
HAL Id: hal-03088299
https://hal.science/hal-03088299

Submitted on 26 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discontinuous shear thickening in concentrated mixtures
of isotropic-shaped and rod-like particles tested through

mixer type rheometry
Nadia Sidaoui, Placido Arenas Fernandez, Georges Bossis, Olga Volkova,

Meloussi Mounir, Salah Aguib, Pavel Kuzhir

To cite this version:
Nadia Sidaoui, Placido Arenas Fernandez, Georges Bossis, Olga Volkova, Meloussi Mounir, et al.. Dis-
continuous shear thickening in concentrated mixtures of isotropic-shaped and rod-like particles tested
through mixer type rheometry. Journal of Rheology, 2020, 64 (4), pp.817-836. �10.1122/1.5138994�.
�hal-03088299�

https://hal.science/hal-03088299
https://hal.archives-ouvertes.fr


1 

Discontinuous shear thickening in concentrated mixtures of isotropic-shaped and rod-

like particles tested through mixer type rheometry 

N. Sidaoui1, P. Arenas Fernandez2, G. Bossis1, O. Volkova1, M. Meloussi1,3, A. Salah3, and 

P.Kuzhir1* 

1 University Côte d’Azur, CNRS UMR 7010, Institute of Physics of Nice, Parc Valrose 06108 Nice, France 

2 University of Granada, Department of Applied Physics, Campus Fuentenueva s/n, Granada, Spain 

3 M.B. Boumerdes University, Faculty of Technology, Department of Mechanical Engineering, Dynamic of 

Engines and Vibroacoustic Laboratory (LDMV), Algeria. 

Abstract 

In this work, the effect of rigid rods on the discontinuous shear thickening (DST) transition in 

mixtures of smaller isotropic-shaped (calcium carbonate - CC) and larger rod-like (polyamide 

or glass) particles dispersed in water is experimentally established. The CC suspension in 

water is considered as a shear thickening matrix filling the pores of the fiber network. The 

DST in the matrix originates from the competition between the applied shear stress and the 

steric repulsion between adsorbed superplasticizer molecules. It is characterized by a typical 

S-shape of the flow curves, irregular oscillations of the shear rate in response to the applied 

shear stress and some thixotropy. Addition of rods shifts the DST transition to lower critical 

shear rates, as explained by an increase of the suspension viscosity such that the shear rate to 

reach the onset stress of DST decreases. This behavior is satisfactorily reproduced by the 

reduced shear rate approach of Ohl and Gleissle [J. Rheol. 37, 381-406 (1993)] and to a lesser 

extent by the homogenization approach of Château et al. [J. Rheol. 52, 489–506 (2008)], both 

assuming random rod orientation. At fiber volume fractions, 0.04f  , the mixture 

undergoes jamming which is likely associated to the percolation threshold of the fiber 

network, nearly independent of the CC particle concentration. This idea is qualitatively 

supported by modified homogenization approach, assuming that viscous dissipation mostly 

occurs in the vicinity of the contacts between fibers. The results of this work are believed to 

be useful for optimal formulations of fiber-reinforced cementitious materials.  

I. Introduction 

Discontinuous shear thickening (DST) is an abrupt (by orders of magnitude) increase of 

viscosity above a critical value of the applied shear rate or shear stress. The DST transition is 

mostly encountered in hard or soft particle suspensions and has been reported in numerous 

papers – see reviews by Brown and Jaeger [1], Denn et al. [2] and the references therein. 

Sigmodal (S-)shape of the flow curve measured in controlled shear stress mode and regular or 

chaotic oscillations of the measured shear rate at a constant applied shear stress  above the 

threshold value c are two macroscopic features reminiscent for the DST transition [3]. 

Unsteady shear rate response at >c can be accompanied by vorticity banding and particle 

migration [2, 4]. In the case of non-Brownian inertialess particle suspensions considered in 
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the present paper, the DST is commonly admitted to occur as a consequence of a relatively 

sharp (but continuous) transition between lubricated and frictional contacts between 

suspended particles with increasing applied shear stress [5-7]. From the microscopic 

perspective, such a transition can arise when the compressive force between particles 

(stemming from the applied shear stress) overcomes the repulsive barrier provided by either 

electric double layer repulsion [8] or steric interactions between polymer brushes adsorbed 

onto particle surface [9], as has been demonstrated by interparticle force measurements [10]. 

Furthermore, DST transition is often related to volumetric dilatation of the particle network 

under shear, even though there might not be one-to-one correspondence between both 

phenomena, as first demonstrated by Metzner and Whitlock [11]. DST in dilatant suspensions 

can also be accompanied with flow instabilities, as has been found for the latex microspheres 

in ethylene glycol at volume fractions larger than 0.5 [12]. It is believed that in confined 

geometries, the dilatation is frustrated by boundaries and leads to normal forces on them. 

Above some critical shear stress, these normal forces are assumed to be transmitted through a 

network of frictional contacts between particles, which dramatically enhance the viscosity 

level – see the review by Brown and Jaeger [1]. This interpretation seems to join the above 

scenario of lubrication – to – solid friction transition [6]. Formation of transient particle 

clusters under shear as a result of competing hydrodynamic and short-range repulsion 

interactions between particles is another possible mechanism of shear thickening but it usually 

leads to mild continuous shear thickening (CST) – see review by Wagner and Brady [13], – 

although, simulations suggest that the CST behavior can be significantly enhanced in confined 

geometries [14].  

The DST fluids are promising candidates for applications in body armor and in 

adaptive stiffness and damping devices [15]. On the other hand, the DST is an undesirable 

phenomenon for some other applications, such as casting of composite materials [16] or 

placing of self-compacting concretes [17, 18], both at high solid particle loadings. In case of 

fiber-reinforced self-compacting concretes, the presence of fibers usually strongly reduces the 

fluidity of the composite [19] and is expected to affect the shear thickening behavior [20]. To 

overcome this technological barrier, a fundamental understanding of the effect of rod-like 

particles on the DST transition in mixtures of isotropic-shaped and rod-like particles is 

required. To the best of our knowledge, such an effect has never been reported in literature for 

these mixtures, and the present paper is focused on the experimental study of this effect.  

It has already been shown that adding large spherical particles to a concentrated 

cornstarch suspension shifts the DST transition to lower shear rates. This can be related to the 

two following effects: (a) appearance of highly sheared regions between the large particles in 

which the shear thickening matrix (cornstarch suspension) exhibits local DST transition at 

lower global shear rates as compared to the cornstarch suspensions without addition of large 

particles [21]; (b) local enhancement of the cornstarch concentration due to the excluded-

volume shell surrounding the large particles [22]. The first effect can be simply seen as 

follows: the addition of large particles increases the viscosity of the bimodal particle mixture, 

therefore, the shear rate to reach the onset stress of DST becomes lower, under condition that 

this stress is independent (or slightly dependent) of the large particle volume fraction. Such 
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interpretation, particularly relevant for the stress controlled rheology, stems from the seminal 

work of Ohl and Gleissle [23], who supposed that, at the fixed shear stress, the shear rate in 

particulate suspension is reduced by a factor equal to the suspension relative viscosity. More 

recently, this approach has been successfully applied to describe CST in non-Brownian 

suspensions of spherical or cubic particles dispersed in shear thickening colloidal matrix [24, 

25]. These last works report a possibility of the enhancement of CST by local confinements of 

the colloidal matrix in the spaces between suspended large particles.  

In the case of the present study, when large rod-like particles are dispersed in a shear 

thickening matrix composed of small isotropic-shaped particles dispersed in a Newtonian 

liquid, we expect similar effects of the rods on the DST of the composite mixture. However, 

the DST transition is believed to be governed not only by the concentration ratio of the large 

and small particles but also by orientation state of the rods since it should affect both the local 

shear rates in the space between rods and the excluded volume and local confinement effects 

by tuning the size of the pores formed by the rods. From a general perspective, the rheology 

of shear thickening mixtures of isotropic-shaped and rod-like particles is expected to show 

behaviors reminiscent for shear thickening fluids and fiber suspensions, especially concerning 

the effects of the aspect ratio and the fiber orientation distribution on the suspension viscosity 

– see helpful reviews by Larson [26]; Petrie [27] and Bulter and Snook [28]. It is worth 

noticing that the DST transition has already been discovered in concentrated suspensions of 

relatively short (length-to-diameter ratio 1≤L/D≤9) non-Brownian polyethylene glycol rods 

and has been found to share similar qualitative features with DST in spherical particle 

suspensions without focusing on the effect of the rod orientation distribution [29].  

In the present study, in order to reveal the effect of rods on the behavior of shear 

thickening mixtures, we use as a shear thickening matrix an aqueous suspension of micron-

sized isotropic-shaped calcium carbonate (CC) particles dispersed in water and coated by a 

comb-like polymer acting as a superplasticizer. Rigid polyamide (PA) or glass fibers are 

added to the CC suspension at different volume fractions. The choice for the CC suspension is 

dictated by the facts that (a) it serves as a model for the rheology of cementitious materials (as 

opposed to other shear thickening fluids) [18] and it would be possible to extrapolate their 

behavior to the one of cement pastes; (b) its physico-chemistry is well documented [30, 31]; 

and (c) its DST behavior is well established [32] and understood in terms of the interplay 

between compressive hydrodynamic and repulsive steric forces [9, 33]. The PA and glass 

fibers with close aspect ratios L/D (ranging between 40 and 50) but different diameters are 

chosen to test possible effects of CC particle confinement (within the pores formed by rods) 

on the DST transition in the composite mixtures. The rheology of the mixture is tested 

through a mixer type rheometry, which was found to be free of numerous artefacts 

reminiscent for other geometries and gave the best reproducibility of experimental results. 

The effect of the volume fraction of rods and CC particles on the DST transition of the 

mixture is established and interpreted in terms of the concept of the local shear rate and 

percolation of the fiber network. Finally, two conceptually similar models based on the 

reduced shear rate approach of Ohl and Gleissle [23] and on homogenization approach of 

Château et al. [34] are developed with a special attention payed to orientation distribution of 
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rods. Predictions of these models are finally tested against experiments. In the following 

Section II, materials and experimental protocols are described in detail. The results are 

presented and discussed in Section III in a feed-back with existing and newly developed 

theoretical models. The conclusions and perspectives are outlined in Section IV.  

II. Materials and methods 

A. Particles, suspensions and suspension preparation 

Our aqueous suspensions were composed of calcium carbonate (CC) particles (stabilized by a 

superplastisizer) and either polyamide (PA) or glass fibers.  

CC particles (BL200 from Omya, Switzerland) were characterized in detail in previous 

works [9, 30]. Briefly, the particles have slightly irregular shape close to rhomboidal one. 

They have roughly equal sizes in all directions, in this sense they can be referred to as 

isotropic-shaped particles. The particle size distribution is relatively broad with a number-

average and standard deviation of d=5.5±2.0 µm. The particle density and specific surface are 

respectively 2525 kg/m3 and 0.88 m2/g. 

Calibrated PA fibers were purchased from Pinfloc (France) and used without any 

supplementary treatment. The glass fibers provided by Arkema (France) of initial length of 5 

mm were manually milled in a ceramic mortar and seeded through a series of sieves in order 

to fit the average aspect ratio to that of the PA fibers. Optical microscopy snapshots of the 

both types of fibers dispersed in deionized water are shown in Fig. S1a and S1b in 

Supplementary Material [35] and do not reveal strong aggregation of fibers. These snapshots 

allowed measuring the fiber length distribution [Fig. S1c] and diameter distribution (not 

shown for brevity). PA and glass fibers exhibit a relatively narrow and a relatively broad 

length distribution, respectively, while narrow diameter distribution was found for both kinds 

of fibers. The measured geometrical and some physical (density , Young modulus E) 

properties are summarized in Table I for both kind of fibers.  

