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A Variational Method for Parameter Estimation in a Logistic
Spatial Regression

Cécile Hardouina

aMODAL’X, Université Paris Nanterre, France

Abstract

We consider a logistic regression. The spatial dependence is captured through a hidden Gaussian
process after the logit transformation of the Bernoulli success probabilities. In a hierarchical
framework, likelihood-based estimation requires an EM algorithm. However, the expectations in
the E-step are not available in closed-from expressions. We propose a variational approximation
of the complete likelihood, that has a Gaussian form. We then obtain the desired approxima-
tions of the expectations. We conduct a simulation study to compare our approach with Laplace
approximation.

Keywords: logistic regression, variational estimation methods, EM algorithm, Laplace
approximation

1. Introduction, motivation1

Binary spatial data occur in various domains; in ecology or epidemiology, binary variables in-2

dicate absence or presence of a certain plant, or animal, or illness, on a two-dimensional domain.3

In economics and social sciences, binary data can be used for instance in contexts of standard4

adoption, voting models; in these contexts, the spatial feature is translated into a neighbourhood5

graph between agents. Binary data also occur in image analysis, for instance in texture analysis.6

More generally, one can also transform continuous data into binary responses, where we con-7

sider 1 (resp. 0) over (resp. under) a predefined threshold. We consider in this paper the logistic8

regression model. This model is well-known and used in many contexts, it allows to account for9

both spatial dependence and for the effects of potential covariates. Spatial logistic regression has10

been widely used for modeling land-use change; see for instance Tayyebi et al. (2010) and the11

recent works of Schneider and Pontius (2001) for deforestation analysis, Serneels and Lambin12

(2001) in agriculture (Serneels and Lambin, 2001), and Nong and Du (2011) for urban growth13

modeling. In these models, socio-economic and environmental variables are used as covariates14

while urban and non-urban areas are considered as binary outputs. Logistic regression is also15

widely used in various other contexts, for instance for cloud-covering (Wu and Zhang (2013),16

Sengupta et al. (2016)), or in disease mapping (Diggle and Giorgi (2015)).17

Intrisically, inference involves a hidden unobserved process; then likelihood-based estimation18

procedures rely on the so-called completed likelihood, together with an EM algorithm (Dempster19
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et al. (1977)). However, the expectations in the E-step of the algorithm are not available in closed-20

form expressions. There are several ways to overcome this issue, see Paciorek (2007) for a review21

of the general techniques. A common approach is to use Monte Carlo procedures; see for instance22

Robert and Casella (2004), Cappe et al. (2005). Another solution is to use Laplace approximation23

to approximate the intractable integrals, see e.g. Spiegelhalter (1990) or Sengupta and Cressie24

(2013). We propose in this work an alternative method, using a deterministic approximation for25

the unknown conditional distribution of the hidden process given the observations. Our approach26

is known as a variational method. Variational methods have been used in physics, but they also27

appeared in machine learning context and more recently in statistics for estimation problems28

(see e.g. Rustagi (1976), Jaakola and Jordan (2000)). The key feature is to consider a lower29

bound on the complete likelihood, and optimize this lower bound. In this work, we consider a30

lower bound of the logistic function; setting this bound in the completed likelihood expression,31

we obtain a variationally transformed likelihood, which is our new objective function. This32

operation introduces supplementary parameters known as variational parameters. Consequently,33

our transformed likelihood involves both model parameters and variational parameters, but the34

main interest is that it has a Gaussian form, for fixed values of the variational parameters. Thus35

we obtain the expectations required in the E-step of the EM algorithm in closed-form expressions.36

Hence we can run the M-step to find the estimates of the model parameters. Then in turn, we37

update the variational parameters by an optimization procedure, the model parameters being38

fixed to the latest estimates. In summary, each iteration of the so-called Variational EM (VEM)39

algorithm is achieved in three steps, computation of the expectations, maximisation of the model40

parameters, and adjustment of the variational parameters.41

The method can be compared to the Laplace approximation, which also utilizes a Gaussian42

approximation; particularly, the Laplace approximation needs to compute the mode of the objec-43

tive function at each iteration of the EM algorithm, while the variational approximation involves44

extra parameters that need to be updated at each iteration. We conduct simulation experiments,45

running the two procedures, in order to evaluate the advantages and drawbacks of the methods.46

The plan of this paper is as follows. In Section 2, we describe our process model for binary47

data, based on a hidden spatial Gaussian process model. Section 3 is devoted to parameter es-48

timation using the variational approach; we present the variationally transformed likelihood and49

describe the Variational EM (VEM) algorithm for obtaining estimators. We conduct a simulation50

study in Section 4; we compute the estimates obtained from both Variational EM and ordinary51

EM with Laplace approximations, and compare the results of the two methods. We also investi-52

gate the properties of the estimators; first, since there is no theoretical result about the variance53

of variational estimators, we compute an approximation of the variance through a bootstrap ap-54

proach. Then we study the large sample properties, conducting experiments for increasing lattice55

sizes. Finally we investigate how sensitive to the initial values of the algorithm the estimates are.56

We apply our VEM algorithm to a real data set in Section 5, and present a full procedure to57

propose initial values of the algorithm, ending by final variational estimates and their bootstrap58

variances. Conclusion follows in Section 6.59

2. The process model60

We consider a finite two-dimensional domain D ≡ {si : i = 1, . . . , n} ⊂ Rd, with si = (si1, si2)61

for i = 1, ..., n. Let Z = (Z(s1), ...,Z(sn))T be the process on D, taking its values in the state space62

E = {0, 1}n. In a hierarchical framework, we model the variables Z(.) as Bernoulli variables,63
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whose means depend on an underlying spatial process Y = (Y(s1), ...,Y(sn))T. Moreover, we64

assume that these Bernoulli variables are conditionally independent, given the hidden process Y.65

Thus, for each s ∈ D, we write the following independent conditional distributions for Z(s)66

given Y as,67

Z(s) | Y(s) ∼ Ber(p(s)), (1)

where68

p(s) =
eY(s)

