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Abstract. Evaluating resistance of ciphers against differential cryptanal-
ysis is essential to define the number of rounds of new designs and to
mount attacks derived from differential cryptanalysis.
In this paper, we propose automatic tools to find the best differential
characteristics on the SKINNY block cipher. As usually done in the liter-
ature, we split this search in two stages denoted by Step 1 and Step 2.
In Step 1, we aim at finding all truncated differential characteristics
with a low enough number of active Sboxes. Then, in Step 2, we try to
instantiate each difference value while maximizing the overall differential
characteristic probability. We solve Step 1 using an ad-hoc method in-
spired from the work of Fouque et al. whereas Step 2 is modelized for the
Choco-solver library as it seems to outperform all previous methods on
this stage.
Notably, for SKINNY-128 in the SK model and for 13 rounds, we retrieve
the results of Abdelkhalek et al. within a few seconds (to compare with
16 days) and we provide, for the first time, the best differential related-
tweakey characteristics up to 14 rounds for the TK1 model. Regarding
the TK2 and the TK3 models, we were not able to test all the solutions
Step 1, and thus the differential characteristics we found up to 16 and 17
rounds are not necessarily optimal.

Keywords: differential cryptanalysis · automatic tools · SKINNY

1 Introduction

Differential cryptanalysis [BS91] evaluates the propagation of an input difference
δX = X ⊕X ′ between two plaintexts X and X ′ through the ciphering process.
Indeed, differential attacks exploit the fact that the probability of observing
a specific output difference given a specific input difference is not uniformly

? The research leading to these results has received funding from the French National
Research Agency (ANR) under the project Decrypt ANR-18-CE39-0007.
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distributed. Today, differential cryptanalysis is public knowledge, and block
ciphers such as AES have proven bounds against differential attacks. A classical
extension of differential cryptanalysis is the so called related-key differential
cryptanalysis [Bih93] that allows an attacker to inject differences not only between
the plaintexts X and X ′ but also between the keys K and K ′ (even if the secret
key K stays unknown from the attacker). This attack has been recently extended
to tweakable block ciphers [BJK+16]. Those particular ciphers allow in addition
to the key, a public value called a tweak. Thus, related-tweakey differential attacks
allow related-key differences but also related-tweak differences (i.e. differences
in a pair of tweaks (T, T ′)). In differential attacks, two notions are considered:
first, differentials where only the input and the output differences are known; and
differential characteristics where each difference after each round is completely
specified. A classical approach to evaluate the resistance against differential
attacks is to compute the probability of the best differential characteristic of the
cipher.

Finding optimal (related-tweakey) differential characteristics is a highly com-
binatorial problem that hardly scales. To limit this explosion, a common solution
consists in using a truncated representation [Knu95] for which cells are abstracted
by single bits that indicate whether sequences contain differences or not. Typically,
each cell (i.e. byte or nibble) is abstracted by a single bit (or, equivalently, a
Boolean value). In this case, the goal is no longer to find the exact input and
output differences, but to find the positions of these differences, i.e., the presence
or absence of a difference for every cell. When a difference is present at the input
of an S-box, we talk about an active S-box or an active byte/nibble. However,
some truncated representations may not be valid (i.e., there do not exist actual
byte values corresponding to these difference positions) because some constraints
at the byte level are relaxed when reasoning on difference positions.

Hence, the optimal (related-tweakey) differential characteristic problem is
usually solved in two steps [BN10,AST+17]. In the first one, every differential
byte is abstracted by a Boolean variable, denoted by ∆, that indicates whether
there is a difference or not at this position, and we search for all truncated
representations of low weight as the less differences passing through S-boxes there
are, the more the probability is increased. Then, for each of these low weight
truncated representations, the second step aims at deciding whether it is valid
(i.e., whether it is possible to find actual cell values, denoted δ, for every Boolean
variable) and, if it is valid, at finding the actual cell values that maximize the
probability of obtaining the output difference given the input difference.

Related Work. Many techniques have been proposed to search for the Step 1 so-
lutions using automatic tools such as Boolean satisfiability (SAT) [SNC09,MP13],
[SWW17] or Mixed Integer Linear Programming (MILP) [SHW+14,ST17,BJK+16]
and Satisfiability Modulo Theories (SMT) [KLT15]. Dedicated solutions have
also been proposed [Mat94].

Regarding the search of the best instantiation of a truncated character-
istic, most of the approaches were ad-hoc and dedicated to a precise cipher
[Laf18,SWW18,FJP13,BN10,GLMS18,ENP19]. Concerning the use of SAT solvers,
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[SWW18] implements a SAT model for differential cryptanalysis based on
Cryptominisat5 [SNC09] for Midori64 and LED64. This model implies a suffi-
ciently small number of clauses to model the non-zero values of the DDT and to
be applicable. However, no result concerning 8-bit S-boxes are given. As SAT
uses Boolean formulas, it seems that the same problem than for MILP appears
for modeling S-box: a huge number of Boolean formulas will be necessary to
correctly model this step even if dedicated tools as Logic Friday or the Expresso
algorithm [AST+17] are used. In [AST+17], 16 days are needed to find the best
related tweakey differential characteristics on SKINNY-128 for the SK model. Re-
cently, in [GLMS20,GLMS18], the authors introduce Constraint Programming
(CP) models for Step 2 and the performance results are really promising regarding
AES-192 and AES-256.

Our contribution. In this paper, we refine the security bounds on the SKINNY-n
tweakable block cipher regarding differential cryptanalysis for the four following
attack models according to the size of the tweakey: the SK model focuses on
single-key attack, the TK1 model considers related-tweakey attack when the
tweakey has only one component, the TK2 model in the related-tweakey settings
considers 2 components and the TK3 model, 3 components.

To do so, we implement Step 1 using an ad-hoc method inspired from [FJP13].
We also propose a CP model for Step 2 taking as input the solutions outputted by
Step 1. Thus, we provide, for the first time, the best differential related-tweakey
characteristics up to 14 rounds for the TK1 model. We also consider the TK2
and TK3 models and we were able to found some differential characteristics up
to 16 rounds for the TK2 model and up to 17 rounds for the TK3 model of
SKINNY-128. However, we were not able to test all the solutions Step 1, and thus
these differential characteristics are not necessarily optimal. This is an important
improvement compared to previous results. For instance, in [LGS17] Liu et al.
could only find the best differential characteristics up to 7 and 9 rounds for
TK1 and TK2. Finally we also show there is no differential characteristic with
probability higher than 2−128 against 15 rounds in the TK1 model, 19 rounds
for TK2 and 23 rounds for TK3. All those results clearly show that SKINNY is
much more resistant to differential cryptanalysis than one would expect while
counting the number of active S-boxes.

As a feedback, we also provide the time results we obtain when implementing
the Step 1 using another tool, a MILP model for the 4 attack settings. As a result
we show that MILP is not always the best choice. First, for Step 1, the ad-hoc
method is able to surpass the MILP model. Second, the CP model proposed for
Step 2 is incomparably much faster than the MILP model proposed in [AST+17]
that requires 16 days according their paper.

All the codes to reproduce these results can be found as supplementary
material of this paper.

Organization of the paper. Section 2 gives a short description of SKINNY-n;
Section 3 presents our Ad-Hoc tool and gives performance results comparing
our Ad-Hoc model with a MILP one; Section 4 presents our dedicated modeling



4 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

for Step 2 based on CP and analyzes the obtained results. Finally, Section 5
concludes this paper.