Table I. Geometrical and physical properties of fibers 

Fibers Mean 

length 

L (µm) 

Mean 

diameter 

D (µm) 

Mean 

aspect 

ratio 

r=L/D 

Ratio of 

fiber to 

CC part. 

diameter 

D/d 

Fiber 

length to 

gap ratio 

L/g 

Density 

 (kg/m3) 

Young 

modulus 

E (GPa) 

Effective 

stiffness 

S at 

=100Pa 

PA 800 17 47 3.1 2.5 1.14 4.56 51 

Glass 300 7.5 40 1.4 6.7 2.6 80 1.6103 

The fiber rigidity can be evaluated by comparing the threshold stress buck of the 

buckling instability with the applied shear stress . The expression for the ratio of both these 

stresses, called effective stiffness, takes the following form [36, 37]: 

4

ln(2 )
1.2buck E r

S
r



 
=  ,    (1) 
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where r is the fiber length-to-diameter ratio called aspect ratio. Using this formula, we obtain 

the effective stiffness much larger than unity for both types of fibers (the values of S are 

reported in Table I) at the maximum applied shear stress =100 Pa in most of experiments. 

Both types of fibers are therefore considered as rigid. 

A polymethacrylate backbone / polyethylene glycol (PEG) side chains comb polymer 

(59.3 wt % aqueous solution, provided by Chryso, France, and denoted as PCP-45) was used 

as a superplasticizer. The chemical structure of the polymer is shown in Fig. 3 of the previous 

paper [9]. The weight average and number average molar masses are respectively 52.7 kg/mol 

and 21.0 kg/mol (as recently specified by the provider); the average number of monomers per 

PEG chain is 45. 

The suspensions were prepared using the following protocol. First, a CC-particle 

suspension without rods was prepared with a desired particle volume fraction p defined as 

the ratio of the CC solid phase volume Vp to the volume Vm of the CC aqueous suspension in 

water: 

     
p

p

m

V

V
 = .     (2) 

To this purpose an appropriate amount of PCP-45 aqueous solution was mixed with 

deionized water (resistivity of 18.2 Mcm) followed by addition of an appropriate amount of 

CC powder. Then, the suspensions was stirred for 5 min using a vortex mixer, placed in an 

ultrasound bath for 5 min, and vortex-stirred again for 5 min. Stirring intensity was fixed to a 

value slightly below the one provoking DST of the sample, allowing efficient mixing 

avoiding particle jamming. When using mixer type rheometry, the suspension was directly 

prepared and stirred in the cylindrical cuvette avoiding, as much as possible, contact with 

open air and minimizing water evaporation. After stirring/sonication steps, the suspension was 

stored at 4°C for three hours before starting rheometric experiments. This allowed 

achievement of thermodynamic equilibrium of different species (polymer, ions). The masses 

of the three components (water, CC and PCP-45) were chosen to respect the three following 

conditions: (a) the volume of the CC suspension was fixed to Vm=10 mL and 35 mL for 

respectively plate-plate and mixer type rheometry; (b) the CC particle volume fraction p was 

fixed to a desired value ranging between 0.6 and 0.68 (or 60 and 68 vol %); and (c) the weight 

concentration of the dry PCP-45 polymer was 2 mg PCP/g CC. The polymer is expected to be 

adsorbed to the particle surface by carboxylic groups of the polymethacrylate skeleton, while 

the ensemble of PEG side chains is expected to form a brush pointing out towards the solvent 

and thus ensuring steric repulsion between particles, while the surface zeta-potential and 

Debye screening length are relatively low (11 mV and 7 nm) such that electrostatic 

repulsion between particles is inefficient [9]. The aforementioned quantity of the added 

polymer corresponds to the beginning of the plateau of the adsorption isotherm with the 

number density of PEG chains on the CC particle surface equal to 0.14 nm-2 [30]. 

Suspension of CC particles with rods, called hereinafter CC-rod mixtures, were 

prepared by mixing either PA or glass fibers with freshly prepared CC-particle suspension, 
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followed by the vortex stirring and sonication steps as described above. The prepared 

mixtures were stored for 3h at 4°C before the measurements. The fiber volume fraction f was 

varied in the range 0.01 – 0.04 (or 1 – 4 vol %) being defined as the ratio of the fiber solid 

phase volume Vf to the whole volume V of the CC-rod mixture: 

    
f f

f

f m

V V

V V V
 = =

+
.     (3) 

B. Measuring protocols  

The shear rheology of CC suspensions and CC-rod mixtures was measured mainly by Anton 

Paar Physica MCR 301 rheometer using a mixer type geometry and in some cases by Thermo 

Haake RheoStress 600 rheometer using plate-plate geometry. Sample expulsion from the 

rheometer gap at the applied stresses above DST threshold, particle sedimentation and water 

evaporation encountered in plate-plate configuration did not allow reliable and reproducible 

measurements of the samples containing rods; only CC suspensions without rods using a 

single stress ramp gave reliable results. On the contrary mixer type configuration was found to 

be free of the above artefacts thanks to continuous sample mixing and low sample free surface 

– to volume ratio, at the expense of a complex flow field and stress distribution within the 

sample, as shown by numerical simulations for Newtonian fluid case [Fig. S2b]. Below, we 

describe in detail both rheometric tools and associated measurement protocols. 

The plate-plate geometry of the RheoStress 600 rheometer is characterized by the 

upper plate diameter of 60 mm and rheometer gap set to 1.8 mm. To decrease wall slip, a sand 

paper of an r.m.s. roughness of 40 µm was glued to both rheometer plates. In order to 

decrease water evaporation, after placing a sample (CC suspension without rods) into the 

rheometer gap, a home-made water trap (Plexiglas cylinder with wetted washcloth fitted to 

inner surface of the cylinder) was placed around the upper plate and the temperature at the 

level of the lower plate was fixed to 14°C by a refrigerated circulating bath. A linearly 

increasing stress ramp was applied to the sample from a =0 Pa to a =100 Pa with a rate of 

the stress increase of 0.33 Pa/s and the measured shear rate was recorded with a sample rate of 

2 points per second. Once the maximum stress was achieved, a linearly decreasing stress ramp 

was applied from a =100 Pa to a =0 Pa at the same rate. In some cases, a second increasing-

decreasing (up-and-down) stress ramp was applied to check how the sample expulsion 

affected the rheological measurements. Once the flow curves were measured, the imposed 

apparent shear stress a was converted to the real shear stress  using Mooney correction 

[38]. This correction was subjected to substantial errors above the DST transition related to 

the numerical derivation of strongly oscillating a versus   dependencies. However it neither 

changed the qualitative appearance of the flow curves nor the average amplitude of shear rate 

oscillations above the DST. 

The mixer-type geometry of the Physica MCR 301 rheometer is a stainless steel 

double helix shown in Fig. S2a, having external and internal diameters of 24 mm and 16 mm 

respectively, the height of 37 mm, the double helix thickness of 1 mm and the diameter of the 

central rod of 3 mm. As stated in Sec. II-A, the samples were prepared directly in the brass 



7 

cylindrical cuvette of the internal diameter of 29 mm. Before the measurements, the double 

helix was gently introduced into the cuvette and the latter was placed into the rheometer and 

the gap of 2 mm was adjusted between the cuvette bottom and the bottom part of the double 

helix. To avoid wall slip on the inner surface of the cuvette, horizontal and vertical grooves of 

a width of 0.5 mm and a depth of 0.25 mm were cut on this surface with a period of 0.5 mm. 

A water trap (wetted washcloth) was placed on the top of the cuvette, the cuvette was 

thermally isolated from the ambient air and the temperature at the base of the cuvette was 

adjusted to 14°C by a Peltier element integrated to the rheometer. Increasing-decreasing stress 

ramps were applied to the sample in a similar way than in the case of plate-plate geometry. 

Each time at least two up-and-down stress ramps were applied in order to check the effect of 

possible particle migration on the suspension rheology. To obtain the flow curve from raw 

rheological data, the applied torque was related to the shear stress and the measured rotational 

speed of the double helix – to the shear rate using the method proposed by Ait-Kadi et al. 

[39], as described in detail in Sec. B of Supplementary Material [35]. We warrant the reader 

that these rheometric conversions are valid for shear thinning power-law rheology but have 

not been validated for shear thickening rheology. Thus, the shear stress and shear rate 

measured in the double helix geometry will be hereinafter labeled as “apparent” quantities in 

all relevant figures but not in the text for the sake of easier reading. Notice also that in a 

complex flow field, possible extensional components of the rate-of-deformation fields could 

lead to the alignment of the rods along the extension axis and that lead to significant stress 

levels; however, this effect is believed to be relatively weak because the viscosity of the 

suspension of fibers dispersed in a Newtonian solvent perfectly fits to classical shear rheology 

models, as pointed out in Appendix A, see also Fig. 9. We believe therefore that the proposed 

rheometric conversions can be used for at least semi-qualitative comparison of rheological 

response of different bimodal mixtures considered in the present paper. 

In some cases, the rheological measurements with double helix geometry were 

conducted in shear rate-imposed mode [Sec. III-E]. The rate of increase of the shear rate was 

adjusted to a value ensuring the same rate of increase of the stress in the stress controlled 

mode. All the measurements with both used geometries were repeated a few times in order to 

check their reproducibility. 

III. Results and discussion 

First, we will discuss the rheological behaviors that are qualitatively similar for the CC 

suspensions with and without fibers. These are sigmodal shape of the flow curve [Sec. III-A] 

and thixotropic behavior [Sec. III-B]. Then, we will describe the effect of rods on the 

rheology of the mixtures of isotropic-shaped and rod-like particles, more precisely the effect 

of the rod-to-particle diameter [Sec. III-C] and rod concentration [Sec. III-D]. After that, the 

rheological response at imposed shear stress is compared to the response at imposed shear rate 

in Sec. III-E. On the basis of the experimental findings of Sec. III-A – III-E, we propose in 

Sec. III-F two conceptually similar models allowing prediction of the flow curves of the rod-

isotropic particles mixtures. Finally, jamming behavior above some critical volume fraction of 

fibers is considered in Sec. III-G. 
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A. Sigmodal flow curve 

Experimental flow curves of the CC suspensions without fibers obtained from the increasing 

branch of the first stress ramp in double helix geometry are shown in Fig. 1 by dotted lines for 

four different CC particle volume fractions (p=0.62, 0.64, 0.66 and 0.68). The flow curves of 

the samples containing fibers are qualitatively similar to those shown in Fig. 1 and will be 

discussed in detail in Secs. III-C and III-D. The flow curve of the CC suspension of a particle 

volume fraction p=0.62 shows a monotonic, stronger than linear increase of the stress with 

shear rate, which is a signature of continuous shear thickening (CST). At higher volume 

fractions p≥0.64, the flow curves have a sigmodal (S-) shape reminiscent to DST with 

irregular oscillations above the critical stress. Here, we introduce the critical shear stress c0 

and the critical shear rate 0c  of the DST as, respectively, the stress and the shear rate at the 

point where the slope of the flow curve changes from positive one to the negative one, as 

shown by arrows in Fig. 1. As expected, the critical shear rates decrease with increasing 

particle volume fraction as it approaches some maximal value, called jamming volume 

fraction. There exist different possible mechanisms for the DST transition listed in 

Introduction (Sec. I). Strictly speaking, we cannot directly support any of them without 

precise microstructural information on the spatial organization of particles within the 

suspension and on polymer conformation on particle surface affected by the applied stress. In 

what follows, we briefly discuss on several possible origins of the DST transition in our 

specific case. 

 

Fig.1. Flow curves of isotropic shaped particle (CC) suspensions at different volume fractions p of CC particles 

measured for the ascending branch of the 1st stress ramp in mixer type geometry. The arrows show definition of 

the critical shear rate and shear stress in the stress-controlled rheometry. Labels “apparent” in the titles of axes 

recall that the reported shear rate and shear stress values stem from approximate rheometric conversions of the 

raw rheological data [Sec. II-B]. 

