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Verifying Safety Properties of Inductively Defined
Parameterized Systems

Marius Bozga and Radu Iosif

Univ. Grenoble Alpes, CNRS, Grenoble INP??, Verimag

We introduce a term algebra as a new formal specification language for the coordi-
nating architectures of distributed systems consisting of a finite yet unbounded number
of components. The language allows to describe infinite sets of systems whose coordi-
nation between components share the same pattern, using inductive definitions similar
to the ones used to describe algebraic data types or recursive data structures. Further,
we give a verification method for the parametric systems described in this language,
relying on the automatic synthesis of structural invariants that enable proving general
safety properties (mutual exclusion, absence of deadlocks). The invariants are defined
using the WSκS fragment of the monadic second order logic, known to be decidable by
a classical automata-logic connection. This reduces the safety verification problem to
checking satisfiability of a WSκS formula.

1 Introduction

A fundamental principle in the design of a distributed system is the separation between
coordination and behavior [19]: the description of the coordinating architecture of a
software system states the components it is made of and how they interact, whereas the
components define the behavior they encapsulate and specify which part of this behav-
ior is visible in the interface. The architecture then defines the interactions between the
interfaces of the components, ignoring the internal aspects of their behavior.

Coordination is either endogenous, i.e. making explicit use of synchronization prim-
itives in the code describing the behavior of the components (e.g. semaphores, monitors,
barriers, etc.) or exogenous, i.e. having global rules describing how the components in-
teract. A commonly perceived advantage of endogenous coordination is that program-
mers do not have to explicitly build a global coordination model. On the downside, en-
dogenous coordination does not cope well with formal aspects of concurrent/distributed
system design, for instance verification, because having a precise description of the
structure of interactions is typically needed in order to automatically verify a param-
eterized system, in which the number of replicated components is finite but the upper
bound is not known. More generally, exogenous coordination is a key enabler of the
study of coordination mechanisms and their properties, as attested by the development
of over a hundred architecture description languages [7,22].

Existing work on verification of parametric distributed systems typically assumes
hard-coded architectures, whose structure (but not size) is fixed. For instance, the sem-
inal work of German and Sistla [12] considers cliques, in which every component can
interact with every other component, whereas Emerson and Namjoshi [11] and Browne,
Clarke and Grumberg [8] consider token-ring architectures, in which each component
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interacts with its left and right neighbours only. Most early results focus on the decid-
ability and computational complexity of verification problems such as safety (absence
of error configurations), depending tightly on the shape of the coordinating architec-
ture [3]. Because decidability can only be obtained at the price of drastic restrictions of
the architectural pattern and of the communication model (usually rendez-vous with a
bounded number of participants), more recent works go beyond the theoretical aspects
and propose practical semi-algorithmic methods, such as regular model checking [15,1]
or automata learning [9]. In such cases the architectural pattern is implicitly determined
by the class of language recognizers: word automata encode pipelines or token-rings,
whereas tree automata are used to describe hierarchical tree-structured architectures.

Among the first attempts at specifying architectures by logic is the interaction logic
of Konnov et al. [18], which is a combination of Presburger arithmetic with monadic un-
interpreted function symbols (denoting communication ports), that can describe cliques,
stars and token-rings. They use first order logic without successor functions, thus lim-
iting the expressivity of the language and excluding the possibility of describing more
structured architectures, such as pipelines, token-rings and tree-structured hierachies.
Such architectures can be described by an (undecidable) second-order extension of the
interaction logic [21]. Our previous work on verifying safety properties of architectures
described using interaction logic(s) considers interpreted successor functions that deter-
mine the shape of the architecture: zero successors describe cliques [6], one successor
describe linear (pipeline, token-ring) or star architectures (a single controller with many
slaves), whereas two or more successor functions describe tree-like architectures [4].

In this paper, we adhere to the exogenous coordination paradigm and define a lan-
guage for describing the architectures that coordinate the interactions in a distributed
system, parameterized by (i) the number of components of each type that are active
in the system, e.g. a system with n readers and m writers, in which n and m are not
known à priori and (ii) the shape of the structure in which the interactions take place,
e.g. a pipeline, ring, star, tree or, more general hypergraph-shaped structures. We use
a very simple syntax to describe the interactions between a component and its imme-
diate neighbours, together with a set of inductive definitions that describe unbounded
architectures, which follow a common recursive pattern. The motivation behind using
inductive definitions is that recursive data structures, such as algebraic datatypes [2]
or memory shapes [23] are ubiquitous in programming, hence programmers used to
writing inductive specifications of data structures could easily learn to write inductive
specifications of distributed component-based systems.

Specifying parameterized component-based systems by inductive definitions is not
new. Network grammars [24] use context-free grammar rules to describe distributed
systems with linear (pipeline, token-ring) architectures obtained by composition of an
unbounded number of concurrent processes. Instead, we use predicate symbols of unre-
stricted arities to describe architectural patterns that are, in general, more complex than
trees. Verification of network grammars against safety properties requires the synthesis
of network invariants [25]. Such network invariants can be computed by rather costly
fixpoint iterations [20] or by abstracting the composition of a small bounded number
of instances [16]. Instead, our method uses lightweight structural invariants, that are
shown to be easily inferred and efficient in many practical examples [4].

For starters, let us consider the following specification of a system, consising of
components of type CType with two interaction ports, namely in and out and the behav-



Fig. 1: Recursive Specification of a Token-Ring System
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components are arranged in a ring, such that the out port of a component is connected
to the in port of its right neighbour, with the exception of the last component, whose out
port connects to the in port of the first component (Fig. 1a). We specify this architecture
by means of a predicate Ring() defined inductively by the following rules:

Ring()← νy1 νy2 . 〈out(y2) · in(y1)〉(Chain(y1,y2)) (1)

Chain(x1, x2)← 〈out(x1) · in(x2)〉(CType(x1),CType(x2)) (2)
Chain(x1, x2)← νy1 . 〈out(x1) · in(y1)〉(CType(x1),Chain(y1, x2)) (3)

Rule (2) says that the smallest chain consists of two instances of type CType, namely
CType(x1) and CType(x2), such that the out port of x1 connects to the in port of x2,
described as out(x1) · in(x2), where x1 and x2 are the formal arguments of the rule.
Rule (3) describes the inductive step, namely that every chain stretching from x1 to x2
consists of a component CType(x1) that interacts with a disjoint chain from y1 to x2,
where y1 is an identifier different from every other identifier in the system. Finally, rule
(1) closes the ring by connecting the out port of the last component y2 to the in port of
the first component y1, written as out(y2) · in(y1). We refer to Fig. 1 for an illustration of
the unfoldings of this set of recursive definitions. Any system such as the one in Fig. 1a
is obtained by an application of rule (1), followed by n applications of rule (3), ending
with an application of rule (2). The first two applications of (3) following the application
of (1) are depicted in Fig. 1b, with rule labels annotated in red. Each application of rule
(2) creates a fresh variable, denoted here as y1

1, y2
1, etc.