2 Cipher under study: SKINNY-n

In this section, we briefly review the tweakable block cipher SKINNY-n where n
denotes the block size and can be equal to 64 or 128 bits. All the details that
have been overlooked can be found in [BJK+16].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a
4× 4 matrix of cells (nibbles for n = 64 or bytes for n = 128). We denote xi,j,k
the cell at row i and column j of the internal state at the beginning of round k
(i.e. 0 ≤ i, j ≤ 3 and 0 ≤ k ≤ r + 1 where r is the number of rounds depending
on the tweak length and on the key length). SKINNY-n follows the TWEAKEY
framework from [JNP14]. SKINNY-n has three main tweakey size versions: the
tweakey size can be equal to t = 64 or 128 bits, t = 128 or 256 bits and t = 192
or 384 bits and we denote z = t/n the tweakey size to block size ratio. Then, the
number of rounds is directly derived from the z value: between 32 rounds for the
64/64 version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of z 4× 4 square arrays of
cells (nibbles for n = 64 or bytes for n = 128). We denote these arrays TK1
when z = 1, TK1 and TK2 when z = 2, and finally TK1, TK2 and TK3 when
z = 3. We also denote by TKki,j the nibble or the byte at position [i, j] in TKk.
Moreover, we define the associated adversarial model SK (resp. TK1, TK2 or
TK3) where the attacker cannot (resp. can) introduce differences in the tweakey
state.

One encryption round of SKINNY is composed of five operations applied
in the following order: SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR) and MixColumns (MC) (see Fig. 1).

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. the SKINNY round function with its five transformations [Jea16].

SubCells. A 4-bit (n = 64) or an 8-bit (n = 128) S-box is applied to each cell
of the state. See [BJK+16] for the details of the S-boxes.

AddConstants. A 6-bit affine LFSR is used to generate round constants c0
and c1 that are XORed to the state at position [0, 0] and [1, 0] whereas the
constant c2 = 0x02 is XORed to the position [2, 0].
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AddRoundTweakey. The first and second rows of all tweakey arrays are extracted
and bitwise exclusive-ored to the cipher internal state, respecting the array
positioning. More formally, we have:

– xi,j = xi,j ⊕ TK1i,j when z = 1,

– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,

– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Then, the tweakey arrays are updated. First, a permutation PT is applied on
the cells positions of all tweakey arrays: if ` = 4 ∗ i + j where i is the row
index and j is the column index, then the cell ` is moved to position PT (`)
where PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Second, every cell of
the first and second rows of TK2 and TK3 are individually updated with an
LFSR on 4 bits (when n = 64) or on 8 bits (when n = 128) with a period
equal to 15.

ShiftRows. The rows of the cipher state cell array are rotated to the right. More
precisely, the second (resp. third and fourth) cell row is rotated by 1 position
(resp. 2 and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the
4× 4 binary matrix M : 

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


Since 2016 and the birth of SKINNY-128, the cryptographic world never stopped

trying to attack it. Among all the cryptanalysis results, we could cite the following
ones in the related-tweakey settings and classified according the type of attacks.
First, in [SQH19,ZDM+20,LGS17], boomerang and rectangle related-tweakey
attacks are considered. The best result is on 28 rounds with a complexity of 2315

in time based on a boomerang distinguisher of 23 rounds in the TK3 scenario.
Concerning impossible related-tweakey attack [SGL+17,LGS17], the best attack
has 23 rounds using a distinguisher with 15 rounds in the TK2 scenario. Even if
the distinguishers presented here have less rounds, they do not look at the same
attack scenario. This paper essentially goes further than [AST+17] concerning
the search of the best related-tweakey differential trails and aims at refining the
best security bounds of SKINNY in this attack model.

3 Models and Results for Step 1

As explained in the introduction, in a first step called Step 1, we abstract each
possible difference at cell (nibble or byte) level by a binary variable which
symbolizes the presence/absence of a difference value at a given position of the
cipher. The main concern regarding this step is the combinatorial explosion
induced by the abstract XOR operation for which the sum of two non-zero values
can lead to the presence or the absence of a difference.
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3.1 Possible Transitions

Since the S-box is bijective and the ShiftRows operation only permutes cells, both
those operations do not affect truncated differences. But for the AddRoundTweakey
and MixColumns transformations we need to take care of the XOR operation.
More precisely, given two truncated differences a and b we know that the possible
values of (a, b, a⊕ b) are:

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)

However we have to pay attention to uninstantiable solutions. For instance,
given three truncated differences a, b and c, (1, 1, 1, 0, 0, 1) is a possible value for
(a, b, c, a ⊕ b, a ⊕ c, b ⊕ c) but it is impossible to instantiate it because if a = b
and a = c then b = c.

Hence we rewrite the equation y = MixColumns ◦ AddRoundTweakey(x, k) to
avoid such patterns:

– y[1] = x[0]⊕ k[0],
– y[3] = y[1]⊕ x[2],
– y[0] = y[3]⊕ x[3],
– y[2] = x[1]⊕ k[1]⊕ x[3]

We experimentally verified that each truncated solution of this system can be
instantiated.

Keyschedule. When looking at the key schedule of SKINNY at the cell level and
for truncated differential characteristics it is mostly a simple cell permutation. In
the model SK, there are no differences in the round keys. In the TKx models,
differences in the round keys are possible. If the number of rounds targeted is at
most 30, the rule for active cells on the round keys is quite simple: either the cell
is inactive for all round keys, either it is active for all round keys but one (TK2)
or two (TK3).

3.2 Ad-hoc Models for Step 1

To the best of our knowledge, the most efficient algorithm to search for truncated
differential characteristics on SPN ciphers is the one described in [FJP13] by
Fouque et al. which was applied on the 3 versions of AES. It is mostly dynamic
programming as Round i is independent of the paths of rounds 0, 1, . . . , i − 1
and at each step we only have to save, for each truncated state, the minimal
number of active S-boxes to reach it. Hence, the complexity of this algorithm is
exponential in the state size but linear in the number of rounds. The algorithm is
specified in Algorithm 1. At the end of the algorithm we obtain an array C such
that C[r][s] contains the minimal number of active S-boxes required to reach
state s after r rounds. Retrieving the truncated representations is then done
quite easily using C, starting from the last state to the first. Let say we want
to exhaust all truncated differential characteristics on R rounds with at most b
active S-boxes ending with state s. From C[R − 1][s], we know whether such
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characteristic exists or not. If C[R− 1][s] ≤ b we exhaust all states s′ such that
the transition s′ → s through one round is possible and, for each of them, we
now need to exhaust all truncated differential characteristics on R − 1 rounds
with at most b− |s| active S-boxes ending with state s′.

Algorithm 1: Search for the best truncated representation (SK).

foreach state s do
M [s]←− list of states s′ reachable from s through one round

end
foreach state s do

C [0] [s]←− number of active cells of s
end
for 1 ≤ r < R do

foreach state s do C [r] [s]←−∞
foreach state s do

foreach state s′ in M [s] do
c←− C [r − 1] [s] + number of active cells of s′

if c < C [r] [s′] then C [r] [s′]←− c
end

end

end
return C

The complexity of the algorithm in the single key model is very low, and we
experimentally counted around (R− 1)× 220 simple operations for R rounds. A
naive solution to search for truncated representations in the TK1, TK2 and TK3
models would be to apply the previous algorithm for each possible configuration
of the key. While for TK1 this would only increase the overall complexity by a
factor 216, the search would not be practical for both the TK2 and TK3 models.
Indeed, because of the possible cancellations occurring in the round keys, the
number of configurations is very high: 8∑

k=0

(
8

k

)(tk−1∑
i=0

(
b(R− 1)/2c

i

))k 8∑
k=0

(
8

k

)(tk−1∑
i=0

(
d(R− 1)/2e

i

))k .

