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Abstract: The extremal dependence structure of a regularly varying random vector X
is fully described by its limiting spectral measure. In this paper, we investigate how to
recover characteristics of the measure, such as extremal coefficients, from the extremal
behaviour of convex combinations of components of X. Our considerations result in a
class of new estimators of moments of the corresponding combinations for the spectral
vector. We show asymptotic normality by means of a functional limit theorem and, fo-
cusing on the estimation of extremal coefficients, we verify that the minimal asymptotic
variance can be achieved by a plug-in estimator using subsampling bootstrap. We illus-
trate the benefits of our approach on simulated and real data.
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1. Introduction

One of the main challenges in multivariate extreme value analysis is the inference of the
dependence among the extremes of a random vector X = (X1, . . . , Xd)

⊤ from a sample
of independent copies X1, . . . ,Xn. In risk management applications, particular interest lies
in the case that X possesses asymptotically dependent components, i.e. extremes tend to
appear jointly in various components, with heavy tails. Many of these cases are covered by
the framework of multivariate regular variation. We fix an orthant where the extremes occur,
and restrict ourselves to the first one with no loss of generality; thus, we consider X =
(X1, . . . , Xd)

⊤ ∈ [0,∞)d.
It is common practice in extreme value analysis to consider the extremal dependence structure
of X separately from the marginal properties of the components X1, . . . , Xd. Thus, focus is
often put on the joint tail behaviour of some standardized vector X∗ obtained from X via
marginal transformations. More precisely, the margins are standardized such that the tails are
regularly varying with index 1 and asymptotically identical in the sense that

lim
x→∞

P(X∗i > x)

P(X∗j > x)
= 1 for all i, j ∈ {1, . . . , d}.

By such a transformation, the property of multivariate regular variation is inherited from X
to X∗. Thus, extremal dependence of X∗ can be fully described via its so-called spectral
measure, that is, the limit distribution of the angular component X∗/∥X∗∥∞ conditional on
∥X∗∥∞ > u as u → ∞. We denote the vector distributed as the spectral measure by Θ.
In the past decades, the estimation of the spectral measure and related concepts has attracted
a lot of attention, starting from the bivariate setting (d = 2), where estimation of the spectral
measure is equivalent to inference for the so-called Pickands’ dependence function. Here, sem-
inal estimation procedures come from Pickands [1975] with refinements such as Capéraà et al.
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[1997] using a copula approach assuming known margins. These procedures have been ex-
tended by Genest and Segers [2009] to the setting with unknown margins of X using the rank
transform. All the above mentioned works were assuming that the observations are max-stable,
i.e. that the asymptotic extreme regime is achieved, a typical assumption for observations that
correspond to maxima over certain temporal blocks such as annual maxima. The pioneer works
of Einmahl et al. [1993] and Einmahl et al. [1997] deal with the estimation of the cumulative
distribution function of the spectral measure with observations in the domain of attraction
of max-stable distribution, including the case of regularly varying distributions. The two-step
procedure in Einmahl et al. [1997] for dealing with unknown margins is replaced by a more
efficient rank transform in Einmahl et al. [2001]. An alternative approach due to Drees and
Huang [1998] focuses on the estimation of the stable tail dependence function

L(x) = E
[

max
i=1,...,d

xiΘi

]
, x = (x1, . . . , xd) ∈ (0,∞)d ,

using the rank transform for d = 2. This work was extended to the multivariate case d > 2 in
Einmahl et al. [2012]. We refer to Chapter 7 of the monograph De Haan and Ferreira [2006]
for a general overview of non-parametric approaches.
When d is large, any inference of the complete spectral distribution suffers from the curse of
dimensionality. Thus, it is more reasonable in practice to focus on the joint tail behaviour of the
components of lower-dimensional subvectorsX∗I = (X∗i )i∈I for sufficiently many “directions” I
that are non-empty subsets of {1, . . . , d}. In this framework, one often makes use of summary
statistics such as the so-called extremal coefficients [cf. Smith, 1990, Schlather and Tawn,
2003] given by

τI = lim
u→∞

P(maxi∈I X
∗
i > u)