Having defined a language for specification of architectures, equipped with a formal
semantics that describes an architecture as an abstract operator on finite-state behaviors,
we move on to the parametric safety problem, which is checking that the behavior of
every distributed system generated by an unfolding of a set of inductive definitions
stays clear of a set of unsafe configurations. For instance, the behavior generated by
the composition of three instances of type CType is depicted in Fig. 1c and the safety
property we check for is that in each state there is at least one enabled transition.

Our method for proving safety relies on automatic invariant synthesis. Like in our
previous work [6,4], we use structural invariants that can be derived directly from the
behavioral term and the recursive rewriting rules describing the system. The verification



method uses the invariant inference procedure to generate a WSκS formula that is unsat-
isfiable only if every system described by the given inductive definitions is safe. Since
WSκS is a decidable fragment of monadic second-order logic, we use existing tools,
such as Mona [13] for proving (parametric) safety. We have implemented the invariant
synthesis in a prototype tool and experimented our method on a number of parametric
component-based systems with non-trivial architectural patterns, such as trees with root
links, trees with linked leaves, token-rings with(out) a main controller (star), etc. For
space reasons, the proofs of the technical results are given in [5].

2 Behaviors and Architectures

This section introduces the preliminary definitions of a (finite-state) behavior and a
bounded architecture, before defining behavioral types, that are the first ingredient of
a formal definition of parametric component-based systems. Given sets A and B, we
denote by A 7→ B the set of total functions from A into B. Partial mappings from A to
B are denoted as f : A⇀ B, where dom( f ) def

= {a ∈ A | f (a) is defined} is the domain and
rng( f ) def

= { f (a) | a ∈ dom( f )} is the range of f .
Let P = {a,b, . . .} and S = {s, t, . . .} be countably infinite sets of ports and states,

respectively. A configuration σ ⊆ S is a finite set of states. A behavior is a tuple B =

〈P,S, ι,→〉, where P ⊆ P and S ⊆ S are finite sets of ports and states, respectively, ι ⊆ S
denotes the initial configuration and→⊆ 2S ×2P ×2S is a set of transitions denoted as
σ

π
−→ τ, for some configurations σ,τ ⊆ S and some set of ports π ⊆ P. We assume the

existence of an idling transition σ
∅

−→ σ, for each configuration σ ⊆ S and denote by PB,
SB, ιB and→B the ports, states, initial configuration and transitions of B, respectively.
An execution path of B is a sequence of transitions σ1

π1
−−→B σ2

π2
−−→B . . . A configuration

σ ⊆ S is reachable in B iff B has a finite execution path starting with ι and leading to σ;
B is safe w.r.t. a set of configurations E iff no configuration from E is reachable in B.

Given two behaviors Bi = 〈Pi,Si, ιi,→i〉, for i = 1,2, such that S1∩S2 = ∅ and P1∩

P2 = ∅, we define their product as B1 ‖ B2
def
= 〈P1 ∪P2,S1 ∪S2, ι1 ∪ ι2,→B1‖B2〉, where

→B1‖B2 is the smallest set of transitions defined by the rule (4). Intuitively, the product of
two behaviors consists of any transition that belongs to either one of the two behaviors
or a combined transition using the ports of both transitions in a joint action1. Since ‖ is
commutative and associative, we write B1 ‖ . . . ‖ Bn instead of (B1 ‖ B2) ‖ . . . ‖ Bn.

σi
πi
−→i τi, i = 1,2

(σ1∪σ2)
π1∪ π2
−−−−−→B1‖B2 (τ1∪τ2) (4)

σ
π
−→B1‖...‖Bn τ, π ∈ γ

σ
π
−→γ(B1 ,...,Bn) τ (5)

The product of behaviors (4) is, in general, too permissive and allows unsafe execu-
tions. We refine this operator to achieve a desired level of safety, by means of architec-
tures, a central notion in the rest of this paper, defined below:

Definition 1. An interaction π ⊆ P is a finite set of ports. An architecture γ ⊆ 2P is a
finite set of interactions.

1 In particular, each transition σ1
π1
−→1 τ1 induces a transition (σ1 ∪σ2)

π1
−→ (τ1 ∪σ2) due to the

idling transition σ2
∅

−→ σ2.



Just as the product of behaviors (4), an architecture can be viewed as a commutative and
associative operator, whose application to the set of behaviors {Bi = 〈Pi,Si, ιi,→i〉}

n
i=1 is

the behavior γ(B1, . . . ,Bn) def
= 〈

⋃
i=1 Pi,

⋃n
i=1 Sn,

⋃n
i=1 ιi,→γ(B1,...,Bn)〉, where →γ(B1,...,Bn)

is the least set of transitions defined by the rule (5). The architecture γ simply restricts
the transitions of the product B1 ‖ . . . ‖ Bn to the ones labeled with an interaction from
γ. Note that the arity of γ is not fixed, i.e. γ(B1, . . . ,Bn) is defined, for all n ≥ 1.

In the rest of this paper, we are concerned with systems consisting of an unbounded
number of replicated behaviors, that belong to a fairly small number of patterns, called
component types. Let I = {i, j, . . .} be a countably infinite set of identifiers. A component
type is a tuple B = 〈PB,SB,IB,∆B〉, where PB ⊆ I 7→ P and SB ⊆ I 7→ S are finite sets
of total functions mapping identifiers to ports and states, respectively, IB ∈ S denotes
initial states and ∆B ⊆ (I 7→ S)× (I 7→ P)× (I 7→ S) is a finite set of transition rules of the
form S

P
−→ T . In addition, we require that, for any P,Q ∈ P [S ,T ∈ S] and i, j ∈ I, such

that P(i) = Q( j) [S (i) = T ( j)], we have P = Q [S = T ] and i = j, i.e. all elements of PB
[SB] are injective functions with pairwise disjoint ranges.

Given a component type B = 〈P,S,I,∆〉 and an identifier i ∈ I, the behavior B(i) def
=

〈{P(i) | P ∈ P} , {S (i) | S ∈ S} , {I(i)} , {{S (i)}
{P(i)}
−−−→ {T (i)} | S

P
−→ T ∈ ∆}〉 is called the i-th

instance of B. Note that PB(i)∩PB( j) = ∅ and SB(i)∩SB( j) = ∅, for any i , j ∈ I.
In the rest of this paper, we consider a fixed set B of component types, such that

PB1 ∩PB2 = ∅ and SB1 ∩SB2 = ∅, for any B1,B2 ∈ B.