For instance, for R = 30, there are more than 264 configurations in the TK2
model.

In the following we present the first practical algorithm which tackles down
the problem for the TK models without relying on a black box solver as MILP,
SAT or CP solvers. Actually this is the only algorithm fast enough to generate
all the Step 1 solutions required to perform the Step 2. Indeed, the best differ-
ential characteristic is rarely based on the truncated differential characteristics
minimizing the number of active S-boxes and thus we need to generate a large
number of truncated characteristics to find the one instantiating with the best
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probability. As we will explain in Section 3.4, all other approaches we tried to
generate them failed.

The idea of our ad-hoc method is quite similar to the one used in the single
key model. Actually, to compute the minimal number of active S-boxes at round
r + 1 we only need to know the minimal number of active S-boxes for each
possible state at round r together with the number of cancellations for each
key cell occurred so far. Indeed, we do not need to know at which rounds the
cancellations occurred but only how many times they did. A simplified version of
this algorithm is described in Algorithm 2. The most important part is related
to the variable cancelled which count how many times each key cell is cancelled
through the encryption. It is a vector of 16 cells, each cell taking values among
{0, 1, . . . , x−1, r} for the TKx model. The main advantage of our representation
is that at each step of the algorithm, C[r][s] contains at most (x+ 1)16 elements
for the TKx model which is much lower than the number of possible sequences
of round keys.

Algorithm 2: Search for the best truncated representation (TK).

foreach state s, round key k do
M [k] [s]←− list of states s′ reachable from s and k through one round

end
foreach state s do

C [0] [s]←− {(number of active cells of s, 0)}
end
for 1 ≤ r < R do

foreach state s do C [r] [s]←− ∅
foreach state s do

foreach (cost, cancelled) ∈ C [r − 1] [s] do
foreach round key k compatible with cancelled do

foreach state s′ in M [k] [s] do
c←− cost + number of active cells of s′

C [r] [s′]←− C [r] [s′] ∪ {(c,update(cancelled, k))}
end

end

end

end
foreach state s do keepOptimals(C [r] [s])

end
return C

Finally we introduce a new improvement which greatly speeds up the search
procedure. It is based on the so-called early abort technique principle and the
idea is to handle the key cell by cell. Indeed, we expect that the best truncated
differential characteristics do not involve many active cells in the round key and
so we want to quickly cut those branches during the search. To do so we first pick
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a key cell and guess whether it is active or not. At this step we have not decided
yet if any cancellations occur nor their positions but only if it is always 0 or at
least once 1. Then we apply the algorithm partially and guess another key cell if
and only if it seems possible to find a truncated differential characteristic with
a small enough number of active S-boxes. More precisely, along the search we
have the relation y = x⊕ k where k is the round key. We introduce a new 16-bit
variable g such that gi = 0 if we made a choice for bit i of k and 1 otherwise.
To compute the possible truncated transitions from x to y through k for all the
possible key (according to g) we can restrict ourself at looking at the possible
truncated transitions from (x|g) to y through (k|g) where | is the bitwise OR.
Indeed, we use the fact that in truncated setting 1 ⊕ 1 is 0 or 1 and thus our
technique allows to handle all the possible keys by looking only at few transitions.

3.3 Results for Step 1

For Step 1, we run our ad-hoc tool on the four attack scenarios (SK, TK1, TK2,
and TK3) when varying the number of rounds between 3 and 20. We conducted
all our experiments on our server composed of 2× AMD EPYC 7742 64-Core
and 1TB of RAM. In particular, we were able to complete the security analysis
made in [BJK+16,ABI+18] and claim that the minimal number of active S-boxes
in TK1 for 28, 29 and 30 rounds are 105, 109 and 113 respectively (as shown in
Table 1).

# Rounds 28 29 30

TK1 105 109 113

Table 1. Lower bounds on the number of active S-boxes in SKINNY.

However, the optimal solution of Step 2, in terms of differential characteristic
probability, could be obtained for a number of active S-boxes which is not the
optimal one. Hereafter, we denote ObjStep1 the number of active S-boxes we
consider when solving the problems. For example, assume that, when processing
Step 2, one obtains a differential characteristic with the best probability equal to
2−3×6 = 2−18 with ObjStep1 = 6 and whereas the optimal differential probability
of the S-box is 2−2. It means that one has to test all solutions outputted by
Step 1 until ObjStep1 < 18/2 = 9 to be sure that none has a better differential
characteristic probability. This is exactly what happened for the case of SKINNY-
128 in the TK models. We only want to stress here that computing the optimal
bounds is often not enough and we need to go further. However, increasing the
value of ObjStep1 induces an increase of the possible number of Step 1 solutions as
illustrated in the third column of Table 4. As one can see, this number of solutions
tends to grow exponentially when we increase v. For example, for SKINNY-128
with 14 rounds in the TK1 model, for the optimal value v∗ = 45, Step 1 outputs
only 3 solutions; whereas we have 897 solutions for v = v∗ + 5 = 50; 137 019
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solutions for v = v∗ + 10 = 55 and finally 7 241 601 solutions for v = 59. So,
the time required to output all those Step 1 solutions and the time required
for the Step 2 computations on 1 solution outputted by the Step 1 become the
bottleneck of the overall process.

3.4 Other Approaches

We tried different approaches to solve the Step 1 problem, including MILP, SAT
and CP models.

Our SAT model is encoded through the high level modeling language MiniZinc
while our CP model is based on the Choco-solver. Unfortunately, the results of
both the SAT and the CP models are really bad: for example, for all instances
greater than 16 rounds we were unable to obtain the solutions in reasonable time.
This is mainly due to the need to enumerate solutions for SAT, which implies to
prohibit all solutions previously found. For CP, on the other hand, this has to do
with the nature of the Boolean variables themselves where the Choco-solver can
not efficiently propagate lower bounds and upper bounds on Boolean variables.

Our MILP model was much better than our SAT and CP ones. We started
from the original model presented in [BJK+16] but made several optimizations.
First, we added constraints in the SK model to obtain all solutions up to column
shifts in order to remove symmetries. Moreover, as the original model only
describes the way to find the minimal number of active S-boxes, we added a
constraint in each model to set a lower bound on the number of active S-boxes
and thus, be able to enumerate all the Step 1 solutions given a particular lower
bound for the number of active S-boxes. Then, in the original MILP model all xor
operations were modeled using dummy variables which is known to be inefficient.
Thus we replaced the corresponding inequalities, using that x⊕ y ⊕ z = 0 can be
described with the three inequalities:

{x+ y ≥ z}, {x+ z ≥ y}, {y + z ≥ x}.

Finally, regarding the resolutions of the MILP models, the parallelization were
left to the Gurobi solver.4

We compared the MILP model to our ad-hoc tool and we found that our
MILP model is much slower in most cases and actually too slow to output all the
Step 1 solutions needed to perform Step 2. Running times are given in Table 2.

Note that while our ad-hoc tool gave very good running times, it may require
a lot of memory to store the array C. For instance, for 30 rounds in TK3 mode,
our tool required up to 500GB of RAM to finish the search. It is also important
to note that it did not take fully advantage of the 128 cores of our server, and
most often used less than 40 cores.