P(X∗j > u)
, j ∈ I , (1)

a number between 1 and |I|. Such parameter has attracted a lot of attention as it quantifies
the effective number of asymptotically independent components among I [cf. Schlather and
Tawn, 2003]. Some properties, such as self-consistency for sets of extremal coefficients, and
various procedures for estimating extremal coefficients were introduced by Schlather and Tawn
[2003]. For max-stable random fields, Cooley et al. [2006] showed that inference can also be
based on the madogram, a graphical tool originally developed in geostatistics.
In this paper, we also consider the extremal dependence structure of subvectors X∗I de-
scribed in terms of the corresponding spectral vector ΘI , that is, the limit in distribution of
X∗I /∥X∗I ∥∞ conditional on ℓI(X

∗) := ∥X∗I ∥∞ > u as u → ∞. While existing works typically
focus on a direct estimation of the distribution of ΘI , i.e. the spectral measure, we focus on
moment estimators of ΘI . Our approach further differs from previous works since we impose
the assumption that the original observations X is such that X∗ = (r−11 Xα1

1 , . . . , r−1d Xαd

d )
is standard regularly varying with index 1 and with tail equivalent margins. This restriction
allows us to consider a two-step procedure in the spirit of Einmahl et al. [1997] with a simpler
first standardization step relying on the componentwise normalization via upper order statis-
tics and the estimation of the coefficients α1, . . . , αd > 0 via Hill type estimators. Our second
step is then based on the estimation of moments of convex combinations of the spectral vector,
i.e. estimators of E[(v⊤ΘI)p] with p ≥ 1 and v on the simplex of the direction I. We prove
that the collection of such moments E[(v⊤ΘI)p], p ≥ 1, characterizes the spectral measure
of X∗I . Perceiving the resulting estimators as functions of the vector v on the simplex, we
obtain functional central limit theorems with precise asymptotic (co-)variances. Here, we con-
sider both the case that the margins of X are known, i.e. we can directly work with exactly
standardized observations X∗, and the case that the margins are unknown and a preliminary
empirical standardization step has to be included.
In accordance to the above-mentioned paradigm that, in large dimensions d, emphasis is
often put on simpler summary statistics, we suggest to mainly focus on small p for which
our approach provides simple functions that contain important information on the depen-
dence among extremes. For instance, by tail equivalence of the marginals of X∗ we have that
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E[ΘI
i ] = E[ΘI

j ] = 1/τI for any i, j ∈ I and, consequently, for any positive weights v such
that

∑
i∈I v1 = 1 we have that E[vTΘI ] = 1/τI . Thus, the moment of order p = 1 of convex

combinations of ΘI does not depend on the weight vector v. This observation motivates an
additional third step of our procedure. More precisely, similarly to Mainik and Rüschendorf
[2010] who estimate the optimal portfolio of jointly regularly varying assets, we use the func-
tional central limit theorem to estimate the weight vector v∗ that minimizes the asymptotic
variance and show that this minimal asymptotic variance can be achieved by a plug-in esti-
mator. We note that the determination of v∗ is interesting on its own and provides important
information on the dependence among extremes. The determination of a prominent direction
in the data is related to recent developments on extreme PCA in Cooley and Thibaud [2019]
and Drees and Sabourin [2019]. Moreover we discuss how the weights v∗ are impacted by the
fact that the margins are known or not.
The paper is organized as follows. In Section 2, we gather several results on convex combina-
tions of the spectral components of a regularly varying vector. The asymptotic normality of
empirical moment estimators is given in Section 3 both for the case of known and the case of
unknown margins. These results specified to first order moments are then applied in Section
4 in order to obtain estimators for extremal coefficients with minimal asymptotic variance.
Some comparison to benchmark estimators based on the definition of τI and some illustrations
on simulated and real data are provided in Section 5. We conclude with a short discussion on
our results in Section 6.