3 A Term Algebra of Behaviors

In this section we introduce a recursive term algebra for describing the behaviors result-
ing from the composition of an unbounded number of component type instances. Let
V1 be a countably infinite set of first-order variables and A be a countably infinite set of
predicates, where #(A) ≥ 0 denotes the arity of A ∈ A. The following syntax generates
behavioral terms inductively, starting with the b non-terminal:

P ∈ P, x ∈ V1, i ∈ I, B ∈ B, A ∈ A
ξ ::= x | i Γ ::= P(ξ) | Γ1 ·Γ2 | Γ1 +Γ2 architecture specifications
b ::= B(ξ) | 〈Γ〉(b1, . . . ,bn) | νx . b1 | A(ξ1, . . . , ξ#(A)) behavioral terms

A variable x occurring in a behavioral term b is said to be free if it does not occur in
the scope of some subterm of the form νx . b1 and bound otherwise. In the following,
we assume that all bound variables occurring in a term are pairwise distinct and distinct
from the free variables. Note that this assumption loses no generality because terms
obtained by α-conversion (renaming of bound variables) are assumed to be equivalent.
A term b is said to be closed if fv(b) = ∅, predicate-less if no predicates from A occur in
b and ground if no variable, either free or bound, occurs in b. A term B(ξ) is called an
instance atom and a term A(ξ1, . . . , ξn) is called a predicate atom. We denote by inst(b)
the set of instance atoms of b, by #pred(b) the number of occurrences of predicate atoms
and by pred j(b), j ∈ [0,#pred(b)−1], the predicate atom that occurs j-th in b, in some
predefined order of the syntax tree nodes of b.

A symbol ξ ∈ V1 ∪ I is instantiated in a behavioral term b if B(ξ) is a subterm
of b, for some component type B, and we denote by inst(b) the set of symbols in-
stantiated in b. Note that a symbol (variable or identifier) may occur in a term with-



Fig. 2: Tree Architecture with Leaves Linked in a Token-Ring
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out being instantiated. For example, both identifiers i and j occur within the term
〈out(i) · in( j)〉(CType( j)), but only j is instantiated by the atom CType( j). A behavioral
term b is well-instantiated if every identifier occurring in b is instantiated at most once.
For example, the following term is not well-instantiated, because i is instantiated twice
in 〈out(i) · in( j)〉(CType(i), 〈in(i) ·out( j)〉(CType( j),CType(i))).

A substitution is a partial function η : V1 ⇀ V1 ∪ I mapping variables into ei-
ther variables or identifiers. A substitution η is ground if rng(η) ⊆ I. We denote by
[ξ1/x1, . . . , ξn/xn] the substitution mapping each xi ∈V1 into ξi ∈V1∪ I, for all i ∈ [1,n],
and undefined everywhere else. The application of a substitution η to a behavioral term
b is the term bη in which every free occurrence of a variable x ∈ fv(b)∩dom(η) has been
replaced by η(x). Note that substitutions only apply to the free variables of the term.

Given a predicate-less behavioral term b and a ground substitution η, such that
fv(b) ⊆ dom(η), the ground set of b is the set [b]η of ground terms, defined inductively:

[B(x)]η
def
= {B(η(x))} [B(i)]η

def
= {B(i)} [νx . b1]η

def
=

⋃
i∈I\rng(η) [b1]η[x←i]

[〈Γ〉(b1, . . . ,bn)]η
def
=

⋃
{〈Γ〉(t1, . . . , tn)η | ∀1 ≤ k < ` ≤ n . tk ∈ [bk]η∧ inst(tk)∩ inst(t`) = ∅}

Whenever b is closed, η can be omitted and its ground set can be written [b]. Note that
the definition of the ground set prevents multiple instantiation of the same identifier.

The meaning of a ground architecture specification Γ, built from ports P(i), P ∈ P,
i ∈ I, using the constructors + and ·, is the architecture [[Γ]] ⊆ 2P, defined inductively:

[[P(i)]] def
= {{P(i)}} [[Γ1 +Γ2]] def

= [[Γ1]]∪ [[Γ2]] [[Γ1 ·Γ2]] def
= {I1∪ I2 | Ii ∈ [[Γi]], i = 1,2}

Note that the + and · constructors are both commutative and associative. Moreover,
· distributes over +, thus each ground architecture specification can be equivalently
written Γ =

∑m
k=1

∏rk
`=1 Pk`(ik`), where Pk` ∈P and ik` ∈ I, for all k ∈ [1,m] and ` ∈ [1,rk].

We extend ground sets from predicate-less terms to terms with predicate occur-
rences, by recursively replacing predicate subterms by terms given by a set of rewriting
rules (called a rewriting system) of the form A(x1, . . . , x#(A))← b, where b is a behavioral
term, such that fv(b) ⊆

{
x1, . . . , x#(A)

}
. For conciseness, we write A(x1, . . . , x#(A))←R b

instead of A(x1, . . . , x#(A))← b ∈ R.

Example 1. The following example describes, by the term Root(), a tree architecture in
which parents communicate with their children and, in addition, all nodes on the frontier
communicate via a token-ring. The inner nodes in the tree have component type NType,



with associated ports req and reply, whereas the leaves have type LType, with associated
ports reply, in and out.

Root()← νr νn1 νl1 νr1 νn2 νl2 νr2 .

〈req(r) · reply(n1) · reply(n2) + out(r1) · in(l2) + out(r2) · in(l1)〉
(Ntype(r),Node(n1, l1,r1),Node(n2, l2,r2)) (6)

Node(n, l,r)← νn1 νr1 νn2 νl2 . 〈req(n) · reply(n1) · reply(n2) + out(r1) · in(l2)〉
(NType(n),Node(n1, l,r1),Node(n2, l2,r)) (7)

Node(n, l,r)← 〈req(n) · reply(l) · reply(r) + out(l) · in(r)〉
(NType(n),Leaf (l),Leaf (r)) (8)

Leaf (n)← LType(n) (9)
We refer to Fig. 2 for a depiction of the unfolding of the above rewriting rules and of
the resulting architecture. The labels of the rewriting rules applied at each rewriting
step are marked in red. For readability, we superscript each bound variable introduced
by a rule with the node of the rewriting tree where this rule was applied. Each rule
(6-8) creates an interaction between the parent node (req) and its children (reply) and
the leaf rules (9) also creates interactions between siblings of the form {out(i), in( j)}. In
addition, the initial rule (6) closes the ring of leaves, via the interactions {out(rε2), in(lε1)}
and {out(rε1), in(lε2)}, where the parameters lε1 and rε2 are instantiated in the left- and right-
most leaves and rε1 (lε2) in the right-most (left-most) leaf of the left (right) subtree. �

For technical convenience, we place the steps of an rewriting sequence in a tree,
whose nodes are labeled by rewriting rules. Formally, a tree T is defined by a set
nodes(T ) and a function mapping each node w ∈ nodes(T ) to its label, denoted by
T (w). The set nodes(T ) is a finite subset ofN∗, whereN∗ is the set of finite sequences of
non-negative integers, such that wi ∈ nodes(T ) for some i ∈N\ {0} only if w ∈ nodes(T )
and w j ∈ nodes(T ) for all j ∈ [0, i−1]. The root of T is the empty sequence ε, the chil-
dren of a node w ∈ nodes(T ) are the nodes wi ∈ nodes(T ), where i ∈ N, and the parent
of a node wi with i ∈ N is w (the root ε has no parent). The leaves of T are the nodes in
leaves(T ) def

= {w ∈ nodes(T ) | w.0 < nodes(T )}. The subtree of T rooted at w is defined
as T↓w (w′) def

= T (ww′), for all w′ ∈ nodes(T↓w) def
= {w′ | ww′ ∈ nodes(T )}.