4 Modeling Step 2 with CP

The aim of Step 2 is to try to instantiate the abstracted solutions provided
by Step 1 while maximizing the probability of the differential characteristic.

4 see: https://www.gurobi.com/documentation/9.0/refman/threads.html
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Rounds Model ObjStep1 MILP Ad-hoc

14 TK1 45 → 59 > 6h 5m

19 TK2 52 → 63 > 6h 19m

20 SK 96 342m 16s

20 TK1 70 38m 28s

20 TK2 57 745s 193s

20 TK3 45 998s 326s

Table 2. Comparison of the running times required to generate all Step 1 solutions
between our MILP and ad-hoc approaches.

Thus, Step 2 takes as input a solution of Step 1 with the objective function
of maximizing the probability of the differential characteristic. However, some
solutions of Step 1 could not be instantiated in Step 2 as refining the abstraction
level of Step 2 will induce non-consistent solutions. In the literature, this step has
been modeled using ad-hoc methods [BN10], MILP [AST+17], SAT [SWW18] or
CP [GLMS20]. As MILP [AST+17] and SAT [SWW18] seem to hardly scale due
to prohibitive computational times (linked with the size of the 8-bit S-boxes that
must be represented in the form of linear inequalities or of clauses), we focus
here on a dedicated CP method implemented using the Choco solver [PFL16].
We also provide, in the second part of this section, the results we obtain when
instantiating the differential characteristics in the 4 attack scenarios.

4.1 Constraint Programming

Although less usual than MILP to tackle cryptanalytic problems, CP has already
been used in e.g. [GMS16,ENP19]. We recall some basic principles of CP and we
refer the reader to [RBW06] for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is
defined by a triple (X,D,C) such that X = {x1, x2, . . . , xn} is a finite set of
variables, D is a function that maps every variable xi ∈ X to its domain D(xi)
and C = {c1, c2, . . . , cm} is a set of constraints. D(xi) is a finite ordered set of
integer values to which the variable xi can be assigned to, whereas cj defines
a relation between some variables vars(cj) ⊆ X. This relation restricts the set
of values that may be assigned simultaneously to vars(cj). Each constraint is
equipped with a filtering algorithm which removes from the domains of vars(cj),
the values that cannot satisfy cj .

In CP, constraints are classified in two categories. Extensional constraints,
also called table constraints, explicitly define the allowed (or forbidden) tuples
of the relation. Intentional constraints define the relation using mathematical
operators. For instance, in a CSP with X = {x1, x2, x3} such that D(x1) =
D(x2) = D(x3) = {0, 1}, a constraint ensuring that the sum of the variables in X
is different from 1 can be either expressed in extension (1) or in intention (2):

1. Table(〈x1, x2, x3〉 , 〈(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)〉)
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2. x1 + x2 + x3 6= 1

Actually, any intentional constraint can be encoded with an extensional one
provided enough memory space, and conversely [DHL+16]. However, they may
offer different performances.

The purpose of a CSP is to find a solution, i.e. an assignment of all vari-
ables to a value from their respective domains such that all the constraints are
simultaneously satisfied. When looking for a solution, a two-phase mechanism
is operated: the search space exploration and the constraint propagation. The
exploration of the search space is processed using a depth-first search. At each
step, a decision is taken, i.e. a non-assigned variable is selected and its domain
is reduced to a singleton. This modification requires to check the satisfiability
of all the constraints. This is achieved thanks to constraint propagation which
applies each constraint filtering algorithm. Any application may trigger modifi-
cations in turn; the propagation ends when either no modification occurs and
all constraints are satisfied or a failure is thrown, i.e., at least one constraint
cannot be satisfied. In the former case, if all variables are assigned, a solution
has been found. Otherwise a new decision is taken and the search is pursued. In
the latter case, a backtrack to the first refutable decision is made and the search
is resumed.

Turning a CSP into a Constrained Optimisation Problem (COP) is done by
adding an objective function. Such a function is defined over variables of X, the
purpose is then to find the solution that optimizes the objective function. Finding
the optimal solution is done by repeatedly applying the two-phase mechanism
above, and by adding a cut on the objective function that prevents from finding
a same cost solution in the future.

4.2 Modeling Step 2 with CP

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-
consistent solution with the highest (related-tweakey) differential characteristic
probability (or proving that there is no byte-consistent solution). In this section,
Model 1 describes the CP model we used for SKINNY-128 (SK). Actually, the
ones used to model the other variants, as well as SKINNY-64 are rather similar.

For each Boolean variable ∆Xr,i,j of Step 1, we define an integer variable
δXr,i,j . The domain of this integer variable depends on the value of the Boolean
variable in the Step 1 solution: If ∆Xr,i,j = 0, then the domain is D(δXr,i,j) = {0}
(i.e., δXr,i,j is also assigned to 0); otherwise, the domain is D(δXr,i,j) = [1, 255].
For each byte that passes through an S-box, we define an integer variable δSBr,i,j
which corresponds to the difference after the S-box. Its domain is {0} if ∆Xr,i,j

is assigned to 0 in the Step 1 solution; otherwise, it is D(δSBr,i,j) = [1, 255]. This
is expressed in (3) of Model 1.

Finally, as we look for a byte-consistent solution with maximal probability,
we also add an integer variable Pr,i,j for each byte in an S-box: this variable
corresponds to the absolute value of the base 2 logarithm of the probability
of the transition through the S-box. Actually, a factor 10 has been applied to
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Minimize

ObjStep2 =
R∑

r=1

4∑
i=1

4∑
j=1

Pr,i,j (1)

subject to

20× n ≤
R∑

r=1

4∑
i=1

4∑
j=1

Pr,i,j ≤ min(70× n,O∗
) (2)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4{
δXr,i,j = 0 ∧ δSBr,i,j = 0 ∧ Pr,i,j = 0 if ∆Xr,i,j = 0

δXr,i,j ≥ 1 ∧ δSBr,i,j ≥ 1 ∧ Pr,i,j ≥ 20 otherwise

(3)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4

Table(〈δXr,i,j , δSBr,i,j , Pr,i,j〉 , 〈SBox〉) if ∆Xr,i,j 6= 0
(4)

∀r ∈ 1..R− 1, ∀j ∈ 1..4 δSBr,0,j = δXr+1,1,j (5)

∀r ∈ 1..R− 1, ∀j ∈ 1..4
δSBr,2,(2+j)%4 = δXr+1,2,j if ∆SBr,1,(3+j)%4 = 0

δSBr,1,(3+j)%4 = δXr+1,2,j if ∆SBr,2,(2+j)%4 = 0

δSBr,1,(3+j)%4 = δSBr,2,(2+j)%4 if ∆Xr+1,2,j = 0

Table(
〈
δSBr,1,(3+j)%4, δSBr,2,(2+j)%4, δXr+1,2,j

〉
, 〈XOR〉) otherwise

(6)

∀r ∈ 1..R− 1, ∀j ∈ 1..4
δSBr,2,(2+j)%4 = δXr+1,3,j if ∆SBr,0,j = 0

δSBr,0,j = δXr+1,3,j if ∆SBr,2,(2+j)%4 = 0

δSBr,0,j = δSBr,2,(2+j)%4 if ∆Xr+1,3,j = 0

Table(
〈
δSBr,0,j , δSBr,2,(2+j)%4, δXr+1,3,j

〉
, 〈XOR〉) otherwise

(7)

∀r ∈ 1..R− 1, ∀j ∈ 1..4
δXr+1,0,j = δXr+1,3,j if ∆SBr,3,(1+j)%4 = 0

δSBr,3,(1+j)%4 = δXr+1,3,j if ∆Xr+1,0,j = 0

δSBr,3,(1+j)%4 = δXr+1,0,j if ∆Xr+1,3,j = 0

Table(
〈
δSBr,3,(1+j)%4, δXr+1,0,j , δXr+1,3,j

〉
, 〈XOR〉) otherwise

(8)

where ∀r ∈ R..n, ∀i ∈ 1..4, ∀j ∈ 1..4,

δXr,i,j ∈ 0..255, δSBr,i,j ∈ 0..255, Pr,i,j ∈ {0, 20, .., 70},

and 〈XOR〉 encodes ⊕ relation and 〈SBox〉 the S-box constraint.