2. Extremes of convex combinations of regularly varying random vectors

Let X = (X1, . . . , Xd)
⊤ be a non-standard regularly varying E = [0,∞)d-valued random

vector, with different tail indices α1, . . . , αd > 0. We assume the existence of scaling factors
r1, . . . , rd > 0 such the transformed vector X∗ = (r−11 Xα1

1 , . . . , r−1d Xαd

d ) is regularly varying
with index 1 and satisfies

a∗(u)P(u−1X∗ ∈ ·) v−→ µ∗(·) , u → ∞ , (2)

for some normalized exponent measure µ∗ which is homogeneous of order −1 and

µ∗({x ∈ E : xi > 1}) = lim
u→∞

a∗(u)P(X∗i > u) = 1, (3)

i.e. a∗(u) ∼ P(X∗i > u)−1 for all i = 1, . . . , d. This verifies that the tail behaviour of all
the components of X∗ is asymptotically identical, i.e. its marginal distribution functions
F ∗1 , . . . , F

∗
d satisfy

1− F ∗i (u)

1− F ∗j (u)
→ 1, u → ∞,

for all i, j ∈ {1, . . . , d}, which also implies

(F ∗i )
−1(p)

(F ∗j )
−1(p)

→ 1, p → 1. (4)

Eq. (2) can be equivalently expressed in terms of a spectral component for an arbitrary norm
∥ · ∥ on Rd. More precisely, we obtain the weak convergence

L(u−1X∗ | ∥X∗∥ > u)
w−→ L(YΘ) , u → ∞ , (5)

where Y is a unit Pareto random variable and, independently from Y , Θ is a [0,∞)d-valued
random vector satisfying ∥Θ∥ = 1 almost surely, i.e.

P(Θ ∈ S+
d−1) = 1, where S+

d−1 = {x ∈ [0,∞)d : ∥x∥ = 1}.
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In the following, we will focus on the maximum norm ∥ · ∥ = ∥ · ∥∞ which is not a serious
restriction as all norms on Rd are equivalent.

There is a one-to-one correspondence between the normalized exponent measure µ∗ and the
distribution of Θ, the so-called (normalized) spectral measure (w.r.t. the norm ∥ · ∥) via

µ∗({x ∈ E : ∥x∥ > r, x/∥x∥ ∈ B}) = τr−1P(Θ ∈ B), r > 0, B ⊂ S+
d−1 (6)

for some constant 1 ≤ τ ≤ d given by

τ = µ∗({x ∈ E : ∥x∥ > 1}) = lim
u→∞

a∗(u)P(∥X∗∥ > u) . (7)

The extremal dependence structure of the components of the normalized random vector X∗,
and, thus, also of the original vector X, is fully described by the distribution of the spectral
vector Θ which we will estimate in the following.

More precisely, we now describe the tail behaviour of convex combinations of X∗1 , . . . , X∗d in
terms of the corresponding spectral measure. To this end, we will make use of the following
well-known lemma which is a direct consequence of the weak convergence in Eq. (5).

Lemma 1. Let X∗, Y and Θ be as above. Furthermore, let g : (0,∞) × S+
d−1 → R be a

continuous bounded function. Then, we have

lim
u→∞

E
[
g(u−1∥X∗∥,X∗/∥X∗∥) | ∥X∗∥ > u

]
= E[g(Y,Θ)].

In particular, the lemma implies that

lim
u→∞

E[g̃(X∗/∥X∗∥) | ∥X∗∥ > u] = E[g̃(Θ)] (8)

for every continuous function g̃ : S+
d−1 → R.

Furthermore, the lemma extends to indicator functions of sets that are continuous with respect
to the measure of (Y,Θ), i.e. conditional probabilities of events that can be expressed in
terms of u−1∥X∗∥ and X∗/∥X∗∥. For instance, for convex combinations of X∗1 , . . . , X∗d with
coefficient vector v ∈ B1(0) = {x ∈ Rd : ∥x∥1 ≤ 1}, v ̸= 0, we obtain

lim
u→∞

P(v⊤X∗ > u | ∥X∗∥ > u) = P(Y v⊤Θ > 1) = E
[
(v⊤Θ)+ ∧ 1

]
= E

[
(v⊤Θ)+

]
(9)