Definition 2. Given a rewriting system R and a closed behavioral term b, a rewriting
tree for b is a tree T such that T (ε) = (Ab()← b), where Ab is a predicate symbol
of zero arity, that does not occur in R and, for all w ∈ dom(T ), such that T (w) =(
Aw(x1, . . . , x#(Aw))←R bw

)
:

1. for all i ∈ [0,#pred(bw)−1], if predi(bw) = Awi(y1, . . . ,y#(Awi)) then wi ∈ nodes(T )
and T (wi) = Awi(x1, . . . , x#(Awi))←R bwi, for some behavioral term bwi,

2. for all i ≥ #pred(bw), we have wi < nodes(T ).

We denote Rb
def
= R∪{Ab()← b} and by TR

(
b
)

the set of rewriting trees for b in R.

Note the addition of a fresh rule Ab()← b to R, that is required for a uniform labeling of
the tree with rules. For instance, Fig. 2 shows a balanced binary rewriting tree, whose
root is labeled by rule (6), second and third level nodes are labeled by rules (7) and (8)
respectively, and leaves are labeled by rule (9). A rewriting tree T ∈ TR

(
b
)

corresponds
to a predicate-less characteristic term C (T ) defined inductively on the structure of T :



Definition 3. Given a behavioral term b and a rewriting tree T ∈ TR
(
b
)
, for each w ∈

nodes(T ), such that T (w) =
(
Aw(x1, . . . , x#(Aw))←R bw

)
, we define C (T↓w) as the term

obtained by replacing each predicate atom predi(b) = Awi(y1, . . . ,y#(Awi)) by the term

C (T↓wi) [y1/x1, . . . ,y#(Ai)/x#(Ai)], for all i ∈ [0,#pred(bw)−1]. We define C (T ) def
= C (T↓ε)

and CR (b) def
=

{
C (T ) | T ∈ TR

(
b
)}

the set of predicate-less terms generated by R from b.

Intuitively, the characteristic term of a rewriting tree is the predicate-less term obtained
by replacing all predicate instances by the bodies of their corresponding rewriting rules
from the tree. We define the ground set of behavioral term (possibly with predicate
atoms) as [b]η,R

def
=

⋃
t∈CR(b) [t]η and avoid mentioning η when b is closed.

Next, we define a semantic operator [[.]] that maps ground behavioral terms to
behaviors. The idea is that nested terms, such as e.g. 〈out(x) · in(y)〉(CType(x), 〈in(x) ·
out(y)〉(CType(y))) are not be dealt with compositionally; instead, all the (partial) archi-
tectures that occur within subterms of a behavioral term are first joined into a top-level
architecture that applies, at the same time, to all instances in the term. Formally, we
define the following flattening relation on behavioral terms:

〈Γ1〉(〈Γ2〉(b1, . . .bi),bi+1, . . .bn){ 〈Γ1 +Γ2〉(b1, . . . ,bn) (10)
Note that the order of the arguments 〈Γ2〉(b1, . . .bi),bi+1, . . . ,bn of Γ1 is not important. It
is easy to see that every chain t1{ t2{ . . . is finite, because the height of terms strictly
decreases with flattening. Moreover, for each behavioral term b, the endpoint of any
such chain starting with b is unique (modulo commutativity and associativity of the ·
and + architecture constructors) and is denoted by b{.

We are now in position to define the semantics of a behavioral term b, as a (possibly
infinite) set of behaviors. Let η be a ground substitution, such that fv(b) ⊆ dom(η), and
R be a rewriting system. First, we define the semantics of a well-instantiated ground
term in canonical form t{ = 〈Γ〉(t1, . . . , tn), from the ground set of b, namely t ∈ [b]η,R.
Because the flattenning relation is applied exhaustively to t, it must be the case that tk =

Bk(ik), where ik ∈ I, for all k ∈ [1,n]. Then [[t{]] is the behavior [[Γ]](B1(i1), . . . ,Bn(in)),
defined by (5). The semantics is lifted from ground terms to arbitrary behavioral terms:

[[b]]η,R
def
=

⋃
t∈[b]η,R

[[t{]] (11)

We omit writing η when b is closed. For example, Fig. 1d shows the behavior obtained
by the following sequence alternating rewriting and flattening steps:

Ring()
(1)
← νy1νy2 . 〈out(y2) · in(y1)〉(Chain(y1,y2))

(2)
←

νy1νy2νy1
1 . 〈out(y2) · in(y1) + out(y1) · in(y1

1)〉(CType(y1),Chain(y1
1,y2))

(3)
←

νy1νy2νy1
1 . 〈out(y2) · in(y1) + out(y1) · in(y1

1) + out(y1
1) · in(y2)〉(CType(y1),CType(y1

1),CType(y2)).

4 The Parametric Safety Problem

Having defined a language for specification of architectures, we move on to the prob-
lem of verifying that every behavior generated by a rewriting system, starting with a
given behavioral term, is safe with respect to a set of error configurations. This prob-
lem is challenging, because we ask for a proof of safety that holds for every ground
instantiation of some predicate-less rewriting of the behavioral term.



Intuitively, a set of behaviors is said to be parametric if each behavior in the set is
obtained from the same pattern, by assigning different values to several designated vari-
ables, called parameters. Formally, a parametric system is a tuple C = 〈B1, . . . ,BK ,A〉,
where Bi ∈ B are component types andA maps a tuple T = 〈T1, . . . ,TN〉 of sets of iden-
tifiers T1, . . . ,TN ⊆ I, to an architecture, denoted asA(T). Intuitively, the tuple of sets T
is a structural parameter of the system, that defines (i) the architecture which coordi-
nates the instances of B1, . . . ,BK and (ii) the set of instances belonging to each behavior
type. For presentation purposes, we defer the precise definitions to §4.2. The behavior
resulting from the application, using the composition rule (5), of the architectureA(T)
to these instances is denoted as C(T).

The parametric safety problem asks whether each behavior C(T) of a parametric
system C is safe w.r.t. a given set E of configurations. Since, in general, the parametric
safety problem is undecidable, we resort to a sound but necessarily incomplete solution,
that consists in computing safety invariants. Given a behavior B, an invariant I of B is
a superset of the set of reachable configurations of B, thus B is safe w.r.t. E if I∩E = ∅

(the reversed implication is clearly not true in general). Since we consider a paramet-
ric system, the challenge is computing a parametric safety invariant, i.e. a pattern that
defines an invariant for each behavior C(T), determined by a choice of T.