As stated in Introduction (Sec. I), the DST is often believed to arise due to transition 

between lubricated and frictional inter-particle contacts building percolated contact network 

of particles as the applied stress increases. Recent measurements on sliding friction between 

compressed polymer layers adsorbed on the particle surface find a direct correlation between 

boundary-to-hydrodynamic lubrication transition on the nanoscale and the DST transition at 
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the macroscopic scale [10]. The macroscopic physics of such a transition is qualitatively 

captured by the model of Wyart and Cates (WC) [6], which interpolates the suspension 

rheology between two Newtonian states: the low viscosity state at fully lubricated contacts 

and high viscosity state at fully frictional contacts. The WC model is detailed in Sec. C. of 

Supplementary Materials [35], and the fit of the flow curves by this model is shown in Fig. 

S3. Using different versions of the WC model [33, 40, 41], we did not succeed to reliably fit 

our flow curves above the critical stress c0. The discrepancy is very likely related to the WC 

assumption of the Newtonian rheology in frictional regime. This assumption likely does not 

apply to our specific system where attractive colloidal interactions could in principle arise 

above some critical compression of adsorbed polymer layers, as point out below.  

From the microscopic perspective, the DST transition could be related to the collapse 

of the polymer layers on the particle surface as a result of the compression of these layers 

when increasing applied shear stress pushes neighboring particles together. This scenario has 

been considered in more details in the previous work [9] and seems to not contradict to the 

macroscopic picture of the WC frictional transition scenario. Nevertheless the above 

hypotheses on the origins of the DST need to be checked by microscale measurements. The 

value of the critical stress 0 related to the polymer layer collapse can be evaluated by 

balancing the compressive force stemming from the applied shear stress and the repulsive 

steric force between compressed brushes at critical distance between solid particle surfaces 

taken to be on the order of equilibrium thickness of the non-deformed polymer layer, ≈5.4 

nm. This gives the following scaling behavior [9]: 

0 
3/ 2

B ck T n

d


,     (4) 

where Bk T 410-21 J is the thermal agitation energy at ambient temperature, nc≈0.14 nm-2 is 

the grafting density of the PEG brushes on the CC particle surface and d≈5.5 µm is the 

average CC particle diameter [cf. Sec. II-A]. Evaluation gives 2

0 (10  Pa)O = , which is 

consistent with the order of magnitude of the critical stress 0c  of the DST transition, (see 

Fig. 1 for graphical definition of 0c ). 

B. Thixotropic behavior 

Experimental flow curves of the CC suspensions without fibers obtained from ascending and 

descending branches of several (up to four) consequent stress ramps. For the sake of brevity, 

only the ascending branches of the first and the second stress ramps are shown in Fig. 2 for 

the CC suspension at volume fraction p=0.68 measured in double helix (Fig. 2a) and plate-

plate (Fig. 2b) geometries. Remarkably, the sigmodal shape of the flow curve already 

disappears at the decreasing branch of the first stress ramp in double helix geometry. After 

that, increasing and decreasing branches of the second stress ramp collapse on the decreasing 

branch of the first ramp and distinguishable flow curve hysteresis is no longer observed. The 

same data collapse without hysteresis is observed for the third and the fourth stress ramps (not 

shown here). On the contrary, the sigmodal shape is always present in increasing and 
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decreasing branches of the first, the second and subsequent (not shown here) ramps in the 

plate-plate geometry but a noticeable and reproducible flow curve hysteresis is observed for 

each ramp (Fig. 2b). 

Since evaporation, particle sedimentation and sample expulsion are minimized in 

double helix geometry, the change of the flow curve shape from S-like to monotonous one 

could be associated to the particle migration. In our previous studies [33], we have 

qualitatively observed particle migration using a high torque rheometer with a large diameter 

double helix geometry. Removing the double helix rotor from the flow cell, we observed a 

solid-like coaxial plug confined by the internal face of the double helix, while the rest of the 

suspension (situated between the double helix rotor and cylinder) showed fluid-like behavior. 

This observation suggests the particle migration towards the cylinder axis, along the radial 

direction shown by arrows in Fig. S2b. The suspension experiences lowest shear rates in the 

central region of the flow cell. Thus our observation seems to be consistent with particle 

migration towards the regions of small shear rates (and consequently smaller normal stresses), 

as suggested both by shear-induced and normal-stress induced scenarios [42, 43]. These 

migration mechanisms do not contradict to the stress controlled rheology or stress-activated 

percolated network of particles, as long as the coaxial plug can rotate as a solid body together 

with the double helix being subjected to lower stress levels than those expected in the gap 

between double helix and external wall. The particle migration changes the concentration and 

local stress distributions in the double helix geometry and this certainly affects the “effective” 

flow curve (obtained from the torque versus rotational speed relationship) measured by the 

rheometer. However, without direct access to concentration distribution and local rheological 

properties, it is impossible to predict how the effective flow curve changes as a consequence 

of particle migration. 

 

Fig. 2. Effect of the flow history on the shape of experimental flow curves of the isotropic shape particle (CC) 

suspensions at CC particle volume fraction p=0.68 measured in mixer type (a) and plate-plate (b) geometries. 

All the reported flow curves correspond to the ascending branch of either the 1st or the 2nd stress ramp. Flow 

curves obtained during the 1st ramp in both rheometric geometries are compared in figure (c). 

Conservation of the S-shape of the flow curves in plate-plate geometry remains poorly 

understood. On the one hand, this can point out to insignificant particle migration as typically 

observed for non-shear thickening suspensions in this specific geometry [44, 45]. On the other 
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hand, the particle migration could likely induce unsteady locally oscillating vorticity bands in 

plate-plate geometry [3,4]. Such vorticity banding probably slows down the variation of 

particle concentration on the scale of the rheometer plate. However, only local concentration 

measurements under shear can affirm or rule out the above hypotheses.  

It is also noticeable that the flow curves measured in both geometries are mainly 

different in the vicinity of the DST transition which occurs at higher critical shear rates in the 

plate-plate geometry, as compared to double helix geometry, as is seen in Fig. 2c where 

increasing branches of the first ramp are compared for p=0.68. However, below the DST 

transition increasing branches of the first ramps of the flow curves seem to collapse for both 

geometries within the statistical error of the measurements. These branches correspond to the 

beginning of the measurements when the particle concentration is expected to be roughly 

homogeneous. The same conclusions hold for two other volume fractions p=0.64 and 0.66 

exhibiting DST. 

In what follows, we will consider the quantitative effects of the rods on the rheology 

of rod-isotropic particles mixtures starting with the effect of the rod-to-particle diameter ratio. 

We will consider only the results obtained in mixer type geometry (because the plate-plate 

geometry generates numerous artefacts in mixtures with rods – see Sec. II-B) and using either 

increasing branch of the first stress ramp (to access the S-shaped flow curves) or increasing 

branch of the second ramp (to access monotonic flow curves not showing any hysteresis).  

C. Effect of rod-to-particle diameter ratio 

The effect of the ratio D/d of the rod diameter D to the CC particle diameter d, can be 

monitored by comparing the rheology of the mixtures containing PA or glass fibers of 

different diameters but roughly similar aspect ratio, recalling that both are considered as rigid 

in the considered stress range according to the evaluation of the effective stiffness [Sec. II-A, 

Table I]. Physically, the size ratio D/d together with the rod volume fraction f affects the 

average size of the pores formed by the fiber network. For the two extreme orientation states 

of the fibers, the average distance between aligned fibers and the mean pore size of randomly 

oriented fibers are both roughly equal to  

2 f

D
h




 ,      (5) 

under the high aspect ratio (r>>1) and low concentration (f<<1) limits [46, 47]. At the 

highest rod volume fraction, f=0.03, for which the yield stress is still absent, the ratio h/d of 

the average pore size to the CC particle diameter is on the order of 16 for PA fibers and 7 for 

the glass fibers. 

The flow curves of the CC particle- rods mixtures with addition of either PA or glass 

fibers are presented in Fig. 3 for the CC volume fraction p=0.64 and for different volume 

fractions f of rods (including 0 corresponding to the CC suspension without fibers – black 

curve). Firstly, the flow curves obtained from the ascending branches of the first (Fig. 3a) and 
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second (Fig. 3b) stress ramps are qualitatively similar to those already reported in Fig. 2a for 

the suspension without addition of rods. Second, we observe that the flow curves of the 

suspensions containing PA and glass fibers (respectively, red and blue curves in Fig. 3) are 

quite close to each other and the difference between them falls into the range of the statistical 

error arising because of flow instability above DST transition. Such quasi-collapse of flow 

curves for two types of rigid fibers at nearly similar average aspect ratio (r=47 for PA and 

r=40 for glass fibers) is also observed for other fiber volume fractions (not shown here) and 

indicates that the DST behavior of CC-rods mixtures is not considerably affected by the pore 

– to – particle size ratio, at least in the range 7<h/d<16. This result does not support the 

hypothesis of Cwalina et al. [25] that the shear thickening enhancement by addition of large 

particles to a shear thickening matrix composed of small particles comes in part from the 

confinement of small particles in the space between the large ones. Quantitatively, numerical 

simulations of Bian et al. [14] predict a mild enhancement of shear thickening at h/d=16 (Ly=8 

in their paper) but a substantial enhancement at h/d=8, as inferred from Fig. 5 of their paper. 

This is apparently not the case for our system because the hydrocluster model employed in 

their simulations is likely less relevant for the DST behavior of our system.  

 

Fig. 3. Effect of the ratio D/d of rod – to CC particle diameter on the experimental flow curves of mixtures of 

isotropic-shaped (CC) particles and PA fibers (red curves) or glass fibers (blue curves) measured in mixer type 

geometry for CC particle volume fraction p=0.64 and at different fiber volume fractions f. The D/d ratio is 3.1 

for PA fibers and 1.4 for glass fibers. Figures (a) and (b) correspond to the ascending branch of the flow curve 

during the 1st and the 2nd stress ramps, respectively. The black curves on both graphs stand to the flow curves of 

CC suspensions without rods. 

Since both types of fibers with different size ratios give quantitatively similar 

behavior, in what follows, we rule out the confinement effects induced by addition of rods 

and, unless otherwise specified, focus our attention on the behavior of suspensions containing 

PA fibers. 

D. Effect of rods concentration 

The flow curves of the CC-PA mixtures measured in double helix geometry are shown in Fig. 

4 for three CC volume fractions p and for the ascending branch of the first stress ramp. For 

the sake of completeness, the flow curves for the second stress ramp of the CC-PA fiber 
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mixtures are presented in Fig. S4, while the flow curves for the both ramps on CC-glass fiber 

mixtures – in Fig. S5. Thick solid black lines represent predictions of the reduced shear rate 

(left column in Fig. 4) and the homogenization (right column in Fig. 4) models that will be 

presented in Sec. III-F. Extensive discussion on the degree of agreement between the models 

and experiments will also be presented in Sec. III-F. 

As is seen in Fig. 4, the flow curves shift to the left with increasing fiber 

concentration. As a consequence, the critical shear rate c  of the DST transition is 

progressively shifted to lower values, while the critical shear stress c  (see Fig. 1 for 

definition of both c  and c ) remains roughly constant up to fiber volume fractions 

0.02f =  but increases significantly at 0.03f =  for all CC concentrations 
p . The flow 

curve and c shift to lower shear rates points out to enhanced energy dissipation with addition 

of the rods. As stated in the Introduction (Sec. I), the addition of rods increases the viscosity 

of the CC-rod mixture, therefore, the shear rate to reach the critical stress of DST becomes 

lower, provided that this stress is nearly independent of the rod volume fraction at f<0.02. 