using that v⊤Θ ≤ ∥v∥1 · ∥Θ∥ = ∥v∥1 ≤ 1 a.s. It can be shown that the law of Θ is uniquely
determined by the set of all the limits in (9) with v ∈ ∂B1(0) = {x ∈ Rd : ∥x∥1 = 1}, see
Basrak et al. [2002], Klüppelberg and Pergamenchtchikov [2007], Boman and Lindskog [2009].
This fact motivates the use of extremes of convex combinations of observations for inference
of the spectral measure. In this paper, we modify the above approach by assessing the limiting
quantity on the RHS of Eq. (9) in an alternative way based on the following result which is a
trivial consequence of Lemma 1.

Lemma 2. Let X∗ be a regularly varying random vector with standard Pareto margins. Then,
for every v ∈ Rd and p ∈ N, we have

E

[(
v⊤

X∗

∥X∗∥

)p

+

∣∣∣∣ ∥X∗∥ > u

]
−→ E[(v⊤Θ)p+] (u → ∞) . (10)

Proof. The result directly follows by applying Eq. (8) to the continuous functions g̃v,p(θ) =
(v⊤θ)p+ with v ∈ Rd and p ∈ N.
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Note that, for v ̸≥ 0, the term v⊤Θ is negative with positive probability, which hampers the
calculation of closed-form expressions for the RHS of (10). In order to avoid these difficul-
ties, we restrict our attention to non-negative vectors v ∈ ∂B+

1 (0) = ∂B1(0) ∩ [0,∞)d, i.e.
we consider only convex combinations of components of X∗ with positive coefficients, while
allowing for arbitrary powers of these combinations. This ensures the identifiability of the
spectral measure from the resulting limits as the following proposition shows.

Proposition 3. Let X∗ be a non-negative regularly varying random vector with index 1.
Then, the spectral measure of Θ is uniquely determined by the moments{

E[(v⊤Θ)p+] : v ∈ ∂B+
1 (0), p ∈ N

}
=
{
E[(v⊤Θ)p] : v ∈ ∂B+

1 (0), p ∈ N
}
. (11)

Proof. By a series expansion, for all s ∈ [0,∞)d, the limits in (11) uniquely determine

E[exp(−s⊤Θ)] =

∞∑
p=0

(−1)p · ∥s∥
p
1

p!
· E
[(

s⊤

∥s∥1
Θ

)p]
, s ∈ [0,∞),

i.e. the Laplace transform of the spectral measure.

Let us list some properties of the function v 7→ mp(v) = E[(v⊤Θ)p] for p = 1, 2, . . . and
v ∈ ∂B+

1 (0). We identify m1(v) =
∑d

i=1 viE[Θi], i.e. the function is linear for p = 1. As, for
all i = 1, . . . , d,

E[Θi] =

∫ 1

0

P(Θi > x) dx =

∫ ∞
1

y−2P(Θi > 1/y) dy

= P(YΘi > 1) = lim
u→∞

P(X∗i > u | ∥X∗∥ > u) =
1

a∗(u)P(∥X∗∥ > u)
=

1

τ
, (12)

where τ is defined as in Eq. (7), we even obtain m1(v) =
1
τ

∑d
i=1 vi, which implies that m1 is

constant on ∂B+
1 (0). For p ≥ 2, the function mp is strongly convex. Thus, one easily deduces

from Jensen’s inequality that mp(v) ≤ max1≤i≤d E[Θp
i ].

For many popular limit models, closed-form expressions for E[(v⊤Θ)p] are difficult to obtain
as the spectral measure w.r.t. the maximum norm ∥ · ∥ = ∥ · ∥∞ is often difficult to handle
in high dimensional setting. Instead, spectral vectors are often normalized w.r.t. some less
complex functional ℓI(x) =

∨
i∈I xi over some smaller subset I ⊂ {1, . . . , d}. Such functionals

ℓI play an important role when estimating extremal coefficients, see Section 4. Since ∂{x ∈
E : ℓI(x) > 1} ⊂ {x ∈ E : ℓI(x) = 1} is a µ∗-null set, the limit

