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Multilevel-Langevin pathwise average for Gibbs approximation

Maxime Egéa ∗ and Fabien Panloup †

February 8, 2024

Abstract

We propose and study a new multilevel method for the numerical approximation of a Gibbs dis-
tribution π on R

d, based on (overdamped) Langevin diffusions. This method inspired by [PP18] and
[GMS+20] relies on a multilevel occupation measure, i.e. on an appropriate combination of R occupation
measures of (constant-step) Euler schemes with respective steps γr = γ02

−r, r = 0, . . . , R. We first state
a quantitative result under general assumptions which guarantees an ε-approximation (in a L2-sense)
with a cost of the order ε−2 or ε−2| log ε|3 under less contractive assumptions.

We then apply it to overdamped Langevin diffusions with strongly convex potential U : Rd → R

and obtain an ε-complexity of the order O(dε−2 log3(dε−2)) or O(dε−2) under additional assumptions
on U . More precisely, up to universal constants, an appropriate choice of the parameters leads to a cost
controlled by (λ̄U ∨ 1)2λ−3

U dε−2 (where λ̄U and λU respectively denote the supremum and the infimum
of the largest and lowest eigenvalue of D2U).

We finally complete these theoretical results with some numerical illustrations including comparisons
to other algorithms in Bayesian learning and opening to non strongly convex setting.

Mathematics Subject Classification: Primary 65C05-37M25 Secondary 65C40-93E35.

Keywords: Multilevel Monte-Carlo; ergodic diffusion; Langevin algorithm.

1 Introduction

Let (Bt)t≥0 denote a d-dimensional standard Brownian motion. Let (Xt)t≥0 denote the solution of the
stochastic differential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dBt, (1)

where b : R
d → R

d and σ : Rd → Md,d (space of d-squared matrices) are Lipschitz continuous function.
Under these assumptions, strong existence and uniqueness classically hold and (Xt)t≥0 is a Markov process
whose semi-group will be denoted by (Pt)t≥0. Throughout this paper, we assume that (Xt)t≥0 has a unique
invariant distribution denoted by π. Such a property arises in particular under Lyapunov assumptions and
non-degeneracy of the diffusion coefficient σ (for background, see e.g. [MT93, Pag01]).

For such a diffusion process, we denote by
(

X̄γ,x0
nγ

)

n∈N
the related Euler (or Euler-Maruyama) scheme

with constant step γ and starting point x0: for γ > 0 and x0 ∈ R
d, the discretization scheme

(

X̄γ,x0
nγ

)

n∈N
is

recursively defined by X̄γ,x0

0 = x0 and

∀ n ≥ 0, X̄γ,x0

(n+1)γ = X̄γ,x0
nγ + γb(X̄γ,x0

nγ ) + σ(X̄γ,x0
nγ )

(

B(n+1)γ −Bnγ

)

. (2)

We also introduce one of its continuous-time extensions, sometimes called genuine continuous-time Euler
scheme given by: for all n ∈ N and for all t ∈ [nγ, (n+ 1)γ),
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X̄γ,x0

t := X̄γ,x0
nγ + (t− nγ)b

(

X̄γ,x0
nγ

)

+ σ(X̄nγ)
(

Bt −B(n+1)γ

)

.

This continuous-time extension is sometimes called pseudo-diffusion since it satisfies

X̄γ,x0

t = x0 +

∫ t

0

b(X̄γ,x0
sγ

)ds+

∫ t

0

σ(X̄γ,x0
sγ

)dBs, (3)

for all t ≥ 0, where for η > 0,
tη:= max{k ≥ 0, kη ≤ t}. (4)

If no confusion arises, we will sometimes write t instead of tγ , and X̄t or X̄γ
t instead of X̄γ,x0

t , in order to
alleviate the notations.

Now, let us come back to the literature on numerical approximation of invariant distributions of diffusion
processes and on multilevel methods.

Ergodic approximation and Gibbs approximation. There exists a huge literature on the numerical
approximation of the invariant distribution π based on such discretization schemes. For a general diffusion
process, [Tal90] studies the convergence of an algorithm based on the occupation measure of the Euler scheme
almost surely defined (with continuous-time notations) by:

νγT :=
1

T

∫ T

0

δX̄γ
sγ
ds, T > 0.

In order to manage the long-time and discretization errors in the same time, [LP02, LP03] develop the same
type of algorithms for Euler schemes with decreasing step sequence (in the same spirit, see [Lem07b, MSH02,
PP09, PP14, Pan08] for refinements or extensions to more general models). In the previous references, it
is worth noting that the objective is to approximate the generally unknown physical equilibrium of a given
stochastic dynamical system. The aim is thus different from the MCMC algorithms which aim at sampling
a given explicit probability π (in the most efficient way).

Nevertheless, the above methods can certainly be used in view of MCMC-type objectives when they are
applied to diffusions with an explicit invariant distribution. This is the case when one considers the (over-
damped) Langevin diffusion

dXt = −σ2∇U(Xt)dt+
√
2σdBt, (5)

where σ is a positive number and U : Rd → R is a coercive function (such that e−U is integrable on R
d). It

is well-known that the unique invariant distribution of (5) is the Gibbs distribution π defined by,

π(dx) :=
1

ZU
e−U(x)λd(dx), ZU =

∫

e−U(x)λd(dx).

The study of the long-time behavior of Euler-Maruyama schemes of (5) has been the topic of numerous
papers in the last years. Among others, we can refer to [DM15, DM17, DMM19, Dal17, DK19, MFWB19]
where the authors generally focus on the (Wasserstein, Total Variation,. . . ) distance d between the distri-
bution of the Euler scheme and π and optimize the step and the time in order to minimize the number of
iterations of the Euler scheme which is necessary to obtain d(L(X̄γε

nεγε
), π) ≤ ε (for a given ε). In particular,

these papers focus more on the bias than on the variance. In view of applications in machine learning, the
authors generally emphasize the dependence on the dimension d of the cost of computation. We will come
back later to this point and to the existing results compared with ours (see Remark 2.9).

Multilevel Langevin and ε-approximations. Multilevel methods, pionnered by [Hei01] and [Gil08] (see
also [Keb05]), and based on appropriate combinations of rough and refined approximations of the target,
belong to the family of strategies for speeding up Monte-Carlo methods by bias reduction. The main idea
of multilevel methods is to (try to) bring correcting layers with low variance to a rough approximation of
a target. Multilevel methods received a lot of success in numerical applications, especially in discretization
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methods for diffusions (but also in other problems such as the approximation of nested expectations). For
instance, in the classical problem of computing E[f(XT )] (with T > 0), such methods are known to produce
a complexity which is (almost) proportional to unbiased1 methods. More precisely, for a given ε > 0, the
parameters of the multilevel procedure can be calibrated in such a way that the required number of iterations
of the Euler scheme for an ε-approximation (see Section 2.1 for a definition) is proportional to ε−2 log2 ε in
general or to ε−2 under additional assumptions (which are true for additive diffusions).

Concerning the computation of the invariant distribution of a diffusion, multilevel methods have already
been studied in [FG20], [GMS+20] and [PP18]. In [FG20] and [GMS+20], the procedure is based on a stan-
dard multilevel Monte-Carlo approach with discretization schemes of a Langevin diffusion and adapted time
horizons and produces a complexity proportional to ε−2| log ε|3 or to ε−2 under additional assumptions. In
[PP18], written in a multiplicative setting and based on a so-called Multilevel-Romberg weighted combina-
tion of occupation measures of discretization schemes with decreasing step, the algorithm has a complexity
proportional to ε−2| log ε| (see Section 2.1 below for our definition of complexity). In terms of ε, these
approaches generate a real gain compared with the non multilevel ones (mentioned above) which generally
produce a complexity proportional to ε−3. However, the above references do not calibrate the dependence of
the procedure with respect to the other parameters and especially with respect to the dimension, which may
be of first importance in applications. In this paper, our objective is thus to provide a procedure and some
related results which exhibit an O(ε−2)-complexity combined with some sharp bounds on these parameters.

Idea of the algorithm. Before detailing our contributions, let us briefly describe the construction of the
algorithm (the precise procedure will be detailed in Section 2) and give some comments. Our procedure is
based on occupation measures as in [PP18]. With such an approach, we thus aim to take advantage of the
(pathwise) convergence of the occupation measure of a Markov process towards its invariant distribution.
Compared with [PP18], we use a simpler multilevel approach since we will use Euler schemes with constant
steps and do not introduce weights in the average (in particular, the weighted approach used in [PP18]
introduces many technical difficulties which seem to be hard to overcome in view of quantitative bounds).

More precisely, our strategy is based on an almost telescopic sum of differences of occupations measures
of Euler schemes with step γr = γ02

−r, r = 0, . . . , R with R ∈ N
∗ (this means that there are R + 1 levels).

Recall that πγ denotes the invariant distribution of the Euler scheme with step γ. Let f : Rd → R. At the
starting point, we try to mimick the telescopic sum

πγR(f) = πγ0(f) +

R
∑

r=1

πγr (f)− πγr−1(f)

in order to generate a procedure with a bias close to π(f) − πγR(f) but with a probability πγR viewed as
a correction of πγ0 by a sequence of (correcting) levels. With an “occupation measure point of view”, we
mimick the above decomposition by considering the procedure

νγ0

τ,T0
(f) +

R
∑

r=1

νγr

τ,Tr
(f)− ν

γr−1

τ,Tr
(f), (6)

where νγτ,T (f) =
1

T−τ

∫ T

τ
f(X̄γ

sγ
)ds and τ, T0, . . . , TR are positive numbers. The terms from r = 1 to R play

the role of the correcting layers and are based on couplings of Euler schemes with steps γr−1 and γr = γr−1/2.
Without going more into the details of the construction, let us give several hints.

• The parameter τ must be viewed as a warm-start : we choose to average the path after a time where
the starting point has been slightly forgotten in order to reduce the bias induced by the long-time

1When a random variable Y can be simulated exactly (i.e. without bias), getting an ε-approximation of E[Y ] with the standard

Monte-Carlo approximation N−1
∑N

k=1 Yk (where (Yk)k is an i.i.d. sequence such that Y1 ∼ Y ) requires Nε = Var(Y )ε−2

simulations of Y .
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error. In fact, this slight modification of the average is necessary to capture the complexity in O(ε−2)
(i.e. to cancel the logarithmic terms of [PP18]).

• In a classical Monte-Carlo Multilevel setting, i.e. based on spatial average and not on time average
(i.e. on occupation measures), the idea is to simulate a large number of Euler schemes with large step
and less and less paths of Euler schemes with thin step (since the cost of simulation increases with the
refinement of the step). With an occupation measure point of view, this heuristic is replaced by the
following assumption:

T0 > T1 > . . . > TR,

which means that the length of the path of the Euler scheme decreases with the step size so that the
number of copies of the Euler schemes is here encoded by the length of the path. In particular, the
largest horizon corresponds to the Euler scheme with largest step which has the role of controlling the
variance induced by the empirical mean. We will see that (Tr)r is geometrically decreasing; this is
consistent with the geometric decrease of the step size.

• In (6), we did not specify the choice of the Brownian motions inside each level. Here, we will adopt
the classical strategy: we consider a sequel of independent Brownian Motions B(r), r = 0, . . . , R and
at each level, we build νγr

τ,Tr
and ν

γr−1

τ,Tr
with this Brownian Motion B(r). This means that on the one

hand, the levels are independent and on the other hand, the Euler schemes involved in a level r ≥ 1
are built with a synchronous coupling (since they are driven by the same Brownian motion).

Contributions and plan of the paper. The first objective of this work is to provide a general diffusion
setting in which the invariant distribution can be approximated by this combination of occupation measures
with a complexity proportional to ε−2. In the same time, we also want to give quantitative bounds and to
answer to the following question: Is a multilevel method able to reduce the cost in ε without worsening the
dependence on the other parameters (and especially on the dimension) ? The answers to these questions,
given in Sections 2.3 and 2.4, are summarized below.

• We answer to the first question in Theorem 2.1, which is stated under general assumptions on the
behavior of the Euler scheme (ergodicity, long-time confluence of the paths, bounds on the distance
between πγ and π and on the moments). This result shows that for a given positive ε, we can tune the
parameters of the multilevel procedure in such a way that for any 1-Lipschitz function f : Rd → R, an
ε-approximation of π(f) can be obtained with C2ε

−2 or C2ε
−2| log ε|3 iterations of the Euler scheme.

Furthermore, C2 is an (almost)2 explicit function of the parameters involved in the assumptions. Based
on some classical estimates of the occupation measure of a Markov process, the main novelty here is
to exhibit some precise conditions on the algorithm and some quantitative bounds on the complexity
which guarantee an ε−2-complexity.

• Even though Theorem 2.1 potentially applies to general diffusions (see Remark 2.2), we choose to
focus on additive diffusions with strongly contractive drift, and especially on over-damped Langevin
diffusions (with strongly uniformly convex potential) in view of applications to Gibbs sampling. This
is the purpose of Section 2.4 where a series of results provide concrete multilevel procedures for ε-
approximations in L2 with (almost) explicit bounds on the complexity. The results are divided into
two parts. In the first one, b is a (contractive) Lispchitz C1-vector field, or equivalently, U is C2 with
Lipschitz gradient in the case of Langevin diffusions. In the second part, b is a C2-vector field with
bounded derivatives up to order 2. In this case, refined expansions lead to L2-bounds of order 1 for
the Euler scheme and allow to apply Theorem 2.1 with friendlier parameters. The main results of this
section are Theorems 2.2 and 2.3 in the case of a general vector field b, and Corollaries 2.1 and 2.2 in
the case of Langevin diffusions. In the first part (when b is only C1), we obtain some bounds on the
complexity in O(dε−2| log(dε)|3) whereas in the (refined) second part, the complexity is bounded by
O(dε−2).

2By “almost”, we mean “up to universal constants” (see Section 2.1 for details).
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However, the complexity also depends on the (intrinsic) parameters of the model: the Lipschitz con-
stant L of b and the contraction parameter α (corresponding respectively to the largest and lowest
eigenvalues λ̄U and λU of the Hessian of U when b = −∇U). We thus also detail the dependence on
these parameters, which up to a logarithmic term, is proportional to L2/α3.

Finally, in Corollaries 2.1 and 2.2, we apply these results to the particular case b = −∇U and optimize
the choice of the diffusion coefficient σ in order to kill the logarithmic term and to obtain a normalized
procedure where the parameters have a nice and simple form (for instance, γ0 = 1/2). These quan-
titative bounds with respect to d, ε, L and α are the main contributions of this paper. They rely on
a careful study of the multilevel strategy given in Theorem 2.1 combined with sharp bounds on the
long-time behavior of the Euler scheme in the strongly convex setting (see in particular Lemma 5.1
and Proposition 5.1).

In Section 2.5, we propose several numerical illustrations with different models which allow to test the ef-
ficiency of our methods with respect to the parameters and to compare with other classical methods (in a
Bayesian example, see Section 2.5.4). We also open to some perspectives for reducing the influence of α and
L on the complexity of the method and finally test our algorithm in a simple non convex setting in order to
show that theoretical extensions may be tackled in such a setting (in a future work).

Sections 3, 4 and 5 are devoted to the proofs of the main theorems. In Sections 3 and 4, we prove Theorem
2.1 with the help of an accurate study of the bias/variance errors. The proofs related to additive diffusions
with strongly contractive drift (including Langevin diffusions) are written in Section 5.

2 Setting and main results

2.1 Notations/Definitions

We list below the main notations. A list of all the specific symbols is also given in Section 6.

• The usual scalar product on R
d is denoted by 〈 , 〉 and the induced Euclidean norm by | . |. The set

Md,d refers to the set of real d×d. The Frobenius norm on Md,d is denoted by ‖ . ‖F : for any A ∈ Md,d,
‖A‖2F =

∑

1≤i,j≤d A
2
i,j .