This shift can also be interpreted in terms of local shear rates, as specified below, keeping in 

mind that both interpretations are essentially similar and consistent with the stress controlled 

rheology. In fact, at the fixed shear stress, the local shear rate loc  in the shear thickening 

matrix between rods is by definition higher than the global shear rate   (measured by the 

rheometer through the rotational speed of the double helix tool). The global shear rate in the 

CC-rod mixture is consequently lower than in the CC suspension without rods at the same 

applied stress. Applied to the DST threshold, this reasoning stipulates that, if the DST occurs 

at the same shear stress (at f ≤0.02), it should be shifted to lower global shear rates. A 

variation of the critical stress with rod concentration at f >0.02, does not change this 

qualitative conclusion. The quantitative dependencies of the critical shear rate and shear stress 

on the rods concentration will be analyzed in detail in Sec. III-F in comparison with the 

models. 

The increasing branch of the second stress ramp (Fig. S4) gives oscillating but, in 

average, monotonous flow curves in agreement with the findings of Sec. III-B. Again, the 

flow curves are shifted to the left when the rods concentration increases. Despite an average 

monotonic increase of these flow curves, they seem to become very steep at the applied stress 

on the order of =100 Pa, and the slope increases with the rods concentration. It is therefore 

important to check whether or not the suspension stress will diverge at some critical shear rate 

in rheological experiments conducted at controlled shear rate at the second shear rate ramp. In 

addition to it, the definition of the critical shear rate c  and critical shear stress c of the DST 

at the controlled stress experiment (Fig. 1) is sometimes subjected to uncertainties related to 

intermittent oscillations of the flow curve below the point where the sign of the flow curve 

slope changes to negative. It is therefore desirable to get a supplementary definition of c  and 

c in controlled-rate experiments. These two aspects impose a separate study of the 

rheological response in controlled-rate mode. 
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Fig. 4. Effect of the fiber volume fraction on the flow curves of the mixtures of isotropic-shaped (CC) particles 

and PA fibers measured in the mixer type geometry for the ascending branch of the 1st stress ramp at different 

CC volume fractions. The first, the second and the third rows correspond to the CC volume fraction p=0.64; 

0.66 and 0.68, respectively. Experimental flow curves on the left and right columns are identical for the each 

row. Simulated flow curves using RSR and H-model and assuming isotropic fiber orientation (A1212=1/15) are 

plotted on the left and right columns, respectively. Thin dashed color curves correspond to experimental flow 

curves; thick solid black lines – to predictions of both models [Sec. III-F], thick solid green line – to cubic spline 

interpolation of the experimental flow curve at f =0. Labels “apparent” in the titles of axes recall that the 

reported shear rate and shear stress values stem from approximate rheometric conversions of the raw rheological 

data [Sec. II-B] 
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E. Controlled-rate versus controlled-stress response 

Figure 5 compares the flow curves measured at applied shear stress (red curves) and 

applied shear rate (blue curves) for the suspensions containing PA fibers at volume fraction 

f=0.02 and CC particles at volume fraction p=0.64 or 0.68. First of all, the rheological 

response stemming from the first and the second shear rate ramp (respectively left and right 

columns of Fig. 5) are qualitatively similar and holds for subsequent ramps (not shown here). 

In particular, starting from some critical shear rate, the mixture exhibits either strong shear 

stress oscillations (at p=0.64, Figs. 5a, b) or an abrupt increase above the value of 3000 Pa at 

which the rheometer was ordered to stop the measurements (at p=0.68, Fig. 5c, d). Both 

these behavior point out to the DST transition in the rate controlled mode observed for the 

first and the second shear rate ramps. Notice that the controlled-rate experiments allowed only 

ascending branch of the flow curve because strong stress oscillations above the DST transition 

caused the rheometer to stop once the maximal allowable stress of 3000 Pa was achieved. 

 

Fig. 5. Effect of the rheometric mode (stress- or rate-controlled) on the experimental flow curves of the mixtures 

of isotropic (CC) particles and PA fibers measured in the mixer type geometry for PA volume fraction f=0.02 

and for the CC particle volume fraction p=0.64 (a, b) and 0.68 (c, d). The left and the right columns of figures 

correspond to the ascending branches of the flow curve during the 1st and the 2nd stress or rate ramps, 

respectively. The insets on each graph show the flow curves in extended stress scale. The arrows in (a) and (c) 

show the definition of the critical shear rate and critical shear stress for the rate-controlled mode. 
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We define the critical shear rate c  and the critical shear stress c for the strain 

controlled mode at the point of the first abrupt increase of the shear stress (see arrows in Figs. 

5a and 5c), while c  and c for the stress controlled mode are defined, as previously, at the 

point of the change of the sign of the flow curve slope (see arrows in Fig. 1). Interestingly, the 

flow curves measured in the stress and rate controlled modes coincide at low shear 

stress/shear rates, below the DST transition, while the critical values c and c  seem to rather 

weakly depend on whether the stress or the rate are imposed. A quantitative analysis of the 

values c and c  as function of CC and fiber concentrations will be presented in Sec. III-F. At 

this point, it is important to stress that the Anton Paar Physica MCR301 rheometer is unable 

to reliably control the shear rate at fast dynamics of the samples. This results to non-vertical 

fluctuations of the shear stress above DST, as observed in insets of Figs. 5a and b. Even 

though the stress values above the DST cannot be considered safely, the onset of the DST 

transition is still reliably measured in the strain controlled mode. 

F. Reduced shear rate versus homogenization approach. Comparison with 

experiments 

On the basis of the main experimental findings of Sec. III-C and Sec. III-D, we can now 

develop models allowing a better and more quantitative understanding of the effect of fiber 

concentration on the DST transition of the mixtures of rods with isotropic shaped particles. 

The objective of the models is to predict the flow curve of the CC-rod mixtures on the basis of 

the experimental flow curves for the CC suspensions without rods. 

Assuming a perfect scale separation between CC and rod-like particles, we consider 

that the rods are dispersed in a shear thickening matrix – aqueous CC suspension – considered 

as a continuum with the rheology independent of the presence of rods. Independence (within 

statistical errors) of the flow curves on the rod – to – particle diameter ratio D/d is an 

argument in favor of the scale separation hypothesis, which however will be revisited in 

Sec.III-G in conjunction to the jamming behavior. This hypothesis allows us to adapt the 

reduced shear rate (RSR) approach of Ohl and Gleissle[23] and the homogenization (H) 

approach of Château et al. [34], both developed for hard spheres dispersed in a non-

Newtonian solvent. Both approaches employ essentially similar basic idea that the addition of 

particles to a non-Newtonian matrix induces higher local shear rates in the matrix at the same 

stress, and, consequently lower global shear rates in the suspension. Both models determine 

the local shear rate as function of the relative viscosity ( )r   of a suspension of the same 

solid particles but dispersed in a Newtonian matrix at a given volume fraction . The models 

mainly differ in the way how these relationships are postulated. Furthermore, in the present 

case of CC-rod mixtures, the relative shear viscosity is the function of both volume fraction f 

and orientation of rods, described by the shear component A1212 of the fourth-order orientation 

tensor (subscripts “1” and “2” stand for directions along the velocity and velocity gradient); 

the quantity A1212 is hereinafter called the orientation parameter.  
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The RSR-model relates the global (“macroscopic”) shear rate ( )   in the suspension 

to the (“reduced”) shear rate in the matrix ( ) ( , 0)m f    = =  through a proportionality 

factor (shift factor) is simply equal to the relative viscosity [23]: 

1212

( )
( )

( , )

m

r f A

 
 

 
= .    (6) 

The H-model relates ( )   to ( )m   through the condition that the energy dissipation 

in the whole suspension is equal to the energy dissipation in the suspending matrix [34]. This 

approach initially developed for the rate-controlled rheology is adapted to the present case of 

the stress-controlled rheology. The details of derivation are provided in Appendix A, and the 

model predicts the following relationship:  
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−
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where loc  is the local root mean square (RMS) shear stress in the suspending matrix, which 

is different form the macroscopic stress  applied to the suspension boundaries because the 

applied stress is not uniformly distributed between the solid phase consisting of rigid rods and 

the suspending matrix. The principle difference between loc  and  is discussed in detail in 

Sec. E of Supplementary Materials [35]. The definition of the local shear stress is exact if the 

rods are dispersed in a Newtonian matrix. Therefore, it is approximately valid for the CC-rods 

mixtures below the critical stress of the DST transition, i.e. at c  , where the matrix (pure 

CC suspension) shows approximately Newtonian behavior, as inferred from Fig. 1. However, 

as shown in Appendix B, equation (7b) remains approximately valid for the shear thickening 

matrix even above the DST transition, at c   where the flow curve becomes nearly 

vertical. 

The relative viscosity 
1212( , )r f A   of the suspension of rods dispersed in a Newtonian 

matrix (glycerol) was measured in the double helix geometry [Appendix A, Fig. 9]. The 

concentration behavior of r  agrees relatively well with the phenomenological equation of 

Phan-Thien and Graham [48] [Eq. (A-7)] without adjustable parameters and with the fiber 

orientation nearly aligned with the flow and corresponding to the orientation parameter 

1212 0.011LHA  , as evaluated by Leal and Hinch model [49] [Eq. (A-8)].  

The flow curves of CC-rod mixtures can be constructed in parametric form ( ( ), )    

using Eq. (6) for the RSR-model and Eq. (7a) for the H-approach. To plot the flow curves 

predicted by the RSR model, we proceed as follows. Firstly, we smooth the fluctuations of the 

experimental flow curves of the CC suspensions (f=0) shown in Fig. 1 using a median 
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smoothing algorithm. Then, we interpolate the smoothed data by a continuous function 

( )m   using a cubic spline interpolation. Finally, we insert ( )m   to Eq. (6) that allows us to 

construct theoretical flow curves of CC-rod mixtures on the basis of an experimental flow 

curve of the CC suspension without rods. A similar procedure is used for the H-model, except 

that the argument  in the interpolated function ( )m   should be replaced by loc  [Eq. (7b)] 

in order to get a continuous function ( )m loc  , which is used in Eq. (7a).  

As an example, in Fig. 6, we plot experimental and computed flow curves (obtained 

from the ascending branch of the first stress ramp) of the CC-PA mixture at the CC volume 

fraction p=0.66 and the rod volume fraction f =0.02. The predictions of the RSR- and H-

models are presented in Figs. 6a and 6b, respectively. In both figures, the thin dashed red 

curve represents experimental flow curve of the CC suspension without rods at p=0.66 and 

the thick black curve is its cubic spline interpolation. The thin dashed blue curve represents 

the experimental flow curve of the CC-rod mixture, while the thick solid red curve 

corresponds to the prediction of both models. The simulated flow curves appear to be far from 

the experimental ones but relatively close to the flow curve of the shear thickening matrix. 

This indicates that in the present form, both models strongly underestimate the viscous 

dissipation in the CC-rod mixture. 

 

Fig. 6. Comparison of experimental (thin dashed blue line) and simulated (thick solid red, blue and green lines) 

flow curves of the mixtures of isotropic (CC) particles and PA fibers for the ascending branch of the 1st stress 

ramp in the mixer type geometry for PA volume fraction f=0.02 and for the CC particle volume fraction 

p=0.66. The predictions of the RSR- and H-models are presented in (a) and (b), respectively. Abbreviations 

“LH”, “Iso” and “CA” in the figure legend stand for the fiber orientations aligned with the flow (A1212≈0.011), 

random (A1212=1/15) and aligned along the compression axis (A1212=1/4), respectively. Thin dashed red and thick 

black solid curves are respectively experimental flow curve at f=0, p=0.66 and its cubic spline interpolation. 

The shaded region in (a) and (b) corresponds to the domain between the lower and upper bounds of the 

prediction of each model.  