In contrast with the classical approach to invariant synthesis based on a fixpoint
iteration in an abstract domain [10], we focus on a particular class of invariants that can
be obtained directly from the description of the parametric system. These invariants are
called structural in the following. The structural invariants considered in this paper are
mostly inspired by the following notions:

Definition 4. A trap θ of a behavior B = 〈P,S, ι,→〉 is a subset of S such that, for
any two configurations σ and σ′ of B, such that σ −→B σ

′, we have σ∩ θ , ∅ only if
σ′ ∩ θ , ∅. A trap θ is marked iff θ∩ ι , ∅. The trap invariant of B is the set Θ(B) def

=

{σ ⊆ S | σ∩ θ , ∅, for each marked trap θ of B}.

To understand why Θ(B) is an invariant of B, note that Θ(B) contains the initial configu-
ration of B and is closed under the transition relation −→B. Since the set of reachable con-
figurations of B is the smallest such set, it follows that Θ(B) is an over-approximation
of the reachable configurations of B, hence an invariant.

4.1 The Weak Sequential Calculus of κ Successors

The structural invariants and the sets of unsafe configurations will be described using a
restriction of monadic second order logic (MSO) to trees of branching κ, where κ > 0
is an integer constant. Let V2 = {X,Y,Z, . . .} be a countably infinite set of second order
variables. The formulæ of WSκS are defined by the following syntax:

τ ::= ε | x ∈ V1 | succi(τ1), i ∈ [0, κ−1] terms
φ ::= τ1 = τ2 | X(τ) | φ1∧φ2 | ¬φ1 | ∃x . φ1 | ∃X . φ1 formulæ

As usual, we write φ1 ∨ φ2
def
= ¬(¬φ1 ∧¬φ2), φ1 → φ2

def
= ¬φ1 ∨ φ2, φ1 ↔ φ2

def
= φ1 →

φ2∧φ2→ φ1, ∀x . φ def
= ¬∃x . ¬φ and ∀X . φ

def
= ¬∃X . ¬φ.

WSκS formulæ are interpreted over an infinite κ-ary tree with nodes [0, κ−1]∗,
where first order variables x ∈ V1 range over individual nodes n ∈ [0, κ−1]∗, second
order variables X ∈ V2 range over finite sets of nodes T ⊆ [0, κ−1]∗, ε is a constant



symbol interpreted as ε and, for all i ∈ [0, κ−1], the function symbol succi is interpreted
by the total function n 7→ ni. Given a valuation ν : V1∪V2→ [0, κ−1]∗∪2[0,κ−1]∗ , such
that ν(x) ∈ [0, κ−1]∗, for each x ∈ V1 and ν(X) ⊆ [0, κ−1]∗, for each X ∈ V2, the satis-
faction relation ν |= φ is defined inductively on the structure of the formula φ, as usual.
A valuation ν is a model of a formula φ if and only if ν |= φ. A formula is satisfiable if
and only if it has a model.

4.2 Parametric Systems Defined by Behavioral Terms

We define the parametric component-based system C = 〈B1, . . . ,BK ,A〉 corresponding
to a given closed behavioral term b and a rewriting system R. To ease the upcoming
developments, we shall consider closed behavioral terms b and rewriting systems R
that meet the following:

Assumption 1 Each bound variable in b is instantiated exactly once in each predicate-
less term t ∈ CR (T ), for each T ∈ TR

(
b
)
. Moreover, different variables are instantiated

in different nodes of T .

We refer the interested reader to [5, Proposition 1] for a proof of the fact that Assump-
tion 1 loses no generality. This allows us to identify the indices of instances with the
nodes of a rewriting tree (Definition 2), in order to describe parametric invariants using
WSκS. More precisely, we identify the index of a component instantiated by an atom
B(x) of b, with the unique node of the rewriting tree T ∈ TR

(
b
)

labeled by that atom.
Note that, by Assumption 1, the index of the B(x) component is uniquely determined
by T . Consequently, in the rest of the paper, we shall silently identify I with [0, κ−1]∗.

In principle, by fixing a particular interpretation of indices in a ground term t ∈ [b]R,
we also restrict the set of behaviors considered, i.e. we consider a strict subset of [[b]]R
(11). This particular restriction is, however, without consequences for the soundness of
the verification method, because ground terms that differ only by a permutation of in-
dices generate behaviors that are bisimilar and have the same safety properties (modulo
a permutation of indices). We shall silently assume, from now on, that the set of unsafe
configurations E from the specification of a parametric safety problem is closed under
permutations of indices. This is the case when the WSκS definition of E does not use
successor functions and only compares first order variables for equality (e.g. 15).

Let us consider that Rb = R∪ (Ab()← b) consists of the rules r1, . . . , rN , such that
r1 = (Ab()← b). We use a designated tuple of second order variables U = 〈U1, . . . ,UN〉,
where each variable Ui is interpreted as the set of tree nodes labeled with the rule
ri in the rewriting tree. Note that, with this convention, U1 is a singleton containing
the root of the rewriting tree (Definition 2). We say that a tuple of sets of identifiers
T = 〈T1, . . . ,TN〉 is parameter-compatible with R and b iff any valuation ν, such that
ν(Ui) = Ti, for all i ∈ [1,N], is a model of the RTree(U) formula (Fig. 3). Note that this
formula is a WSκS encoding of the conditions from Definition 2. The above formulæ
depend implicitly on R and b, which will be silently assumed in the following.

We are now in position to define the parametric system C = 〈B1, . . . ,BK ,A〉, corre-
sponding to R and b. First, let B1, . . . ,BK be the component types that occur in b and
in the rules of R. Second, we defineA as a partial mapping of the sets T1, . . . ,TN ⊆ I to
an architecture defined whenever T = 〈T1, . . . ,TN〉 is parameter-compatible with R and
b. Since, in this case, we have [U1← T1, . . . ,UN ← TN] |= RTree(U), the sets T1, . . . ,TN



Fig. 3: Encoding Rewriting Trees, Instance Sets and Configurations in WSκS

RTree(U) def
= ∀x .

∧
1≤i< j≤N

(
¬Ui(x)∨¬U j(x)

)
∧U1(x)↔ x = ε ∧

∀x .
∧

ri∈R
∧κ−1
`=0 Ui(succ`(x))→

∨
r j∈RU j(x) ∧

∀x .
∧

ri=
(
A′(x1,...,x#(A′))←Rb′

)∧#pred(b′)−1
j=0 Ui(x)→(∨

r`=
(
A′′(x1,...,x#(A′′))←Rb′′

)
A′′(ξ1,...,ξ#(A′′))=pred j(b′)

U`(succ j(x))
)

Inst(U,Z) def
= ∀x.