1 + eY(s) . (2)

Then P(Z(s) = z | Y(s)) = p(s)z(1 − p(s))1−z =
1

1 + e−Y(s)(2z−1) .69

Then we model the hidden process Y as the sum of two components:70

Y(s) = X(s)Tβ + ε(s). (3)

The first term represents the large-scale spatial variation, or the trend; it is modeled as a linear71

combination of p known covariates X(s) = (X1(s), · · · , Xp(s))T, and β denotes the p−dimensional72

vector of the unknown regression coefficients. The second term holds for small-scale spatial73

variation, and we consider a zero-mean Gaussian spatial process ε,74

ε ∼ Nn(0,Σ), (4)

with unknown spatial covariance matrix Σ. Thus, the model parameters that need to be estimated75

are β and Σ. If we set a parametric assumption for Σ, that is Σ = σ2Q(θ), the full model76

parameters are thus β, σ2, θ. We now present the parameters estimation procedure in the next77

section.78

3. Parameter estimation79

Let us note the parameters to be estimated ϕ = (β,Σ), and let us take the notation [U | V]80

for the conditional distribution of U given V . Since our hierarchical framework involves hidden81

process, we consider the complete likelihood instead of the true likelihood. However, we do not82

consider fully Bayesian inference. We do have a hierarchical model, but we do not put prior83

distributions on the parameters.84

Let us write the complete log likelihood, Lc, for the unknown parameters, given the data. The85

complete data involves the observations Z and the unobserved ε. Since we have the following86

decomposition,87

[Z, ε | β,Σ] = [Z | ε,β] × [ε | Σ], (5)

we write the complete log likelihood as,

Lc(Z, ε | β,Σ) = ln[Z | ε,β] + ln[ε | Σ] (6)

= −
∑
s∈D

ln(1 + eY(s)) +
∑
s∈D

Y(s)Z(s) −
1
2

ln(det Σ) −
1
2
εTΣ−1ε −

n
2

ln 2π (7)

where we recall Y(s) = X(s)Tβ + ε(s). Our goal is to obtain maximum likelihood estimates of88

ϕ = (β,Σ) maximizing (7). The process ε being not observed, estimation has to be performed89

using the EM algorithm, see Dempster et al. (1977), McLachlan and Krishnan (2008).90
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Let us define91

q(ϕ, ϕ̂(l)) = E
[
Lc(Z, ε | ϕ) | Z, ϕ̂(l)

]
. (8)

Starting with an initialization ϕ̂(0), the l−th run of the algorithm is achieved in two steps:92

The E (expectation) step is to compute q(ϕ, ϕ̂(l−1)).93

The M (maximisation) step is maximizing q(ϕ, ϕ̂(l−1)) in order to obtain ϕ̂(l) = arg maxϕ q(ϕ, ϕ̂(l−1)).94

In our case the E-step is an issue since we do not know the conditional distribution of ε95

given the observations Z. There are different ways to overcome this issue. One approach may96

be to approximate the expectations using Monte Carlo integration, and run a so-called stochastic97

EM (SEM) algorithm (see e.g. Robert and Casella (2004), McLachlan and Krishnan (2008)).98

The issue in this approach lies in the simulation, where a Metropolis algorithm is typically used99

to simulate ε. Choosing the “right”proposal density (see Chib and Greenberg (1995), Roberts100

and Rosenthal (2001)) can be problematic, and computations can be very slow for large data101

sets. Another classical remedy is to apply self-normalized importance sampling (see Robert and102

Casella (2004), Section 3.3). In this case, choosing the “right”importance distribution can also103

be problematic; moreover, we can observe a degeneracy of the weights for large n, leading to104

poor estimates. Investigating closer, the main issue in both methods comes from the first term105

of the complete likelihood,
∑

s∈D ln(1 + eY(s)), which is directly derived from the logit function106

and hence the logistic regression model. Our alternative method replaces this term by another107

one which is no more problematic. A third method which is widely used is to proceed with108

Laplace approximations (see e.g. Sengupta and Cressie (2013)); they are based on second-order109

Taylor-series expansions of the logarithm of the integrands around their respective modes. Then110

the density of ε given the data and ϕ̂(l) is approximatively proportional to a Gaussian density;111

the method also allows to treat the problematic term
∑

s∈D ln(1 + eY(s)). Here we propose a112

variational method derived from an initial approximation of the logistic function, that we present113

below. Our method can be compared to the Laplace approximation which also uses a Gaussian114

approximation, but it is advantageous because it does not need to compute the mode at each115

iteration of the EM algorithm; the use of variational parameters offers larger flexibility, and the116

method allows for accurate approximation.117

Roughly speaking, variational techniques are based on some approximation using extra pa-118

rameters called variational parameters. Quoting Jaakola and Jordan (2000), for fixed values of119

the variational parameters, the transformed problem often has a closed form solution, provid-120

ing an approximate solution to the original problem. Unfortunately, since variational estimates121

are based on an approximation of the true log likelihood, we don’t have theoretical results on122

their consistency, or asymptotic normality. There’s no general theory about variational estima-123

tors’ properties, see e.g. Peyrard et al. (2018), paragraph 6.3. However, they are known to be124

empirically accurate. In the framework of binary data, our variational approach is based on an125

approximation of the logistic function, which was introduced by Jaakola and Jordan (2000). In126

a Bayesian and non spatial context, Jaakola and Jordan (2000) study a logistic regression model127

with a Gaussian prior on the parameter vector; they show that the approximate of the condi-128

tional posterior distribution contains the true conditional distribution. We develop their approach129

hereafter, in the framework of an added spatial Gaussian process.130

Let us note the logistic function,131

g(x) =
ex

1 + ex =
1

1 + e−x ,
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defined for any real x. Jaakola and Jordan (Jaakola and Jordan (2000)) give the following in-132

equality for this function:133

ln g(x) ≥ ln g(τ) +
x − τ

2
− λ(τ)(x2 − τ2) (9)

where λ(τ) =
1
4τ

tanh(τ/2) =
g(τ) − 1/2

2τ
. Moreover this lower bound is exact whenever τ2 =134

x2. We apply this inequality to − ln(1 + eY(s)) = ln g(−Y(s)), for each s ∈ D. Let us note τ =135