The most intuitive reason for this discrepancy is that the orientation distribution of the 

rods in the shear-thickening matrix is likely very different from the nearly aligned state 

observed in the Newtonian matrix (like in our experiments with PA fibers suspended in 

glycerol, cf. Fig. 9) and described by Eq. (A-8). It is highly possible that the formation of 
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transient clusters of CC particles below DST and the flow instability above DST strongly 

affect fiber dynamics and induce more isotropic fiber orientation. In the same vein, the 

network of frictional contacts between CC particles can make the rods aligned along the main 

axis of this network, which is the compression axis of the shear flow, making the angle -/4 

with the flow direction [5]. The orientation parameter 1212A  takes the following values for 

these two particular cases: 
1212 1/15IsoA =  and 

1212 1/ 4CAA = , where superscripts “Iso” and “CA” 

stand for “isotropic” and “compression axis”. The orientation state along the compression axis 

will be hereinafter denoted by CA-orientation for brevity. 

To take into account a correct orientation distribution of rods in shear-thickening 

matrix, an appropriate value of 1212A  should be used in Eq. (A-7) for the relative viscosity 

1212( , )r ff A = , while computing the CC-rod flow curve. The simulated flow curves of the 

CC-rod mixture corresponding to both isotropic and CA orientation of rods are added to Figs. 

6a and b by thick solid blue and green lines, respectively. The flow-aligned orientation 

provides the lowest relative viscosity r  and predicts the smallest shift of the flow curve with 

addition of rods (thick solid red line), while the CA-orientation provides the highest relative 

viscosity and the largest flow curve shift (thick solid green line). If the models are correct, the 

experimental flow curve (thin dashed blue line) should fit into the shaded space between 

lower and upper bounds of the models corresponding to the two limiting simulated flow 

curves. This is the case for the RSR-model but not completely true for the H-model (for which 

the experimental flow curve leaves the shaded region at intermediate stresses), at least for the 

particular set of volume fractions (p=0.66 and f=0.02) of the data presented in Fig. 6. 

To ensure the best agreement between the models and experiments, it would be 

possible to fit the experimental flow curves by adjusting the orientation parameter 1212A values 

in Eq. (A-7) for the relative viscosity 
1212( , )r f A  . However, we prefer comparing 

experimental flow curves with the model flow curves all calculated for a single fixed and 

physically relevant value of the orientation parameter, 1212 1212 1/15IsoA A= = , corresponding to 

random fiber orientation, without necessity of any adjustable parameter. All the experimental 

flow curves of the CC-PA fiber mixtures shown in Fig. 4 and Fig. S4 are compared with the 

simulated ones (solid black lines), using the RSR-model (left columns) and the H-model 

(right columns). Thick solid green lines fitted to the experimental black flow curves of pure 

CC suspensions stand for the cubic spline interpolation. The qualitative difference between 

predictions of both models is that the RSR-model leads to the same critical shear stress of the 

DST transition independently of the volume fraction of rods, which is mainly supported by 

experiments for fiber volume fractions up to 0.02. In general, the RSR-model agrees better 

with experiments than the H-model at f ≤0.02. However, at higher volume fraction, f =0.03 

it fails to predict substantial increase of the critical shear stress with respect to the one of the 

shear thickening matrix, while the H-model capture this increase, at least qualitatively. 

Furthermore, at each particle and rod concentrations, the H-model provides better prediction 

of the monotonously growing flow curves measured at the 2nd stress ramp [Fig. S4].   
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Let us now focus on the critical values of the shear stress and shear rate at the DST 

transition. Let 0c  and 0c  – critical shear stress and shear rate of the CC suspension without 

rods. The critical value of c  for both models is obtained from Eqs. (6) and (7a) by replacing 

  by c  and m  by 0c . The critical shear stress for the RSR-model is equal to that of the 

shear thickening matrix, since this model postulates only a horizontal shift of the flow curves. 

The critical shear stress for the H-model is obtained from Eq. (7b) by expressing the applied 

global stress  through the local stress loc  and then replacing loc  by 0c , and   by c . 

The final set of expressions covering both models read: 

0 1212

0 1212
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Thus, using the last two equations, the values of c  and c  can be calculated as 

function of the rod volume fraction 
f  using experimental values of 0c  and 0c  obtained 

from controlled stress [Sec. III-A] or controlled strain [Sec. III-D] experiments on pure CC 

suspensions for a given CC volume fraction 
p . Simulated and experimental dependencies 

( )c f   and ( )c f   are shown in Figs. 7a and 7b, respectively. Triangles and squares 

correspond to experimental values on CC-PA suspensions measured for the ascending branch 

of the 1st ramp in stress controlled mode [Fig. 4] and strain controlled mode [Fig. 5], 

respectively. Continuous and dashed black lines correspond to the prediction of the RSR- and 

H-models, respectively, for a single value of the orientation parameter
1212 1212 1/15IsoA A= =  

corresponding to the isotropic rod orientation. 

Firstly, a relatively good agreement, within the experimental statistical errors, is 

observed between two experimental modes of definition of the critical values c  and c . 

Secondly, the RSR and H-models give reasonable agreement with experimental values of the 

critical shear rate. The RSR-model systematically underestimates experimental c  values and 

the H-model overestimates them. As already mentioned, the RSR-model reproduces the 

independence of the critical stress on the fiber volume fraction at f≤0.02, while the H-model 

predicts a continuous growth of c  with f because it differentiate the average stress in the 

suspending matrix (local stress loc ) from the macroscopic applied stress  and shifts the 

flow curves both vertically and horizontally, as clearly seen on the right column of Fig. 4. 

However this trend reverses at the highest considered fiber volume fraction 0.03f =  for 

which the experimental values of c  are noticeably larger that the corresponding values 0c  

in the absence of fibers. The H-model seems to follow this increase, while the RSR-model is 

unable to capture it. The discrepancy between experiments and RSR-model becomes more 
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dramatic at higher volume fractions, 0.03f  , for which we observe the behaviors 

qualitatively different from those reported above. They cannot be reproduced at all by the 

RSR-model and need a separate analysis. 

 

Fig. 7. Simulated and experimental dependencies of the critical shear rate (a) and the critical shear stress (b) of 

the DST transition on the rod volume fraction. Experimental data are drawn from the ascending branch of the 1st 

ramp of CC-PA mixtures, measured in stress controlled (triangles) and strain controlled (squares) modes. 

Continuous and dashed black lines correspond to the prediction of the RSR- and H-models, respectively, for the 

isotropic orientation distribution in all mixtures ( 1212 1/15A = ). The error bars correspond to the standard 

deviation of a few measurements realized for each given value of p and f. 

G. Jamming behavior 

Experimental flow curves of the CC-PA mixtures at fiber volume fraction 0.035f =  and at 

different CC particle volume fractions p are shown in Fig. 8a for the ascending branch of the 

1st (thin lines) and the 2nd (thick lines) stress ramps. During the 1st ramp, the flow curves show 

decreasing slope with increasing stress reminiscent to a shear thinning behavior (except for 

p=0.68), followed by an increasing slope with oscillations (shear thickening). The 2nd ramp 

is characterized by a threshold stress below which the mixture does not flow, referred to as a 

yield stress, and by stronger fluctuations above the yield stress as compared to the flow curve 

fluctuations of the 1st ramp. The subsequent stress ramps show the similar behavior to that of 

the 2nd ramp. As stated in Sec. III-B, the difference in behaviors of the 1st and the 2nd stress 

ramps could be attributed to CC particle migration which changes the rheology on local scale. 

Notice that, at the fiber volume fraction above f ≥0.04, it was impossible to make the CC-PA 

mixtures flow below the maximal achievable stress =3000Pa in our experiments with mixer 

type geometry. This indicates a jamming transition of the CC-PA mixtures at a critical fiber 

concentration f ≈0.04 independent of the CC particle concentration within the range 

0.64≤p≤0.68 at which the shear thickening matrix (CC suspension alone) exhibits the DST 

transition. It is therefore believed that the combination of the yield stress and shear thickening 

at f =0.035 reflects a transient behavior between purely shear thickening behavior at f ≤0.03 

and jamming behavior at f ≥0.04. Notice that the term “jamming transition” should not be 

confounded with the term “DST transition”, as the first one is hereinafter assigned to the 
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liquid-solid transition at any small applied stress for particle concentrations near the 

compaction limit, while the second one is related to the liquid-solid transition above some 

non-zero critical stress at concentrations that can be well below the compaction limit. 

 

Fig. 8. Experimental flow curves of the CC-PA mixtures at fiber volume fraction 0.035f =  and at different 

CC particle volume fractions p for the ascending branch of the 1st (thin lines) and the 2nd (thick lines) stress 

ramps (a). To explain jamming behavior of the CC-rod mixtures at the rod volume fractions 0.04f  , a 

hypothetical flow curve of the CC-rod mixture is schematically presented in (b) by a solid line. The flow curve 

of the pure CC suspension at the same CC volume fraction is schematically presented by a dashed line in (b). 

The critical shear rate c  in the concentrated CC-PA mixture is evaluated to be much lower than that, 0c , in the 

pure CC suspension; while the yield stress Y [Eq. (D-5)] of the CC-PA mixture is related to a specific value of 

the local stress in the gap between fibers, tentatively assigned to the upper critical stress '  of the DST 

transition in pure CC suspension. 

At this point, we try to find a physical mechanism for the jamming behavior at f 

≥0.04. First, the jamming in a bimodal mixture of particles can simply occur due to a 

compaction limit imposed by geometrical constraints. Second, since the perfect scale 

separation between CC particles and PA fibers is not really fulfilled (even though 

confinement effects seem to be ruled out – cf. Sec. III-C), the jamming could arise as a result 

of excluded volume effects, as suggested by Madraki et al. [22] for bidisperse mixtures of 

spheres. These two effects are analyzed in detail in Appendix C. It is shown that the two 

scenarios predict that the jamming of the mixture strongly depends both on the particle 

volume fraction p and on the fiber volume fraction f , while in experiments it only depends 

on f  and independent of p within the range 0.64≤p≤0.68. The jamming scenario respecting 

this experimental condition is related to the percolation threshold of the fiber network, which, 

to the first approximation, is expected to be independent of p.  

In more detail, when the fiber concentration achieves the percolation threshold perc, 

the force applied at the boundary is transmitted through the small gaps between rods (filled 

with shear thickening matrix). Due to small effective volumes of these gaps, and their small 

density in the suspensions of rods as compared to spheres, the local stress in these gaps is 

expected to be much higher than the global (macroscopic) applied stress, as typically 

observed for the force chains in granular media [50]. Consequently, the shear thickening 
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matrix can undergo the DST transition locally near the contact points at very small critical 

values of the global shear stress c  and the global shear rate c  that are probably close to 

zero, as shown schematically on Fig. 8b. At 0c   , extremely strong local viscosity of 

the shear thickening matrix between contact points solidifies the percolated fiber network, 

which hinders any flow. To fluidize the bridges between fibers and therefore to make the 

mixture flow, the stress level in shear thickening matrix near the inter-fiber contacts should at 

least overcome the upper critical stress of the DST,   , which is the upper stress value 

corresponding to the critical shear rate 0c  in the shear thickening matrix [Fig. 8b]. Thus for 

the flow onset, one has to apply some (presumably high) global stress Y  (which can be 

considered as an apparent yield stress) corresponding to the local stress   . Below 

percolation threshold, f <perc, the fiber network does not span the rheometer gap facilitating 

the flow of the shear thickening matrix, while above the percolation threshold, f >perc, the 

fiber network is solidified by the shear-thickening matrix leading to the jamming. 