∧K
i=1 Zi(x)↔

∨
r j=

(
A′(x1,...,x#(A′))←Rb b′

)
Bi(z)∈inst(b′)

U j(x)

Config(X,Z) def
= ∀x.

∧
S,T∈

⋃K
j=1SB j

(
¬XS (x)∨¬XT (x)

)
∧

(∨
S∈

⋃K
j=1SB j

XS (x)
)
↔

(∨K
j=1 Z j(x)

)
uniquely determine a rewriting tree T ∈ TR

(
b
)
, such that Ti ⊆ nodes(T ) is the set of

nodes labeled by the rule ri, for all i ∈ [1,N].
Further, let t ∈ [C (T )] be unique ground term defined in the following way: for each

instance atom Bi(x) that occurs in b, the variable x is substituted with the unique node
of T where this atom occurs. This substitution determines the sets of instances for each
behavioral type B1, . . . ,BK , encoded by the second order variables Z = 〈Z1, . . . ,ZK〉, in
the Inst(U,Z) formula (Fig. 3). Note that, by Assumption 1, there is at most one node
w ∈ nodes(T ) such thatT (w) =

(
Aw(x1, . . . , x#(Aw))← bW

)
andBi(x) ∈ inst(b). Moreover,

each such node contains at most one instance atom, thus different instance atoms are
assigned different identifiers. Finally, the architecture A(T) is the union of the ground
architectures that occur in t, formally A(T) def

= [[Γ]], where t{ = 〈Γ〉(t1, . . . , tn) is the
canonical form of t obtained by exhaustive application of the flattening relation (10).

4.3 Trap Invariants for Behavioral Terms

Let C = 〈B1, . . . ,BK ,A〉 be the parametric system corresponding to the given behavioral
term b and the rewriting system R. The sets of configurations of C are represented by
tuples of second order variables X def

= 〈XS | S ∈
⋃K

j=1SB j〉 and Y def
= 〈YS | S ∈

⋃K
j=1SB j〉,

where a variable XS (respectively YS ) encodes the set of indices i ∈ I such that the
instance B j(i) is in state S (i), for all j ∈ [1,K]. For a mapping ν : X→ 2I, we define
ν(X) def

= 〈ν(XS ) | S ∈
⋃K

j=1SB j〉. The Config formula (Fig. 3) ensures that ν(X) defines a
configuration σ, for each satisfying valuation ν, by requiring that the sets assigned to X
are a partition of the set of indices of the instances from the system, assigned to Z. If
ν |= Config(X,Z), we write ν(X)Bσ iff σ = {S (i) | S ∈ SB j , i ∈ ν(XS ), j ∈ [1,K]}.

For the time being, we assume the existence of a WSκS formula satisfying the
condition below, the definition of which will be given in §4.3:

ν |= Flow(X,Y,U) ⇐⇒ ν(X)B •π and ν(Y)Bπ•, for some π ∈ A(ν(U)) (12)
Intuitively, Flow is satisfied by any valuation that assigns X and Y sets of identifiers
defining the pre- and post-configurations of an interaction from the architecture defined
by the valuation of U. With these definitions, the following formula translates the con-



ditions of Definition 4, describing (parametric) traps:

Trap(X,U) def
= ∀Y1∀Y2 . Flow(Y1,Y2,U)∧ inter(X,Y1)→ inter(X,Y2)

inter(X,Y) def
= ∃x.

∨K
j=1

∨
S∈SB j

XS (x)∧YS (x)

where Yi is the copy of the tuple Y with variables superscripted by i, for i = 1,2. The
set of configurations defined by the formula below is the trap invariant (Definition 4) of
C, for each parameter-compatible interpretation of U:

TrapInv(X,U) def
= ∃Z . Inst(U,Z)∧Config(X,Z) ∧ (13)
∀Y1∀Y2 . Init(Y1,Z)∧Trap(Y2,U)∧ inter(Y1,Y2)→ inter(X,Y2)

Init(X,Z) def
=

K∧
j=1

∀x . Z j(x)↔ XIB j
(x)

where the formula Init defines the initial configuration of the parametric system, in
which each instance is in the initial state of its component type. The following lemma
proves that, assuming the existence of a formula Flow satisfying the condition (16),
the formula TrapInv correctly defines the (parametric) trap invariant of the parametric
system corresponding to R and b:

Lemma 1. Let T1, . . . ,TN ⊆ I be finite sets such that [U1←T1, . . . ,UN←TN] |= RTree(U).
Then Θ(C(T)) = {σ | ν(X)Bσ, ν[U1← T1, . . . ,UN ← TN] |= TrapInv(X,U)}.

Assuming that the E set is encoded by a formula Bad, the parametric safety problem
has a positive answer if the following formula is unsatisfiable:

Safe(U) def
= RTree(U)∧∃X . TrapInv(X,U)∧Bad(X,U) (14)

As a typical example of a set of unsafe states, we consider the following definition of
deadlock configurations, i.e. configurations in which no interaction can be fired:

DeadLock(X,U) def
= ∀Y1∀Y2 . Flow(Y1,Y2,U)→∃x.

K∨
j=1

∨
S∈SB j

Y1
S (x)∧¬XS (x) (15)

4.4 The Flow of a Behavioral Term

To complete the definition of trap invariants using WSκS, we are left with defining the
Flow(X,Y,U) formula (12), that holds whenever (X,Y) encodes the pairs of pre- and
post-configurations of some interaction from C(T), when U are interpreted by the sets
of identifiers T. We recall that Rb = {r1, . . . , rN} and that we have assumed the rules in Rb
to be of the form A(x1, . . . , x#(A))← νy1 . . . νym . 〈Γ〉(t1, . . . , tn), where each ti is an atom
and at most one ti is an instance atom. Moreover, assuming Γ =

∑k
i=1

∏hi
j=1 Pi j(xi j), we

denote Inter(r) def
= {{Pi j(xi j) | j ∈ [1,hi]} | i ∈ [1,k]} the set of interactions occurring in r.

Assumption 2 For any component type B = 〈P,S,I,∆〉 and any two transition rules

S 1
P1
−−→B T1,S 2

P2
−−→B T2, if P1 = P2 then S 1 = S 2 and T1 = T2. For a transition rule S

P
−→

T ∈ ∆B, let •P def
= S and P• def

= T denote the pre- and post-state of the unique transition
rule whose label is P.