τI := µ∗({x ∈ E : ℓI(x) > 1}) = lim
u→∞

a∗(u)P(ℓI(X∗) > u) (13)

exists and, by Eq. (2), equals µ∗({x ∈ E : ℓI(x) > 1}). Furthermore, for every I ̸= ∅, it
satisfies the relation

τI = E[ℓI(Θ)] · τ ∈ [1, |I|]. (14)

Using the property E[ℓI(Θ)] > 0 for every I ̸= ∅, we can study the behaviour of the ℓI -spectral
vector ΘI whose distribution can be defined from the original spectral measure via the relation

P
(
ΘI ∈ A

)
=

1

E[ℓI(Θ)]

∫
[0,∞)d

1{θ/ℓI(θ) ∈ A}ℓI(θ)P(Θ ∈ dθ), (15)

where A ⊂ {w ∈ [0,∞)d : ℓI(w) = 1}. Note that, from Eq. (14) and Eq. (15), we directly
obtain an analogous result to Eq. (12), namely

E[ΘI
i ] =

1

τI
, i = 1, . . . , d. (16)

Analogues to Eq. (9) and to Lemma 2 are given in the following proposition.
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Proposition 4. Let X∗ be a normalized regularly varying random vector with index 1. Then,
for every v ∈ Rd and k ∈ N, we have

P
(
v⊤X∗ > u | ℓI(X∗) > u

)
−→ E

[(
v⊤ΘI

)
+
∧ 1
]
=

E
[
(v⊤Θ)+ ∧ ℓI(Θ)

]
E[ℓI(Θ)]

(17)

E

[(
v⊤

X∗

ℓI(X∗)

)p

+

∣∣∣∣ ℓI(X∗) > u

]
−→ E

[(
v⊤ΘI

)p
+

]
=

E
[(
v⊤ Θ

ℓI(Θ)

)p
+
· ℓI(Θ)

]
E [ℓI(Θ)]

(18)

as u → ∞.

Proof. First, we notice that ℓI(x) ≤ ∥x∥ on [0,∞)d \{0} by definition of ℓI . Thus ℓI(X∗) > u
implies that ∥X∗∥ > u and we have

lim
u→∞

P
(
v⊤X∗ > u | ℓI(X∗) > u

)
= lim

u→∞

P
(
v⊤X∗ > u, ℓI(X

∗) > u | ∥X∗∥ > u
)

P (ℓI(X∗) > u | ∥X∗∥ > u)

=
P
(
Y (v⊤Θ) > 1, Y ℓI(Θ) > 1

)
P (Y ℓI(Θ) > 1)

=
E
[
(v⊤Θ)+ ∧ ℓI(Θ) ∧ 1

]
E [ℓI(Θ) ∧ 1]

=
1

E[ℓI(Θ)]
· E
[
(v⊤Θ)+ ∧ ℓI(Θ)

]
= E

[(
v⊤ΘI

)
+
∧ 1
]
,

where we used the fact that ℓI(Θ) ≤ ∥Θ∥ = 1 and we apply the change of measure (15).
Using the same arguments and applying Lemma 1 to the bounded measurable function
g(y, θ) = (v⊤θ)p+1{ℓI(yθ) > 1} whose discontinuity set {ℓI(yθ) = 1} has no limiting mass, i.e.
P(ℓI(YΘ) = 1) = P(Y ℓI(Θ) = 1) = 0, we further obtain

lim
u→∞

E

[(
v⊤

X∗

ℓI(X∗)

)p

+

∣∣∣∣ ℓI(X∗) > u

]

= lim
u→∞

E
[(
v⊤ X∗

ℓI(X∗)

)p
+
1{ℓI(X∗) > u]

∣∣∣∣ ∥X∗∥ > u

}
P (ℓI(X∗) > u | ∥X∗∥ > u)

=

E
[(
v⊤ Θ

ℓI(Θ)

)p
+
1{Y ℓI(Θ) > 1}

]
P (Y ℓI(Θ) > 1)

=

E
[(
v⊤ Θ

ℓI(Θ)

)p
+
· (ℓI(Θ) ∧ 1)

]
E [ℓI(Θ) ∧ 1]

=
1

E [ℓI(Θ)]
· E

[(
v⊤

Θ

ℓI(Θ)

)p

+

· ℓI(Θ)

]
= E

[(
v⊤ΘI

)p
+

]
.