Evaluations of the percolation threshold perc and of the stress levels c , Y  are 

presented in Appendix D. Firstly, our experimental value of the jamming threshold f≈0.04 

fits to the predicted percolation threshold interval 0.015 0.115perc  . Secondly, the RSR-

model does not differentiate the local and macroscopic stresses and predicts Y  = , 

0c c =  and the values of c  going up to 8 s-1 at f=0.04; thus it cannot capture jamming 

behavior at f=0.04. On the contrary, the H-model is successfully extended to the case when 

the local stress is mainly concentrated within the gaps between fibers. Thirdly, the modified 

H-model shows that the critical shear rate and critical shear stress of the DST vary in the 

ranges 
10.04 0.37 sc −   and 0.8 1.6 Pac   within the range of CC volume fractions 

0.64 0.68p   and at PA volume fraction 0.04f = . At such small values of the lower 

bound of the jammed state, the mixture behaves as a solid with the apparent yield stress Y 

estimated to be about 5 % of the upper critical stress    of the DST in the CC matrix: 

0.05Y  . Unfortunately, we do not have access to experimental values of    [Fig. 8b] 

because in the most of the cases, the shear rate does not overcome the critical value 0c  at the 

maximal achievable stress  =3000 Pa. Using a high torque rheometer [51] it has been shown 

that the stress jump at the DST transition can achieve the values on the order of   105Pa. If 

so, the apparent yield stress can easily reach the values above the maximal achievable stress 

of the Anton Paar rheometer: Y>3000 Pa. Detailed experimental and theoretical studies on 

the mixture behavior near the fiber percolation threshold are required to confirm the above 

stated trends. 

IV. Concluding remarks 

In this work, we have studied the effect of the rods on the DST transition in the mixtures of 

isotropic-shaped CC particles and rigid rod-like (PA or glass) particles. The chosen mixer 

type rheometric geometry provides only approximate conversions of the raw rheological data 

(torque and angular speed) to the shear stress and the shear rate; both latter quantities are 
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considered as apparent. The mixtures are prepared by mixing the rods at a desired volume 

fraction f with the shear thickening matrix, which presents the suspension of micron-sized 

CC particles dispersed in water at a volume fraction p and coated by a polymer brush of 

superplasticizer molecules. The DST behavior of the matrix is observed at CC volume 

fractions p≥0.64 and is accompanied by irregular oscillations of the shear rate above the 

critical applied shear stress, c0. The DST in the considered matrix is believed to be governed 

by the competition between the applied stress and the repulsive steric forces of the 

compressed polymer brushes. In mixer type rheometric geometry, the matrix exhibits 

thixotropic behavior manifested through evolution of the flow curve shape from the S-like to 

monotonous one likely due to CC particle migration towards the axis of symmetry of the 

mixer type geometry. Nevertheless, irregular shear rate oscillations persist even on 

monotonous branches of the flow curve. 

The effect of the addition of rigid rods to the shear thickening matrix can be 

summarized as follows: 

1. Within the concentration range 0.01 0.03f  , the CC-rods mixtures exhibit 

qualitatively similar rheological behavior as pure CC suspensions (S-shape of the flow curve, 

irregular oscillations, thixotropy). However, the DST is shifted to lower values of the critical 

shear rate c , while the critical shear stress c remains essentially the same at 0.02f  . This 

effect is explained by the fact that the addition of rods increases the viscosity of the CC-rod 

mixture, therefore, the shear rate to reach the critical stress of DST decreases. Such behavior 

is satisfactorily reproduced by the reduced shear rate (RSR) approach of Ohl and Gleissle 

[23]. At the rod volume fraction, 0.03f = , the critical shear stress exhibits a noticeable 

increase with respect to its value for the shear thickening matrix. This effect seems to be 

correctly reproduced by the homogenization (H) approach of Château et al. [34] adapted here 

for the stress controlled rheology. However, more experimental points in the vicinity of the 

volume fraction 0.03f =  need to be compared with the predictions of the H-model in order 

to confirm its performance. The H-model distinguishes the average local stress in the shear 

thickening matrix from the macroscopic shear stress applied on the suspension boundaries. 

2. At higher concentrations of rods, 0.035f = , the behavior of the CC-rod mixtures 

qualitatively changes and a yield stress, 20 PaY  , appears at the descending branch of the 

1st stress ramp and persists during ascending and descending branches of subsequent ramps. 

At 0.04f = , the suspension is completely blocked and no any distinguishable shear was 

detected until the upper stress limit, =3000 Pa, of the rheometer. These behaviors (yielding 

at 0.035f =  and complete jamming at 0.04f = ) are independent of the volume fraction of 

isotropic-shaped particles within the range 0.64 0.68p  , where the matrix exhibits the 

DST. At such circumstances, the jamming is expected to arise at the percolation threshold of 

the fiber network, f perc = , with 0.7 / min(5.4 / , 0.35)percr r   [cf. Appendix D], nearly 

independent of the CC concentration p . At percolation, any distinguishable global motion of 

the mixture is expected to lead to the levels of the local stress sufficient to produce DST 
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localized in the vicinity of the contacts between fibers, thus solidifying the percolated fiber 

network. This idea is qualitatively supported by modified H-model, assuming that viscous 

dissipation mostly occurs in the vicinity of the contacts, while the RSR-model fails to capture 

jamming. Similar jamming behavior could be anticipated in bidisperse mixtures of spherical 

particles at the percolation threshold of large spheres ( perc 0.35). However, the percolation 

network of spheres is likely more fragile than that of fibers because the network of spheres 

could be more or less easily layered by the applied stress. 

3. Comparing predictive capabilities of the RSR and the H-models, it can be summarized 

that for the 1st stress ramp, the RSR-model gives much better predictions at the rod volume 

fractions well below the percolation threshold of the fiber network, and the H-model performs 

much better near the percolation threshold. For the 2nd and subsequent stress ramps 

characterized by monotonous flow curves, the H-model gives closer predictions to 

experiments in the whole studied range of rod volume fractions. We believe that the 

predictive capability of the H-model can be further improved by interpolating between two 

proposed definitions of the local stress [Eqs. (7b) and (D-3)] at two different scales. However, 

we have to bear in mind that none of these definitions, nor their combination is exact because 

of complex rheology of the shear thickening matrix. 

4. It is difficult to conclude about the role of the fiber orientation without being able to 

control and visualize it. The flow-induced orientation and the DST behavior are expected to 

mutually affect each other. At this stage, on the basis of two proposed models, it can be 

anticipated that the critical shear rate of DST can vary in a wide interval depending on the 

orientation parameter A1212, as long as the later strongly affects the relative viscosity of the 

mixture. All the calculations in the present work were conducted for the random orientation 

state, ensuring semi-quantitative agreement with experiments without adjustable parameters.  

5. Within statistical measurement errors and within the range 1.4≤D/d≤3.1, the rod-to-

particle diameter ratio D/d seems not to affect the rheological response of the mixtures at 

nearly similar aspect ratio of PA (r≈47) and glass (r≈40) fibers. This allows us to rule out 

possible scenario of the DST enhancement by confinement of CC particles within the pores 

formed by the fiber network as the fiber volume fraction increases, as suggested in [25].  

From the practical point of view, we have learned about physical limitations of the 

fluidity in bimodal mixtures. On the basis of the obtained results, standard ratios of the 

isotropic-shaped particles and fibers in cementitious composites could be revisited. In 

perspective, shear-induced microstructure of the considered bimodal mixtures has to be 

extensively studied through X-ray micro-tomography and particle level simulations. This will 

allow assessing the real fiber orientation distribution in shear thickening matrix, the spatial 

distribution of the contact network between isotropic-shaped particles and will allow checking 

the percolation-driven jamming scenario on the microscopic scale. 

Appendix A. Homogenization approach for the stress-controlled rheology 

According to the original work of Château et al. [34], the suspension viscosity ( )   is 

assumed to be a product of the non-Newtonian matrix viscosity ( )m loc   taken at some local 

shear rate loc  and the relative viscosity r() of a suspension of the considered particles 
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dispersed in a Newtonian solvent at particle volume fraction . In our case of the stress-

controlled rheology, the shear-thickening matrix viscosity should be taken at a local shear 

stress loc , which results in 

   ( ) ( ) ( )m loc r f     = ,     (A-1) 

where ( )r f   is the relative viscosity of a suspension of fibers dispersed in a Newtonian 

solvent at a given volume fraction 
f . 

By analogy with loc  defined in [34, 52], the local shear stress loc  can be evaluated 

as a root mean square (RMS) stress arising in a Newtonian solvent when the particle 

suspension (rods dispersed in a Newtonian solvent) is subjected to flow of a given shear field. 

For the sake of simplicity, we assume a simple shear flow at a global shear rate   and a 

global applied shear stress , and suppose that the interactions between rods are solely 

defined by the rheology of the suspending matrix, while direct contact interactions between 

rods are absent. As a consequence, the energy dissipation in the whole volume V of the 

suspension is equal to the viscous dissipation in the volume Vm of the Newtonian matrix, or 

rather: 

   

m

ik ik

V

V dV  =  ,      (A-2) 

where subscripts “ik” denote the components of the local stress and the local rate-of-strain 

tensors along the coordinate axes i=1,2,3 and k=1,2,3. The global and local shear rates,   and 

ik , in a Newtonian suspension of rods can be related to the corresponding stresses  and ik, 

through the following obvious formulas: 

   
0 ( )N r f

 


   
= = ,   

0

ik
ik





= ,    (A-3) 

where 0  and 
0 ( )N r f   =  are viscosities of the Newtonian solvent and the Newtonian 

suspension of rods, respectively. Substituting Eq. (A-3) into Eq. (A-2), and dividing by V, we 

get the following equation: 
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which gives us the final expression for the local (RMS) shear stress, as follows: 

1/ 2

1

(1 ) ( )
m

loc ik ik

m V f r f

dV
V


  

  

 
 = 

  − 
 ,    (A-5) 

where we have used the following relationship: / 1m fV V = − . 
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By putting the global shear stress in Eq. (A-5) equal to 
0 ( )N r f      = =  (as 

inferred from Eq. (A-3)), we easily check that the local RMS shear stress reduces to 

0loc loc  = , with the local RMS shear rate given by the following relationship derived in 

[52]: 

( ) /(1 )loc r f f    = − .     (A-6) 

Thus, as expected, we obtain the local shear rate larger that the global one ( loc  ). 

However, according to Eq. (A-5), the local stress is lower than the global one ( loc  ). This 

can be explained by the fact that viscosity N  appears to increase stronger with the volume 

fraction f of rods than the local shear rate loc , such that 
0 ( ) ( )loc loc f N f       =  = . 

Notice that the tendency reverses for the local shear stress defined on the scale of the small 

gaps between fibers in the vicinity of their contact points: contact   [cf. Eq. (D-3)].  

The relative viscosity ( )r f   of the suspension of rods dispersed in a Newtonian 

matrix can be found both experimentally and theoretically. To this purpose, using the mixer 

type geometry, we have measured the viscosity, N, of the suspension of PA rods dispersed at 

different volume fractions f  in a glycerol (0=2.41 Pas). In the range of the applied 

stresses, =0-100 Pa, both glycerol and glycerol-rod suspensions exhibited a Newtonian 

behavior and the concentration dependency of the relative viscosity 
0( ) ( ) /r f N f    =  is 

reported in Fig. 9.  

 

Fig. 9. Relative viscosity r of the suspension of PA fibers dispersed in a Newtonian solvent (glycerin) as 

function of the fiber volume fraction f. Points correspond to the experiment using in the mixer type geometry, 

solid lines to the predictions of Phan-Thien & Graham model [Eq. (A-7)] and Batchelor model. 