Fig. 4: Definition of the Flow Formula

Flow(X,Y,U) def
=

∨
1≤i≤N

∨
π∈Inter(ri)

IFlowi,π(X,Y,U) (16)

IFlow`,{P1(x1),...,Pn(xn)}(X,Y,U) def
= ∃y0 . . .∃yn . U`(y0) ∧ (17)

n∧
i=1

( ∨
r′=

(
A′(x1,...,x#(A′))←Rb b′

)
B(yi)∈inst(b′)

Pathxi,yi
r` ,r′

(y0,yi,U)
)
∧

∀x.
∧

S∈
⋃K

j=1SB j

[(
XS (x)↔

∨
•Pk=S

x = yk
)
∧

(
YS (x)↔

∨
Pk
•=S

x = yk
)]

The above assumption can be lifted at the cost of cluttering the following presentation.
The Flow formula (16) is defined in Fig. 4. Essentially, Flow is split into a disjunction
of IFlow`,{P1(x1),...,Pn(xn)} formulæ (17), one for each set of ports {P1(x1), . . . ,Pn(xn)} that
denotes an interaction of the rule r`, for all ` ∈ [1,N]. To understand the formulæ (17),
recall that each of the variables x1, . . . , xn is interpreted as the (unique) node of the
rewriting tree containing an instance atom Bi(xi). In order to find this node, we track
the variable xi from the current node y0, labeled by the rule r`, to the node yi, where
this instance atom occurs. This is done by the Pathz,u

r,r′ (x,y,U) formula, that holds iff
T ∈ TR

(
b
)

is a rewriting tree, uniquely encoded by the interpretation of the U variables,
and x,y are mapped to the endpoints of a path from a node w ∈ nodes(T ), with label
T (w) = r to a node w′ ∈ nodes(T ), with label T (w′) = r′, such that z and u are variables
that occur in the bodies of r and r′, respectively, mapped to the same identifier (node) in
any ground term from the set [C (T )]. Note that, by the definition of ground sets, two
different variables are mapped to the same identifier only if they are replaced by the
same variable, when C (T ) is built from the labels of T (Definition 3).

We encode sets of paths in a rewriting tree by a finite automaton and use a classical
result from automata theory to define Pathz,u

r,r′ (x,y,U) by turning the finite automaton
into a WSκS formula. But first, let us define paths in a tree formally. Given a tree T ,
with nodes(T ) ⊆ [0, κ−1]∗, a path is a finite sequence of nodes ρ = n1, . . . ,n` such that,
for all i ∈ [1, `−1], ni+1 is either the parent (ni = ni+1αi) or a child (ni+1 = niαi) of ni,
for some αi ∈ [0, κ−1]. The path is determined by the source node and the sequence
(α1,d1) . . . (α`−1,d`−1) of directions (αi,di) ∈ [0, κ−1]×{↑,↓}, with the following mean-
ing: di =↑ if ni+1αi = ni and di =↓ if ni+1 = niαi.

A path automaton is a tuple A = (Q, I,F, δ), where Q is a set of states, I,F ⊆ Q
are the initial and final states, respectively, and δ ⊆ Q× [0, κ−1]× {↑,↓} ×Q is a set

of transitions of the form q
(α,d)
−−−→ q′, with α ∈ [0, κ−1] being a direction and d ∈ {↑,↓}

indicates whether the automaton moves up or down in the tree. A run of A over the path
ω = (α1,d1) . . . (αn−1,dn−1) is a sequence of states q1, . . . ,qn ∈ Q such that q1 ∈ I and

qi
(αi ,di)
−−−−→ qi+1 ∈ δ, for all i ∈ [1,n−1]. The run is accepting iff qn ∈ F and the language

of A is the set of paths over which A has an accepting run, denoted L(A).



Fig. 5: Path Automata Recognizing the Instantiation Paths from Example 1

q↓6,l1

q↓9,n q↓8,r

q↓7,l

q↓8,l

q↓7,r

(1,↓) (1,↓)

(1,↓)

(2,↓)

(2,↓)

(1,↓) (2,↓)

(2,↓)(1,↓)

(2,↓)

q↓6,r1

A path automaton A = (Q, I,F, δ) corresponds, in the sense of Lemma 2 below, to
the following WSκS formula, that can be effectively built from the description of A:

ΦA(x,y,X) def
=

∧
1≤i, j≤N ∀z.

(
¬Xi(z)∨¬X j(z)

)
∧

∨
qi∈I Xi(x) ∧

∨
q j∈F X j(y) ∧∧N

i=1∀z . z , y∧Xi(z)→
(∨

qi
(α,↓)
−−−→q j

X j(succα(z))∨
∨

qi
(α,↑)
−−−→q j

∃z′ . succα(z′) = z∧X j(z′)
)

∧N
i=1∀z . z , x∧X j(z)→

(∨
qi

(α,↓)
−−−→q j

∃z′ . succα(z′) = z∧Xi(z′)∨
∨

qi
(α,↑)
−−−→q j

Xi(succα(z))
)

where Q = {q1, . . . ,qL} and X = 〈X1, . . . ,XL〉 are second order variables interpreted as
the sets of tree nodes labeled by the automaton with q1, . . . ,qL, respectively. Intuitively,
the first three conjuncts of the above formula encode the facts that X are disjoint (no
tree node is labeled by more than one state during the run), the run starts in an initial
state with node x and ends in a final state with node y. The fourth conjunct states that,
for every non-final node on the path, if the automaton visits that node by state qi, then

either the node has a (α,↓)-child or a (α,↑)-parent visited by state q j, where qi
(α,↓)
−−−→ q j

and qi
(α,↑)
−−−→ q j are transitions of the automaton. The fifth conjunct is the reversed flow

condition on the path, needed to ensure that X do not contain useless nodes, being thus
symmetric to the fourth. The following lemma is adapted from folklore automata-logic
connection results2 [17, §2.10]:

Lemma 2. Given a treeT with nodes(T )⊆ [0, κ−1]∗ and a pathω ∈ ([0, κ−1]×{↑,↓})∗

from w1 to w2 in T , we have ω ∈ L(A) iff [x← w1,y← w2] |= ∃X . ΦA(x,y,X).

Our purpose is to define path automata that recognize the paths between the node
where a bound variable is introduced and the node where the variable is instantiated,
in a given rewriting tree. For example, the paths that track the instantiations of the
variables lε1 and rε1 in the rewriting tree for the term Root() generated by the rewriting
system from Example 1 are depicted in red in Fig. 2. To this end, we define a path
automaton that tracks the instantiation of variables from the rewriting system Rb. For
each pair of rules r1, r2 ∈ R and variables z1,z2 ∈V1 that occur in the bodies of r1 and r2,
respectively, we define Az1,z2

r1,r2
def
= (Q, Iz1

r1 ,F
z2
r2 , δ) as follows. We associate a state qd

r,z to each
rule r = (A(x1, . . . , x#A)←Rb b′), each variable z occurring (free or bound) in b′ and each

direction d ∈ {↑,↓}. The sets of initial and final states are Iz1
r1

def
= {qd

r1,z1
| d =↑,↓} and Fz2

r2
def
=

{q↓r2,z2
}. The transition relation consists of the triples q↓r1,y j

(α,↓)
−−−→ q↓r2,x j

, q↑r2,x j

(α,↑)
−−−→ q↑r1,y j

and q↑r2,x j

(α,↑)
−−−→ q↓r1,y j

, for any two distinct rules ri = (A j(x1, . . . , x#(A))←Rb bi), i = 1,2,

2 A similar conversion of tree walking automata to MSO has been described in [14].



all α ∈ [0,#pred(b1)], such that predα(b1) = A2(y1, . . . ,y#(A2)) and all j ∈ [1,#(A2)]. For
instance, the path automata that recognize the instantiation paths for the variables lε1
and rε1 in the rewriting tree for the term Root() generated by the rewriting system from
Example 1 are depicted in Fig. 5. The initial states are q↓6,l1 and q↓6,r1