(τ(s1), ..., τ(sn))T, we obtain136

−
∑
s∈D

ln(1 + eY(s)) +
∑
s∈D

Y(s)Z(s) ≥ T1(τ) + T2(τ,β) + T3(τ,β,Σ)

where

T1(τ) =
∑
s∈D

{
ln g(τ(s)) −

τ(s)
2

+ τ(s)2λ(τ(s))
}
, (10)

T2(τ,β) =
∑
s∈D

{
−λ(τ(s))(X(s)Tβ)2 + (X(s)Tβ)(Z(s) −

1
2

)
}
, (11)

and137

T3(τ,β,Σ) =
∑
s∈D

{
−ε(s)2λ(τ(s)) + ε(s)[Z(s) −

1
2
− 2λ(τ(s))(X(s)Tβ)]

}
. (12)

That is, we have a lower bound for the complete log likelihood,138

Lc(Z, ε | β,Σ) ≥ L̃c(Z, ε | β,Σ, τ),

with139

L̃c(Z, ε | β,Σ, τ) = T1(τ) + T2(τ,β) + T3(τ,β,Σ) −
1
2
ε′Σ−1ε −

1
2

ln(det Σ) + const. (13)

Let us note that the problematic term
∑

ln(1 + eY(s)) is absent in this expression. Our new target140

is the variational lower bound L̃c(Z, ε | β,Σ, τ) defined in (13), which involves the model param-141

eters and the so-called variational parameters τ. Moreover, the variational lower bound is exact142

for a particular choice of τ, which is τ(s)2 = Y(s)2, for all s ∈ D.143

Starting with this initial choice, we have144

L(0)
c (Z, ε | β,Σ) = L̃(0)

c (Z, ε | β,Σ, τ).

Then we alternately maximise L̃c with respect to the model parameters, and update the variational145

parameters; we first search for (βmax,Σmax) maximising L̃c(Z, ε | β,Σ, τ) for fixed τ, then the146

updated variational parameters are obtained maximising L̃c(Z, ε | βmax,Σmax, τ) in τ. This leads147

to the following inequalities,148

L̃c(Z, ε | β,Σ, τ) ≤ L̃c(Z, ε | βmax,Σmax, τ) ≤ L̃c(Z, ε | βmax,Σmax, τmax).

Our goal is to iterate this maximisation-update procedure in order to obtain149

L̃c(Z, ε | βmax,Σmax, τmax) ' Lc(Z, ε | βmax,Σmax) at the end.150

5



As Lc(Z, ε | β,Σ, τ), the expression of L̃c(Z, ε | β,Σ, τ) involves unobserved variables and,151

classically, we run an EM algorithm (with an additional updating step of the variational parame-152

ters). The advantage of considering this variational transformation is that we obtain the desired153

expectations in closed-form expressions, as we now demonstrate. Indeed, we show that the con-154

ditional distribution [Z, ε | β,Σ, τ] is proportional to a multivariate Gaussian distribution, for155

fixed variational parameter τ. Let us note M =(M(s1), ...,M(sn))T, with156

M(s) = Z(s) −
1
2
− 2λ(τ(s))(X(s)Tβ). (14)

Then we write T3(τ,β,Σ) − 1
2ε

TΣ−1ε = εTM − 1
2ε

TW−1ε, with157

W−1 = Σ−1 + 2Λ(τ), (15)

where Λ(τ) is a diagonal matrix with diagonal elements λ(τ(s)). We obtain,158

L̃c(Z, ε | β,Σ, τ) = T1(τ) + T2(τ,β) + εTM −
1
2
εTW−1ε −

1
2

ln(det Σ) + const.

For fixed τ, the conditional distribution
[
ε | Z,β,Σ, τ

]
is unknown, but it is proportional to159

[Z, ε | β,Σ, τ]. Denoting µ = WM, we write160

p(ε | Z,β,Σ, τ) ∝ exp
{

T1(τ) + T2(τ,β) +
1
2
µTW−1µ

}
1

√
det Σ

exp
{
−

1
2

(ε − µ)TW−1(ε − µ)
}
.

(16)
Moreover, evaluating the proportionality constant on the right-hand side of 16 yields:161

[ε | Z,β,Σ, τ] = N(µ,W) (17)

Finally, our variational EM algorithm is based on the following expectation,162

q(ϕ, ϕ̂(l); τ) = E
[
L̃c(Z, ε | ϕ, τ) | Z, ϕ̂(l)

]
, (18)

where the expectation is taken with respect to the conditional distribution (17) above. We deduce
that,

q(ϕ, ϕ̂(l); τ) = T1(τ)+T2(τ,β) + µ̂(l)TM (19)

−
1
2

tr((Ŵ(l) + µ̂(l)µ̂(l)T)W−1) −
1
2

ln(det Σ) + const. (20)

with tr(µ̂(l)µ̂(l)TW−1) = µ̂(l)TW−1µ̂(l) and using the notation tr(A) for the trace of a matrix A.163

Thus, for any fixed τ, we get the expectations needed in the E-step in closed-form expres-164

sions. Then we turn to the M-step and maximize q(ϕ, ϕ̂(l); τ) with respect to the model parameters165

ϕ. This expectation-maximization step is achieved for any fix τ. Then, the final Variational EM166

(VEM) loop is completed by adding an updating step for the variational parameter τ.167

To precise the procedure, let us denote now M(τ,β) for M, W(τ,Σ) for W, and µ(τ,β,Σ) =168

