%0 Journal Article %T Renormalization group improved pressure for hot and dense quark matter %+ Laboratoire Charles Coulomb (L2C) %A Kneur, Jean-Loïc %A Pinto, Marcus Benghi %A Restrepo, Tulio E. %< avec comité de lecture %@ 1550-7998 %J Physical Review D %I American Physical Society %V 104 %N 3 %P 034003 %8 2021 %D 2021 %Z 2101.08240 %R 10.1103/PhysRevD.104.034003 %K lattice %K density %K resummation %K scale dependence %K renormalization %K finite temperature %K hard thermal loop approximation %K pressure %K higher-order: 1 %K approximation: nonperturbative %K quark: matter %K quantum chromodynamics: perturbation theory %K renormalization group: invariance %Z Physics [physics]/High Energy Physics - Phenomenology [hep-ph] %Z Physics [physics]/High Energy Physics - Lattice [hep-lat] %Z Physics [physics]/Nuclear Theory [nucl-th]Journal articles %X We apply the renormalization group optimized perturbation theory (RGOPT) to evaluate the quark contribution to the QCD pressure at finite temperatures and baryonic densities, at next-to-leading order (NLO). Our results are compared to NLO and state-of-the-art higher orders of standard perturbative QCD (pQCD) and hard thermal loop perturbation theory (HTLpt). The RGOPT provides an all order resummed pressure in a well-defined approximation, exhibiting a drastically better remnant renormalization scale dependence than pQCD, thanks to built-in renormalization group invariance consistency. At NLO, upon simply adding to the RGOPT-resummed quark contributions the purely perturbative NLO glue contribution, our results show a remarkable agreement with ab initio lattice simulation data for temperatures 0.25T1GeV, with a remnant scale dependence drastically reduced as compared to HTLpt. %G English %2 https://hal.science/hal-03129450/document %2 https://hal.science/hal-03129450/file/PhysRevD.104.034003.pdf %L hal-03129450 %U https://hal.science/hal-03129450 %~ CNRS %~ L2C %~ MIPS %~ UNIV-MONTPELLIER %~ UM-2015-2021