Model 1: Formulation of SK Step2.
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avoid considering floats. Thus we define a Table constraint (4) composed of
valid triplets of the form (δXr,i,j , δSBr,i,j , Pr,i,j). Note that these triplets only
contain non-zero values and that Pr,i,j takes only 2 different values for the 4-bit
S-box (SKINNY-64) and 7 different values for the 8-bit S-box (SKINNY-128). There
are roughly 214 triplet elements in the Table constraint for the SKINNY-128 case.
As the S-box layer is the only non-linear layer, the other operations could be
directly implemented in a deterministic way at the cell level. The associated
constraints thus follow the SKINNY-128 linear operations. When possible, i.e.
when one element is known to be zero, we replace XOR constraints (encoded
using Table constraints) by a simple equality constraint. This corresponds to
Table constraints (5), (6), (7) and (8) in Model 1.

The overall goal is finally to find a byte-consistent solution which maximizes
differential characteristic probability. Thus, we define an integer variable ObjStep2
to minimize the sum of all Pr,i,j variables (1). This value mainly depends on
the number of S-boxes outputted by Step1 ObjStep1 and can be bounded to
[[20 ·ObjStep1, 70 ·ObjStep1]] (2).

The differences for the models TK1, TK2 and TK3 are the modeling of the
XORs induced by the lanes of the tweakey through XOR table constraints. Each
XOR constraint depicted in Model 1 provides high quality filtering but requires
65536 tuples to be stored which results in prohibitive memory usage. This may
limit the number of threads that can be used for the resolution, which was the case
for TK2 and TK3. To get around this issue, we encoded the XOR constraint in
intention (by defining filtering rules), providing a more memory efficient algorithm,
at the expense of filtering strength. This last choice was applied for TK2 and
TK3 (SKINNY-128 only). We also rely on Table constraints to model the LFSRs
applied on TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack
settings, the Step 1 only outputs the truncated value of the sum of the TKi.
Thus, the search space strategy first looks at the cancellation places of the sum
of the TKi and then instantiates the TKi values according to those positions.
For the TK1 setting, we simply apply the default Choco-solver strategy.

Concerning the parallelization, we affect one solution outputted by Step 1
per thread and we share between the threads the value of ObjStep2.

4.3 Step 2 Performance Results

We run our Step 2 model on the two versions of SKINNY (SKINNY-64 and SKINNY-
128) using our CP models written in Choco-solver. We conduct all our experiments
on our server composed of 2× AMD EPYC 7742 64-Core and 1TB of RAM. All
the reported times are real system times.

Up to our knowledge, we only found [AST+17] that gives time results con-
cerning finding the best SK differential characteristic probability on SKINNY-128
using a MILP tool based on Gurobi.

More precisely, the authors say: “In our experiments, we used Gurobi Opti-
mizer with Xeon Processor E5-2699 (18 cores) in 128 GB RAM.” and, for 13
rounds, “in our environment, the test of 6 classes [Step 1 solutions with 58 active
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S-boxes without symmetries] finished in 16 days. Finally, it is proven that the
tight bound on the probability of differential characteristic for 13 rounds is 2−123”
in the SK model.

Regarding the TK models, the best known results were obtained by Liu et
al. also using MILP models [LGS17]. They could only find the best differential
characteristics up to 7, 9 and 13 rounds for TK1, TK2 and TK3 respectively.

Results for SKINNY-64. We sum up in Table 3 all the results we obtain for
SKINNY-64 in the four different attack models (SK,TK1,TK2 and TK3). The
overall time, in this case, is not a bottleneck. We only give results concerning
number of rounds that are at the limit (just under and just upper) when regarding
the number of active S-boxes which is equal to 32 in the case of SKINNY-64 as
the state size is 64 bits and as the best differential probability of the S-box is
equal to 2−2. Thus, the best overall differential characteristic probability must
be under 2−64.

Note that sometimes, we need to browse several ObjStep1 bounds to find
the optimal differential characteristic probability when the number of rounds is
fixed. Indeed, we need to proactively adapt the probability bound we found. For
example, in the case of TK2 SKINNY-64 with 13 rounds, the optimal ObjStep1 is
equal to 25 and when providing the Step 2 process with this ObjStep1 bound, we
find a best differential characteristic probability equal to 2−55. Thus, we need to
enumerate all the Step 1 solutions with ObjStep1 = 26 and ObjStep1 = 27 to be
sure that the previous probability is really the best one. Then, before running
again Step 2 on those new results we adapt the best probability to the new bound
equal to 2−55 instead of the old bound equal to 2−64.

We also provide in Appendix A the details of the best found differential
characteristics.

Nb Rounds ObjStep1 Nb sol. Step 1 Step 2 time Best Pr

SK 7 26 2 1s 2−52

SK 8 36 17 1s < 2−64

TK1 10 23 1 1s 2−46

TK1 11 32 2 1s = 2−64

TK2 13 25 → 27 10 1s 2−55

TK2 14 31 1 1s < 2−64

TK3 15 24 → 26 46 2s 2−54

TK3 16 27 → 31 87 4s = 2−64

TK3 17 31 2 1s < 2−64

Table 3. Overall results concerning SKINNY-64 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all Step 1 solutions when Objstep1 takes the
values precise in the first column. Best Pr corresponds to the best found probability of
a differential characteristic.
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Results for SKINNY-128. In the same way, we provide in Table 4 the best
differential characteristic probability with the total time required for this search
for the 4 different attack models. As one can see, we also verify all the possible
values for ObjStep1 for a given number of rounds, depending on the probability
value previously found. Thus, this time, the number of solutions outputted by
Step 1 could be huge when we move away from the optimal Step 1 value v∗.
However, as the time spent to solve one solution is reasonable (at least when
considering SK and TK1), our model scales reasonably well: the worst case
requires 25 days of real time on our server on 8 threads and 31 GB of RAM5.
Our TK2 and TK3 models are based on XOR constraints encoded in intention
(and not using tables) and these experiences have been launched using the 128
threads of our server.

