy−
γ2
θ,X,∆

2
y2

.
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Let Πy,θ(∆, u) be the function u 7→ (Πu,θ(∆, y))∗ ∀y. Then, we have ∀ϕ ∈ S and ∀y〈
ϕ,Πy,θ

〉
=

∫
ϕ(x)dx

∫
e−ixu(Πu,θ(∆, y))∗du

=

∫
ϕ(x)dx

∫
e−ixue−iaθ,∆uy−

γ2
θ,X,∆

2
y2

du

= e−
γ2
θ,X,∆

2
y2

∫
ϕ(z − aθ,∆y)dz

∫
e−iuzdu

= e−
γ2
θ,X,∆

2
y2

〈
ϕ(.aθ,∆y),1∗

〉
= e−

γ2
θ,X,∆

2
y2

〈
ϕ(.aθ,∆y), δ0

〉
= e−

γ2
θ,X,∆

2
y2

ϕ(−aθ,∆y).

Hence, the operator VΠθ is obtained as follows for Gaussian noises, i.e.,

VΠθ(x, y) =
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)ei(xu+yv) Π∗θ(∆, u, v)

f ∗ε (−u)f ∗ε (−v)
dudv

=
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)

f ∗ε (−u)f ∗ε (−v)
ei(xu+yv)

(∫
e−iwu(Πw,θ(∆, v))∗dw

)
dudv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv
(∫

ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−iwu−ivaθ,∆w−
γ2
θ,X,∆

2
v2

dw

)
du

)
dv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

γ2
θ,X,∆

2
v2

(∫
ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−iw(u+aθ,∆v)dw

)
du

)
dv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

γ2
θ,X,∆

2
v2

(∫
ϕ̃1(z − aθ,∆v)

f ∗ε (φv − z)
eix(z−aθ,∆v)

(∫
e−iwzdw

)
dz

)
dv

=
1

2π

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

γ2
θ,X,∆

2
v2

(〈
ϕ(.− aθ,∆v),1∗

〉)
dv

=
1

2π

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

γ2
θ,X,∆

2
v2

ϕ(−aθ,∆v)dv

=
1

2π

∫
e−ivy

(
eiv(y−aθ,∆x)− v

2

2
(γ2
θ,X,∆−σ

2
ε(1+a2

θ,∆))

)
dv

=
1

2π

∫
eivy
(
e−iv(y−aθ,∆x)− v

2

2
(γ2
θ,X,∆−σ

2
ε(1+a2

θ,∆))

)
dv

=
1√

2π(γ2
θ,X,∆ − σ2

ε(1 + a2
θ,∆))

exp

(
− (y − aθ,∆x)2

2(γ2
θ,X,∆ − σ2

ε(1 + a2
θ,∆))

)
,

where ϕ : u 7→ eixuϕ̃1(u)/f ∗ε (−u) with ϕ̃1 : u 7→ 2πe−σ
2
εu

2 and ϕ̃2 : v 7→ e−ivy−σ
2
εv

2 and such that
ϕ, ϕ1 and ϕ2 ∈ S. For Laplace noises, one can make the same computations by replacing f ∗ε by
its expression 1

1+σ2
εx

2/2
.
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presence of censoring. Sankhyā: The Indian Journal of Statistics, pages 734–763, 2007.

[12] S. Choi. Explicit form of approximate transition probability density functions of diffusion
processes. Journal of econometrics, 187(1):57–73, 2015.

[13] D. Dacunha-Castelle and M. Duflo. Probabilités et statistiques: problèmes à temps fixe,
volume 1. Masson, 1982.

[14] J. Dedecker, A. Samson, and M.-L. Taupin. Estimation in autoregressive model with
measurement error. ESAIM Prob. Stat., 18:277–307, 2014.

[15] P. Doukhan. Mixing, volume 85 of Lecture Notes in Statistics. Springer-Verlag, New York,
1994. Properties and examples.

[16] A. V. Egorov, H. Li, and Y. Xu. Maximum likelihood estimation of time-inhomogeneous
diffusions. Journal of Econometrics, 114(1):107–139, 2003.



30 S. El Kolei, F. Navarro

[17] S. El Kolei and F. Pelgrin. Parametric inference of autoregressive heteroscedastic models
with errors in variables. Statist. Probab. Lett., 130:63–70, 2017.

[18] B. Favetto. Parameter estimation by contrast minimization for noisy observations of a
diffusion process. Statistics, 48(6):1344–1370, 2014.

[19] B. Favetto. Estimating functions for noisy observations of ergodic diffusions. Statistical
Inference for Stochastic Processes, 19(1):1–28, 2016.

[20] D. Florens-Zmirou. Approximate discrete-time schemes for statistics of diffusion processes.
Statistics: A Journal of Theoretical and Applied Statistics, 20(4):547–557, 1989.

[21] V. Genon-Catalot and J. Jacod. On the estimation of the diffusion coefficient for multi-
dimensional diffusion processes. In Annales de l’IHP Probabilités et statistiques, volume 29,
pages 119–151, 1993.

[22] V. Genon-Catalot, T. Jeantheau, and C. Laredo. Parameter estimation for discretely
observed stochastic volatility models. Bernoulli, 5(5):855–872, 1999.

[23] V. Genon-Catalot, T. Jeantheau, and C. Larédo. Stochastic volatility models as hidden
Markov models and statistical applications. Bernoulli, 6(6):1051–1079, 2000.

[24] A. Gloter. Discrete sampling of an integrated diffusion process and parameter estimation
of the diffusion coefficient. ESAIM: Probability and Statistics, 4:205–227, 2000.

[25] A. Gloter. Estimation du coefficient de diffusion de la volatilité d’un modèle à volatil-
ité stochastique. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,
330(3):243–248, 2000.