, respectively,

and the final state is q↓9,n in both cases, where the labels of the rules of the rewriting
system are the ones from Example 1. We define the Pathz1,z2

r1,r2 formula following the
below lemma, proving the correctness of the automata construction:

Lemma 3. Let T ∈ TR
(
b
)

be a rewriting tree and wi ∈ nodes(T ) be nodes labeled
with the rules T (wi) = ri =

(
Ai(xi,1, . . . , xi,#(Ai))←Rb bi

)
, for i = 1,2. Then, for all ki ∈

[1,#(Ai)], i = 1,2, the following are equivalent:
1. x1,k1 and x2,k2 are mapped to the same identifier in any ground term t ∈ [C (T )],
2. A

x1,k1, x2,k2
r1,r2 accepts the sequence of directions labeling the path from w1 to w2 in T .

Pathz1,z2
r1,r2 (x,y,U) def

= ∃X1 . . .∃XL . ΦA
z1 ,z2
r1 ,r2

(x,y,X)∧Ψ (X,U)

Ψ (X,U) def
=

∧
d=↑,↓

∧
ri=

(
A′(x1,...,x#(A′))←Rb b′

)∧
z∈fv(b′)∀x . X

d
r,z(x)→ Ui(x)

The formula Ψ states that all nodes labeled with a state qd
r,z during the run must be also

labeled with r in the rewriting tree. The lemma below proves that the definition (16) of
the formula Flow meets condition (12):

Lemma 4. For any valuation ν : X∪Y∪U∪Z→ 2I, such that ν |= RTree(U)∧Inst(U,Z)∧
Config(X,Z)∧Config(Y,Z), the following are equivalent:
1. ν |= Flow(X,Y,U),
2. ν(X)B •π and ν(Y)Bπ•, for some interaction π ∈ A(ν(U)).

Together with Lemma 1, this ensures that the trap invariant of the parametric system
corresponding to R and b is defined in WSκS, by the TrapInv formula (13). Hence the
verification of safety properties (such as absence of deadlocks) is reduced to checking
the satisfiability of the Safe formula (14), leading to the following result:

Theorem 1. Given a closed behavioral term b, a rewriting systemR, a formula Bad(X,U)
and a tuple of sets T1, . . . ,TN ⊆ I, that are parameter-compatible with R and b, the
behavior C(T) is safe w.r.t the set of configurations E def

= {σ | ν[U1 ← T1, . . . ,UN ←

TN](X)Bσ, ν[U1← T1, . . . ,UN ← TN] |= Bad(X,U)} if Safe(U) is unsatisfiable.

5 Experimental Evaluation

We implemented the trap invariant synthesis in a prototype tool3 that generates the
WSκS formula corresponding to the (sufficient) deadlock freedom condition (14) from a
given behavioral term and a rewriting system. Our test cases are hand-crafted examples
of common architectures encountered in practice (e.g. pipelines and stars), textbook
examples (dining philosophers) and several hierarchical tree-shaped architectures with
rather complex architectural patterns (trees with root links or leaves linked in a ring).

3 Available online at https://github.com/raduiosif/rtab.

https://github.com/raduiosif/rtab


The table below shows the results of checking deadlock freedom of several test
cases. The 2nd column gives the number of states n1 × . . .×nK , where ni is the number
of states in the i-th component type and K is the number of component types from the
system. The number of rewriting rules and interactions in the specification are given in
the 3rd and 4th columns, respectively. The 5th column reports the result of the satisfia-
bility check (14) using the Mona v1.4-18 tool [13] and the 6th column shows the runing
times (in seconds) on an Debian AMD64 2GHz machine with 16GB of RAM. The 7th
and 8th columns report the type of invariant (trap or 1-invariant) used to prove deadlock
freedom and the 9th column gives the type of WSκS logic, for κ ∈ {1,2}.

benchmark #states/comp. #rules #inter. deadlock time (sec) trap-inv 1-inv κ

ring 2×2 3 3 X 0.01 X - 1
star 2×2 3 4 X 0.01 X - 1
star-ring 2×3×3 3 9 X 0.03 X - 1
alt-philo-sym 3×2 3 9 × 0.70 X X 1
alt-philo-asym 3×2 3 9 X 0.67 X X 1
sync-philo 2×2 3 6 X 0.03 X - 1
tree-dfs 2×6×2 4 6 X 0.07 X - 2
tree-back-root 2×2 3 5 X 0.03 X - 2
tree-linked-leaves 2×2×4×3 4 10 X 0.27 X - 2

The ring, star and ring-star test cases correspond to a simple token-ring, a star with
one master (coordinator) and n ≥ 2 slaves and a star with n slaves linked in a token-ring.

The alt-philo-sym and alt-philo-asym examples correspond to the dining philoso-
phers in which the philosophers pick their left and right forks separately, with all sym-
metric philosophers and one asymetric philosopher, respectively. The sync-philo ex-
ample models the dining philosophers in which every philosopher picks her forks si-
multaneously. It is known that alt-philo-sym reaches a deadlock configuration, whereas
alt-philo-asym and sync-philo are deadlock free. Moreover, the alt-philo-asym system
cannot be the proved deadlock free using trap invariants only [4, Proposition 1]. Follow-
ing the solution from [4], we used the structural information given by the Flow formula
(16) to synthethize 1-invariants, i.e. inductive sets of configurations that contain exactly
one active state at the time4.

The tree-dfs example models a binary tree architecture traversed by a token in
depth-first order, while the (i) tree-back-root and (ii) tree-linked-leaves (Example 1)
go beyond trees, modeling hierarchical systems with parent-children communication on
top of which (i) the nodes communicate with the root and (ii) the leaves are linked in a
token-ring, respectively.

6 Conclusions and Future Work

We present a formal language for the specification of distributed systems parameterized
by the number of replicated components and by the shape of the coordinating architec-
ture. The language uses inductive definitions to describe systems of unbounded size. We
propose a verification method for safety properties based on the synthesis of structural
invariants able to prove deadlock freedom for a number of non-trivial models.

One of the drawbacks that prevented us from tackling more real-life examples is
the lack of support for broadcast communication (i.e. interactions that involve an un-
bounded number of participants). We plan on adding support for broadcast in our behav-
ioral term algebra and develop further the invariant synthesis method to take broadcast
into account, as future work.

4 We refer the reader to [4, Definition 1] for a formal definition of 1-invariants.
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