• The Lipschitz constant of a given (Lipschitz) function f : R
d → R is denoted by [f ]1: [f ]1 =

supx,y∈Rd |f(x) − f(y)|.|x − y|−1. A function f : Rd → R is Ck, k ∈ N, if all its partial derivatives
are well-defined and continuous up to order k. The gradient and Hessian matrix of f are respectively
denoted by ∇f and D2f .

• The probability space is denoted by (Ω,F ,P). The Lp-norm on (Ω,F ,P) is denoted by ‖ . ‖p.

• ε-approximation: We say that Y is an ε-approximation of a real number a (for the L2-norm), if
‖Y − a‖2 = E[|Y − a|2] 12 ≤ ε. Equivalently, Y is said to be an ε-approximation of a if the related
Mean-Squared Error (MSE) is lower than ε2.

• Complexity/ε-complexity: For a random variable Y built with some iterations of a standard Euler
scheme, we call complexity and denote by C(Y), the number of iterations of the Euler scheme which is
needed to compute Y. For instance, C(X̄γ

nγ) = n. The ε-complexity is the complexity of an algorithm
which produces an ε-approximation.

• Universal constant: A positive number which does not depend on any parameter of the problem is
called a universal constant and is denoted by cu. We will write a .uc b if a ≤ cub.
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2.2 Design of the algorithm

We now detail the construction of the multilevel procedure. Let x0 ∈ R
d (starting point of the Euler scheme),

R ∈ N
∗ (number of correcting levels), (Tr)0≤r≤R be a decreasing sequence of positive times and (γr)0≤r≤R

be the decreasing sequence of step sizes defined by γr = γ02
−r and τ be a positive number.

For these parameters, we denote by Y(R, (γr)r , τ, (Tr)r , x, .), the empirical probability measure defined by:
for any Borel measurable function f : Rd → R,

Y(R, (γr)r , τ, (Tr)r , x, f) :=
1

T0 − τ

∫ T0

τ

f(X̄γ0,x0,B
(0)

sγ0
)ds

+

R
∑

r=1

1

Tr − τ

∫ Tr

τ

f(X̄γr,x0,B
(r)

sγr−1

)− f(X̄γr−1,x0,B
(r)

sγr−1

)ds,

(7)

where {B(r), r = 0, . . . , R}, denotes a sequence of R+ 1 independent Brownian motions. In particular, if τ
and T0 (resp. Tr, r = 1, . . . , R) are multiples of γ0 (resp. of γr−1), the above definition takes the form

Y(R, (γr)r , τ, (Tr)r , x, f) :=
1

nγ0(T0)− nγ0(τ)

nγ0 (T0)−1
∑

k=nγ0 (τ)

f(X̄γ0,x0,B
(0)

kγ0
)

+

R
∑

r=1

1

nγr−1(Tr)− nγr−1(τ)

nγr−1
(Tr)−1
∑

k=nγr−1
(τ)

(

f(X̄γr,x0,B
(r)

kγr−1
)− f(X̄

γr−1,x0,B
(r)

kγr−1
)
)

.

where for some given positive T and γ, nγ(T ) = max{k, kγ ≤ T }, i.e. nγ(T ) is the discretization index
related to T when the step is equal to γ (in the general case, the border terms of the above expression must
be modified).

Remark 2.1. It is worth noting that in the correcting levels (r = 1, . . . , R), the Euler schemes of steps γr
and γr−1 are averaged at times kγr−1 only, i.e. at discretization times of the Euler scheme with thickest step.
In particular, one could wonder why one does not average over all discretization times for the Euler scheme
with finest step γr. In fact, such an average would generate an additional error (with a size proportional
to

√
γr) which is not negligible in the case a > 1 of Theorem 2.1 below (case which leads to a complexity

proportional to ε−2).

Complexity of the algorithm. With respect to the definition given in Section 2.1, we remark that when
Tr, r = 0, . . . , R are multiples of the given step sequence, the complexity of Y satisfies:

C(Y) = T0

γ0
+

R
∑

r=1

(

Tr

γr
+

Tr

γr−1

)

.

Note that for the sake of simplicity, we do not recall the parameters of Y(R, (γr)r , τ, (Tr)r , x, .) in the
notation C(Y).

2.3 A general result

The aim of this section is to state a result about the ε-complexity of our multilevel ergodic strategy under
appropriate general assumptions.

Let f : Rd → R be a Lipschitz continuous function with Lipschitz constant denoted by [f ]1. We introduce
the following series of assumptions depending on f , on a positive η0 (which in the sequel can be taken as the
largest step size used in the multilevel procedure), and on x0 which is the starting point of each Euler scheme
involved in the multilevel procedure. In the following assumptions, we recall that the invariant distribution
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πγ of (X̄nγ)n≥0 is assumed to exist and to be unique.

The following assumption is assumed to hold for a positive α.

(H1) (Convergence to equilibrium): For all x ∈ R
d, there exists a finite constant c1(x) such that, for every

γ ∈ (0, η0], for every t ≥ 0,
∣

∣

∣
Ex

[

f
(

X̄γ,x
tγ

)]

− πγ(f)
∣

∣

∣
≤ c1(x)[f ]1e

−αtγ .

Such an assumption is adapted to the case, where exponential convergence in 1-Wasserstein distance holds
for the diffusion and extends to the Euler scheme with sufficiently small step (with a contraction parameter
independent of the step). Also note that in the above assumption and in what follows, we implicitly assume
that πγ exists (and is unique) for every γ ∈ (0, η0].

The following assumption is assumed to hold for a ∈ [1, 2]:

(H2) (L2-confluence) A positive constant c2 exists such that for all γ ∈ (0, η0],

sup
t≥0

∥

∥

∥
X̄γ,x0

tγ
− X̄

γ/2,x0

tγ

∥

∥

∥

2
≤ c2γ

a

2 .

Note that such an assumption is usually proved by controlling the distance between the Euler scheme and
the diffusion (by dividing the error into two parts). In the next section, we will see that for additive diffusion
with strongly contractive drift, (H2) can be proved with a = 1 or a = 2 with two alternative proofs but
leading to constants c2 which are strongly different, depending on the Lipschitz constant of b in the first
case and on the size of the Jacobian matrix ∇b and the Laplacian ∆b of the drift b in the second case (see
Propositions 2.1 and 2.2 for details).

The next assumption is a weak error bound on the distance of the invariant distribution of the diffusion and
the one of the Euler scheme (depending on a and δ):
(H3): there exists a positive constant c3 such that for every γ ∈ (0, η0],

|π(f)− πγ(f)| ≤ c3[f ]1γ
δ,

where δ ∈ [1/2, 1] if a = 1 and δ ∈ (1+a

4 , 1] if a > 1.

The last assumption below is related to the control of the moments of the Euler scheme. It also involves the
function c1 defined in (H1).

(H4): There exists a constant c4 ≥ 0 such that for all γ ∈ (0, η0],

sup
t≥0

(

‖X̄γ,x0

t − x0‖2 + ‖c1(X̄γ,x0

t )‖2
)

≤ c4.

Theorem 2.1. Assume (Hi), i = 1, . . . , 4 with α ∈ (0, 1], a ∈ [1, 2] and for some given x0 ∈ R
d and

η0 ∈ (0, 1/2]. Let f : Rd → R be a Lipschitz continuous function. For ε ∈ (0, 1), assume that

γr = γ02
−r, Rε = ⌈1

δ
log2(r0ε

−1)⌉, Tr =

{

tε−22−
1+a

2 r if a > 1

tε−2R2
ε2

−r if a = 1.
(8)

with γ0 ∈ (0, η0], r0 ≥ 1 and t > 0.
(i) Assume that τ ∈ [τ1 log(ε

−1) ∧ 1
2TRε

, 12TRε
] with τ1 > 1+a−2δ

2αδ . Then, there exist some constants C1 and
C2 which do not depend on f (which can be made explicit in terms of the parameters) such that for any
ε ∈ (0, 1],

‖Y(R, (γr)r , τ, (Tr)r , f)− π(f)‖2 ≤ C1[f ]1ε, (9)
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with a complexity cost,

C(Y) := C(Y(R, (γr)r , τ, (Tr)r , f)) ≤ C2

{

ε−2 if a > 1

ε−2R3
ε if a = 1.

(10)

where C2 = caγ
−1
0 t with ca =

(

(1 + 3
2 (2

a−1
2 − 1)−1

)

if a > 1 and ca = 5
2 if a = 1.

(ii) Assume that r0 ≥ 1 ∨ (c3γ
δ
0) and t ≥ t0, τ ∈ [τ1| log ε|+ τ2,

1
2TRε

], ε ∈ (0, ε0) where t0, τ1, τ2 and ε0 are
given by (39) and (40). Then, (9) and (10) hold true for any ε ∈ (0, ε0) with C1 .uc 1.

The above theorem exhibits a family of parameters which lead to a complexity proportional to ε−2 (resp.
ε−2| log ε|3) if a > 1 (resp. a = 1). The first part is adapted to the case where we have few informations
about the parameters of the assumption and thus on the constants C1 and C2 involved in the result. In
particular, if α is unknown, we suggest to choose τ = ρTRε

with ρ ∈ (0, 1/2] (note that in view of alleviating
the notations, we omit the dependence on ε for τ).

In the second part, we show that one can tune the parameters of the procedure in order to obtain an
ε-approximation3 , up to a universal constant, with an explicit complexity. Note that this universal con-
stant could be avoided with a slight adaptation of the proof (see in particular the proof of Proposition 4.1)
which should lead in particular to C1 = 1 instead of C1 .uc 1 (which in turn would modify ca). Neverthe-
less, this still introduces many technicalities in the result. We thus chose to introduce universal constants
for the sake of readability and will show in some numerical illustrations that this approximation is reasonable.

It is also important to remark that this second stage certainly depends on the knowledge of the parameters
of the diffusion (which is not always accessible in practice). In the next section, we will show that in the
strongly convex setting, we can obtain some bounds on the parameters which lead to an accurate estimation
of C2 in terms of the dimension.
Finally, note that in the second part, the result holds true for any ε ∈ (0, ε0). This technical constraint
ensures that the warm-start τ is lower than 1

2TRε
(which is necessary to get a “real” occupation measure).

In practice, the simplest is to replace τ by τ ∧ 1
2TRε

in order to avoid such a problem.

Remark 2.2. ⊲ We chose to state this result for a given function f . Nevertheless, if c1 and c3 in (H1) and
(H3) do not depend on f , this is certainly possible to write the result, uniformly in the class of Lipschitz
functions. Note that with the help of the Kantorovich-Rubinstein representation of 1-Wassertein distances
(see e.g. [Vil09] for background), assuming that c1 and c3 are uniform in the class of Lipschitz functions is
equivalent to suppose that (H1) and (H3) are replaced by

W1(L(X̄γ,x
tγ

), πγ) ≤ c1(x)e
−αtγ and by W1(π, π

γ) ≤ c3γ
δ.

In this case, Theorem 2.1 still holds true replacing (9) by

sup
f,[f ]1≤1

E[|Y(R, (γr)r , τ, (Tr)r , f)− π(f)|2] 12 ≤ C1ε. (11)

⊲ In the next section, we will apply the result to additive diffusions in order to be able to get quantitative
bounds. Nevertheless, it is worth noting that the result may apply to any (non degenerated) multiplicative
diffusion satisfying (Hi), i = 1, . . . , 4. For instance, it could be shown that if the diffusion satisfies the strong
confluence Assumption (Cs) of [PP18], the assumptions hold with a = 1 and δ ∈ [1/2, 1] (see [LPP15] for
results on confluence of diffusions). More generally, the result is in fact not specific to diffusions and may
hold for any non degenerated Markov process, equipped with Markovian discretization schemes satisfying
assumptions (Hi), i = 1, . . . , 4.

3More precisely, when C1 = 1, the L2-error is lower than [f ]1ε. To obtain ε, it is certainly enough to replace ε by ε/[f ]1.
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⊲ In the references [McL11, GR14, Vih18], some debiased Multilevel Monte-Carlo methods have been intro-
duced and studied. In these papers, the idea is to randomize the number of layers (typically with a Poisson
distribution) in order to produce completely unbiased estimators of the target. However, such a method
seems to rely on the property that the last layer is asymptotically without bias. In this infinite horizon
problem, such an adaptation seems to be complicated since even the last layer contains a long-time error
which does not vanishes when the step size goes to 0 (see Remark 3.1 for other details in this direction).
Nevertheless, in the spirit of [GMS+20], in order to get a vanishing long-time error, an idea could be to restart
each layer from the final time of the previous one. Note that such an idea is unfortunately incompatible with
some parallelization of the layers but it may still deserve to be studied.

2.4 Application to uniformly strongly convex additive diffusions

In this section, we want to focus on the effect of our multilevel strategy on the numerical approximation of
the invariant distribution of an additive diffusion when b is strongly contractive, i.e. satisfying the following
Assumption (Cα):
(Cα) For all x, y ∈ R

d,
〈b(y)− b(x), y − x〉 ≤ −α|x− y|2.

In the context of numerical approximation of Gibbs distributions, this corresponds to the case where U is
uniformly strongly convex. If U is C2, this is equivalent to suppose that the Hessian matrix D2U satisfies:
D2U ≥ αId with α > 0 (in a sense of symmetric matrices). Note that this assumption can be viewed as
restrictive. However, our main objective in this paper is to sharply evaluate the effect of such multilevel
strategies in this nice and benchmark setting (see Remark 2.9 for a discussion about potential extensions).

Now, note that, with the help of the inequality 〈u, v〉 ≤ (2α)−1|u|2 + (α/2)|v|2), (Cα) (applied with
y = 0) implies the Lyapunov (or stability) assumption

2〈b(x), x〉 ≤ 2〈b(0), x〉 − 2α|x|2 ≤ |b(0)|2
α

− α|x|2.

Such a Lyapunov assumption classically implies the existence of π and that of πγ for γ ∈ (0, α/(2L2)] (see
Lemma 5.1(i)). Uniqueness follows from the non-degeneracy of the dynamical system since σ > 0.
The following parts are dedicated to the study, in this uniformly contractive setting, of the complexity of
the related multilevel procedure and to the dependency in the dimension of their constants . As mentioned
before, the results will strongly depend on the value of a. In the two next sections, we propose two types of
results, with a = 1 and a = 2 respectively. The first case is based on simpler bounds and only requires U to be
C2 (with bounded Hessian matrix) but the related dependence on ε is not completely optimal (proportional
to ε−2| log3 ε|). The second case will lead to a complexity proportional to ε−2 but with refinements which
require slightly more constraining assumptions on U . Note that a = 2 is really specific to additive diffusions
whereas a = 1 may extend to multiplicative diffusions (as mentioned above in Remark 2.2).

2.4.1 a = 1 and δ = 1/2

Proposition 2.1. Assume (Cα) and b L-Lipschitz with α ∈ (0, L ∧ 1]. Let x0 ∈ R
d and η0 ∈ (0, α

2L2 ∧ 1
2 ].

Then, (H1), (H2), (H3) and (H4) hold true for a = 1, δ = 1/2 (and for any Lipschitz continuous function
f : Rd → R) with







c1(x) ≤ |x− x0|2 +
√

2|b(x0)|2
(

1
L2 + 2

α2

)

+ σ2d
α ,

max(
αc22
L2 ,

αc23
L2 , c

2
4) .uc 1 ∨

(

α−2|b(x0)|2 + α−1σ2d
)

=: Υ2
1.