W(τ,Σ)M(τ,β).169

Starting with an initialization ϕ̂(0), τ̂(0), the l-th iteration of the algorithm is achieved in three170

steps. For l = 1, 2, ... we follow the procedure hereafter:171
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1. E-step. Compute q(ϕ, ϕ̂(l−1); τ̂(l−1)) defined by (20). In particular, compute Ŵ(l−1) =172

W(τ̂(l−1), Σ̂
(l−1)

), M̂(l−1) = M(τ̂(l−1), β̂
(l−1)

) and µ̂(l−1)
1 = Ŵ(l−1)M̂(l−1).173

2. M-step for the model parameters.174

(a) Compute β̂
(l)

= arg maxβ
(
T2(τ̂(l−1),β) + µ̂(l−1) TM(τ̂(l−1),β)

)
175

(b) Update β̂
(l)

in the objective function: compute M̂(τ̂(l−1), β̂
(l)

) and µ̂(l−1)
2 = Ŵ(l−1)M̂(τ̂(l−1), β̂

(l)
).176

Then compute Σ̂
(l)

= arg maxΣ

{
− 1

2 tr((Ŵ(l−1) + µ̂(l−1)
2 µ̂(l−1) T

2 )W−1(τ̂(l−1),Σ)) − 1
2 ln(det Σ)

}
.177

3. Variational parameter update:178

Update Σ̂
(l)

in Ŵ(τ̂(l−1), Σ̂
(l)

) and µ̂(l−1)
3 = µ̂(τ̂(l−1), β̂

(l)
, Σ̂

(l)
),179

Then compute τ̂(l) = arg maxτ

 T1(τ) + T2(τ, β̂
(l)

) + µ̂(l−1) T
3 M(τ, β̂(l)

)
− 1

2 tr((Ŵ(τ̂(l−1), Σ̂
(l)

) + µ̂(l−1)
3 µ̂(l−1) T

3 )W−1(τ, Σ̂
(l)

)

.180

Now, let us consider the initialization and steps 2 and 3 in details.181

Initialization182

We here discuss how to choose starting values for the VEM algorithm. For the simulation183

study presented in the next section, we just use the true parameter values that were used for184

simulation. However, we need to initialize the variational parameter. Let us recall that the185

variational lower bound of the likelihood equals the likelihood for τ such that τ(s)2 = Y(s)2 for186

each s ∈ D, where recall Y(s) = X(s)Tβ + ε(s). Starting with this initial choice would induce187

L(0)
c (Z, ε | β,Σ) = L̃(0)

c (Z, ε | β,Σ, τ). Then we choose to initialize the algorithm with τ̂0 defined188

by τ̂(0)(s) = (X(s)Tβ̂
(0)

+ η(s)) × (2Z(s) − 1), where the variables η(s) are independent zero mean189

Gaussian variables with variance 1. Thus we have τ̂(0)(s)2 = ((X(s)Tβ̂
(0)

+ η(s))2. Adding the190

value η(s) also ensures that τ̂(0)(s) is not equal to zero which is required to compute λ(τ(s)).191

Step 2-a192

For any fixed τ we want to maximise,

T (β) =
∑
s∈D

{
−λ(τ(s))(X(s)Tβ)2 + (X(s)Tβ)(Z(s) −

1
2
− 2λ(τ(s))µ̂(s))

}
,

which is a quadratic function of β.193

Let us note G(β) = ∂
∂βT (β) =

∑
s∈D

(
−2λ(τ(s))(X(s)Tβ) + Z(s) − 1

2 − 2λ(τ(s))µ̂(s)
)

X(s); if the194

dimension of β is 1 or 2, we can solve G(β) = 0 easily; otherwise we choose to use a Newton-195

Raphson algorithm, that is, we solve196

β̂
(k)

= β̂
(k−1)
−

(
∂

∂β
G(β)

)−1

β=β̂
(k−1)

G(β̂
(k−1)

)),

with
∂

∂β
G(β) =

∑
s∈D
−2λ(τ(s))X(s)X(s)T, until β̂

(k)
' β̂

(k−1)
and we take β̂

(l)
= β̂

(k)
.197

Step 2-b198

Since W−1 = Σ−1 + 2Λ, and for fixed τ and β, we search for

Σ̂
(l)

= arg max
Σ

{
−

1
2

tr((Ŵ + µ̂µ̂T)Σ−1) −
1
2

ln(det Σ)
}
.
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Writing the covariance matrix as Σ = σ2
εQ, we want to minimise:199

f (Q, σ2
ε) =

1
σ2
ε

tr((Ŵ + µ̂µ̂T)Q−1) + n lnσ2
ε + ln(det Q),

with respect to σ2
ε and Q. The derivative with respect to σ2

ε for a fixed Q gives the following200

explicit solution:201

σ2
ε(Q) =

1
n

tr((Ŵ + µ̂µ̂T)Q−1). (21)

Then the M-step is to minimize, with respect to Q,

g(Q) = n ln
[
1
n

tr((Ŵ + µ̂µ̂T)Q−1)
]

+ ln(det Q).

If we assume a parametric feature for Q, then we write Q = Q(θ) and the minimization202

above is with respect to parameter θ. For instance, we can choose the exponential covariance203

function to characterize the spatial covariance matrix Σ; that is, Σ = (Σi j) with Σi j = C(si − s j)204

and C(h) = σ2e−||h||/θ, for h ∈ R2; we search for a scalar parameter θ in this case.205

Step 3206

Let us denote Ŵss the s-th diagonal element of Ŵ, K̂(l) = (X(s)Tβ̂
(l)

)2 + 2µ̂(s)(X(s)Tβ̂
(l)

) +207

Ŵss + µ̂(s)2, and A(ϕ̂(l); x) = ln g(x) −
x
2
− λ(x)[K̂(l) − x2]. Then we write,208

E
[
L̃c(Z, ε | ϕ, τ) | Z, ϕ̂(l)

]
= A(ϕ̂(l); τ) + other terms that do not depend on τ.