Nb Rounds Objstep1 Nb sol. Step 1 Step 2 time Best Pr

SK 9 41 → 43 52 16s 2−86

SK 10 46 → 48 48 11s 2−96

SK 11 51 → 52 15 4s 2−104

SK 12 55 → 56 11 6s 2−112

SK 13 58 → 61 18 2m27s 2−123

SK 14 61 → 63 6 21s ≤ 2−128

TK1 8 13 → 16 14 4s 2−33

TK1 9 16 → 20 6 3s 2−41

TK1 10 23 → 27 6 4s 2−55

TK1 11 32 → 36 531 37s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 days 2−106.2

TK1 14 45 → 59 11 518 612 20 days 2−120

TK1 15 49 → 63 7 542 053 25 days ≤ 2−128

TK2 9 9 → 10 7 3s 2−20

TK2 10 12 → 17 132 11s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 19 52 → 63 530 693 280m ≤ 2−128

TK3 10 6 3 3s 2−12

TK3 11 10 3 10s 2−21

TK3 12 13 → 17 373 1h 2−35.7

TK3 13 16 → 25 34 638 85h 2−51.8

TK3 23 55 → 63 47 068 11h ≤ 2−128

Table 4. Overall results concerning SKINNY-128 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when Objstep1
takes the values precise in the first column. Best Pr corresponds to the best found
probability of a differential characteristic.

5 It seems that the use of the 128 threads was prohibited by the memory usage of XOR
tables (i.e. XOR in extension).
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Nb Rounds Objstep1 Best Pr

TK2 13 25 → 44 2−86.2

TK2 14 31 → 54 ≥ 2−105.8

TK2 15 35 → 56 ≥ 2−113.8

TK2 16 40 → 63 ≥ 2−127.6

TK3 14 19 → 33 2−67

TK3 15 24 → 40 2−81

TK3 16 27 → 48 2−98

TK3 17 31 → 54 2−110

TK3 19 43 → 63 ≤ 2−128

TK3 20 45 → 63 ≤ 2−128

TK3 21 48 → 63 ≤ 2−128

TK3 22 51 → 63 ≤ 2−128

Table 5. Overall results concerning SKINNY-128 with exactly one active cell in the
tweakey.

Concerning TK2 and TK3, we were not able to perform all the computations
due to the huge number of Step 1 solutions. Hence we decided to handle only the
Step 1 solutions with exactly one active byte in the round keys in order to limit
the number of truncated characteristics to instantiate. Those results are given in
Table 5. We provide in Appendix B the best TK2 differential characteristic we
found for 16 rounds, and the best TK3 differential characteristic we found for 17
rounds. Note that we do not know if these differential characteristics are optimal
in terms of probability as we were not able to test all the solutions Step 1.

Lessons learnt. The overall gap is not to find the optimal value of ObjStep1 = v∗

for a given number of rounds and to enumerate the corresponding overall solutions
if the Step 1 model is sufficiently tight. The real gap is if the value obtained for
ObjStep2 (here equal to 2× v∗ as the best differential probability for the S-box is
equal to 2−2) is far from the optimal bound then we have to increase ObjStep1
up to the bound bObjStep2/2c. Further we are from v∗ in the Step 1 resolution,
more numerous are the Step 1 solutions (in fact this number grows exponentially
as could be seen in Table 4). Thus, the time for the Step 2 resolution becomes
the bottleneck.

5 Conclusion

In this paper, we improve the security bounds regarding differential characteristics
search on the block cipher SKINNY. As usually done, we have divided the search
procedure into two steps: Step 1 which abstracts the difference values into Boolean
variables and finds the truncated characteristics with the smallest number of
active S-boxes; and Step 2 which inputs the results of Step 1 to output the best
possible probability instantiating the abstract solutions outputted by Step 1. Of
course, each solution of Step 1 could not always be instantiated in Step 2.
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For Step 1, an ad-hoc method which heavily uses the structure of the problem
is proposed. For solving Step 2, we have implemented a Choco-solver model. Re-
garding Step 2, our Choco-solver model is much faster than any other approaches.
It allowed us to find, for the first time, the best (related-tweakey) differential
characteristics in the TK1 model up to 14 rounds for SKINNY-128 and to show
there is no differential trail on 15 rounds with a probability better than 2−128.
Regarding the TK2 model, we were able to find the best differential trails up to
16 rounds. For TK3, we are able to exhibit a differential characteristic up to 17
rounds. Note that in [LGS17] Liu et al. were only able to reach 7 and 9 rounds
in the TK1 and TK2 model respectively. Our approach is thus an important
improvement.
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A Best (related-tweakey) differential characteristics for
SKINNY-64

The best SK differential characteristics on 7 rounds of SKINNY-64 with probability
equal to 2−52 is given in Table 6. The best TK1 differential characteristics on
10 rounds of SKINNY-64 with probability equal to 2−46 is given in Table 7. The
Best TK2 differential characteristics on 13 rounds of SKINNY-64 with probability
equal to 2−55 is given in Table 8. Best TK3 differential characteristics on 15
rounds of SKINNY-64 with probability equal to 2−54 is given in Table 9.

Round δXi = Xi ⊕X ′i (before SB) δSBXi (after SB) Pr(States)

i = 1 0040 4444 4440 4400 0020 2222 2220 2200 2−2·10

2 0000 0020 0200 2002 0000 0010 0100 1001 2−2·4

3 0010 0000 0000 0001 0080 0000 0000 0008 2−2·2

4 0000 0080 0000 0080 0000 0040 0000 0040 2−2·2

5 0400 0000 0004 0000 0200 0000 0002 0000 2−2·2

6 0000 0200 0200 0000 0000 0100 0100 0000 2−2·2

7 0001 0000 0011 0001 0008 0000 0088 0008 2−2·4

Table 6. The Best SK differential characteristics on 7 rounds of SKINNY-64 with
probability equal to 2−52. The four words represent the four rows of the state and are
given in hexadecimal notation.
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Round δXi = Xi ⊕X ′i (before SB) δSBXi (after SB) δTK1i Pr(States)

i = 1 0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2−2·3

2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2−2·2

3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 −
4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2−2·3

5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2−2·2

6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2−2·1

7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2−2·1

8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2−2·2

9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2−2·2

10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2−2·7

Table 7. The Best TK1 differential characteristics on 10 rounds of SKINNY-64 with
probability equal to 2−46. The four words represent the four rows of the state and are
given in hexadecimal notation.



22 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

R
o
u
n
d
δX

i
=
X

i
⊕
X
′ i

(b
ef

o
re

S
B
)

δS
B
X

i
(a

ft
er

S
B
)

δT
K

1
i

δT
K

2
i

P
r(

S
ta

te
s)

i
=

1
0
0
0
0
8
2
0
0
0
0
8
0
0
0
0
0

0
0
0
0
4
1
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
8
0
5
0
2
0
0
0
0
0
0
0
0
0
0
0
C
0
6
0
C
0
0
0
0

2
−
2
·3

2
4
0
0
0
0
0
0
0
0
4
1
0
4
0
0
0

2
0
0
0
0
0
0
0
0
2
A
0
2
0
0
0
5
0
0
0
0
0
0
2
0
0
0
0
0
0
0
8
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
C

2
−
2
·4

3
0
0
0
0
A
0
0
0
0
0
0
2
0
0
0
2

0
0
0
0
6
0
0
0
0
0
0
6
0
0
0
3
0
8
0
0
0
0
0
0
5
0
0
0
0
0
0
2
0
8
0
0
0
0
0
0
D
0
0
0
0
0
0
8

2
−
2
·3

4
0
6
3
0
0
0
0
0
0
0
0
0
0
6
0
0

0
3
F
0
0
0
0
0
0
0
0
0
0
1
0
0
0
2
5
0
0
0
0
0
0
8
0
0
0
0
0
0
0
1
A
0
0
0
0
0
0
8
0
0
0
0
0
0

2
−
3
·3

5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
2
5
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
A
0
0
0
0
0