(12)

Remark 2.3. Note that when b = −∇U and x0 = Argminx∈RdU , the above bounds are simplified and have
a better dependence on α. In particular, this clearly suggests to start with this value of x0. However, we
kept the general bounds since x0 is not always known in practice.
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As a corollary of this proposition and of Theorem 2.1, the following theorem provides a first estimate of
the cost of the multilevel procedure under (Cα):

Theorem 2.2. Let f : Rd → R be a Lipschitz continuous function and assume (Cα) with α ∈ (0, L∧ 1]. Let
x0 ∈ R

d and suppose γ0 ∈ (0, α
2L2 ∧ 1

2 ]. Let Υ1 be defined by (12). For ε > 0, let

r0 = Υ1, Rε = ⌈2 log2(r0ε−1)⌉, Tr =
Υ2

1 log(γ
−1
0 )

α
ε−2R2

ε2
−r, r ∈ {0, . . . , Rε},

and τ = τ1| log(ε)|+ τ2 with τ1 = 2α−1 and τ2 = α−1 log Υ1. Set

ε0 := max{ε ∈ (0, 1], 2 log(Υ1ε
−2) ≤ log(γ−1

0 )R2
ε}. (13)

Then, (9) holds true for any ε ∈ (0, ε0) with C1 .uc 1 and

C(Y) ≤ 5 log(γ−1
0 )

2αγ0
Υ2

1ε
−2⌈log32(Υ2

1ε
−2)⌉, (14)

Furthermore, if α/L2 ≤ 1, if σ2α−1d ≥ 1 and if |b(x0)|2 .uc σ
2αd, then the result is true with Υ̃2

1 = σ2α−1d
and γ0 = α/(2L2) with a complexity satisfying

C(Y) ≤ 5 log

(

2L2

α

)

L2

2α3
σ2dε−2⌈log2

(

σ2d

α
ε−2

)

⌉3. (15)

Remark 2.4. ⊲ Note that the choice of γ0 does not depend on d (but only on α and L). This is due to
the fact that, in this strongly convex setting, this is possible to control uniformly the ergodicity and the
contraction properties of the dynamics of the Euler scheme as soon as γ0 ≤ α/(2L2). It is not clear that such
a property remains true in the weakly convex setting where such controls are generally difficult to obtain
especially in the discretized setting.

⊲ If we skip the dependence on α and L and choose to only focus on the one on d and ε4, one can remark
that, as soon as |b(x0)| ≤ C

√
d, the cost of the procedure is of order dε−2

(

log3 d+ log3 ε
)

. We can thus say
that we are at a “logarithmic distance” of the “optimal” cost dε−2.

Gibbs distribution approximation I: Let us apply the above result to the approximation of πU =
Z−1
U e−Udλd. Set

λ̄U = sup
x∈Rd

λ̄D2U(x) and λU = inf
x∈Rd

λD2U(x)

where for a symmetric matrix A, λ̄A and λA respectively denote the largest and lowest eigenvalues of A. In
the sequel, we assume that

0 < λU ≤ λ̄U < +∞. (16)

In this case, (Cα) holds with αU = λU ∧ 1 and ∇U is LU -Lipschitz with LU = λ̄U .
Furthermore, for any σ0 > 0, πU is the invariant distribution of the diffusion given with bσ0 = −σ2

0∇U and
diffusion coefficient σ =

√
2σ0. Then, it is natural to ask about the choice of σ0, especially in terms of αU

and LU . We obtain the nice following result:

Corollary 2.1. Let (X
(σ0)
t )t≥0 denote the solution to dX

(σ0)
t = bσ0(X

(σ0)
t )dt+

√
2σ0dBt with bσ0 = −σ2

0∇U .

Assume that (16) holds true. Then, for any σ0 > 0, (X
(σ0)
t )t≥0 admits πU as an unique invariant distribution.

Furthermore, (Cα) holds with ασ0 = σ2
0αU and bσ0 is Lσ0-Lipschitz with Lσ0 = σ2

0LU . Then, if

σ2
0 =

αU

L2
U

, γ0 =
1

2
, r0 =

√

d

2αU
, |∇U(x0)| .uc α

3
UL

−4
U d and Υ2

1 = dα−1
U ,

4This is usual in the literature.
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(9) holds true for any ε ∈ (0, ε0) (ε0 being defined by (13)) with C1 .uc 1 and

C(Y) ≤ 5 log 2

2

L2
U

α3
U

dε−2⌈log2
(

α−1
U dε−2

)

⌉3.

Keeping in mind that ασ0 = σ2
0αU , we remark that in the previous corollary, Tr = L2

Uα
−3
U log(2)ε−2R2

ε2
−r.

Proof. Let σ0 > 0. First remark, that since αU ≤ LU , then ασ0 ≤ Lσ0 and hence, ασ0 ∈ (0, Lσ0 ∧ 1] if
σ2
0 ≤ α−1

U . Then, by Theorem 2.2, for any σ0 ∈ (0, α−1
U ] such that ασ0/L

2
σ0

≤ 1,

C(Y) ≤ 5 log

(

2σ2
0L

2
U

αU

)

L2
U

2α3
U

dε−2⌈log2
(

d

αU
ε−2

)

⌉3. (17)

But ασ0/L
2
σ0

≤ 1 if and only if σ2
0 ≥ αU/L

2
U so that one can set σ2

0 = αU/L
2
U in the above inequality. In

this case, one remarks that
ασ0

L2
σ0

=
αU

σ2
0L

2
U

= 1

so that γ0 = 1/2 and Υ2
1 = dαU

−1. The result follows.

Remark 2.5. In the above proof, we choose the lowest value of σ0 under which ασ0/L
2
σ0

≤ 1. The the-
oretical interest is to remove a logarithmic dependence on L and α. From a practical point of view, this
normalization leads to a simplification of the parameters.

The simplest choice for x0 is certainly x0 = Argminx∈RdU(x). In the case where x0 is unknown, we suggest
to introduce an optimization preprocess in order to start the procedure with an initial point which is not so
far from the minimizer of U (or, more precisely, which sastisfies |∇U(x0)| ≤ α3

UL
−4
U d).

2.4.2 a = 2 and δ = 1: optimal complexity with slightly more constraining assumptions

Let us assume that b is C2 and let us introduce the following notations: ∇b = [∂jbi]1≤i≤j≤d, the Jacobian
matrix of b and ∆b = (∆bi)

d
i=1, the vector of Laplacians of b1, . . . , bd where we recall that for a given function

φ : Rd → R,

∆φ =

d
∑

i=1

∂2
x2
i
φ.

If b has bounded partial derivatives up to order 2, we can define:

‖∇b‖22,∞ = sup
x∈Rd

‖∇b(x)‖F and ‖∆b‖2,∞ = sup
x∈Rd

|∆b(x)|2 = sup
x∈Rd

d
∑

i=1

|∆bi(x)|2, (18)

where ‖ . ‖F stands for the Frobenius norm (see Section 2.1 for a definition). We are now ready to provide
some new bounds related to (H2) and (H3) when a = 2 and δ = 1 (The results for (H1) and (H4) obtained
in Proposition 2.2 still hold true).

Proposition 2.2. Assume that (Cα) holds true and that b is L-Lipschitz and C2 with bounded partial
derivatives. Let x0 ∈ R

d and suppose γ ∈ (0, α
2L2 ∧ 1

2 ]. Then, (H2), (H3) and (H4) hold for a = 2, δ = 1

(and for any Lipschitz continuous function f : Rd → R) with max
(

α2c22
L4 ,

α2c23
L4 , c24

)

.uc Υ
2
2 where,

Υ2
2 = max

(

1,
1

α2
|b(x0)|2 +

σ
√
α

L3
‖∇b‖2,∞|b(x0)|+

σ4

L4
‖∆b‖22,∞ +

σ2αd
1
2

L3
‖∇b‖2,∞ +

σ2d

α

)

. (19)
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Remark 2.6. In the Ornstein-Uhlenbeck case (b(x) = −x and σ =
√
2), which can be viewed as the simplest

toy-model, we remark that if x0 = 0, then Υ2
2 = max(1, 2σ2d) since |b(0)| = 0, α = L = 1, ‖∆b‖22,∞ = 0 and

‖∇b‖2,∞ = d
1
2 . In the general case, these constants strongly depend on b and on the behavior of ∇b and

∆b. However, there are model-specific and it is difficult to state a general result taking really into account
this dependency. Nevertheless, in Theorem 2.3, we will provide some fairly explicit conditions on ‖∇b‖2,∞
and on ‖∆b‖22,∞ under which these dependencies are controlled (Note that the operator ∆b also appears in
Assumption H3 of [DM19]).
Let us also remark that if b has the following form:

bi(x) = φi(xj1 , . . . , xjm), 1 ≤ m ≤ d, (20)

where φ1,. . . , φd are C2-functions with partial derivatives (up to order 2) bounded by dimension-free con-
stants, then ‖∇b‖2,∞d−

1
2 + ‖∆b‖22,∞d−1 ≤ Cm where Cm does not depend on d.

As in the preceding part, we can now deduce a result as a corollary of this proposition and of Theorem 2.1.

Theorem 2.3. Assume that (Cα) holds true with α ∈ (0, L ∧ 1] and that b is L-Lipschitz and C2 with
bounded partial derivatives. Let f : Rd → R be a Lipschitz continuous function. Let x0 ∈ R

d and suppose
that γ0 ∈ (0, α

2L2 ∧ 1
2 ]. Let Υ2 be defined by (19). For ε > 0, let

r0 = Υ2, , Rε = ⌈log2(r0ε−1)⌉, Tr =
Υ2

2log(γ
−1
0 )

α
ε−22−

3
2 r, r ∈ {0, . . . , Rε},

and τ = τ1| log(ε)|+ τ2 with τ1 = α−1 and τ2 = (2α)−1 logΥ2. Set

ε0 := max{ε ∈ (0, 1],
√
2 log(Υ2ε

−2) ≤ log(γ−1
0 )(Υ2ε

−1)
1
2 }.

Then, (9) holds true for any ε ∈ (0, ε0) with C1 .uc 1 and

C(Y) ≤
1
2 +

√
2√

2− 1

Υ2
2 log(γ

−1
0 )

γ0α
ε−2. (21)

In particular, if α/L2 ≤ 1, σ2α−1d ≥ 1, |b(x0)|2 .uc σ2αd, σ2‖∆b‖22,∞ .uc α−1L4d and ‖∇b‖2,∞ .uc

α−2L3
√
d, then for γ0 = α/(2L2), the conclusion is true with Υ̃2

2 = σ2α−1d leading to the following
complexity bound:

C(Y) ≤ 2
√
2 + 1√
2− 1

σ2L2

α3
log

(

2L2

α

)

dε−2. (22)

The coefficient
1
2+

√
2√

2−1
corresponds to ca in Theorem 2.1. Note that in all the results, we give the explicit

complexities since it may be convenient for practice. From a theoretical point of view, these explicit bounds
do not give more information than some bounds up to universal constants since the ε-approximation is
always obtained up to a universal constant C1 which changes with the normalization of Υ2

2 (on this point,
see Remark 4.1).

Remark 2.7. It is worth noting that in this result, we attain a complexity proportional to dε−2. As
mentioned in the introduction, this means that if we forget for a moment, the intrinsic dependence on L and
α, one attains a complexity which is of the same order as a Monte-Carlo method without bias.

Gibbs distribution approximation II: As in the previous section, we apply this theorem to the approx-
imation of the Gibbs distribution (with the same notations) and obtain the following result. We use the
same notations as in Corollary 2.2 introducing for a positive σ0, the diffusion dXt = bσ0(Xt)dt +

√
2σ0dBt

with bσ0 = −σ2
0∇U , which admits πU = Z−1

U e−Udλd as a unique invariant distribution (for any σ0 > 0). We
obtain the following result:
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Corollary 2.2. Let the assumptions of Corollary 2.1 be in force with U : Rd → R C3 with bounded partial
derivatives. Set

ε0 := max
{

ε ∈ (0, 1],
√
2 log

(

(dα−1
U )

1
2 ε−2

)

≤ log(2)(dα−1
U )

1
4 ε−

1
2

}

.

Then if

σ2
0 =

αU

L2
U

, γ0 = 1/2, Υ2
2 = dα−1

U , ‖∆(∇U)‖22,∞ .uc α
−1
U L4

Ud and |∇U(x0)|2 .uc αUd,

(9) holds true for any ε ∈ (0, ε0), with C1 .uc 1 and,

C(Y) ≤ log 2(2
√
2 + 1)√

2− 1

L2
U

α3
U

dε−2. (23)

Proof. We apply the second part of Theorem 2.3 with bσ0 = −σ2
0∇U , Lσ0 = σ2

0LU and ασ0 = σ2
0αU . The

additional assumption on ‖∆(∇U)‖22,∞ implies that σ2
0‖∆bσ0‖22,∞ .uc α−1

σ0
L4
σ0
d. One also checks that the

condition on ‖∇bσ0‖2,∞ of Theorem 2.3 holds true if ‖D2U‖2,∞ = supx∈Rd ‖D2U(x)‖F .uc α−3
U L4

U

√
d but

this condition is always satisfied: actually, for a symmetric matrix A,

‖A‖2F =
∑

1≤i,j≤d

A2
i,j = Tr(A2) ≤ (λ̄A)

2d

so that
‖D2U‖2,∞ ≤ λ̄U

√
d ≤ (α−3

U L3
U )LU

√
d, (24)

since α−1
U LU ≥ 1. Finally the condition |∇U(x0)|2 .uc αUd ensures that |bσ0(x0)|2 .uc σ2

0α0d. In this
setting Υ2

2 = σ2
0α

−1
σ0

d = α−1
U d , then for ε ∈ (0, ε0) we get the result since

2
√
2 + 1√
2− 1

σ2
0L

2
σ0

α3
σ0

log

(

2L2
σ0

ασ0

)

dε−2 =
log 2(2

√
2 + 1)√

2− 1

L2
U

α3
U

dε−2.

Note that the other parameters have the following form

r0 =

√

dα−1
U , Rε = ⌈log2(r0ε−1)⌉, Tr =

dL2
U log(2)

α3
U

ε−22−
3
2 r, r ∈ {0, . . . , Rε},

and τ = τ1| log(ε)|+ τ2 with τ1 = L2
Uα

−2
U and τ2 = 1

2L
2
Uα

−2
U log

(

dα−1
U

)

.

Remark 2.8. ⊲ Once again, the best choice for x0 is x0 = Argminx∈RdU(x). If this x0 is not explicit, we
use a classical optimization preprocess in order to start the procedure with an initial point which is not so
far from the minimizer of U .
⊲ It is worth noting that C(Y) has the same dependence on LU and αU as in Corollary 2.1. This implies that,
up to the additional condition on ∆(∇U), this result strictly improves Corollary 2.1 since the logarithmic
term disappeared. This additional condition is in fact very reasonable in practice. For instance, owing to
(24), we remark that it is satisfied if ‖∆(∇U)‖22,∞ .uc α

−1
U L3

U‖D2U‖22,∞, i.e. if

sup
(i,j,x)∈{1,...,d}2×Rd

|∂3
i,j,jU(x)| .uc α

−1
U L3

U sup
(i,j,x)∈{1,...,d}2×Rd

|∂2
i,jU(x)|.

Remark 2.9. Let us end this section with some comments and some comparisons with the literature. To
the best of our knowledge, this paper is the first which provides an algorithm for the approximation of Gibbs
distribution with an ε-complexity of the order dε−2. In the literature, it seems that the most comparable
paper is [DM19] where a part of the work is devoted to occupation measures of Euler schemes and where
the authors obtain a complexity in O(dε−4) (or O(dε−3) if f is bounded). The dependence on α and L is
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also mentioned by the authors and a careful reading of their results seems to lead to α−4
U L2

U . This shows
that, in this strongly convex setting, our multilevel procedure is able to improve the dependence in ε without
affecting the dependence in the dimension.

In fact, in the literature, the study of the dependence on the dimension of Langevin methods is usually fo-
cused on the (Wasserstein/Total Variation) distance between the random variable produced by the algorithm
and the Gibbs distribution. This is why the authors usually define the complexity as the number of iterations
to sample one random variable whose distribution is at a distance lower than ε from the target π. In Wasser-
stein distance, it seems that the best bounds for this number of iterations are of the order dε−2 (dε−1 for
the total variation distance, see e.g. [DKRD20] or [DM19]). Nevertheless, if one wants to deduce from these
bounds a Monte-Carlo method which generates an approximation of

∫

f(x)π(dx) with an MSE lower than
ε2, one needs to compute Nε ≈ Varπ(f)ε

−2. As aforementioned, for a general 1-Lipschitz function, Varπ(f)
is “of the order d” so that the real complexity which would be deduced from these Wasserstein bounds is
in fact O(d2ε−3) (or O(dε−3) in the particular case where f is bounded since Varπ(f) is bounded in this case).