Recall that λ(x) =
g(x) − 1/2

2x
, and notice that (ln g(x))T = g(−x). Then,

∂

∂x
A(ϕ̂(l); x) =209

g(−x) −
1
2
− λT(x)

[
K̂(l) − x2

]
+ 2xλ(x).210

A simple calculus leads to 2xλ(x) + g(−x) − 1
2 = g(x) + g(−x) − 1 = 0 and

∂

∂x
A(ϕ̂(l); x) =211

−λT(x)
[
K̂(l) − x2

]
.212

Let us compute λ′(x) =
e−x

4x2(1 + e−x)2 f (x), where f (x) = 2x − ex + e−x. From f ′(x) =213

−(ex/2 − e−x/2)2, we see that λ′ has no zeros; we deduce that
∂

∂x
A(ϕ̂(l); x) = 0 for x2 = K̂(l).214

Then we get a closed-form expression to update the variational parameter, that is,215

τ̂(l)(s)2 = (X(s)Tβ̂
(l)

)2 + 2(X(s)Tβ̂
(l)

)µ̂(l)(s) + Ŵ (l)
ss + µ̂(l)(s)2. (22)

This result is not surprising; recall the inequality (9); we have equality between both sides if216

x2 = τ2; in other words, we are looking for τ(s)2 as close as possible to Y(s)2 = ((X(s)Tβ)+ε(s))2;217

then we take τ̂(l)(s)2 = E[Y(s)2 | Z, ϕ̂(l−1)] which is exactly our result.218

Finally, we update for each s ∈ D,219

τ̂(l)(s) =
√
τ̂(l)(s)2 × (2Z(s) − 1).
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4. Experiments220

In this Section, we conduct simulations and run the VEM algorithm described in the previous221

Section to derive model parameter estimates. We compare our method with Laplace approxima-222

tions.223

Let D be a square lattice of size 40 × 60, with n = 2400 sites. Following the model’s224

description in Section 2, we start by simulating a Gaussian random field with spatial covariance225

matrix Σ. Then we simulate independent Bernoulli random variables.226

The Gaussian random field ε is simulated on D with distribution Nn(0; Σ); we choose the227

exponential covariance function to characterize the spatial covariance matrix; that is, Σ = (Σi j)i, j228

with Σi j = C(si − s j) and C(h) = σ2e−
‖h‖
θ , for h ∈R2. In order to obtain reasonable spatial depen-229

dence, we choose θ = 5 and then θ = 15, the latter value ensuring stronger spatial dependence.230

We set σ2 = 1.231

We choose the trend to be linked to the spatial location on D; for s = (s1, s2) ∈ D,232

X(s)Tβ = (1, s1 − 20, s2 − 30)(β0, β1, β2)T.

Now, let us define the variation of the ‘signal’, Vs, as Vs = 1
n tr(Σ)+ 1

n
∑n

i=1

(
X(si)Tβ − averages∈D(X(s)Tβ)

)2
.233

Following Aldworth and Cressie (1999), the parameter β is selected such that Vs is approximately234

2. Here we specify β0 = 1
10 , β1 = 1

16 and β2 = 1
24 which gives Vs ' 2, and balances the effect of235

β1 and β2 (β0 is a free parameter that does not impact Vs).236

We next compute Y(s1), · · · ,Y(sn) defined in (3); then, conditionally to Y, we simulate in-237

dependent Bernoulli random variables Z(s), with success probabilities defined in (2), p(s) =238

eY(s)

1 + eY(s) .239

Each model is simulated L = 100 times, as described above. Then estimation is performed
on each simulation based on the procedure described in Section 3. We also compute the esti-
mates of the parameters obtained from the Laplace approximation procedure; considering the
complete likelihood, since the expectations in the E-step of the EM algorithm are not available
in closed form, we use Laplace approximations to approximate the intractable integrals. Laplace
approximations are based on second-order Taylor-series expansions of the integrands around the
mode, see for instance Sengupta and Cressie (2013); we give hereafter the main result, details of
the calculation can be found in the Appendix. The issue is to calculate, at the (k + 1)-th iteration
of the EM algorithm, q(ϕ, ϕ̂(k)) = E[Lc(Z, ε | β,Σ) | Z, β̂(k)

, Σ̂
(k)

]. The Laplace approximation of
this expectation is q̃(ϕ, ϕ̂(k)) defined as,

q̃(ϕ, ϕ̂(k)) =
∑
s∈D

− ln(1 + eY (k)
m (s)) +

1
2

eY (k)
m (s)

(1 + eY (k)
m (s))2

(H(ε(k)
m )−1)ss + Y (k)

m (s)Z(s)


−

1
2

ln(det Σ) −
1
2
ε(k) T

m Σ−1ε(k)
m −

1
2

tr(Σ−1(−H(ε(k)
m )−1) −

n
2

ln(2π). (23)

where ε(k)
m is the mode of Lc(Z, ε | β̂(k)

, Σ̂
(k)

), H(ε(k)
m ) is the Hessian computed at the mode, and240

Y (k)
m (s) = X(s)Tβ + ε(k)

m (s).241

We display in Table 1 and Table 2 the means and mean square errors (MSE) of the estimates,242

for both methods, obtained from the 100 simulations.243
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β0 β1 β2 σ2 θ

Target 0.1 0.0625 0.0417 1 5
Variational method 0.0610 0.0596 0.0406 0.6378 5.2309
MSE 0.0322 0.0002 0.0001 0.1548 2.1402
Laplace approximation 0.0828 0.0477 0.0320 0.8751 4.5952
MSE 0.0013 0.0004 0.0001 0.0429 1.4480

Table 1: Mean and MSE of VEM and Laplace estimates, θ = 5

β0 β1 β2 σ2 θ

Target 0.1 0.0625 0.0417 1 15
Variational method 0.1162 0.0607 0.0408 0.8146 12.8138
MSE 0.0026 4. 10−5 2. 10−5 0.1499 35.0405
Laplace approximation 0.0837 0.0541 0.0358 0.9984 15.1183
MSE 0.0068 0.0001 0.0001 0.3119 79.4734