The experimental data were well described by the phenomenological equation of 

Phan-Thien and Graham [48] without adjustable parameters: 
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−
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−
,    (A-7) 

where 2( ) (1 0.64 ) /(1 1.5 ) 1.659IIf r   = + − +  is a correction factor in the slender body 

theory of Batchelor [53]; 1/ ln(2 )r = ; 5.4 /fm r =  is the maximum packing fraction of rods 

taken at the upper concentration limit of granular suspension of rods [54]; 1212A  is the 

orientation parameter, whose value is taken from the seminal work of Leal and Hinch [49] 

predicting the fiber orientation distribution nearly aligned with the shear flow under vanishing 

rotary diffusivity of fibers, 3/rD r  (caused by inter-fiber collisions) and at the high 

aspect ratio limit r>>1: 

1212 0.315/LH

eA r ,     (A-8) 

where the superscript “LH” stands for Leal and Hinch, and 1/ 21.24 / lner r r  is equivalent 

fiber aspect ratio introduced to account for an effect of the blunt shape of the fibers to their 

dynamics under applied shear [55]. Notice that the original Phan-Thien and Graham’s 

equation can be recovered replacing the factor ( ) /(3ln(2 ))IIf r r  in Eq. (A-7) by 

1/(2(ln(2 ) 1.5)r − . The original Phan-Thien and Graham’s equation has been slightly modified 

in order to recover the dilute limit viscosity given by Batchelor [53] when keeping only the 

linear term on f in Eq. (A-7). For the sake of completeness, predictions of these two models 

are shown in Fig. 9. 

Substituting Eq. (A-7) into Eq. (A-5), we get a complete definition of the local stress 

loc. After that, the shear-thickening matrix viscosity can be calculated as 

( ) / ( )m loc loc m loc    = , where ( )m loc   is the local RMS shear rate in a shear-thickening 

matrix. Substituting this expression into Eq. (A-1) and making use of Eq. (A-5) allows us to 

evaluate the global shear rate of the CC-rod mixture as function of ( )m loc  : 

1( )
( ) ( )

( ) ( ) ( ) ( ) ( )

fm loc
m loc

m loc r f loc r f r f

  
   

          

−
= = = = .  (A-9) 

Notice that the last equation can be easily obtained from Eq. (A-6) by replacing loc  by 

( )m loc  . 

Appendix B. Local stress above the DST transition in frames of the H-model 

Above the DST transition, the shear rate in the shear thickening matrix usually 

exhibits relatively small variations, as the experimental flow curves in Fig. 1 become nearly 

vertical, at least in the range of the local stress range 0c loc    , with    being the upper 

critical stress of the DST in the matrix [Fig. 8b]. Therefore, within the considered stress range, 

the local shear rate in the space between fibers is assumed to be almost constant and equal to 

the critical value 0c , while the global shear rate in the whole mixture is also taken to be 
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constant and equal to its critical value c  . The dissipated power at nearly constant levels 

of the rate-of-strain tensor, 0ik c   in the space between fibers, can be very roughly 

evaluated as follows: 
m

ik ik
V

dV   0loc c mV  . The dissipated power in the whole mixture at 

nearly constant global shear rate c   is roughly equal to cV . Equating both power 

dissipations, we arrive to the approximate evaluation of the local stress above the DST 

transition:    

0

,  at 
(1 )

c
loc c

f c


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 
 

−
,     (B-1) 

recalling that / 1m fV V = − . Replacing now the critical shear rate c  by Eq. (8-a), we arrive 

at the final approximate expression for the local shear stress above DST transition: 
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,  at 
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f r f A


  
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−
,   (B-2) 

which is similar to Eqs.(7b) and (A-5) derived for the Newtonian matrix. 

Appendix C. Geometric compaction limit and excluded volume effect in bimodal 

mixtures. 

In this Appendix we evaluate the two following possible reasons of the jamming 

behavior in mixtures of isotropic-shaped and rod-like particles: 

(a) The geometric constraints in bimodal mixtures lead to the compaction limit depending 

on volume fractions p and f of both types of particles. The “geometric” compaction limit in 

a bimodal mixture is characterized by a compaction parameter m, which is the volume 

fraction of the whole solid phase in the mixture. Under hypothesis of perfect scale separation 

and using our definition of the volumes fractions p [Eq. (2)] and f [Eq. (3)] this parameter is 

evaluated as follows [56]:  
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, (C-1) 

where pm is the maximum packing fraction of isotropic shaped CC particles taken as the 

packing fraction for frictional contacts fr=0.69 (as evaluated by fits of the CC suspension 

rheology to WC model – see Fig. S3 and Sec. C of Supplementary materials for details) and 

5.4 /fm r =  is the maximum packing fraction of PA rods taken at the upper concentration 

limit of granular suspension of rods [Appendix A]. The compaction parameter m have to be 

compared to the experimental values of the concentration parameter 
1 (1 )f p f   = + − . It is 

shown that our experimental values  are always below (at least by a value of 0.01) the 
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values m  of the compaction parameter. Thus, the jamming in our case arises at lower 

concentrations than those predicted by geometric effects. 

Another concentration parameter was formulated by Martinie [19] for mixtures of 

cement particles with fibers: 
2 / (1 ) /f fm p f pm     = + − . It was experimentally shown that 

high yield stress appeared in fresh cementitious materials at 2 0.8  , while the material did 

not exhibit yield behavior at 2 0.8  . In our experimental case, the concentration parameter 

fits to the range 21.0 1.3    for the CC-PA mixtures not exhibiting any yield stress. It can 

thus be concluded that the critical value of the parameter 2  for our shear thickening mixtures 

is well above the value 0.8 for shear thinning cementitious materials. In any case the empirical 

parameter 2  does not inform us about the nature of the jamming behavior. 

(b) The excluded volume effects. They could arise as a result of finite size ratio of 

isotropic-shaped and rod-like particles (imperfect scale separation). In fact, our bimodal 

mixture can be seen as the fiber network whose pores are filled by the suspension of smaller 

isotropic-shaped particles. Since the CC particle size, d, is not infinitely smaller than the PA 

fiber diameter, D, a part of the pores presents a so-called dead volume non-occupied by CC 

particles. Thus, the true volume fraction p
true of CC particles in the accessible zones of the 

pores will be higher than the apparent one, p, evaluated by Eq. (1). Volume fraction dead of 

the dead zones can be evaluated using the dilute limit ( 1f  ) expansion of the model of 

Chatterjee [47]: 

2

2dead f

d d

D D
 

  
 +  
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,     (C-2) 

while the true volume fraction of CC particles reads: 
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 .   (C-3) 

Evaluation shows that the true volume fraction of CC particles in accessible zones is 

by a factor 1.03 larger than the apparent one for fiber volume fraction 0.04f = . At p=0.68, 

the true volume fraction p
true ≈0.70 rises above the packing limit of frictional contacts 

fr≈0.69 (see Sec. C of Supplementary Materials), however at p=0.64 and 0.66, the true 

volume fraction is respectively p
true ≈0.66 and 0.68, thus remains well below the packing 

limit 0.69. Thus, the excluded volume effect introduced by Eqs. (C-2) and (C-3) cannot fully 

explain the jamming behavior at 0.04f = .  

Appendix D. Percolation threshold and stress levels for the percolated fiber network 

The percolation threshold of the fiber network depends on the fiber orientation distribution. 

Since this distribution is unknown in our case, we consider two limiting cases of isotropic and 
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aligned fiber orientation. The minimal number Z of contacts per fiber at the percolation 

threshold has been evaluated by Balberg et al. [57] and is equal to 1.4IsoZ   and 2.8AZ   for 

isotropic and aligned orientation, respectively. An adequate relationship between Z and f has 

been proposed by Toll [58]: 

1
2

2
4 1f

f r
Z f



 
= + + 

 
,    (D-1) 

where 1 sinf =  and 2 cosf =  are the scalar invariants depending on fiber orientation 

distribution and  is the angle between fibers. For the two considered limiting cases, we get 

1 / 4Isof = , 2 1/ 2Isof =  and 1 0Af = , 2 1Af = . This allows finding the following expressions 

for the percolation threshold, the first of which is valid for the high aspect ratio limit r>>1: 

0.7Iso

perc
r

  ,          (D-2a) 

0.35A

perc  .          (D-2b) 

Notice that Eq. (D-2a) is the same as obtained by Philipse and Wierenga [59], while, 

for our fibers with aspect ratio 47r   the concentration threshold given by Eq. (D-2b) is 

higher than the upper concentration limit of granular suspension of rods 5.4 /fm r =  [54]. 

Thus, the percolation threshold is expected to fit to the interval 

0.7 / min(5.4 / , 0.35)percr r  , that in our case gives 0.015 0.115perc  . Our 

experimental value of the jamming threshold f ≈0.04 fits to this interval. 

The lower and upper stresses c and Y of the suspension jamming at the percolation 

threshold can be evaluated using a modified H-model. It is considered that, above the 

percolation threshold, the most important local stress and rate-of-strain levels arise in some 

small characteristic volumes Vcontact around contact points between fibers called hereinafter 

contact region volumes, while they are almost zero outside these volumes. The local rheology 

of the shear thickening matrix is supposed to be governed by a local stress contact averaged 

over the contact region volumes rather than by the stresses loc averaged over the whole 

matrix volume, nor by the macroscopic applied stress . Under these assumptions, the viscous 

dissipation is mostly concentrated in the contact regions and the energy dissipation equality 

takes the form of Eq. (A-2), in which the integration domain Vm has to be replaced by Vcontact. 

This allows us to immediately define the local stress by replacing in Eq. (7b) the fraction 

/ (1 )m fV V = −  of the whole mixture volume filled with the shear-thickening matrix by the 

fraction /contact contactV V =   of the whole volume of the mixture occupied by the contact 

regions: 

1212( , )
contact

r f contactA




 
=


.    (D-3) 
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Similar reasoning, as the one developed in Appendix A, allows showing that Eq. (D-3) 

remains approximately valid even above the DST transition within the local stress range, 

0c contact    .  

Since the CC particles are expected to migrate from highly sheared zones near the 

solid contact between fibers to the periphery, the DST transition is expected to extend over 

the space between two fibers delimited by the projected area 
2 / sinD   of one fiber onto 

the longitudinal cross-section of the second fiber. The average volume of a single contact 

region is 
3

1 (1 / 4) / sinV D   − , while the volume fraction of all contacts contact  may be 

evaluated by multiplying the volume V1 by the number density of contacts 
2 2 sincontact fn n DL =  (with 

24 /( )f fn D L =  being the number density of fibers) taken at 

high aspect ratio limit r>>1 [58], which gives 

2 2

2

16
1 0.35

4
contact f f


 



 
  −  

 
.    (D-4) 

As expected, the volume fraction contact  of contact regions is proportional to the fiber 

volume fraction squared, 
2

f , similarly to the contact density contactn . However, contact is 

independent of the fiber orientation distribution because lower contact density contactn  for 

more aligned orientation is compensated by higher volumes V1 of the single contact region, at 

least in high aspect ratio limit, r>>1. The prefactor at 
2

f  could be different from 0.35 and its 

exact value depends on the length scale of the stress variation near the contact point. 

Finally, the lower and upper bounds c and Y of the suspension jamming can be 

evaluated from Eq. (D-3) upon replacing contact by c0 or   , respectively, while the critical 

shear rate c  of the DST transition is obtained by dividing c by the viscosity of the mixture. 

The final expressions for c  and c are given by Eqs. (8a) and (9b) upon replacing (1 )f−  by 

contact , while the expression for Y takes the following form: 

1212( , )Y r f contactA   =  ,    (D-5) 

where the relative viscosity of the fiber suspension 1212( , )r f A   is evaluated using Eq. (A-7) 

with the values of the orientation parameter 1212 1212 1/15IsoA A= =  corresponding to the random 

orientation of fibers.  

Acknowledgements 

The authors acknowledge French “Agence Nationale de la Recherche” (Project Future 

Investments UCA JEDI, No. ANR-15-IDEX-01, project “RheoCimPl”) and French “Centre 

National d’Etudes Spatiales” for financial support. M.M. acknowledges the PROFAS B+ 

Program for his Ph.D. grant funding. P.A.F. acknowledges Erasmus+ mobility program. The 



33 

authors are grateful to Dr. R. Valette and Dr. L. Sardo (Mines ParisTech Sophia Antipolis) for 

numerical simulations of the Newtonian flow fields in the mixer-type geometry, to Ms. I. 