To conclude, let us remark that many papers now focus on the non strongly convex setting or at least try
to develop a “more robust strongly convex setting”. Actually, in spite of the optimization of σ0, our results
show that, even in the strongly convex settings, the complexities are very sensitive to the contraction and
Lispchitz parameters so that in cases where α is very small or L is very large, the computation cost may
explode. In this case, the complexity in O(dε−2) becomes a little “symbolic” and some other ideas must be
developed to manage this problem. On this topic, we propose an opening in Section 2.5.3 in a particular
example where numerical computations (and heuristics) show that an increase of the value of γ0 leads to
strongly better performances.
More generally, extending multilevel methods to such pathologic situations seems to require to be able to
preserve the contraction property (H2). Actually, (H2) seems to be fundamental for the control of the
variance of the correcting levels. Then, even if in numerical simulations, we remarked that the L2-confluence
of the Euler schemes seems to be still effective in some non strongly convex settings (on this topic, see
Section 2.5.5), the theoretical extension is a clearly difficult task. In the weakly convex setting, a first idea
could be to adapt the penalized Langevin algorithm proposed in [KD20]. In this paper, the authors regularize
a weakly convex potential by a uniformly strongly convex one and hence, approximate the regularized target.
This approach would probably extend to our multilevel setting. Still in the weakly convex setting, another
viewpoint has been proposed in [GPP20] by considering convex potentials (of the Polyak-Lojasiewicz type)
with positive but vanishing at infinity Hessian matrix. In this case, refined convex arguments seem to
lead to some weak forms of the main assumptions (H1), (H2), (H3) and (H4). In particular, one may
preserve the difficult L2-confluence assumption (H2) and quantitative bounds may probably follow but with
a worse dependence in the dimension. Finally, in the non-convex setting, the recent paper [MFWB19] proved
quantitative bounds for the unadjusted Langevin algorithm with some arguments based on the comparison of
the semi-groups of continuous-time and discretized dynamics and some log-Sobolev5 contraction assumptions
on the target probability. Precisely, such results could lead to assumptions (H3) and (H1) respectively.
Unfortunately, the L2-confluence assumption (H2) requires other type-arguments and makes this issue an
open problem.

2.5 Numerical illustrations

This section is devoted to some numerical illustrations in some toy models. We only investigate the setting
of Corollary 2.2 which produces a lower complexity (see Remark 2.8) and focus on two examples. In the first
classical Ornstein-Uhlenbeck, we detail the choices of parameters and discuss the practical efficiency with
respect to the theoretical one. In the second example, we focus on a model with a non-quadratic potential
and where the constants αU and LU are really different from one in order to emphasize the interest the

5Even if this assumption is usually difficult to check in practice without strong convexity, such an assumption opens the way
to quantitative bounds in the non-convex setting.
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optimization of σ0 proposed in Corollary 2.2.

2.5.1 Ornstein-Uhlenbeck

We propose to compute
∫

Rd f(x)π(dx) where π = N (0, Id) and f(x) = |x| (= (
∑d

i=1 x
2
i )

1
2 ). When d = 2k,

k ∈ N
∗,

If =

∫

Rd

f(x)π(dx) =
(2k)!

√
2π

22kk!(k − 1)!
. (25)

The distribution π being the invariant distribution of the Ornstein-Uhlenbeck process solution to dXt =
−Xtdt +

√
2dBt, the idea is certainly to apply the multilevel procedure to this process. Note that since

U(x) = |x|2/2, we have αU = LU = 1 so that the positive number σ0 of Corollary 2.2 is equal to 1. Taking
the parameters given in this corollary, we set:

γ0 =
1

2
, x0 = 0, Υ2

2 = d,

so that for any d ≥ 2, for any ε ∈ (0, 1),

Rε = ⌈log2(ε−1
√
d)⌉, Tr = dε−22−

3
2 r, r = 0, . . . , R, and τ = | log ε|+ 1

2
log d.

Remark 2.10. Note that in all the simulations, we choose, for the sake of simplicity to set Tr = L2
Uα

−3
U dε−22−

3
2 r

instead of Tr = log(2)L2
Uα

−3
U dε−22−

3
2 r. By Theorem 2.1(ii) (where there is a lower-bound on t), this does

not change the conclusion except the cost which is divided by log 2.

With d = 10 and ε = 0.1, we first provide a simulation giving the contributions of each level. In this case,
If ≈ 3.084. The multilevel procedure applies with R = 5. In Table 1, we give the number of iterations of the
Euler scheme for each level and the evolution of the estimation after each level. The total number of itera-

Level 0 1 2 3 4 5
Number of iterations 2000 2124 1497 1059 747 531
Estimation 3.579 3.315 3.204 3.149 3.118 3.105

Table 1: Evolution of the multilevel procedure with r. Theoretical value≈ 3.084.

tions of the Euler scheme (complexity) is equal to 7958 whereas the theoretical bound given in Corollary 2.2
is equal to 9243 ( since (2

√
2+1)(

√
2−1)−1 ≈ 9.423). This difference comes from the fact that the bound on

the complexity is obtained by a computation of the series
∑+∞

r=1 2
− r

2 whereas here it only involves
∑5

r=1 2
− r

2 .
Note that the algorithm is compatible with parallelization procedures since the levels can be computed in-
dependently. However, it is worth noting that the degree of parallelization of such a multilevel method
is completely different from the traditional Multilevel-Monte-Carlo where the average is based on a mas-
sive number of Euler schemes (with a much shorter horizon) whose simulation can be completely parallelized.

The table suggests that the procedure seems to be slightly “oversized” for the required precision and that
the last levels bring corrections which are of order 10−2. This feeling is confirmed by a computation of
the empirical RMSE (Root Mean-Squared Error) with N = 50 simulations of the multilevel procedure. We
obtain:

RMSE(If , d = 10, ε = 0.1) ≈ 0.026.

In other words, the method calibrated to obtain a precision ε = 0.1 produces a precision 0.026 in this
particular example. In Table 2, we now provide several tests of the robustness of the algorithm by computing
the empirical RMSE (with N = 50 simulations) for different values of d and ε and two different starting
points: x0 = 0 (which is the theoretical best choice) and x0 = (1, . . . , 1) satisfying |∇U(x0)|2 = |x0|2 = d (so
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d ε R Complexity If RMSE(x0 = 0/x0 = (1, 1, . . . , 1))
10 0.1 5 0.80 ∗ 103 3.084 0.026/0.026
10 0.01 8 8.79 ∗ 105 3.084 0.029/0.030
100 0.1 7 8.60 ∗ 104 9.975 0.014/0.013
100 0.01 10 9.02 ∗ 106 9.975 0.001/0.001
1000 0.1 8 8.79 ∗ 105 31.615 0.016/0.016

Table 2: Computation of an estimation of the RMSE for different values of d and ε.

that the condition of Remark 2.8 is satisfied). Once again, we can remark that (at least on this example),
the numerical results outperform the required precisions. Furthermore, the performances are very robust to
d and ε (which is coherent with Corollary 2.2). Furthemore, it is worth noting that the performances with
x0 = 0Rd or x0 = (1, 1, . . . , 1) are almost equal.

2.5.2 A logistic-type perturbation

In this second example, we consider the potential U : Rd 7→ R defined by

U(β) = U1(β) +
λ|β|2
2

, β ∈ R
d, with U1(β) = log(1 + ex

Tβ)

and x ∈ R
d. In this second model, we added to the quadratic function β 7→ λ|β|2

2 the function U1 whose
gradient is nothing but a logistic function. Such a potential is in the spirit of the ones which appear in the
posterior distribution of Bayesian logistic regression (see Section 2.5.4 below for details) with Gaussian prior
(in this perspective x may be viewed as a vector of covariates). We thus chose to keep the usual Bayesian
notation β for the variable but we will not investigate the real statistical model.

In view of our paper, this example is an interesting case since the theoretical results still apply but with
some different αU and LU (and a non quadratic potential). Let us compute ∇U1 and D2U1:

∇U1(β) = x(1 + e−x
Tβ)−1 and D2U(β) =

xx
T

(1 + e−xTβ)(1 + exTβ)
.

Then, for any β ∈ R
d,

〈D2U1(β)β, β〉 =
|xTβ|2

(1 + e−xTβ)(1 + exTβ)
,

so that U1 is a convex function but with infβ∈Rd λU1
(β) = 0. On the other hand, we deduce from the previous

equality and from Cauchy-Schwarz inequality that

∀β ∈ R
d, 〈D2U1(β)β, β〉 ≤

|x|2
(1 + e−xTβ)(1 + exTβ)

|β|2 ≤ |x|2
5

|β|2,

where in the last inequality, we used that (1 + eu)(1 + e−u) = 3 + 2coshu ≥ 5. From what precedes, we
deduce that we can set

αU = λ ∧ 1 and LU = λ+
|x|2
5

.

Remark 2.11. Note that even though U1 is a convex function, we say that U1 is a perturbation of the
quadratic potential since it does not modify the contraction parameter but it increases the value of LU .

Finally, let us consider the last condition on ∆(∇U). We have

|∂3
i,j,kU(β)| = |xixjxk

−2sinh(xTβ)

(3 + 2cosh(xTβ))2
| ≤ 1

25
|xixjxk|
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so that

∑

1≤i,j≤d

|∂3
i,j,jU(β)|2 ≤ 1

25
|x|2(

d
∑

j=1

x4
j ) ≤

1

25
|x|4 max{x2

j , j = 1, . . . d} ≤ |x|6
25

≤ 5L3
U ≤ 5α−1

U L4
Ud.

The last bound being very rough, this means that the behavior of D3U will have few consequences on the
performances of the algorithm. Now, we choose to throw randomly x and normalize it in order that |x|2

5 = a

for a given a. We set x =
√
5aZ
‖Z‖ where Z ∼ N (0, Id). We apply Corollary 2.2 with

σ2
0 =

λ

(λ+ |x|2
5 )2

,

and an initial condition obtained after a standard gradient descent with constant step. At the end of the
procedure, we check that |∇U(β0)|2 ≤ αUd in order to satisfy the assumptions of Corollary 2.2 (note that
the convergence of the gradient descent is very fast in this strongly convex setting).

Here, we choose to consider the function f = Id (“in the spirit” of the posterior means in Bayesian statistics).
We first compute a sharp estimation of the vector (

∫

βiπ(dθ))
d
i=1 that we denote by β̄true

6 and then compute
a Monte-Carlo approximation (with N = 20 simulations) of the (normalized) expectation of the L2-distance
between the estimation and the target : d−

1
2 ‖β̄true − β̄estim‖2 = d−

1
2E[|β̄true − β̄estim|2] 12 where β̄estim

denotes the approximation of β̄true produced by the multilevel procedure and where the reader has to keep
in mind that | . | denotes the Euclidean norm on R

d. We propose a simulation with the parameters:

d = 10, 100, a = 2, λ = 1/4 αU = 1/4, and LU = 9/4.

Even with these not so pathologic values, we can remark that this unfortunately strongly increases the
cost of computation with respect to the Ornstein-Uhlenbeck case since it multiplies it by L2

U/α
3
U = 324.

Nevertheless, the procedure still works since we obtain for ε = 0.1,

d−
1
2 ‖β̄true − β̄estim‖2 ≈

{

0.042 with d = 10

0.023 with d = 100.

2.5.3 Towards some strategies to reduce the impact of αU and LU .

As aforementioned, bad values of αU and LU may seriously affect the complexity of the procedure (being
proportional to L2

U/α
3
U ). This problem is not specific to the multilevel approach but should be certainly

tackled in order to produce less time-consuming algorithms in this case.

In our setting, we remarked in the numerical computations that oppositely to the nicely calibrated Ornstein-
Uhlenbeck process, the contributions provided by the correcting levels are two small with respect to the
required precision. For instance, in the above example, for ε = 0.1, the correction related to the first level is
already of order 10−2 (whereas in Table 1, the first levels bring a correction of order 10−1). This suggests
that the step is too small. More precisely, even though γ0 = 1/2 in Corollary 2.2, the factor σ2

0 = αU/(2L
2
U )

induces a very small evolution of the dynamics (but is theoretically optimal in terms of αU and LU ).

From a theoretical point of view, we are in fact limited by the constraint γ ≤ α/(2L2) which appears in
Theorems 2.2 and 2.3. Going back to the proofs, one can remark that this constraint is of first importance
in several arguments and firstly in Lemma 5.1(i) for the L2-stability of the Euler scheme. Actually, for a too
large step, the Euler scheme explodes since the first order error produced by the discretization of the drift
term becomes stronger than the contraction coming from Assumption (Cα). Note that this problem also

6This estimation has been obtained with ε = 0.01.
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appears in models where the potential is superquadratic7. Some solutions are proposed in the literature by
introducing alternative schemes such as implicit discretizations in [MSH02] or explicit Euler schemes with
randomized (decreasing adaptive) step sequence as in [Lem07a]. Such alternative schemes (and other ones)
should be probably investigated in view of improvements of the procedure in the general case.

In our specific case, U(x) = U1(x) + U2(x) where U1 has a bounded gradient and U2(x) = λ|x|2/2 and it
is in fact possible to alleviate the constraint on the step which guarantees a L2-stability, without modifying
the scheme. Actually, since in this case,

|b(x)− b(y)|2 ≤ 2λ2|x− y|2 + 8‖∇U1‖2∞,

a careful reading of the associated proof shows that the scheme is always long-time stable for any γ ≤ 1/(4λ)
with

E[|X̄γ,x
t − x⋆|2] .uc |x− x⋆|2e−α

2 t +
|b(x⋆)|2

α2
+

‖U1‖2∞γ + σ2d

α
.

In the case b(x⋆) = 0, this implies that the bound of Lemma 5.1(i) remains of the same order as soon as
γ ≤ min((4α)−1, σ2d

‖U1‖2
∞

). Note that such improvements of the domain of stability of the Euler scheme may be

possible (with other constraints) in the case where U2 is L2-Lispchitz with L2 ≪ L1 and |∇U1(x)|2 = o(U2(x))
when x → +∞ (case which usually appears in applications). However, Lemma 5.1(i) is not the only part of
the proof where the constraint γ ≤ α/L2 appears. In particular, it plays an important role for the control
of the distance between the paths of the Euler scheme (which in turns leads to the control of the confluence
properties which allow to control the variance). A a consequence, a potential improvement of Corollary 2.2
in this particular setting would require further investigations.

In order to give some little more substance to these perspectives, let us finish with a numerical computation.

In the spirit of Corollary 2.2, we keep σ2
0 = αU/L

2
U but replace γ0 = 1/2 by γ0 = min((4ασ0)

−1,
σ2
0d

‖U1‖2
∞

)

in order to saturate the condition γ ≤ min((4α)−1, σ2d
‖U1‖2

∞

). With d = 100, this leads in our example

to γ0 = (4ασ0)
−1 = L2

U/(4α
2
U ) and by (22), to a complexity of the order σ2

0L
4
σ0
γ−1
0 α−4

σ0
dε−2 = α−1

U dε−2

(instead of L2
Uα

−3
U dε−2). With d = 100 and with the notations and values of the previous section, this yields

d−
1
2 ‖β̄true − β̄estim‖2 ≈ 0.017

for ε = 0.1 (on N = 20 simulations). Thus, it seems to preserve the efficiency of the theoretically checked
method but with a number of iterations which has been divided by L2

Uα
−2
U (= 81 in this particular case).

Going deeper in the numerical and theoretical perspectives on this topic is the purpose of a future paper.