2
−
2

6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
5
0
0
0
8
0
0
0
0
0
0
0
2
0
0
0
5
0
0
0
1
0
0
0
0
0
0
0

−
7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
2
0
0
0
5
0
0
0
0
0
2
0
0
0
0
0
2
0
0
0
5
0
0
0

−
8

0
0
A
0
0
0
A
0
0
0
0
0
0
0
A
0

0
0
6
0
0
0
5
0
0
0
0
0
0
0
5
0
0
0
2
0
0
0
5
0
0
0
8
0
0
0
0
0
0
0
4
0
0
0
B
0
0
0
2
0
0
0
0
0

2
−
2
·3

9
0
5
0
0
0
0
0
0
0
0
0
B
0
0
0
0

0
C
0
0
0
0
0
0
0
0
0
C
0
0
0
0
0
0
0
0
8
0
0
0
0
0
2
0
0
0
5
0
0
0
0
0
4
0
0
0
0
0
4
0
0
0
B
0

2
−
3
·2

1
0

0
0
0
0
0
C
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
5
0
0
0
0
0
0
8
0
0
0
0
0
0
0
9
7
0
0
0
0
0
0
4
0
0
0

2
−
2

1
1

0
0
0
0
0
0
0
0
0
B
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
2
5
0
0
0
0
0
0
0
0
9
0
0
0
0
0
9
7
0
0

2
−
2

1
2

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
A
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
5
0
0
2
0
0
0
0
0
0
0
8
0
0
0
0
F
0
0
3
0
0
0
0
0
0
0
9
0

2
−
2
·2

1
3

0
0
8
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
4
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
5
0
0
2
0
0
0
0
0
0
3
0
0
0
0
0
F
0
0
3
0

2
−
2
·2

T
a
b
le

8
.

T
h
e

B
es

t
T
K
2

d
iff

er
en

ti
a
l

ch
a
ra

ct
er

is
ti

cs
o
n

1
3

ro
u
n
d
s

o
f
S
K
I
N
N
Y
-
6
4

w
it

h
p
ro

b
a
b
il
it

y
eq

u
a
l

to
2
−
5
5
.

T
h
e

fo
u
r

w
o
rd

s
re

p
re

se
n
t

th
e

fo
u
r

ro
w

s
o
f

th
e

st
a
te

a
n
d

a
re

g
iv

en
in

h
ex

a
d
ec

im
a
l

n
o
ta

ti
o
n
.



Efficient Methods to Search for Best Differential Characteristics on SKINNY 23

R
o
u
n
d
δX

i
=
X

i
⊕
X
′ i

(b
ef

o
re

S
B
)

δS
B
X

i
(a

ft
er

S
B
)

δT
K

1
i

δT
K

2
i

δT
K

3
i

P
r(

S
ta

te
s)

i
=

1
0
0
0
0
0
0
0
1
4
0
0
0
0
0
0
4

0
0
0
0
0
0
0
8
2
0
0
0
0
0
0
2
0
0
0
0
0
8
0
D
0
0
0
0
0
8
0
0
0
0
0
0
0
4
0
8
0
0
0
0
0
5
0
0
0
0
0
0
0
E
0
D
0
0
0
0
0
C
0
0

2
−
2
·3

2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
8
0
0
0
0
0
0
0
0
0
8
0
D
0
0
0
B
0
0
0
0
0
0
0
0
0
4
0
8
0
0
0
E
0
0
0
0
0
0
0
0
0
E
0
D

2
−
2

3
0
1
0
D
0
0
0
D
0
0
0
0
0
0
0
D

0
A
0
E
0
0
0
2
0
0
0
0
0
0
0
2
0
D
0
8
0
0
0
0
0
0
0
8
0
0
0
0
0
1
0
9
0
0
0
0
0
0
0
B
0
0
0
0
0
6
0
F
0
0
0
0
0
0
0
E
0
0
0
0

2
−
2
·3

2
−
3

4
0
0
2
0
0
0
0
0
2
0
0
0
0
0
0
0

0
0
3
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
D
0
8
0
0
0
0
0
0
0
0
0
0
0
7
0
1
0
9
0
0
0
0
0
0
0
0
0
0
0
F
0
6
0
F
0
0
0
0

2
−
2
·2

5
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
0

0
0
0
0
0
0
C
0
0
0
C
0
0
0
0
0
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
8
2
0
0
0
0
0
0
3
0
0
0
0
0
0
0
7
3
0
0
0
0
0
0
7
0
0
0
0
0
0
0
F

2
−
3
·2

6
0
0
0
0
C
0
0
0
0
0
0
C
0
0
0
0

0
0
0
0
2
0
0
0
0
0
0
2
0
0
0
0
0
8
0
0
0
0
0
0
D
0
0
0
0
0
0
8
0
F
0
0
0
0
0
0
2
0
0
0
0
0
0
3
0
7
0
0
0
0
0
0
3
0
0
0
0
0
0
7

2
−
2
·2

7
0
2
0
0
0
0
0
0
0
0
0
0
0
2
0
0

0
5
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
8
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
6
4
0
0
0
0
0
0
F
0
0
0
0
0
0
0
B
9
0
0
0
0
0
0
7
0
0
0
0
0
0

2
−
2
·2

8
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
8
D
0
0
0
0
0
E
0
0
0
0
0
0
0
0
6
4
0
0
0
0
0
B
0
0
0
0
0
0
0
0
B
9
0
0
0
0
0

2
−
3

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
D
0
0
0
8
0
0
0
0
0
0
0
D
0
0
0
9
0
0
0
E
0
0
0
0
0
0
0
5
0
0
0
4
0
0
0
B
0
0
0
0
0
0
0

−
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
D
0
0
0
0
0
C
0
0
0
0
0
D
0
0
0
9
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
4
0
0
0

−
1
1

0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0

0
0
8
0
0
0
9
0
0
0
0
0
0
0
A
0
0
0
8
0
0
0
D
0
0
0
8
0
0
0
0
0
0
0
A
0
0
0
3
0
0
0
C
0
0
0
0
0
0
0
A
0
0
0
2
0
0
0
5
0
0
0
0
0

2
−
2
·3

1
2

0
A
0
0
0
0
0
0
0
0
0
5
0
0
0
0

0
A
0
0
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
D
0
0
0
0
0
8
0
0
0
0
0
A
0
0
0
3
0
0
0
0
0
A
0
0
0
0
0
A
0
0
0
2
0

2
−
2
2
−
3

1
3

0
0
0
0
0
A
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
A
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
5
6
0
0
0
0
0
0
8
0
0
0
0
0
0
0
D
1
0
0
0
0
0
0
A
0
0
0

2
−
3

1
4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
8
D
0
0
0
0
0
0
0
0
1
0
0
0
0
0
5
6
0
0
0
0
0
0
0
0
D
0
0
0
0
0
D
1
0
0

−
1
5

0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
D
0
0
8
0
0
0
0
0
0
0
8
0
0
0
0
D
0
0
B
0
0
0
0
0
0
0
1
0
0
0
0
8
0
0
6
0
0
0
0
0
0
0
D
0

2
−
2

T
a
b
le

9
.

T
h
e

B
es

t
T
K
3

d
iff

er
en

ti
a
l

ch
a
ra

ct
er

is
ti

cs
o
n

1
5

ro
u
n
d
s

o
f
S
K
I
N
N
Y
-
6
4

w
it

h
p
ro

b
a
b
il
it

y
eq

u
a
l

to
2
−
5
4
.