[26] A. Gloter. Parameter estimation for a discretely observed integrated diffusion process.
Scandinavian Journal of Statistics, 33(1):83–104, 2006.

[27] L. P. Hansen, J. A. Scheinkman, and N. Touzi. Spectral methods for identifying scalar
diffusions. Journal of Econometrics, 86(1):1–32, 1998.

[28] P. Honoré. Maximum likelihood estimation of non-linear continuous-time term-structure
models. Available at SSRN 7669, 1997.

[29] A. Hurn, J. Jeisman, and K. Lindsay. Ml estimation of the parameters of sdeâĂŹs by nu-
merical solution of the fokker–planck equation. In MODSIM 2005: international congress
on modelling and simulation: advances and applications for management and decision
making, pages 849–855. Citeseer, 2005.

[30] B. Jensen and R. Poulsen. Transition densities of diffusion processes: numerical comparison
of approximation techniques. The Journal of Derivatives, 9(4):18–32, 2002.

[31] M. Kessler. Estimation of an ergodic diffusion from discrete observations. Scandinavian
Journal of Statistics, 24(2):211–229, 1997.

[32] M. Kessler. Simple and explicit estimating functions for a discretely observed diffusion
process. Scandinavian Journal of Statistics, 27(1):65–82, 2000.

[33] M. Kessler, A. Lindner, and M. Sorensen. Statistical methods for stochastic differential
equations. Chapman and Hall/CRC, 2012.



Parametric estimation of diffusion processes 31

[34] C. Lacour. Adaptive estimation of the transition density of a markov chain. In Annales
de l’IHP Probabilités et statistiques, volume 43, pages 571–597, 2007.

[35] C. Lacour. Adaptive estimation of the transition density of a particular hidden markov
chain. Journal of Multivariate Analysis, 99(5):787–814, 2008.

[36] C. Lacour. Least squares type estimation of the transition density of a particular hidden
Markov chain. Electron. J. Stat., 2:1–39, 2008.

[37] C. Lacour. Nonparametric estimation of the stationary density and the transition density
of a markov chain. Stochastic Processes and their Applications, 118(2):232–260, 2008.

[38] Y. D. Lee, S. Song, and E.-K. Lee. The delta expansion for the transition density of
diffusion models. Journal of econometrics, 178:694–705, 2014.

[39] C. Li. Maximum-likelihood estimation for diffusion processes via closed-form density ex-
pansions. The Annals of Statistics, 41(3):1350–1380, 2013.

[40] A. W. Lo. Maximum likelihood estimation of generalized itô processes with discretely
sampled data. Econometric Theory, 4(2):231–247, 1988.

[41] A. R. Pedersen. Consistency and asymptotic normality of an approximate maximum
likelihood estimator for discretely observed diffusion processes. Bernoulli, pages 257–279,
1995.

[42] A. R. Pedersen. A new approach to maximum likelihood estimation for stochastic differ-
ential equations based on discrete observations. Scandinavian journal of statistics, pages
55–71, 1995.

[43] U. Picchini and A. Samson. Coupling stochastic em and approximate bayesian computation
for parameter inference in state-space models. Computational Statistics, 33(1):179–212,
2018.

[44] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki ikeda and
shinzo watanabe north-holland, amsterdam, 1981, xiv+ 464 pages, dfl. 175.00, 1982.

[45] L. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, volume 2 of
Cambridge Mathematical Library. Cambridge University Press, 2 edition, 2000.

[46] S. Särkkä, J. Hartikainen, I. S. Mbalawata, and H. Haario. Posterior inference on pa-
rameters of stochastic differential equations via non-linear gaussian filtering and adaptive
mcmc. Statistics and Computing, 25(2):427–437, 2015.

[47] G. Sermaidis, O. Papaspiliopoulos, G. O. Roberts, A. Beskos, and P. Fearnhead. Markov
chain monte carlo for exact inference for diffusions. Scandinavian Journal of Statistics,
40(2):294–321, 2013.

[48] H. Singer. Moment equations and hermite expansion for nonlinear stochastic differential
equations with application to stock price models. Computational Statistics, 21(3-4):385–
397, 2006.

[49] M. Sørensen. Parametric Inference for Discretely Sampled Stochastic Differential Equa-
tions, pages 531–553. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.



32 S. El Kolei, F. Navarro

[50] O. Stramer and J. Yan. On simulated likelihood of discretely observed diffusion processes
and comparison to closed-form approximation. Journal of Computational and Graphical
Statistics, 16(3):672–691, 2007.

[51] J. Von Neumann. Distribution of the ratio of the mean square successive difference to the
variance. The Annals of Mathematical Statistics, 12(4):367–395, 1941.

[52] E. Wong. The construction of a class of stationary markoff processes. Stochastic processes
in mathematical physics and engineering, (17):264–276, 1964.

[53] N. Yoshida. Estimation for diffusion processes from discrete observation. Journal of Mul-
tivariate Analysis, 41(2):220–242, 1992.


	Introduction
	A sequence of expansion of the transition function
	Notations and assumptions
	The Hermite expansion

	A sequence of approximations to the minimum contrast estimator
	Notations
	Minimum contrast estimation
	Assumptions
	Asymptotic properties of the minimum contrast estimator

	Expression of the Hermite contrast for general diffusions
	Numerical simulation
	Comparison of the FTs of the Hermite and Euler approximations of the closed-form density
	Comparison of the Hermite and Euler approximation contrast estimators with the true contrast
	Numerical results

	Proofs
	Proof of Theorem 3.1
	Proof of the existence and measurability of the M-estimator
	Proof of the consistency and the asymptotic normality

	Proof of Corollary 3.2
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	Proof of Lemma 5.1
	Proof of Proposition 5.1
	Details on the construction of the contrasts