2.5.4 Comparison with some other MCMC methods for Bayesian learning

Let us continue this numerical section with some simulations that compare our proposed estimator to
benchmark methods such as the Unadjusted Langevin Algorithm (ULA) and the Metropolis-Adjusted
Langevin Algorithm (MALA). The aim is to compute a Bayesian estimator with the help of n observa-
tions Y = (y1, . . . , yn) ∈ R

n and many covariates X = (x1, . . . , xn) ∈ R
d×n. The purpose of the Bayesian

paradigm is to find a law modeling the parameter β. This research is based on the choice of a prior law π0

that characterizes what their value might be. By Bayes’ rule, the posterior density πn is given by:

πn(β) ∝ π0(β) exp

(

−
n
∑

i=1

ℓβ(xi, yi)

)

. (26)

where in logistic regression, the function ℓβ is defined by:

ℓβ(x, y) = y log
(

s(βTx)
)

+ (1− y) log
(

1− s(βTx)
)

7A function V : Rd 7→ R is said to be superquadratic if lim|x|→+∞
V (x)

|x|2
= +∞.
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with s denoting the sigmoid function defined by s(t) = (1 + e−t)−1, t ∈ R. We can consider a large variety
of prior laws depending, for example, on our knowledge of the problem. Recently, great interest has been
given to the so-called Exponentially Weighted Aggregate (EWA) where π0(β) ∝ e−λPen(β) (see [DGP18]),
with Pen : Rd → R being a regularization function and λ > 0. Here, we consider the Bayesian Ridge Logistic
Regression by setting Pen(β) = |β|2/2 (we thus penalize by the square of the Euclidean norm) and aim to
compute the posterior mean:

β̂EWA =

∫

βπn(β)dβ =

∫

β
e−Un(β)

Z
λd(dβ),

where U(β) :=
∑n

i=1 ℓβ(xi, yi) + λ|β|2 and Z =
∫

e−Un(β)λd(dβ).
We test our algorithm on a heart disease public database8, also used in [DM19] which contains 13 covariates9

supposed to be correlated to heart diseases. Consequently, the target will be the presence or not of heart
disease in the patient. To predict the target, more than 1000 patients are observed.

As mentioned before, we compare the performances of our Multilevel-Langevin pathwise average (MLPA)
with ULA (see e.g. [DM19] and [Dal17]) and MALA (see e.g. [RT96, BRH13, DCWY19, CLA+21, DM22]).
We recall that ULA is based on a classical Monte-Carlo average of Euler schemes whereas MALA is a
Metropolis-Hasting-type algorithm (see [MRR+53]) where proposals are based on the Euler scheme of a
Langevin dynamics (see [RT96] for details). We compute ULA and MALA with the following parameters:

X̄0 = 0Rd , γ = ε

√

α3
U

2L4
Ud

, T =
1

2αU
log

(

dε−2

2αU

)

, N =
2d

ε2αU
and ε = 0.1, (27)

where γ denotes the discretization step, T is the final time of each path, N is the number of Monte Carlo
sampling, and αU and LU denote respectively the smallest and the greatest eigenvalue of the Hessian of U10

Relying on the results of [DM19], these parameters are optimal choices for ULA to provide a RMSE of order
ε. . Finally, we compare these estimations with MLPA applied with the following parameters (which lead
to a RMSE of order ε by Corollary 2.2):

γ0 =
1

2
, Rε =

⌈

log2

(

ε−1

√

d

αU

)⌉

, r = 0, . . . , Rε, γr = γ02
−r

X̄0 = 0, Tr = dε−2L
2
U

α3
U

2−
3
2 r, and τ =

1

αU
log(ε−1) +

1

2αU
log

(

√

d

8αU

)

.

Our comparisons of ULA, MALA and MLPA are resumed in Table 3 below where we provide the number
of iterations of the Euler scheme and the empirical RMSE obtained after 50 simulations of each method
with ε = 0.1. Table 3 illustrates the result shown in this paper. Indeed, we see that we achieve the same

Algorithm MALA ULA MLPA
Number of iterations 320089 320089 62415
empirical RMSE 0.0995 0.1458 0.0966

Table 3: Comparison of ULA, MALA and MLPA, ε = 0.1.

precision for the three methods, but the computational cost of the Multilevel method is very cheap compared
to the two others.

8These data come from four different geographic placesCleveland, Hungary, Switzerland, and Long Beach V.
https://www.kaggle.com/datasets/heart-disease-dataset

9Note that the ordinal covariates are replaced by dummy variables.
10They can be computed exactly as in Subsection 2.5.2.
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2.5.5 Robustness in the non-convex setting

In view of applications, a natural question occurs. Is such an algorithm able to remain efficient in a non-
convex setting ? More precisely, does such a multilevel procedure have the ability of remaining more efficient
than a standard one in the non-convex setting ? As explained in Remark 2.9, among the assumptions of
Theorem 2.1, the one which is the most difficult to check in a non-convex setting is the L2-confluence hy-
pothesis (H2) (L2-confluence)This is also the assumption which is the only one which is really specific to
the multilevel procedure since its role is to control the variance of the correcting layers. The L2-confluence
is a very difficult problem and it is clear that (H2) is not true in general in the non-convex setting (see for
instance the counter-example given in [LPP15, Proposition 3.1]). Nevertheless, the example below shows
that in some cases, the procedure may remain efficient:

Set U(x) = 1
2 |x|2 − log(1+ |x|2), x ∈ R

d. One easily checks that ∇U(x) = x
(

|x|2−1
|x|2+1

)

and that U has a local

maximum in 0 and that each point x satisfying |x| = 1 is a local minima. Let us denote by ν ∝ e−U the
related Gibbs distribution which is the invariant distribution of

dXt = −Xt
|Xt|2 − 1

|Xt|2 + 1
dt+

√
2dBt.

As in Section 2.5.1, we choose here to compute ν(f) with f(x) = |x|. In fact, ν(f) can be explicitly computed.
We have

∫

Rd

f(x)ν(dx) =
d+ 2

d+ 1
If ,

where If is given by (25). Since in this setting, the contraction parameter αU does not exist, we have to
fix arbitrarily some parameters. We choose to do as if we had αU = LU = 1. This means that we fix the
parameters as in Section 2.5.1. Table 4 below contains the empirical root-mean squared errors computed
with M = 50 computations related to a computation where ε = 0.1. We thus remark that the method still
works here (since the empirical error is lower than ε).

d = 100 d = 1000

ε = 10−1 0.024 0.017

Table 4: Empirical RMSE related to the computation of ν(f)

3 A quantitative control of the error

The proof of Theorem 2.1 is based on a classical bias-variance decomposition of the error with respect to the
target. The originality of the proof lies in the sharp control of each term of the decomposition, according
to the set of assumptions of Theorem 2.1. Such controls are resumed in Proposition 3.1 below where we
provide, for some given step and time sequences, an almost11 quantitative control of the error in terms of
the parameters involved in Assumptions (H1) to (H4). The proof of Theorem 2.1 will be then achieved in
Section 4.

Proposition 3.1. Let f be a (non constant) Lipschitz function. Assume that (Hi), i = 1, . . . , 4, hold for
some given a ∈ [1, 2], η0 ∈ [0, 1/2] and x0 ∈ R

d. Assume that γ0 ∈ (0, η0] with αγ0 ≤ 1, and that for every
r ∈ {0, . . . , R},

γr = γ02
−r and Tr = T02

− 1+a

2 r,

11By “almost”, we mean that we omit the universal constants, i.e. which do not depend on the parameters of the assumptions
and of the diffusion. This will not perturb the sequel of the paper in which our main objective is to exhibit the dependency in
the dimension.
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and that τ is a non-negative number satisfying τ ≤ TR/2. Then,

1

[f ]21
‖Y(R, (γr)r , τ, (Tr)r , f)− π(f)‖22 ≤ cu

αT0

(

c24 +max(c22, c2c4)γ
a

0 log
(

γ−1
0

) (

(a− 1)−2 ∧R2
))

+

(

c3γ
δ
R +

cuc1(x0)

αT0
e−ατ2

1+a

2 R

)2

,

where cu is a universal constant. The related complexity cost C(Y)12 satisfies:

C(Y) ≤







T0

γ0

(

(1 + 3
2 (2

a−1
2 − 1)−1

)

if a > 1

T0(1+ 3
2R)

γ0
if a = 1

(28)

The proof of the above result is the objective of the sequel of this section. By the bias/variance decom-
position,

‖Y(R, (γr)r , τ, (Tr)r , f)− π(f)‖22 = E[Y(R, (γr)r , τ, (Tr)r , f)− π(f)]2 +Var(Y(R, (γr)r , τ, (Tr)r , f)).

The sequel of the section is then divided into two parts successively studying the bias and variance terms.
The main respective results are Propositions 3.2 and 3.3. Then, Proposition 3.1 follows from a combination of
these two propositions and from the following remark about the complexity cost: for some given parameters
R and (Tr)

R
r=0 and (γr)

R
r=0, the complexity cost related to Y(R, (γr)r , τ, (Tr)r , .) satisfies:

C(Y) ≤ T0

γ0
+

R
∑

r=1

(

Tr

γr
+

Tr

γr−1

)

=
T0

γ0

(

1 +
3

2

R
∑

r=1

2
1−a

2 r

)

,

This easily leads to (28).

3.1 Step 1: Bias of the procedure

In the sequel, Y(R, (γr)r , τ, (Tr)r , f) is usually written Y for the sake of simplicity. We start with a telescopic-
type decomposition:

Y(f)− π(f) =
1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)− πγ0(f)ds

+

R
∑

r=1

(

1

Tr − τ

∫ Tr

τ

f(X̄γr,x0
sγr−1

)− πγr (f)ds− 1

Tr − τ

∫ Tr

τ

f(X̄γr−1,x0
sγr−1

)− πγr−1(f)ds

)

+ πγR(f)− π(f).

(29)

Remark 3.1. In a standard Multilevel Monte-Carlo procedure (in finite horizon), the expectation of the
above sum would be equal to the last term only, i.e. the bias would be exactly πγR(f) − π(f). In this
long-time setting, the bias also contains long-time components which correspond to the (expectation of the)
first and the second right-hand members of the above equality. Nevertheless, these long-time error terms
will be negligible under the exponential contraction assumption (H1).

Let us now study the bias generated by the first and second terms of the right-hand side of (29).

Lemma 3.1. Assume (H1). Let γ ∈ (0, η0]. Let η = γ or η = 2γ. Let τ and T be positive numbers, such
that τ ≤ T

2 . Then, for all x ∈ R
d,

∣

∣

∣

∣

∣

1

T − τ

∫ T

τ

Ex[f(X̄
γ,x0
sη

)]− πγ(f)ds

∣

∣

∣

∣

∣

≤ 2eαηc1(x)[f ]1e
−ατ

αT
,

where x 7→ c1(x) is given by (H1).
12By complexity cost, we recall that we mean the number of iterations of the Euler scheme which is needed to compute

Y(R, (γr)r , τ, (Tr)r , .).

21



Proof. Let η = γ or η = 2γ. We have
∣

∣

∣

∣

∣

1

T − τ

∫ T

τ

Ex[f(X̄
γ,x0
sη

)]− πγ(f)ds

∣

∣

∣

∣

∣

≤ 1

T − τ

∫ T

τ

∣

∣

∣
Ex[f(X̄

γ,x0
sη

)]− πγ(f)
∣

∣

∣
ds.

By Assumption (H1), it follows that

∣

∣

∣

∣

∣

1

T − τ

∫ T

τ

Ex[f(X̄
γ,x0
sη

)]− πγ(f)ds

∣

∣

∣

∣

∣

≤ c1(x)[f ]1
T − τ

∫ T

τ

e−αsηds ≤ c1(x)[f ]1
T − τ

⌈T
η
⌉

∑

k=⌊ τ
η
⌋
e−αηk.

Then, a standard computation leads to
∣

∣

∣

∣

∣

1

T − τ

∫ T

τ

Ex[f(X̄
γ,x0
sη

)]− πγ(f)ds

∣

∣

∣

∣

∣

≤ c1(x)[f ]1
T − τ

e−αη⌊ τ
η
⌋

α
.

The result follows by using that τ ≤ T/2 and that η⌊ τ
η ⌋ ≥ τ − η.

We are now ready to state a proposition about the control of the bias of the procedure.

Proposition 3.2. Assume that (H1), (H3) and (H4) hold for some given a ∈ [1, 2], η0 ∈ [0, 1] and x0 ∈ R
d.

Let γ0 ∈ (0, η0] and R ∈ N
∗. Let τ and T0 be some positive numbers such that 2τ ≤ TR where for each

r ∈ {0, . . . , R},
Tr = T02

− 1+a

2 r.

Then, for every Lipschitz continuous function f : Rd → R,

|Ex0 [Y(R, (γr)r , τ, (Tr)r , f)]− π(f)]| ≤ c3[f ]1γ
δ
R +

8e2αγ0c1(x0)[f ]1
αT0

e−ατ2
1+a

2 R, (30)

where c1(x) and c3 are given by Assumptions (H1) and (H3).

Remark 3.2. In the continuity of Remark 3.1, one retrieves that the right-hand side of the inequality is
made of two terms, the first one being derived from πγR(f)−π(f) and the second one coming from the long-
time errors. Note that owing to the exponential convergence to the invariant distribution, an exp(−ατ)-term
appears, which strongly depends on the warm-start τ , i.e. on the starting time of the pathwise average.
In order to obtain a complexity proportional to ε−2, it will be necessary to take τ large enough in such a
way that the long-time bias remains negligible.

Proof. Taking the expectation in (29), we obtain:

|E[Y(f)− π(f)]| ≤
∣

∣

∣

∣

∣

1

T0 − τ

∫ T0

τ

Ex0

[

f(X̄γ0,x0
sγ0

)
]

− πγ0(f)ds

∣

∣

∣

∣

∣

+

R
∑

r=1

1

Tr − τ

∣

∣

∣

∣

∣

∫ Tr

τ

E

[

f(X̄γr,x0
sγr−1

)
]

− πγr (f)ds

∣

∣

∣

∣

∣

+

R
∑

r=1

1

Tr − τ

∣

∣

∣

∣

∣

∫ Tr

τ

E

[

f(X̄γr−1,x0
sγr−1

)
]

− πγr−1(f)ds

∣

∣

∣

∣

∣

+ |πγR(f)− π(f)| .

The last term is controlled with the help of Assumption (H3) which ensures that

|πγR(f)− π(f)| ≤ c3[f ]1γ
δ
R.
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For the three first terms, we apply Lemma 3.1 with (γ, η, τ, T ) = (γ0, γ0, τ, T0), (γ, η, τ, T ) = (γr, γr−1, τ, Tr)
and (γ, η, τ, T ) = (γr−1, γr−1, τ, Tr), respectively in the first, second and third terms. In each case, one can
check that τ and T satisfy the assumptions of Lemma 3.1. This leads to:

|Ex0 [Y(f)]− π(f)| ≤ c3[f ]1γ
δ
R +

4e2αγ0c1(x0)[f ]1
α

e−ατ
R
∑

r=0

1

Tr
(31)

≤ c3[f ]1γ
δ
R +

8e2αγ0c1(x0)[f ]1
αT0

e−ατ2
1+a

2 R,

where in the second line, we used that
∑R

r=0 ρ
r ≤ 2ρR for any ρ ≥ 2. The result follows.

3.1.1 Study of the variance

Let us now focus on the study the variance of our estimator. The basic idea of multilevel strategies is in
general to introduce some additive layers which can correct the bias without adding too much variance. In
the setting of discretization of processes, this idea mainly relies on the capability of controlling the distance
between discretization schemes with different step sizes (γ and γ/2 in our construction). Thus, our assump-
tion (H2) will play a fundamental role in this part. However, in our setting where we consider empirical
averages, the variance also depends on the mixing properties of the involved dynamical system. Hence, our
ergodicity assumption (H1) will also be of first importance.

First, owing to the definition (7), to the independency of the Brownian motions related to each level r and
to the fact that γr = γr−1

2 , one can check that the variance admits the following decomposition:

Var(Y(R, (γr)r , τ, (Tr)r , f)) = Var

(

1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)ds

)

+

R
∑

r=1

Var

(

1

Tr − τ

∫ Tr

τ

Gγr−1
s ds

)

, (32)

where for some given γ > 0 and s ≥ 0,

Gγ
s = f(X̄

γ
2 ,x0
sγ )− f(X̄γ,x0

sγ
).