Table 2: Mean and MSE of VEM and Laplace estimates, θ = 15

In the case of weak spatial dependence, θ = 5, we observe a negative bias for β and σ2 for244

both methods; then we observe a positive bias for the VEM estimate of θ, and a negative bias for245

the Laplace estimate. The MSE computed for VEM estimates are quite good, but they are greater246

or equal than those computed for Laplace estimates. However, the difference between the MSE247

of both methods is not very large.248

On the other hand, in case of stronger spatial dependence, the VEM method performs better.249

For θ = 15, we observe a negative bias for β and σ2 for Laplace estimates, and a positive250

bias for the estimate of θ. While the bias is either positive or negative for the VEM estimates.251

More important, the MSE computed for VEM estimates are quite good; we notice that they are252

less than 0.0001 for parameters β1 and β2. For the other parameters they are about half the MSE253

computed for the Laplace estimates. Especially for parameter θ, the MSE of the Laplace estimate254

is quite large, because the method sometimes completely fails and proposes an absurd value for255

this parameter.256

As stated before, there are no theoretical results on the variance of the variational estima-257

tor. Hence we follow a parametric bootstrap approach as described hereafter to approximate the258

variance. Let us note (β?, σ2?, θ?) a set of estimates resulting from the VEM procedure. We259

simulate ε?(b) and Z?(b), B times, for b = 1, . . . , B, using (β?, σ2?, θ?) as simulation parame-260

ters. For each new simulated data set Z?(b), we compute the VEM estimates (β̂
?(b)

, σ̂2?(b), θ̂?(b));261

then, the bootstrap variance of the VEM estimator is given by the empirical variance of the B262

estimates (β̂
?(b)

, σ̂2?(b), θ̂?(b)), see Beran (2003). We choose B = 150 and we consider two real-263

isations from the previous results; we consider the set (β?, σ2?, θ?) = (0.1042, 0.0648, 0.0429,264

0.9537, 14.9845), for which σ2? and θ? are very close to σ2 = 1 and θ = 15; then we consider265

the second set (β?, σ2?, θ?) = (0.1387, 0.0649, 0.0375, 0.8246, 12.818), for which σ2? and θ?266

are close to the mean values of the estimates of σ2 = 1 and θ = 15 given in Table 2. We make267

this choice because our main interest is on the spatial dependence parameters. We do the same268

work with the Laplace estimates, and we present the results in Table 3. We obtain very similar269
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β?0 β?1 β?2 σ2? θ?

VEM estimate 0.1042 0.0648 0.0429 0.9537 14.9845
Bootstrap std 0.0233 0.0031 0.0020 0.2303 3.8165
Laplace estimate 0.1162 0.0545 0.0390 1.0011 15.0463
Bootstrap std 0.0273 0.0020 0.0010 0.2798 4.2371

Table 3: Bootstrap standard deviation of the VEM and Laplace estimators

bootstrap variance values for the two trials (β?, σ2?, θ?), in each case, VEM or Laplace; hence270

we display the results for only one set. We note that the bootstrap standard deviations are slightly271

smaller for the trend estimates β̂
?

resulting from the Laplace procedure than those of the VEM272

estimates; on the contrary, looking at the spatial dependence parameters, the bootstrap standard273

deviations of the VEM estimates are smaller than the ones of the Laplace estimates.274

We notice that the bias on the covariance parameters is a bit large; in order to investigate275

the effect of the lattice size on the bias, we run other simulations with σ2 = 1 and θ = 5276

considering lattice sizes n = 30 × 30, n = 40 × 40, then n = 60 × 60. In each case, we adapt277

X(s) = (1, s1−
√

n
2 , s2−

√
n

2 ) and the parameter β = ( 1
10 , β1, β2) in order to keep Vs ' 2; we present278

the results in Table 4. Obviously, the standard deviation tends to decrease when n increases;279

in most cases the bias is also reduced. The bias of parameter θ is larger for n = 3600 than280

for n = 2400 (but the standard deviation is reduced); an explanation is that a scale value of 5281

characterises a weak spatial dependence in this case, weaker for the larger lattice; it might be282

hard to detect it correctly on some simulations. Let us note that the number of iterations and283

processing time of the algorithm both increase with n; we observe the same phenomenon for284

the EM algorithm with Laplace approximations; the algorithms are slowed down by the size of285

the involved matrices, but also seem to have difficulty to reach the optimum value of the log286

likelihood, the log likelihood value evolving slightly. Thus, for large lattices, we do recommend287

to use an approach which avoids the computation of large dimension matrices, as discussed in288

Section 6.289

Let us compare the variational and Laplace methods with respect to the processing time;290

the Laplace approximation method particularly requires to compute the mode εm maximising291

Lc(Z, ε | ϕ) at each iteration of the EM algorithm, and the Hessian matrix; the Variational292

method ignores this stage but adds the updating step of the variational parameters. However,293

the Variational EM remains faster than the Laplace EM. Especially for large θ, the time process-294

ing for computing the Laplace estimates becomes important, while it does not increase for the295

VEM method. For example, the average time for one iteration of the VEM algorithm for θ = 5 is296

39.08 seconds, and 45.22 seconds for the Laplace EM; for θ = 15, the difference is a bit larger,297

with 47.77 seconds for the VEM algorithm and 54.74 for the Laplace EM. The average number298

of iterations is similar for both methods, 3.16 for the VEM algorithm and 3.00 for the Laplace299

EM, for θ = 5. Finally, we notice that for the Laplace EM, we sometimes get weird results,300

completely out or range estimates for σ2 and θ, while the VEM leads to more regular values.301

Finally, we investigate how sensitive are the estimates to the initial value of the algorithm.302

This study has been conducted for a lattice size of 40 × 60 and true parameter values β =303