Abidi, Mr. S. Babacar and Mr. S. Thiam (University Côte d’Azur) for helping with rheometric 

experiments, to M. Vincent (Mines ParisTech Sophia Antipolis) for providing us with glass 

fibers and to P. Boustingorry (CHRYSO, France) for providing us with the superplasticizer 

and for helpful discussions. 

References 

[1] Brown, E., & Jaeger, H. M. (2014). Shear thickening in concentrated suspensions: phenomenology, 

mechanisms and relations to jamming. Reports on Progress in Physics, 77(4), 046602. 

[2] Denn, M. M., Morris, J. F., & Bonn, D. (2018). Shear thickening in concentrated suspensions of smooth 

spheres in Newtonian suspending fluids. Soft Matter, 14(2), 170-184. 

[3] Hermes, M., Guy, B. M., Poon, W. C., Poy, G., Cates, M. E., & Wyart, M. (2016). Unsteady flow and 

particle migration in dense, non-Brownian suspensions. Journal of Rheology, 60(5), 905-916. 

[4] Chacko, R. N., Mari, R., Cates, M. E., & Fielding, S. M. (2018). Dynamic vorticity banding in 

discontinuously shear thickening suspensions. Physical review letters, 121(10), 108003. 

[5] Seto, R., Mari, R., Morris, J. F., & Denn, M. M. (2013). Discontinuous shear thickening of frictional hard-

sphere suspensions. Physical review letters, 111(21), 218301. 

[6] Wyart, M., & Cates, M. E. (2014). Discontinuous shear thickening without inertia in dense non-Brownian 

suspensions. Physical review letters, 112(9), 098302. 

[7] Royer, J. R., Blair, D. L., & Hudson, S. D. (2016). Rheological signature of frictional interactions in shear 

thickening suspensions. Physical review letters, 116(18), 188301. 

[8] Singh, A., Pednekar, S., Chun, J., Denn, M. M., & Morris, J. F. (2019). From yielding to shear jamming in a 

cohesive frictional suspension. Physical review letters, 122(9), 098004. 

[9] Bossis G, Boustingorry P, Grasselli Y, Meunier A, Morini R, Zubarev A & Volkova, O. (2017) 

Discontinuous shear thickening in the presence of polymers adsorbed on the surface of calcium carbonate 

particles. Rheologica Acta. 56(5):415–430. 

[10] Comtet, J., Chatté, G., Niguès, A., Bocquet, L., Siria, A., & Colin, A. (2017). Pairwise frictional profile 

between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nature 

communications, 8, 15633. 

[11] Metzner, A. B., & Whitlock, M. (1958). Flow behavior of concentrated (dilatant) suspensions. Transactions 

of the Society of Rheology, 2(1), 239-254. 

[12] Laun, H. M., Bung, R., & Schmidt, F. (1991). Rheology of extremely shear thickening polymer dispersions) 

(passively viscosity switching fluids). Journal of rheology, 35(6), 999-1034. 

[13] Wagner, N. J., & Brady, J. F. (2009). Shear thickening in colloidal dispersions. Physics Today, 62(10), 27-

32. 

[14] Bian, X., Litvinov, S., Ellero, M., & Wagner, N. J. (2014). Hydrodynamic shear thickening of particulate 

suspension under confinement. Journal of Non-Newtonian Fluid Mechanics, 213, 39-49. 

[15] Ding, J., Tracey, P., Li, W., Peng, G., Whitten, P. G. & Wallace, G. G. (2013). Review on shear thickening 

fluids and applications. Textiles and Light Industrial Science and Technology, 2 (4), 161-173. 

[16] Hampton, J. H. D., Savage, S. B., & Drew, R. A. (1988). Experimental analysis and modeling of slip 

casting. Journal of the American Ceramic Society, 71(12), 1040-1045.   

[17] Feys, D., Verhoeven, R., & De Schutter, G. (2008). Fresh self compacting concrete, a shear thickening 

material. Cement and Concrete Research, 38(7), 920-929. 

[18] Toussaint, F., Roy, C., & Jézéquel, P. H. (2009). Reducing shear thickening of cement-based suspensions. 

Rheologica acta, 48(8), 883-895. 

[19] Martinie L. Rheological behavior and casting of fiber reinforced materials, PhD thesis, University Paris-Est 

(2010) (in French) 

[20] Bras, A., Gião, R., Lúcio, V., & Chastre, C. (2013). Development of an injectable grout for concrete repair 

and strengthening. Cement and Concrete Composites, 37, 185-195. 



34 

[21] Madraki, Y., Hormozi, S., Ovarlez, G., Guazzelli, E., & Pouliquen, O. (2017). Enhancing shear thickening. 

Physical Review Fluids, 2(3), 033301. 

[22] Madraki, Y., Ovarlez, G., & Hormozi, S. (2018). Transition from Continuous to Discontinuous Shear 

Thickening: An Excluded-Volume Effect. Physical review letters, 121(10), 108001. 

[23] Ohl, N., & Gleissle, W. (1993). The characterization of the steady‐state shear and normal stress functions of 

highly concentrated suspensions formulated with viscoelastic liquids. Journal of Rheology, 37(2), 381-406. 

[24] Cwalina, C. D., & Wagner, N. J. (2016). Rheology of non-Brownian particles suspended in concentrated 

colloidal dispersions at low particle Reynolds number. Journal of Rheology, 60(1), 47-59. 

[25] Cwalina, C. D., Harrison, K. J., & Wagner, N. J. (2017). Rheology of cubic particles in a concentrated 

colloidal dispersion suspending medium. AIChE Journal, 63(3), 1091-1101. 

[26] Larson R. G., The Structure and Rheology of Complex Fluids (Oxford University, New York, 1999). 

[27] Petrie, C. J. S., “The rheology of fibre suspensions,” J. Nonnewton. Fluid Mech. 87, 369–402 (1999). 

[28] Butler, J. E., and B. Snook, “Microstructural dynamics and rheology of suspensions of rigid fibers,” Ann. 

Rev. Fluid Mech. 50, 299–318 (2018). 

[29] Brown, E., Zhang, H., Forman, N. A., Maynor, B. W., Betts, D. E., DeSimone, J. M., & Jaeger, H. M. 

(2011). Shear thickening and jamming in densely packed suspensions of different particle shapes. Physical 

Review E, 84(3), 031408. 

[30] Morini R., Rheology of concentrated suspensions of calcium carbonate in the presence of superplasticizer. 

PhD thesis, University of Nice-Sophia Antipolis (2013) (in French). 

[31] Liberto, T., Le Merrer, M., Barentin, C., Bellotto, M., & Colombani, J. (2017). Elasticity and yielding of a 

calcite paste: scaling laws in a dense colloidal suspension. Soft matter, 13(10), 2014-2023. 

[32] Egres, R. G., & Wagner, N. J. (2005). The rheology and microstructure of acicular precipitated calcium 

carbonate colloidal suspensions through the shear thickening transition. Journal of rheology, 49(3), 719-746. 

[33] Bossis G., Volkova O., Grasselli Y.,Gueye O. (2019) Discontinuous shear thickening in concentrated 

suspensions; Philosophical Transactions of the Royal Society A, 377 (2143) 20180211 

[34] Chateau, X., G. Ovarlez, and K. L. Trung, “Homogenization approach to the behavior of suspensions of 

noncolloidal particles in yield stress fluids,” J. Rheol. 52(2), 489–506 (2008). 

[35] See supplementary material for characterization of fibers (Sec. A), description of the double helix 

rheometric geometry (Sec. B), description of the WC model (Sec. C), supplementary data on rheology of CC-rod 

mixtures (Sec. D) and discussion on the difference between the local and global shear stress (Sec. E). 

[36] Becker, L. E., & Shelley, M. J. (2001). Instability of elastic filaments in shear flow yields first-normal-stress 

differences. Physical Review Letters, 87(19), 198301. 

[37] Bounoua, S. N., Kuzhir, P., & Lemaire, E. (2019). Shear reversal experiments on concentrated rigid fiber 

suspensions. Journal of Rheology, 63(5), 785-798. 

[38] Macosko, C. W. (1994). Rheology: principles, measurements, and applications. Wiley-VCH, New York. 

[39] Aït‐Kadi, A., Marchal, P., Choplin, L., Chrissemant, A. S., & Bousmina, M. (2002). Quantitative Analysis 

of Mixer‐Type Rheometers using the Couette Analogy. The Canadian Journal of Chemical Engineering, 80(6), 

1166-1174. 

[40] Singh, A., Mari, R., Denn, M. M., & Morris, J. F. (2018). A constitutive model for simple shear of dense 

frictional suspensions. Journal of Rheology, 62(2), 457-468. 

[41] Mari, R., & Seto, R. (2019). Force transmission and the order parameter of shear thickening. Soft matter, 

15(33), 6650-6659. 

[42] Leighton, D., & Acrivos, A. (1987). The shear-induced migration of particles in concentrated suspensions. 

Journal of Fluid Mechanics, 181, 415-439. 

[43] Morris, J. F., & Boulay, F. (1999). Curvilinear flows of noncolloidal suspensions: The role of normal 

stresses. Journal of rheology, 43(5), 1213-1237. 

[44] Merhi, D., Lemaire, E., Bossis, G., & Moukalled, F. (2005). Particle migration in a concentrated suspension 

flowing between rotating parallel plates: Investigation of diffusion flux coefficients. Journal of Rheology, 49(6), 

1429-1448. 

[45] Dbouk, T., Lobry, L., & Lemaire, E. (2013). Normal stresses in concentrated non-Brownian suspensions. 

Journal of Fluid Mechanics, 715, 239-272. 

[46] Dinh, S. M., & Armstrong, R. C. (1984). A rheological equation of state for semiconcentrated fiber 

suspensions. Journal of Rheology, 28(3), 207-227. 



35 

[47] Chatterjee, A. P. (2010). Nonuniform fiber networks and fiber-based composites: Pore size distributions and 

elastic moduli. Journal of Applied Physics, 108(6), 063513. 

[48] Phan-Thien, N., & Graham, A. L. (1991). A new constitutive model for fibre suspensions: flow past a 

sphere. Rheologica acta, 30(1), 44-57. 

[49] Leal, L. G., and E. J. Hinch, “The effect of weak Brownian rotations on particles in shear flow,” J. Fluid 

Mech. 46, 685–703 (1971). 

[50] Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in 

granular materials. Nature, 435(7045), 1079-1082. 

[51] Bossis G, Grasselli Y, Meunier A, Volkova O. Tunable discontinuous shear thickening with 

magnetorheological suspensions. Journal of Intelligent Material Systems and Structures (2018), 29(1):5‑11. 

[52] Ovarlez, G., F. Mahaut, S. Deboeuf, N. Lenoir, S. Hormozi, and X. Chateau, “Flows of suspensions of 

particles in yield stress fluids,” J. Rheol. 59(6), 1449–1486 (2015). 

[53] Batchelor, G. K., “Slender-body theory for particles of arbitrary crosssection in Stokes flow,” J. Fluid. 

Mech. 44, 419–440 (1970). 

[54] Solomon, M. J., and P. T. Spicer, “Microstructural regimes of colloidal rod suspensions, gels, and glasses,” 

Soft Matter 6(7), 1391–1400 (2010). 

[55] Brenner, H., “Rheology of a dilute suspension of axisymmetric Brownian particles,” Int. J. Multiphase Flow 

1, 195–341 (1974). 

[56] De Larrard, F. (1999). Concrete mixture proportioning: a scientific approach. E. & F.N. Spon, London 

[57] Balberg, I., C. H. Anderson, S. Alexander, and N. Wagner, “Excluded volume and its relation to the onset of 

percolation,” Phys. Rev. B 30, 3933–3943 (1984). 

[58] Toll, S., “Note: On the tube model for fiber suspensions,” J. Rheol. 37, 123–125 (1993). 

[59] Philipse, A. P., and A. M. Wierenga, “On the density and structure formation in gels and clusters of 

colloidal rods and fibers,” Langmuir 14, 49–54 (1998). 