In the following lemma, we focus on the second term:

Lemma 3.2. Let f be a Lipschitz function. Let 0 ≤ τ < T . Assume that (H1), (H2) and (H4) hold for
some given a ∈ [1, 2], γ0 ∈ [0, η0] and x0 ∈ R

d. Let γ ∈ (0, γ0] with αγ ≤ 1. Then,

Var

(

1

T − τ

∫ T

τ

Gγ
sds

)

≤ cvar[f ]
2
1

T − τ
γa log

(

1

γ

)

,

with cvar = 16eα−1max(c22, c2c4) (c2 and c4 being given by (H2) and (H4)).

Proof. A standard computation shows that

Var

(

1

T − τ

∫ T

τ

Gγ
sds

)

=
2

(T − τ)2

∫ T

τ

∫ T

u

Cov (Gγ
s , G

γ
u) dsdu. (33)

The idea of the sequel of the proof is to provide two types of bounds for Cov (Gγ
s , G

γ
u), depending on the size

of s− u (small or large).

First, by the Cauchy-Schwarz inequality,

Cov (Gγ
s , G

γ
u) ≤

√

Var(Gγ
s )Var(G

γ
u).
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Then, by Assumption (H2), and the fact that f is Lipschitz continuous, we get:

Var(Gγ
s ) ≤ E[(Gγ

s )
2] ≤ [f ]21‖X̄γ,x0

sγ
− X̄γ/2,x0

sγ
‖22 ≤ [f ]21c

2
2γ

a. (34)

Thus,
Cov (Gγ

s , G
γ
u) ≤ [f ]21c

2
2γ

a. (35)

Second, when s − u is large, one can make use of the ergodicity of the process. More precisely, let us first
remark that for a given step size γ, Gγ

u is Fuγ
-measurable. Thus, for any s ≥ uγ ,

E [Gγ
sG

γ
u] = E[E[Gγ

s |Fuγ
]Gγ

u].

Setting
φ(η, t, x) = E[f(X̄η,x

t )]− πη(f), (36)

we deduce from the Markov property that

E[Gγ
s |Fuγ

] = π
γ
2 (f) + φ(

γ

2
, sγ − uγ , X̄

γ
2 ,x0
uγ

)−
(

πγ(f) + φ(γ, sγ − uγ , X̄
γ,x0
uγ

)
)

.

Thus, by Assumption (H1),

E [Gγ
sG

γ
u] =

(

π
γ
2 (f)− πγ(f)

)

E[Gγ
u] +R1(s, u, γ)

with

|R1(s, u, γ)| ≤ [f ]1e
−α(sγ−uγ)

∣

∣

∣
E[(c1(X̄

γ
2 ,x0
uγ

) + c1(X̄
γ,x0
uγ

))Gγ
u]
∣

∣

∣

≤ 2[f ]1e
−α(sγ−uγ)‖Gγ

u‖2 max
(

‖c1(X̄
γ
2 ,x0
uγ

)‖2, ‖c1(X̄γ,x0
uγ

)‖2
)

,

where in the second line, we used Cauchy-Schwarz inequality. Then, by Assumption (H4) and the same
argument as in (34), we deduce that

∣

∣

∣
E [Gγ

sG
γ
u]−

(

π
γ
2 (f)− πγ(f)

)

E[Gγ
u]
∣

∣

∣
≤ 2[f ]1c4e

−α(sγ−uγ)‖Gγ
u‖2 ≤ 2[f ]21c2c4γ

a

2 e−α(sγ−uγ). (37)

Let us now consider E [Gγ
s ]E[G

γ
u] . With similar arguments as above,

E [Gγ
s ]E[G

γ
u] =

(

π
γ
2 (f)− πγ(f)

)

E[Gγ
u] +R2(s, u, γ)

with

|R2(s, u, γ)| ≤ 2[f ]1e
−αsγ c1(x0)‖Gγ

u‖2 ≤ 2[f ]21c2c4γ
a

2 e−αsγ ,

since c1(x0) ≤ c4 under Assumption (H4).Thus, combining with (37), we get

Cov (Gγ
s , G

γ
u) ≤ 4[f ]21c2c4γ

a

2 e−α(sγ−uγ) ≤ 4eαγ [f ]21c2c4γ
a

2 e−α(s−u),

since sγ − uγ ≥ s− u+ γ. Combining this inequality with (35), we obtain for every 0 ≤ u ≤ s ≤ T :

Cov (Gγ
s , G

γ
u) ≤ 4eαγ [f ]21c2 max(c2, c4)γ

a

2

{

γ
a

2 if s− u ≤ a

2α | log γ|.
e−α(s−u) if s− u ≥ a

2α | log γ|.
Now, let us plug this inequality into (33). Setting cγ = 8eαγc2 max(c2, c4),

Var

(

1

T − τ

∫ T

τ

Gγ
sds

)

≤ cγ [f ]
2
1

(T − τ)2

(

∫ T

τ

∫ u+ a

2α log( 1
γ
)

u

γadsdu+

∫ T

τ

∫ T

u+ a

2α log( 1
γ
)

e−α(s−u)dsdu

)

≤ cγ [f ]
2
1

(T − τ)2

(

∫ T

τ

aγa

2α
log

(

1

γ

)

du+

∫ T

τ

γa

α
du

)

≤ cγ(a/2 + 1)[f ]21
α(T − τ)

γa log

(

1

γ

)

.

The result follows by using that a ≤ 2 and αγ ≤ 1.
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We are now ready to bound the variance of the multilevel procedure. This is the purpose of the next
proposition.

Proposition 3.3. Let f be a Lipschitz function. Assume that (H1), (H2) and (H4) hold for some given
a ∈ [1, 2], γ0 ∈ [0, η0] and x0 ∈ R

d with αη0 ≤ 1. Assume that for every r ∈ {0, . . . , R},

γr = γ02
−r and Tr = T02

− 1+a

2 r,

and that τ is a positive number satisfying τ ≤ TR/2. Then,

Var(Y(R, (γr)r , τ, (Tr)r , f) ≤ cu
[f ]21
αT0

(

c24 +max(c22, c2c4)γ
a

0 log
(

γ−1
0

) (

(a− 1)−2 ∧R2
))

,

where cu is a universal constant.

Remark 3.3. When a = 1, (a − 1)−2 ∧R2 = R2.

Proof. At the price of replacing f by f−f(x0) (which does not change the variance), we can assume without
loss of generality that f(x0) = 0. In view of the decomposition obtained in (32), we apply Lemma 3.2 for
each level r ∈ {1, . . . , R} with T = Tr and γ = γr−1. Using that (Tr − τ)−1 ≤ 2/Tr for every r ∈ {1, . . . , R},
we obtain:

Var(Y(R, (γr)r ,τ, (Tr)r , f)) ≤ Var

(

1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)ds

)

+ 2cvar[f ]
2
1

R
∑

r=1

γa

r−1 log
(

1
γr−1

)

Tr

≤ Var

(

1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)ds

)

+
2cvar[f ]

2
1γ

a

0

T0

R
∑

r=1

2
1−a

2 r

(

log

(

1

γ 0

)

+ r

)

≤ Var

(

1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)ds

)

+
2cvar[f ]

2
1γ

a

0 log
(

2γ−1
0

)

T0

R
∑

r=1

r2
1−a

2 r. (38)

When a > 1, one can check that

R
∑

r=1

r2
1−a

2 r ≤
∑

r≥1

r2
1−a

2 r =
2(1−a)/2

(1 − 2(1−a)/2)2
≤ 4

(log 2)2
2

a−1
2 (a − 1)−2 ≤ 4

√
2

(log 2)2
(a− 1)−2,

where in the second inequality, we used that 1 − e−x ≥ xe−x for any x ≥ 0. When a ≥ 1,
∑R

r=1 r2
1−a

2 r ≤
R(R+1)

2 so that

2cvar[f ]
2
1γ

a

0 log
(

2γ−1
0

)

T0

R
∑

r=1

r2
1−a

2 r ≤ cucvar
γa

0 log
(

γ−1
0

)

T0

(

(a− 1)−2 ∧R2
)

.

where cu is a universal constant.

Now, it remains to bound the first term of (38) (with the help of ergodicity arguments). By similar
arguments as in the proof of Lemma 3.2 (and with the notation φ introduced in (36)),

Var
( 1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)ds
)

=
2

(T0 − τ)2

∫ T0

τ

∫ T0

τ

Cov(f(X̄γ0,x0
sγ0

), f(X̄γ0,x0
uγ0

))dsdu

=
2

(T0 − τ)2

∫ T0

τ

∫ T0

u

E

[(

φ(γ0, sγ0
− uγ0

, X̄γ0
uγ0

) + φ(γ0, sγ0
, x0)

)

f(X̄γ0,x0
uγ0

)
]

dsdu

≤ 2[f ]1
(T0 − τ)2

∫ T0

τ

∫ T0

u

E[
(

c1(X̄
γ0,x0
uγ0

) + c1(x0)
)

f(X̄γ0,x0
uγ0

)]e−α(sγ0
−uγ0

)dsdu,
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where in the last line, we used Assumption (H1). By Assumption (H4),

sup
u≥0

(

‖c1(X̄γ0,x0
u )‖2 + c1(x0)

)

≤ 2c4.

As well, f being a Lipschitz continuous function such that f(x0) = 0, we have f(x) ≤ [f ]1|x − x0| and by
(H4), we deduce that

sup
u≥0

‖f(X̄γ0,x0
uγ0

)‖2 ≤ 2c4[f ]1.

Hence, by Cauchy-Schwarz inequality, we easily deduce that

Var

(

1

T0 − τ

∫ T0

τ

f(X̄γ0,x0
sγ0

)ds

)

≤ 8eαγ0 [f ]21c
2
4

α(T0 − τ)
≤ 16eαγ0[f ]21c

2
4

αT0
,

since τ ≤ TR

2 ≤ T0

2 .

4 Proof of Theorem 2.1

In the next proposition, we provide a quantitative estimate of the complexity cost Cε(Y) (which corresponds
to the number of iterations which are necessary to obtain ‖Y(f) − π(f)‖2 ≤ ε) and in particular of the
constant C defined in Theorem 2.1. In particular, Theorem 2.1 is a corollary of this result.

Proposition 4.1. Let the assumptions of Theorem 2.1 be in force. For a given ε ∈ (0, 1], let Rε, (γr)
Rε

r=0

and (Tr)
Rε

r=0 be defined by (8) with γ0 ∈ (0, η0]. Then,

(i) If τ ∈ [τ1| log(ε)| ∧ TRε

2 ,
TRε

2 ] with τ1 > (1 + a− 2δ)/(2αδ), there exist some positive constants C1 and C2

(independent of ε) such that (9) and (10) hold true with C2 = caγ
−1
0 t (where ca defined in Theorem 2.1).

(ii) Assume that the parameters given in (8) satisfy:

r0 ≥ 1 ∨ (c3γ
δ
0), and t≥ t0 :=

da

α
max

(

c22γ
a

0 log(γ
−1
0 ), c24

)

, (39)

with da = (a − 1)−2 if a > 1 and da = 1 if a = 1. Set

τ1 =
1 + a− 2δ

αδ
, τ2 = 0 ∨ 1

α
log
(

r
1+a

2δ
0 (dac4)

−1
)

, ε0 := max{ε ∈ (0, 1], τ1| log ε|+ τ2 ≤ 1

2
TRε

}. (40)

Let τ ∈ [τ1| log ε|+ τ2 ≤ 1
2TRε

]. Then, (9) and (10) hold true for any ε ∈ (0, ε0) with C1 .uc 1.

Proof. At the price of replacing ε by ε/[f ]1, we assume in whole the proof that [f ]1 = 1.

(i) First, by (28), one remarks that if the parameters satisfy (8), then, the related complexity cost Cε(Y)
satisfies for every ε ∈ (0, 1],

Cε(Y) ≤
{

(

(1 + 3
2 (2

a−1
2 − 1)−1

)

t

γ0
ε−2 if a > 1

5
2

t

γ0
ε−2R3

ε if a = 1,
(41)

This leads to the value of C2. On the other hand, we deduce from Proposition 3.113 that a positive constant
C1 exists such that (9) holds true for any ε ∈ (0, 1] if there exist some finite constants C1,1, C1,2 and C1,3

such that










(a) c3γ
δ
Rε

≤ C1,1ε

(b) c1(x0)
αT0

e−ατ2
1+a

2 Rε ≤ C1,2ε

(c) 1
αT0

(

c24 +max(c22, c2c4)γ
a

0 log
(

γ−1
0 (a− 1)−2 ∧R2

ε

))

≤ C1,3ε
2,

(42)

13Note that by construction, τ ≤ TRε/2.
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where Rε = ⌈δ−1 log2(r0ε
−1)⌉. Note that we used that under the assumptions, αγ0 ≤ 1. For (a), the result

is obvious since by construction,

c3γ
δ
Rε

≤ c3γ
δ
02

− log2(r0ε
−1) =: C1,1ε with C1,1 = c3γ

δ
0r

−1
0 . (43)

For (c), using the elementary inequality 2c2c4 ≤ c22 + c24 and the fact that supx∈(0,1],a∈[1,2] x
a| log x| ≤ 1, we

remark that

c24 +max(c22, c2c4)γ
a

0 log(γ
−1
0 )

(

(a − 1)−2 ∧R2
ε

)

.uc max
(

c24, c
2
2γ

a

0 log(γ
−1
0 )
) (

(a − 1)−2 ∧R2
ε

)

.

Then, owing to the definition of T0, we deduce that (c) holds true with

C1,3 .uc

{

2(a− 1)−2(αt)−1max
(

c24, c
2
2γ

a

0 log(γ
−1
0 )
)

if a > 1

2(αt)
−1

max
(

c24, c
2
2γ

a

0 log(γ
−1
0 )
)

if a = 1.
(44)

Note that for a = 1, we used that (a− 1)−2 ∧R2
ε = R2

ε and that T0 = tε−2R2
ε. Finally, for (b), first remark

that 2
1+a

2 Rε ≤ (2δr0ε)
1+b
2δ . Then, if τ := τ(ε) ≥ τ1| log(ε)| with τ1 ≥ 0, we get

ε−1 c1(x0)

αT0
e−ατ2

1+a

2 Rε ≤ c1(x0)

αt
(2δr0)

1+b
2δ ε1+ατ1− 1+a

2δ . (45)

In the case a = 1, we used that Rε ≥ 1. Set κ = 1 + ατ1 − 1+a

2δ . Since τ1 > (1 + a − 2δ)/(2αδ), we have
κ > 0. Thus,

sup
ε∈(0,1]

ε−1 c1(x0)

αT0
e−ατ2

1+a

2 Rε ≤ c1(x0)

αt
(2δr0)

1+a

2δ < +∞.

This implies that C1,2 is finite as soon as τ(ε) ≥ τ1| log(ε)| for any ε ∈ (0, 1]. This result easily extends to
the case where lim infε→0

τ(ε)
τ1| log(ε)| > 0 (with the convention 1/0 = +∞ if τ1 = 0). Thus, the result is still

true if τ ∈ [τ1| log ε| ∧ TRε
/2, TRε

/2]. Actually, under (H3), one can check that | log(ε)| = o(TRε
).

(ii) First, let us remark that under the assumptions of this statement, τ ≤ TRε
/2 for any ε ∈ (0, ε0]. It

now remains to check that C1,1, C1,2 and C1,3 defined in (i) are bounded by universal constants.
For (a), this is obvious by (43) (since C1,1 ≤ 1 when r0 ≥ 1 ∨ c3γ

δ
0). For (c), one also remarks that t is

defined in such a way that C1,3 is bounded by a universal constant. Finally, for (b), one can check (with a
slight adaptation of (45)) that when τ ≥ τ1| log(ε)|+ τ2 with τ1 = (1 + a− 2δ)/(2αδ) then,

ε−1 c1(x0)

αT0
e−ατ2

1+a

2 Rε ≤ c1(x0)

αt
2

1+a

2 r
1+a

2δ
0 e−ατ2 . (46)

Thus, C1,2 is bounded by a universal constant if

τ2 ≥ 1

α
log

(

c1(x0)r
1+a

2δ
0

αt

)

.