(0.1, 0.0625, 0.0417), σ2 = 1 and θ = 15. Here, we generate random initial values of the304
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β0 β1 β2 σ2 θ

Target n = 900 0.1 0.0833 0.0833 1 5
Mean 0.1292 0.0822 0.0861 0.6278 4.1865
Std 0.2279 0.0238 0.0198 0.2326 1.6134
Target n = 1600 0.1 0.0625 0.0625 1 5
Mean 0.1034 0.0607 0.0580 0.6284 4.7605
Std 0.2024 0.0142 0.0146 0.1709 1.3341
Target n = 2400 0.1 0.0625 0.0417 1 5
Mean 0.0610 0.0596 0.0406 0.6378 5.2309
Std 0.1752 0.0125 0.0116 0.1538 1.4446
Target n = 3600 0.1 0.0417 0.0417 1 5
Mean 0.1149 0.0397 0.0415 0.6720 5.5579
Std 0.1690 0.0080 0.0079 0.1287 1.1918

Table 4: Mean and Standard deviation of VEM estimates for increasing lattice sizes, σ2 = 1 and θ = 5

model parameters (β̂
(0)
, σ̂2(0), θ̂(0)) in the estimation procedure; we recall that the initial value of305

the variational parameter τ̂(0) is given by τ̂(0)(s) = (X(s)Tβ̂
(0)

+ η(s))× (2Z(s)− 1), where the η(s)306

are i.i.d. N(0, 1). We use the same random initial values for both Variational and Laplace pro-307

cedures. The first remark is that in most cases, the Laplace algorithm fails and stops, usually at308

the step of finding the mode εm, while the VEM algorithm always gives a final result. Of course,309

the number of iterations of the VEM algorithm is quite large. We observe that the final estimate310

values for the trend parameter β are usually not so far from the initial values. The mean values311

are ¯̂β = (2.0150, 1.2251, 1.4337) with standard deviations (2.49, 1.04, 1.16). At least, we do not312

observe large outliers leading to estimates ten times larger or smaller than the target values. But313

the spatial dependence estimates σ̂2 and θ̂ are more sensitive to the starting values. Then we run314

other experiments, starting with the true parameter values for β̂
(0)

and different values for σ̂2(0)
315

and θ̂(0). We observe that for small data sets, the algorithm converge to the correct values. For316

larger data sets, we obtain close estimate values for σ̂2, but the final estimates of θ̂ often remain317

close to the starting value. For instance, starting from σ̂2(0) = 2 and θ̂(0) = 5, we obtain mean318

values σ̂2 = 0.6044 and θ̂ = 4.8307; but the likelihood values are much less than the one ob-319

tained starting with the true values. To conclude this experimental study, let us note that for real320

datasets, we propose a method for choosing initial values, that we present in the next section.321

5. Application to a real data set322

We consider the study of a real data set; the columbus data is available in the R package323

spdep. The data concerns 49 neighbourhoods in Columbus, Ohio, United States. Together with324

location variables, the data also records the following variables: CRIME, residential burglaries325

and vehicle thefts per thousand households in the neighbourhood, HOVAL, housing value (in326

$1,000), and INC, the household income (in $1,000). From the variable CRIME, we form the327

binary variable CRIME2, which takes the value 1 if the value CRIME is over the median value,328

that is 34, and 0 otherwise. We consider HOVAL, INC, and X and Y, the coordinates of the329

neighbourhood centres, as covariates.330

12



β?0 β?1 σ2? θ?

VEM estimate 5.8652 −0.4218 0.0493 2.5353
Bootstrap std 1.5400 0.1148 0.0045 0.3323
GLM Standard deviation 1.6127 0.1163

Table 5: Bootstrap standard deviation of the VEM estimates and GLM standard deviations

When dealing with simulated data, we take for starting values of the model parameters in331

the EM algorithm the true values that were used for simulation. We have discussed in Section 3332

the initialization of the variational parameter, which is also related to the starting values of the333

model parameter β̂
(0)

. For real data applications, we propose the following procedure. We run an334

ordinary GLM model (with no random effects) for CRIME2, with our covariates as explanatory335

variables; we run all possible embedded models and select the best one according to AIC and336

BIC criteria. In our case, the model with the lowest AIC and BIC values was obtained with the337

single covariate INC. Thus we consider the following model (3):338

Y(s) = X(s)Tβ + ε(s)

with X(s)Tβ = (1, INC(s))(β0, β1)T.339

The starting values for parameter β are obtained by the ordinary GLM procedure, β̂
(0)

=340

β̂GLM = (5.8877994,−0.4226277)T. This also allows to compute the starting values τ̂(0)(s) =341

(X(s)Tβ̂GLM + η(s)) × (2Z(s) − 1).342

Furthermore, we need starting values for the covariance parameters, as well as the paramet-343

ric feature of the spatial covariance Σ of ε. We write ε(s) = Y(s) − X(s)Tβ, and recall that344

Y(s) = log
p(s)

1 − p(s)
. Then, define U(s) = log

Z̄
1 − Z̄

− X(s)Tβ̂GLM , with Z̄ = 1
n
∑

s∈D Z(s). We345

compute the variogram of U and fit the latter, with different models. Here, the best fit was ob-346

tained for the exponential model, without nugget effect, and parameters σ2 = 7.608678 and347

θ = 6.152822. Hence, we choose the exponential model for the covariance matrix Σ, and we348

use the previous values as starting values in the VEM algorithm. We finally obtain the following349

estimates, β̂VEM = (5.8652,−0.4218)T, σ̂2
VEM = 0.0493 and θ̂VEM = 2.5353. We note that if the350

final estimate β̂VEM is close to the initial β̂GLM , this is not at all the case for σ̂2
VEM and θ̂VEM . In351

order to check the sensitivity to the initialization, we run again the algorithm for other starting352

values σ̂2(0) and θ̂(0), for instance σ̂2(0) = 1 and θ̂(0) = 10, and satisfactory enough, we obtained353

the same result.354

We end the study by computing the variance of our estimators by a parametric bootstrap355

approach, as described in the previous Section. The bootstrap standard deviations are given in356