T
h
e

fo
u
r

w
o
rd

s
re

p
re

se
n
t

th
e

fo
u
r

ro
w

s
o
f

th
e

st
a
te

a
n
d

a
re

g
iv

en
in

h
ex

a
d
ec

im
a
l

n
o
ta

ti
o
n
.



24 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

B Best (related-tweakey) differential characteristics for
SKINNY-128

Concerning the best SK differential characteristics on 13 rounds of SKINNY-128,
We obtain the same best SK differential characteristics on 13 rounds of SKINNY-128
with probability equal to 2−123 given in Table 11 of Appendix D of [AST+17].
The best TK1 differential characteristics on 14 rounds of SKINNY-128 with
probability equal to 2−120 is given in Table 10. The best TK2 differential charac-
teristics on 16 rounds of SKINNY-128 with probability equal to 2−127.6 we found
is given in Table 11. The best TK3 differential characteristics on 17 rounds of
SKINNY-128 with probability equal to 2−110 we found is given in Table 12.



Efficient Methods to Search for Best Differential Characteristics on SKINNY 25

R
o
u
n
d

δX
i

=
X

i
⊕
X
′ i

(b
ef

o
re

S
B
)

δS
B
X

i
(a

ft
er

S
B
)

δT
K

1
i

P
r(

S
ta

te
s)

i
=

1
0
2
0
0
0
0
0
2
0
0
0
0
0
2
0
0
0
0
0
2
0
0
0
0
0
0
0
2
0
0
4
0
0
8
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
0
0
0
0
8
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·6

2
0
0
0
0
0
4
0
0
0
8
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·4

3
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

2
−
2
·3

4
0
0
0
0
4
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
4
0
4
0
0
0
0
0
4
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
4
0
4
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·5

5
0
4
0
0
0
4
0
0
0
0
0
0
0
4
0
0
0
0
0
5
0
0
0
0
0
4
0
4
0
4
0
0
0
5
0
0
0
5
0
0
0
0
0
0
0
1
0
0
0
0
0
5
0
0
0
0
0
5
0
5
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

2
−
3
·6

2
−
2

6
0
0
0
5
0
5
0
0
0
5
0
0
0
5
0
0
0
0
0
0
0
0
0
4
0
5
0
0
0
5
0
5
0
0
0
5
0
5
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
5
0
5
0
0
0
5
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
3
·6

2
−
2
·2

7
0
0
0
5
0
0
0
5
0
0
0
5
0
5
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
5
0
0
0
5
0
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

2
−
3
·6

8
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
3
·3

2
−
2

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

2
−
3

1
0

0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2

1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

−
1
2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−
1
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

2
−
2

1
4

0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
8
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·3

T
a
b
le

1
0
.

T
h

e
B

es
t
T
K
1

d
iff

er
en

ti
a
l

ch
a
ra

ct
er

is
ti

cs
o
n

1
4

ro
u

n
d

s
o
f
S
K
I
N
N
Y
-
1
2
8

w
it

h
p

ro
b

a
b

il
it

y
eq

u
a
l

to
2
−
1
2
0
.

T
h

e
fo

u
r

w
o
rd

s
re

p
re

se
n
t

th
e

fo
u
r

ro
w

s
o
f

th
e

st
a
te

a
n
d

a
re

g
iv

en
in

h
ex

a
d
ec

im
a
l

n
o
ta

ti
o
n
.



26 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

Round δXi = Xi ⊕X ′i (before SB) δTK1i Pr(States)
δSBXi (after SB) δTK2i

i = 1 00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2−2·6

00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900

2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2−2·32−3

00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000

3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2−2·22−3

00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000

4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2−2·22−3

00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000

5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2−2·8

03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000

6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2−2·62−3·4

00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000

7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2−2·62−2.42−3

80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE

8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2−2·32−6

00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000

9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2−5

00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000

10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2−6

4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000

11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000

12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000

13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000

14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000

15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2−5

00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000

16 00000042 00000000 00000042 00000042 − 2−2.4·3

00000008 00000000 00000008 00000008

Table 11. The Best TK2 differential characteristics we found on 16 rounds of
SKINNY-128 with probability equal to 2−127.6. The four words represent the four rows
of the state and are given in hexadecimal notation.
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Round δXi = Xi ⊕X ′i (before SB) δTK1i Pr(States)
δSBXi (after SB) δTK2i

δTK3i

i = 1 00000200 00320000 08000000 00000808 00000000 00BA0000 00000000 00000000 2−2·32−3·2

00000800 00920000 18000000 00001010 00000000 00430000 00000000 00000000

00000000 00730000 00000000 00000000

2 00100000 00000800 00000000 00001000 00000000 00000000 00000000 00BA0000 2−2·3

00400000 00001000 00000000 00004000 00000000 00000000 00000000 00430000

00000000 00000000 00000000 00730000

3 00000000 00400000 00000010 00400000 000000BA 00000000 00000000 00000000 2−2·3

00000000 00040000 00000040 00040000 00000086 00000000 00000000 00000000

00000039 00000000 00000000 00000000

4 04400005 00000005 00400400 00400005 00000000 00000000 000000BA 00000000 2−2·62−3·2

05040001 00000001 00040100 00040005 00000000 00000000 00000086 00000000

00000000 00000000 00000039 00000000

5 00040505 05040001 00000004 04040005 00000000 000000BA 00000000 00000000 2−2·92−3

00010101 01010028 00000001 01010001 00000000 0000000D 00000000 00000000

00000000 0000009C 00000000 00000000

6 01000000 00010101 03000100 00000101 00000000 00000000 00000000 000000BA 2−2·62−32−4

20000000 00202020 20002000 0000B320 00000000 00000000 00000000 0000000D

00000000 00000000 00000000 0000009C

7 00B30000 20000000 00000020 00002000 00BA0000 00000000 00000000 00000000 2−2·32−7

00EE0000 80000000 00000080 00008000 001A0000 00000000 00000000 00000000

004E0000 00000000 00000000 00000000

8 00000000 00000000 00000000 00800000 00000000 00000000 00BA0000 00000000 2−2

00000000 00000000 00000000 00030000 00000000 00000000 001A0000 00000000

00000000 00000000 004E0000 00000000

9 03000000 00000000 00000000 00000000 BA000000 00000000 00000000 00000000 2−4

29000000 00000000 00000000 00000000 34000000 00000000 00000000 00000000

A7000000 00000000 00000000 00000000

10 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 34000000 00000000

00000000 00000000 A7000000 00000000

11 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00006900 00000000 00000000 00000000

0000D300 00000000 00000000 00000000

12 00000000 00000000 00000000 00000000 00000000 00000000 0000BA00 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00006900 00000000

00000000 00000000 0000D300 00000000

13 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 D3000000 00000000 00000000

00000000 69000000 00000000 00000000

14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00000000 D3000000

00000000 00000000 00000000 69000000

15 0000000 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 0000A700 00000000 00000000

00000000 00003400 00000000 00000000

16 00000000 00000000 00000029 00000000 00000000 00000000 00000000 0000BA00 2−3

00000000 00000000 00000030 00000000 00000000 00000000 00000000 0000A700

00000000 00000000 00000000 00003400

17 00300000 00000000 00300000 00300000 − 2−2·3

00400000 00000000 00400000 00400000

Table 12. The Best TK3 differential characteristics we found on 17 rounds of
SKINNY-128 with probability equal to 2−110. The four words represent the four rows of
the state and are given in hexadecimal notation.