Now, since c1(x0) ≤ c4 and αt = damax
(

c24, c
2
2γ

a

0 log(γ
−1
0 )
)

≥ dac
2
4, we can slightly simplify the condition

by taking

τ2 = 0 ∨ 1

α
log
(

r
1+a

2δ
0 (dac4)

−1
)

.

Remark 4.1. In the sequel, we usually know the constants c2, c3 and c4 up to some universal constants.
More precisely, we will build our algorithm with c̃i = λici where λ1, λ2 and λ3 denote some universal positive
constants. A careful reading of the proof shows that with the new parameters

r̃0 ≥ 1 ∨ (c̃3γ
δ
0), R̃ε = ⌈δ−1 log2(r̃0ε

−1)⌉, t̃≥ da

α
max(c̃22γ

a

0 log(γ
−1
0 ), c̃24)
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and τ̃ = τ1| log ε|+ τ̃2 with,

τ̃2 = 0 ∨ 1

α
log
(

r̃
1+a

2δ
0 (dac̃4)

−1
)

,

the conclusion of Proposition 4.1(ii) (and thus of Theorem 2.1(ii)) is still true with C̃2 = caγ
−1
0 t̃ and with

a new universal constant C̃1.

For the sake of completeness, let us give some arguments. First, the fact that C̃2 = caγ
−1
0 t̃ follows from

(41). Then, to prove that C̃1 .uc 1, one has to check that the controls of (42) are still true with the new
parameters of the algorithm (with some new universal constants d̃i, i = 1, 2, 3). For (a), we have c3γδ

Rε
≤ d̃1ε

with d̃1 = c3γ
δ
0 r̃

−1
0 and it is easy to check (considering separately the cases c̃3γ

δ
0 ≤ 1 and c̃3γ

δ
0 ≥ 1) that

d̃1 ≤ cu = max(λ1, λ
−1
1 ). For (c), one checks that the formula (44) is still correct replacing t by t̃. If a > 1,

this means that (c) holds with

C1,3 = 2max(c̃22γ
a

0 log(γ
−1
0 ), c̃24)

−1max(c22γ
a

0 log(γ
−1
0 ), c24) ≤ cu =

2

min(λ2
2, λ

2
4)

and the same bound occurs with a = 1. Finally, for (b), using that c1(x0) ≤ c4 = λ−1
4 c̃4 and that αt̃ ≥ dac̃

2
4,

we can replace Inequality (46) by :

ε−1 c1(x0)

αT̃0

e−ατ̃2
1+a

2 R̃ε .uc λ
−1
4 (dac̃4)

−1r̃
1+a

2δ
0 e−ατ̃2 ,

and the definition of τ̃2 is exactly what we need to bound d̃2 by a universal constant.

5 Proof of the results in the strongly convex setting

This section is divided into two parts. In the first one, we prove that (Cα) leads to a series of bounds which
in turn imply (H1), (H2), (H3) and (H4). Then, in the second one (Section 5.2), we thus derive our main
results from Theorem 2.1.

5.1 Contraction/Stability/Confluence bounds under (Cα)

5.1.1 (H1) and (H4) under (Cα)

Lemma 5.1. Assume (Cα) and b L-Lipschitz with 0 < α ≤ L. Let x⋆ ∈ R
d. Then,

(i) For every (γ, t, x) ∈ (0, α/(2L2)]× R+ × R
d,

E[|X̄γ,x
t − x⋆|2] ≤ |x− x⋆|2e−α

2 t + |b(x⋆)|2
(

1

L2
+

2

α2

)

+
2σ2d

α
. (47)

In particular, the Euler scheme with step γ admits a unique invariant distribution πγ as soon as γ ∈
(0, α/(2L2)]14

sup
γ∈α/(2L2)]

πγ(|.− x⋆|2) ≤ 2|b(x⋆)|2
(

1

L2
+

2

α2

)

+
σ2d

α
.

(ii) For all x, y ∈ R
d, for all γ ∈ (0, α/(2L2)], for all t ≥ 0,

E[|X̄γ,x
t − X̄γ,y

t |2] ≤ |x− y|2e−αt,

14In fact, looking carefully into the proof, one can check that existence of πγ may extend to γ ∈ (0, 2α/L2].
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and,
W2(X̄

γ,x
t , πγ) ≤ W2(δx, π

γ)e−αt

with,

W2(δx, π
γ) ≤ c1(x) := |x− x⋆|+

√

|b(x⋆)|2
(

1

L2
+

2

α2

)

+
2σ2d

α
.

(iii) As a consequence, setting η0 = α/(2L2), (H1) holds with c1 defined above and (H4) holds with c24 .uc

α−2|b(x0)|2 + σ2α−1d.

Remark 5.1. Let us remark that the L2-bounds of (ii) rely on pathwise controls of the Euler schemes.
Furthermore, note that if b(x0) = 0, the dependence on α is improved. This is of interest in the case where
b = −∇U and U has a minimum (unique under (Cα)) which is known.

Proof. (i) Let (X̄x
t )t≥0 denote the Euler scheme with step γ starting from x. Let t = γmax{k ∈ N, kγ ≤ t}

and set ηt = t− t. For any t ≥ 0, we have

X̄x
t − x⋆ = X̄x

t − x⋆ + ηtb(X̄
x
t ) + σ(Bt −Bt).

Using that the Brownian motion has centered and independent increments, we have for every t ≥ 0,

E[|X̄x
t − x⋆|2] = E[|X̄x

t − x⋆|2] + 2ηtE[〈X̄x
t − x⋆, b(X̄x

t )〉] + η2tE[|b(X̄x
t )|2] + ηtσ

2d.

Adding and substracting 2ηtE[〈X̄x
t , b(x

⋆)〉] in the preceding equality and b(x⋆) in E[|b(X̄x
t )|2] we get

E[|X̄x
t − x⋆|2] ≤ E[|X̄x

t − x⋆|2] + 2ηtE[〈X̄x
t − x⋆, b(X̄x

t )− b(x⋆)〉]
+ η2tE[|b(X̄x

t )− b(x⋆)|2] + η2t |b(x⋆)|2 + 2ηtE[〈X̄x
t − x⋆, b(x⋆)〉] + ηtσ

2d.

Using that b is L-Lipschitz, Assumption (Cα) and the elementary inequality 〈u, v〉 ≤ (2α)−1|u|2 + (α/2)|v|2
(with u = b(x⋆) and v = X̄x

t − x⋆), this yields:

E[|X̄x
t − x⋆|2] ≤ E[|X̄x

t − x⋆|2]
(

1− αηt + η2tL
2
)

+ ηt
(

|b(x⋆)|2(ηt + α−1) + σ2d
)

. (48)

If γ ∈ (0, α/(2L2)], then, 1− αγ + γ2L2 ≤ 1− 1
2αγ. Hence, setting uk = E[|X̄x

kγ − x⋆|2], we get

uk+1 ≤ uk

(

1− αγ

2

)

+ γ

(

|b(x⋆)|2
(

α

2L2
+

1

α

)

+ σ2d

)

,

and an induction leads to

uk ≤ |x− x⋆|2
(

1− αγ

2

)k

+
2

α

(

|b(x⋆)|2
(

α

2L2
+

1

α

)

+ σ2d

)

.

Then, Inequality (47) follows for t = kγ by using that 1−x ≤ e−x for x ≥ 0, and extends to any t ≥ 0 by (48).

Inequality (47) implies in particular that supt≥0 E[|X̄t − x⋆|2] < +∞, which in turn classically ensures the
existence of πγ and the fact that πγ(|.− x⋆|2) ≤ lim supt→+∞ < E[|X̄t − x⋆|2]. Uniqueness is obvious since
the diffusion is not degenerated.
(ii) With the same notations as in (i),

X̄x
t − X̄y

t = X̄x
t − X̄y

t + ηt(b(X̄
x
t )− b(X̄y

t )).

Expanding the square of the right-hand member and using Assumption (Cα), this yields:

|X̄x
t − X̄y

t |2 ≤ |X̄x
t − X̄y

t |2(1 − 2αηt) + η2t |b(X̄x
t )− b(X̄y

t )|2.
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Since b is a Lipschitz continuous function, we deduce that

|X̄x
t − X̄y

t |2 ≤ |X̄x
t − X̄y

t |2
(

1− 2αηt + η2tL
2
)

.

Since γ ≤ α/L2, we have 1 − 2αηt + η2tL
2 ≤ 1 − αηt for any t ≥ 0. The first inequality thus follows by

induction and by the inequality 1− x ≤ e−x for x ≥ 0.

Let us consider the second inequality of (ii): by the invariance of the distribution πγ and the definition of
W2, we have

W2(L(X̄γ,x
t ), πγ) ≤

√

EY0∼πγ [|X̄γ,x
t − X̄γ,Y0

t |2] =
√

∫

E[|X̄γ,x
t − X̄γ,y

t |2]πγ(dy),

and the result follows from the previous bound. Finally, for the last inequality of (ii), one uses Minkowski
inequality to obtain:

W2(δx, π
γ) ≤ |x− x⋆|+

√

∫

|y − x⋆|2πγ(dy),

but by (i) and the convergence in distribution of the Euler scheme towards πγ ,
∫

|y − x⋆|2πγ(dy) ≤ lim sup
k→+∞

E[|X̄x
t − x⋆|2] ≤ |b(x⋆)|2

(

1

L2
+

2

α2

)

+
2σ2d

α
.

(iii) This is a direct consequence of (i) and (ii), applied with x⋆ = x0 and using that α ≤ L.

5.1.2 Proof of (H2) and (H3)

In view of (H2), we begin with a fundamental “one-step” lemma where we consider the error between the
diffusion and its discretization on one step only. To this end, we consider for x, y ∈ R

d the couple (Xx
t , X̄

y
t )t≥0

defined by
{

Xx
t = x+

∫ t

0 b(X
x
s )ds+ σBt

X̄y
t = y + tb(y) + σBt.

Lemma 5.2. Let γ > 0.
(i)

E[|Xx
γ − X̄y

γ |2] ≤ |x− y|2e−αγ +
γ2L2

α

(

γ|b(y)|2 + σ2d
)

.

(ii)
E[|Xx

γ − X̄y
γ |2] ≤ |x− y|2e−αγ + cγ(x, y)γ

3.

with

cγ(x, y) =
2

3

(

L2

α
|b(y)|2 + σ4

α
‖∆b‖22,∞ + σL‖∇b‖2,∞

(√
γS(x, γ) + σ

√
d
)

)

,

where ‖∇b‖2,∞ and ‖∆b‖2,∞ are defined by (18) and S(x, γ) = supu∈[0,γ] E[|b(Xx
u)|2]

1
2 .

Proof. Set

Fx,y(t) =
1

2
E[|Xx

t − X̄y
t |2].

By the Lebesgue differentiability theorem,

F ′
x,y(t) = E

[

〈Xx
t − X̄y

t , b(X
x
t )− b(y)〉

]

(49)

= E
[

〈Xx
t − X̄y

t , b(X
x
t )− b(X̄y

t )〉
]

+ E
[

〈Xx
t − X̄y

t , b(X̄
y
t )− b(y)〉

]

≤ −2αFx,y(t) + E
[

〈Xx
t − X̄y

t , b(X̄
y
t )− b(y)〉

]

, (50)
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where in the last line, we used (Cα). The sequel of the proof is then dedicated to the second part of the last
line. To this end, we write

E
[

〈Xx
t − X̄y

t , b(X̄
y
t )− b(y)〉

]

= E
[

〈Xx
t − X̄y

t , b(X̄
y
t )− b(y + σBt)〉

]

(51)

+ E
[

〈Xx
t − X̄y

t , b(y + σBt)− b(y)〉
]

. (52)

For the right-hand side of (51), we use the elementary inequality, |uv| ≤ α
4 |u|2 + 1

α |v|2 to obtain

E
[

〈Xx
t − X̄y

t , b(X̄
y
t )− b(y + σBt)〉

]

≤ α

2
Fx,y(t) +

t2

α
L2|b(y)|2. (53)

Let us now focus on (52).

First inequality: To deduce (i), we use the same inequality as above which yields

E
[

〈Xx
t − X̄y

t , b(y + σBt)− b(y)〉
]

≤ α

2
Fx,y(t) +

σ2L2td

α
.

Then, plugging it into (50) together with (53) yields:

F ′
x,y(t) ≤ −αFx,y(t) +

t2

α
L2|b(y)|2 + σ2L2td

α
.

A standard Gronwall-type argument then leads to

Fx,y(t) ≤ Fx,y(0)e
−αt +

∫ t

0

(

s2

α
L2|b(y)|2 + σ2L2sd

α

)

eα(s−t)ds

and the result follows easily by using that for r > −1,
∫ t

0 s
reα(s−t)ds ≤ tr+1

r+1 and by setting t = γ.

Second inequality: For (ii), we need to give a sharper bound of (52). To this end, we again apply ItÃ´
formula to b(y + σBt)− b(y): writing b = (b1, . . . , bd), we have for each i ∈ {1, . . . , d},

bi(y + σBt)− bi(y) = σ2

∫ t

0

∆bi(y + σBs)ds+ σ

∫ t

0

〈∇bi(y + σBs), dBs〉.

On the one hand, setting ∆b = (∆bi)
d
i=1,

E

[

〈Xx
t − X̄y

t , σ
2

∫ t

0

∆b(y + σBs)ds〉
]

≤ α

2
Fx,y(t) +

σ4

α
t2‖∆b‖22,∞,

where

‖∆b‖22,∞ = sup
x∈Rd

d
∑

i=1

|∆bi(x)|2.

On the other hand, setting Mt =
∫ t

0
〈∇b(y + σBs), dBs〉 (with ∇b = (∇b1, . . . ,∇bd)

T ) and using that M is
a martingale, we get

E

[〈

Xx
t − X̄y

t , σ

∫ t

0

〈∇b(y + σBs), dBs〉
〉]

= 0 + σE[〈
∫ t

0

b(Xx
s )− b(y)ds,Mt〉]

= σ

∫ t

0

E[〈b(Xx
s )− b(y),Ms〉]ds.

31



Again by the martingale property,

E[〈b(Xx
s )− b(y),Ms〉] = 〈b(x) − b(y),E[Ms]〉+ E[〈b(Xx

s )− b(x),Ms〉]
= E[〈b(Xx

s )− b(x),Ms〉]

so that by Cauchy-Schwarz inequality,

|E[〈b(Xx
s )− b(y),Ms〉]| = |E[〈b(Xx

s )− b(x),Ms〉]| ≤ LE[|Xx
s − x|2] 12E[|Ms|2]

1
2 . (54)

But, by Minkowski and Jensen inequalities,

E[|Xx
s − x|2] 12 ≤ E[|

∫ s

0

b(Xx
u)du|2]

1
2 + σE[|Bs|2]

1
2

≤ s sup
u∈[0,γ]

E[|b(Xx
u)|2]

1
2 + σ

√
sd

and for the martingale term,

E[|Ms|2] =
∫ s

0

E[‖∇b(y + σBu)‖2F ]du

where for a matrix A, ‖A‖F denotes the Frobenius norm defined by ‖A‖F =
∑

i,j |Ai,j |2. Thus,

E[|Ms|2]
1
2 ≤ ‖∇b‖2,∞

√
s,

where

‖∇b‖2,∞ = sup
x∈Rd

√

√

√

√

(

d
∑

i=1

|∇bi(x)|2
)

= sup
x∈Rd

‖∇b(x)‖F

Thus, we deduce from what precedes and from (54) that

|E[〈b(Xx
s )− b(y),Ms〉]| ≤ L‖∇b‖2,∞

(

s
3
2S(x, γ) + σs

√
d
)

,

where S(x, γ) = supu∈[0,γ] E[|b(Xx
u)|2]

1
2 .