Table 5. As a comparison for the trend parameters, we also present the standard deviation of357

the GLM estimates of the ordinary logistic regression. The bootstrap standard deviations of the358

VEM estimates are slightly lower than the GLM standard deviations.359

6. Discussion and conclusions360

In this paper, we have developed a variational parameter estimation procedure for logistic361

spatial regression. In a classical hierarchical framework, the binary process is obtained from a362

13



hidden Gaussian spatial process together with covariates, via the logit function link. We present363

in detail the variational estimation method for this model and show its advantages; it bypasses364

the problematic term
∑

s∈D ln(1 + eY(s)) issued from the logit function. The variational transfor-365

mation leads to a lower bound of the log likelihood, that has a Gaussian form. Accordingly, the366

expectations needed in the E-step are available in closed-form expressions, and do not require a367

Monte Carlo procedure. The VEM algorithm is easy to implement, it allows fast estimation, and368

compared to the Laplace approximations, avoids the computation of the mode at each iteration.369

It is less sensitive to the initialization of the parameters. We have shown through simulations that370

the VEM method performs better than Laplace approximations in the case of strong spatial de-371

pendence. We computed an approximation of the variance of both Laplace and VEM estimators372

via a bootstrap approach; again, the VEM estimators performs better from this point of view. We373

also investigated the behaviour of the estimates with respect to the size of the data.374

Finally, we conducted a study on a real data set and explained the full procedure to initialize375

the algorithm, and obtain estimates.376

The estimation procedure requires to compute the inverse covariance matrix Σ−1, which be-377

comes problematic for large data sets. There are several ways to overcome this issue; one can378

model directly the inverse covariance matrix (see for instance Lindgren et al. (2011)); or we can379

use a reduced-rank approach (e.g. Wikle (2010)); particularly, we can model the spatial process380

ε with a Spatial Random Effects (SRE) model, as described by Cressie and Johanesson (2008),381

see also Sengupta and Cressie (2013). Then the VEM algorithm has to be adapted to the new382

writing of the likelihood. This extension is a work in progress.383

Appendix384

We now derive Laplace approximations to approximate the E-step in (8), which are based on385

second-order Taylor series expansions of the logarithm of the integrands around their respective386

modes. Let us recall the expression of the complete log likelihood given in (7):387

Lc(Z, ε | β,Σ) = −
∑
s∈D

ln(1 + eY(s)) +
∑
s∈D

Y(s)Z(s) −
1
2

ln(det Σ) −
1
2
εTΣ−1 ε−

n
2

ln 2π

Let us denote εm as the mode of Lc(Z, ε | β,Σ); then, we write the second-order Taylor series
expansion for Lc(Z, ε | β,Σ) around εm,

Lc(Z, ε | β,Σ) = Lc(Z, εm | β,Σ) + (ε − εm)T ∂

∂ε
Lc(Z, ε | β,Σ)

∣∣∣∣
ε=εm

+
1
2

(ε − εm)T ∂2

∂ε∂εT Lc(Z, ε | β,Σ)
∣∣∣∣
ε=εm

(ε − εm) + ...

The second term at the right-hand side is in fact zero, so we get the following writing:388

Lc(Z, ε | β,Σ) ' Lc(Z, εm | β,Σ) −
1
2

(ε − εm)T(−H(εm))(ε − εm),

where H(εm) =
∂2

∂ε∂εT Lc(Z, ε | β,Σ)
∣∣∣∣
ε=εm

.389

We deduce that the probability density function of [ε | Z, ϕε] is approximately proportional to390
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exp Lc(Z, εm | β,Σ) × exp
[
− 1

2 (ε − εm)T(−H(εm))(ε − εm)
]

; that is, it is approximately propor-391

tional to a Gaussian density. Computing the normalisation constant, we conclude that E
[
ε | Z, ϕε

]
'392

εm and var(ε | Z, ϕε) ' −H(εm)−1.393

It remains to compute the expectation of the term E[ln(1 + eY(s)) | Z, ϕε] in (8); we apply394

the same method and derive a second-order Taylor-series expansion of ln(1 + eY(s)) around εm(s);395

denoting Ym(s) = X(s)Tβ + εm(s), we obtain,396

ln(1 + eY(s)) = ln(1 + eYm(s)) + (ε(s) − εm(s))
eYm(s)

1 + eYm(s) +
1
2

(ε(s) − εm(s))2 eYm(s)

(1 + eYm(s))2 + ...

Then we can write the desired expectation as follows,397

E[ln(1 + eY(s)) | Z, ϕε] ' ln(1 + eYm(s)) −
1
2

eYm(s)

(1 + eYm(s))2 (H(εm)−1)ss.

Finally, we obtain the following approximation for the expectation needed in the E-step of the
EM algorithm,

q(ϕ, ϕ̂(l)) = E
[
Lc(Z, ε | ϕ) | Z, ϕ̂(l)

]
' −

∑
s∈D

(
ln(1 + eYm(s)) −

1
2

eYm(s)

(1 + eYm(s))2 (H(εm)−1)ss

)
+

∑
s∈D

Ym(s)Z(s)

−
1
2

ln(det Σ) −
1
2

(
tr(−Σ−1H(εm)−1) + εT

mΣ−1εm

)
−

n
2

ln 2π.

The mode εm and the matrix H(εm) are obtained by a standard procedure. The gradient of398

Lc(Z, ε | β,Σ) is given by
∂

∂ε
Lc(Z, ε | β,Σ) = Z−vec(

eYm

1 + eYm
)−Σ−1ε, and we solve the equation399

∂

∂ε
Lc(Z, ε | β,Σ) = 0 by using a Newton-Raphson algorithm. Then a simple calculation gives400

the Hessian H(εm) = −diag
(

eYm

(1 + eYm )2

)
− Σ−1.401
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