Finally, from what precedes, we deduce that

F ′
x,y(t) ≤ −αFx,y(t) +

t2

α

(

L2|b(y)|2 + σ4‖∆b‖22,∞ + σαL‖∇b‖2,∞
(√

tS(x, γ) + σ
√
d
))

.

A standard Gronwall argument then leads to the result.

We now iterate the one-step inequalities of Lemma 5.2. For a given (Ft)t≥0-Brownian motion, we consider
the couple

(

Xx
t , X̄

γ,x
t

)

t≥0
defined by

{

Xx
t = x+

∫ t

0
b(Xx

s )ds+ σBt

X̄γ,x
t = x+

∫ t

0
b(X̄γ,x

s )ds+ σBt.
(55)

Proposition 5.1. Assume (Cα) and that b is L-Lipschitz with 0 < α ≤ L. Let x⋆ ∈ R
d and γ ∈ (0, α

2L2 ∧1).
Then for every n ≥ 0 and x ∈ R

d,

(i)
∥

∥Xx
nγ − X̄γ,x

nγ

∥

∥

2

2
≤ β1(x)γ,
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with

β1(x) =
L2

α
|x− x⋆|2 + 2|b(x⋆)|2

(

1

α
+

L2

α3

)

+
3L2σ2d

α2
.

(ii) For any n ≥ 0, for every x ∈ R
d,

∥

∥Xx
nγ − X̄γ,x

nγ

∥

∥

2

2
≤ β2(x)γ

2,

with
3

2
β2(x) =

2L4

α2
|x− x⋆|2 + a0|b(x⋆)|2 + σ

L√
α
‖∇b‖2,∞|x− x⋆|+ a1|b(x⋆)|+ a2d,

where

a0 = 4

(

L2

α2
+

L4

α4

)

, a1 = σ(α− 1
2 + α− 3

2L)‖∇b‖2,∞,

a2 =
σ4

α2
‖∆b‖22,∞d−1 + L‖∇b‖2,∞σ2d−

1
2 (α− 1

2 + α−1) +
2L4σ2

α3
.

(iii) As a consequence, (H2) holds with

{

a = 1 and c22 .uc L
2α−3|b(x0)|2 + L2σ2α−2d

a = 2 and c22 .uc (Lα
−1)4|b(x0)|2 + a1|b(x0)|+ a2d.

(56)

Proof. (i) Set un = E[|Xx
nγ − X̄x

nγ |2] (so that u0 = 0). Using the Markov property and Lemma 5.2(i), we get

∀n ≥ 0, un+1 ≤ une
−αγ + γ2β1(x, γ),

where β1(x, γ) =
L2

α

(

γ supn≥0 Ex[|b(X̄nγ)|2] + σ2d
)

. Thus, by induction, we get

un ≤ γ2β1(x, γ)

n−1
∑

k=0

e−αkγ ≤ γ

α
β1(x, γ),

where in the last inequality, we used that 1 − e−x ≥ 1 − x for any x ≥ 0. Then, it remains to control
supn≥0 Ex[|b(X̄nγ)|2]. By Lemma 5.1 and the fact that b is Lipschitz continuous,

E[|b(X̄γ,x
t )|2] ≤ 2L2

E[|X̄γ,x
t − x⋆|2] + 2|b(x⋆)|2 ≤ 2L2|x− x⋆|2e−α

2 t + 4|b(x⋆)|2
(

1 +
L2

α2

)

+
4(Lσ)2d

α
. (57)

Then, if γ ∈ (0, α/(2L2)] (so that γL2/α ≤ 1/2),

γ

α
L2 sup

n≥0
Ex[|b(X̄nγ)|2] ≤ L2|x− x⋆|2 + 2|b(x⋆)|2

(

1 +
L2

α2

)

+
2(Lσ)2d

α

and

β1(x, γ) ≤ L2|x− x⋆|2 + 2|b(x⋆)|2
(

1 +
L2

α2

)

+
3L2σ2d

α
.

The first result follows.

(ii) With the same notations and the same strategy as in (i), we deduce from Lemma 5.2(ii) that,

un ≤ γ2

α
β2(x, γ)
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with
β2(x, γ) ≤ sup

n≥0
E[cγ(X

x
nγ , X̄

x
nγ))].

By the definition of cγ , we deduce that

3

2
β2(x, γ) ≤

L2

α
sup
n≥0

E|b(X̄x
nγ)|2 +

σ4

α
‖∆b‖22,∞ + σ2L‖∇b‖2,∞

√
d

+ σL‖∇b‖2,∞
√
γ sup

n≥0
ES(Xx

nγ , γ).
(58)

But, since S2(z, γ) = sup0≤t≤γ E[|b(Xz
t )|2], we deduce from the Markov property and Jensen inequality that

ES(Xx
nγ , γ) ≤ sup

nγt≤(n+1)γ

(

Ex[|b(Xt)|2]
)

1
2

so that
sup
n≥0

ES(Xx
nγ , γ) ≤ sup

t≥0

(

Ex[|b(Xt)|2]
)

1
2 . (59)

By ItÃ´ formula,

E[|Xx
t − x⋆|2] = |x− x⋆|2 +

∫ t

0

2E〈Xx
s − x⋆, b(Xx

s )〉ds+ σ2d.

Writing 〈z−x⋆, b(z)〉 = 〈z−x⋆, b(z)−b(x⋆)〉+〈z−x⋆, b(x⋆)〉 and using (Cα) and the inequality 〈u, v〉 ≤ α/2|u|2 + 1/(2α)|v|2,
we get

2E〈Xx
s − x⋆, b(Xx

s )〉 ≤ −α|Xx
s − x⋆|2 + 1

α
|b(x⋆)|2.

Hence, a standard Gronwall-type argument leads to

E[|Xx
t − x⋆|2] ≤ |x− x⋆|2e−αt +

1

α2
|b(x⋆)|2 + σ2d

α
.

Thus, using that b is L-Lipschitz,

Ex[|b(Xt)|2] ≤ 2L2
Ex[|Xt − x⋆|2] + 2|b(x⋆)|2 ≤ 2L2|x− x⋆|2 + 2|b(x⋆)|2

(

1 +
L2

α2

)

+
2(Lσ)2d

α
,

which in turn implies that

sup
n≥0

ES(Xx
nγ , γ) ≤

√
2L|x− x⋆|+

√
2|b(x⋆)|(1 + Lα−1) + Lσ

√

2d

α
.

Then, since γ ≤ α
2L2 ,

sup
n≥0

√
γES(Xx

nγ , γ) ≤
√
α|x− x⋆|+ |b(x⋆)|(√αL−1 + α− 1

2 ) + σ
√
d.

Then, plugging the above inequality and (57) into (58), we obtain the announced result.
(iii) To prove this last statement, we write:

E[|X̄γ,x0
nγ − X̄

γ
2 ,x0
nγ |2] 12 ≤ E[|X̄γ,x0

nγ −Xx0
nγ |2]

1
2 + E[|Xx0

nγ − X̄
γ
2 ,x0
nγ |2] 12 .

Hence, by (i) applied with x = x⋆ = x0, (H2) holds with a = 1 and c2 =
√

β1(x0)(1 + 2−
1
2 ). By (ii) again

applied with x = x⋆ = x0, (H2) holds with a = 2 and c2 = 3
2

√

β2(x0). Then, the result respectively follows
from the bounds on β1 and β2 previously obtained and from the fact that α ≤ L.
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Now, let us focus on (H3). We recall that π and πγ respectively denote the invariant distributions of the
diffusion and of the Euler scheme with step γ.

Proposition 5.2. Assume (Cα) and suppose that b is Lipschitz continuous function. Then for every γ ∈
(

0, α
2L2

]

, for every x⋆ ∈ R
d,

W1(π, π
γ) ≤

{

√

β1(x⋆)γ if a = 1 and δ = 1/2
√

β2(x⋆) γ if a = 2 and δ = 1.

where β1 and β2 are defined in Proposition 5.1. Thus, (H3) holds with

c23 =

{

1
2 (

1
α + L2

α3 ) infx∈Rd |b(x)|2 + L2σ2d
2α2 if δ = 1

2 and a = 1,

((Lα−1)−2 + (Lα−1)4) infx∈Rd |b(x)|2 + a1 infx∈Rd |b(x)|+ a2d if δ = 1 and a = 2,

where a1 and a2 are defined in Proposition 5.1(iii).

Remark 5.2. Even though (H3), is an assumption related to the weak error, we chose here to prove it with
the nice strong error bounds obtained in Proposition 5.1. This approach is certainly specific to the setting
given by Assumption (Cα) and sharper weak error expansions should be used in more general settings (see
for instance [MFWB19, Theorem 1]).

Proof. Let x ∈ R
d, and n ≥ 0. Let f be a Lipschitz continuous function. By the triangle inequality,

|π(f)− πγ(f)| ≤
∣

∣π(f)− E
[

f(Xx
nγ)
]∣

∣+
∣

∣E
[

f(Xx
nγ)
]

− E
[

f
(

X̄γ,x
n

)]∣

∣

∣

∣+E
[

f
(

X̄γ,x
n

)]

− πγ(f)
∣

∣ . (60)

By Lemma 5.1, we know that under (Cα),
∣

∣π(f)− E
[

f(Xx
nγ)
]∣

∣+ |E
[

f
(

X̄γ,x
n

)]

− πγ(f)| n→+∞−−−−−→ 0.

Thus, since f is Lispchitz continuous,

|π(f)− πγ(f)| ≤ lim sup
n→+∞

∣

∣E
[

f(Xx
nγ)
]

− E
[

f
(

X̄γ,x
n

)]
∣

∣ ≤ [f ]1 lim sup
n→+∞

‖Xx
nγ − X̄γ,x

nγ ‖1.

But by Proposition 5.1(i)and (ii) applied with x = x⋆, we get respectively

lim sup
n→+∞

‖Xx
nγ − X̄γ,x

n ‖2 ≤
√

β1(x⋆)
√
γ and lim sup

n→+∞
‖Xx

nγ − X̄γ,x
n ‖2 ≤

√

β2(x⋆) γ.

Hence, since W1(π, π
γ) = supf,[f ]1≤1 |π(f)−πγ(f)| and ‖Xx

nγ− X̄γ,x
nγ ‖1 ≤ ‖Xx

nγ− X̄γ,x
n ‖2, the first inequality

follows. For the second part of the proposition, it is enough to remark that the inequality is true for every
x⋆ ∈ R

d.

5.2 Proof of the main results of Section 2.4

We are now ready to prove our main results under (Cα).

Proof of Proposition 2.1 and Theorem 2.2. The bound on c1 of Proposition 2.1 follows from Lemma
5.1(ii) applied with x⋆ = x0. For the one on max(

αc22
L2 ,

αc23
L2 , c

2
4), it is enough to apply Lemma 5.1(iii), Propo-

sition 5.1(iii) (with a = 1) and Lemma 5.2 (with δ = 1/2).

To prove Theorem 2.2, we deduce from Proposition 2.1 and from Remark 4.1 that we can apply Theorem
2.1(ii) with a = 1, δ = 1/2, c̃4 = Υ1 and c̃23 = c̃22 = Υ2

1L
2α−115 and 2η0 = αL−2∧1. Setting r0 = Υ1 (defined

in Proposition 2.1) implies that r0 ≥ c̃3γ
1
2
0 (since γ0 ≤ α/L2). One also remarks that Tr = tε−2R2

ε2
−r with

t = α−1Υ2
1 log(γ

−1
0 ) ≥ da max(c̃22γ0 log(γ

−1
0 ), c̃24)

15These notations are introduced in Remark 4.1 which manages the setting where the “real” constants are known up to some
universal constants, which is the case in the bounds of Proposition 2.1.
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as required in Theorem 2.1(ii). The condition on ε0 follows from the definition given in Theorem 2.1(ii) and
from the fact that

TRε
≥ Υ2

1 log(γ
−1
0 )

2α
r−2
0 R2

ε =
log(γ−1

0 )R2
ε

2
.

The bound (14) then follows from the fact that C2 = 5
2γ

−1
0 t. For the last part, we first remark that under

the additional conditions, Υ2
1 .uc σ

2α−1d so that if we set Υ̃2
1 = σ2(Lα−1)2d, we can again use Remark 4.1

to obtain the last bound.

Proof of Proposition 2.2 and Theorem 2.3. Let us begin by the bound on max(
α2c22
L4 ,

α2c23
L4 , c24) of

Proposition 2.2. By Proposition 5.1(ii) (applied with x = x0 = x⋆) and Proposition 5.2 (and the fact that
α ≤ L), one checks that

max

(

α2c22
L4

,
α2c23
L4

)

.uc
1

α2
|b(x0)|2 +

σ
√
α

L3
‖∇b‖2,∞|b(x0)|+

(

σ4

L4
‖∆b‖22,∞ +

σ2αd
1
2

L3
‖∇b‖2,∞ +

σ2

α

)

d.

Using Lemma 5.1(iii) for c24, we obtain the result.
To prove Theorem 2.3, we deduce from Proposition 2.2 and from Remark 4.1 that we can apply Theorem

2.1(ii) with a = 2, δ = 1, c̃4 = Υ2 and c̃23 = c̃22 = Υ2
2L

4α−2 and 2η0 = αL−2 ∧ 1. Using that Υ2 ≥ 1, the
proposed values of r0, Rε, τ1 and τ2 easily follow. For t, we use Proposition 2.2 which implies that

d2

α
max(c̃22γ

2
0 log(γ

−1
0 ), c̃24) ≤

Υ2
2 log(γ

−1
0 )

α
,

and thus set t = α−1Υ2
2 log(γ

−1
0 ). This implies that

TRε
≥ Υ2

2 log(γ
−1
0 )

α
2−

3
2 (log2(Υ2ε

−1)+1) =
(Υ2ε

−1)
1
2 log(γ−1

0 )

2
√
2α

.

Since τ1 log ε
−1 + τ2 = (2α)−1 log(Υ2ε

−2), we deduce the proposed value of ε0.

By Theorem 2.1(ii),

C2 = c2γ
−1
0 t =

1
2 +

√
2√

2− 1

Υ2
2 log(γ

−1
0 )

γ0α
ε−2.

This is exactly (21).
Let us finally prove (22). By the additional assumptions on ∇b, ∆b and b(x0) (and the fact that α ≤ L),
one checks that,

1

α2
|b(x0)|2 +

σ
√
α

L3
‖∇b‖2,∞|b(x0)|+

σ4

L4
‖∆b‖22,∞ +

σ2αd
1
2

L3
‖∇b‖2,∞ +

σ2d

α
.uc

σ2d

α
.

Thus, Υ2
2 defined in Proposition 2.2 satisfies Υ2

2 .uc σ2α−1d. Then, with the help of Remark 4.1, we can
apply Theorem 2.1(ii) with Υ̃2

2 = σ2α−1d and obtain the announced result.
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6 List of specific symbols

In order to help the reading of this paper, we list the specific symbols used in the paper and the page where
they are defined.
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X̄γ,x0

t continuous-time Euler scheme 2
tγ discretization time 2
R number of correcting layers 6
Tr length of the path involved in level r 6
γr step of level r: γr = γ02

−r 6
B(r) Brownian motion of level r 6
x0 starting point of each Euler scheme 6

C(Y) complexity of the algorithm 6
η0 maximal stepsize 6
ci constants in (Hi), i = 1, . . . , 4. 7
πγ inv. distrib. of the Euler scheme 7
α ergodicity exponent in (H1) 7
a confluence parameter in (H2) 7
δ (weak order) parameter in (H3) 7
r0 parameter related to R 7

t parameters related to Tr 7
Ci complexity constant, i = 1, 2 7
L Lipschitz constant of b 9
Υ1 parameter in Proposition 2.1 9
λ̄U highest eigenvalue of D2U 10
λU lowest eigenvalue of D2U 10
αU λ̄U ∧ 1 10
LU Lipschitz constant of ∇U 10
‖ . ‖F Frobenius norm 11
‖ . ‖2,∞ Infinity-L2 norm 11
Υ2 parameter in Proposition 2.2 11
cu universal constant 20

da, t0 constants related to t 26
τi warm-start parameter, i = 1, 2 26
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