Similarly to Prop. 3, it can be shown that the distribution of ΘI is uniquely determined by{
E[(v⊤ΘI)p+]; v ∈ ∂B+

1 (0), p ∈ N
}
=
{
E[(v⊤ΘI)p]; v ∈ ∂B+

1 (0), p ∈ N
}
.

While the ℓI -spectral measure, i.e. the distribution of ΘI , can be written in terms of the
original spectral measure as in (15), the original spectral measure can be uniquely recovered
from the distribution of ΘI only if P(ℓI(Θ) = 0) = 0. Then, the inverse transformation is

P (Θ ∈ A) =
1

E[∥ΘI∥]

∫
[0,∞)d

1{θ/∥θ∥ ∈ A}∥θ∥P(ΘI ∈ dθ), A ⊂ S+
d−1. (19)

Note that the discussion above can be easily extended to any positively homogeneous contin-
uous functional ℓ : [0,∞)d → [0,∞) with corresponding constant τℓ which is positive.
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3. Asymptotic normality

3.1. Asymptotic normality for deterministic thresholds

Assume that we observe independent copies X∗l = (X∗l1, . . . X
∗
ld)
⊤, l = 1, . . . , n, of the normal-

ized regularly varying random vector X∗. Consider a non-empty subset I ⊂ {1, . . . , d}. One
of the classical approaches of Pickands [1975] to estimate the distribution of the ℓI -spectral
vector ΘI is based on the conditional exceedance probabilities of convex combinations given
in relation (17), i.e.

lim
u→∞

P(v⊤X∗ > u | ℓI(X∗) > u) = E
[
(v⊤ΘI)+ ∧ 1

]
for v ∈ ∂B1(0) = {x ∈ Rd : ∥x∥1 = 1}. The associated empirical estimators are of the form

P̂
(conv)
n,u,I (v)

P̂n,u,I

=
n−1

∑n
l=1 1{v⊤X∗l > u, ℓI(X

∗
l ) > u}

n−1
∑n

l=1 1{ℓI(X∗l ) > u}
, v ∈ ∂B1(0) . (20)

In view of Prop. 3, we promote in this paper the use of the alternative characterization of the
distribution of the ℓI -spectral vector ΘI based on the limits of moments of convex combinations
provided by Eq. (18), i.e.

lim
u→∞

E
[(
v⊤

X∗

ℓI(X∗)

)p ∣∣∣∣ ℓI(X∗) > u

]
= E

[
(v⊤ΘI)p

]
,

for every v ∈ ∂B+
1 (0) and p ∈ N0. The associated empirical estimators are of the form

M̂n,u,I(v, p)

P̂n,u,I

=
n−1

∑n
l=1

(
v⊤

X∗
l

ℓI(X∗
l )

)p
1{ℓI(X∗l ) > u}

n−1
∑n

l=1 1{ℓI(X∗l ) > u}
, v ∈ ∂B+

1 (0). (21)

In the following, we will consider the new estimators M̂n,u,ℓ(v, p)/P̂n,u,ℓ for any p ∈ N0. As the
functional ℓI puts emphasis on the components (X∗i )i∈I of X∗ only, we will focus on the same
components in the convex combination, i.e. we will consider weight vectors vI where vI is the
vector with components vi for i ∈ I and 0 otherwise. Thus, we obtain v⊤I X

∗ =
∑

i∈I viX
∗
i .

The next theorem will provide a functional central limit theorem for the estimators M̂n,u,I(vI , p)

noticing that P̂n,u,I = M̂n,u,I(vI , 0) for all v ∈ ∂B+
1 (0). Then we can apply the functional

delta method to obtain the asymptotic result for the ratio estimator M̂n,u,I(vI , p)/P̂n,u,I .
In this subsection, we assume observations from the normalized random vector X∗, in Sub-
section 3.2 the more general case of observations from the regularly varying vector X with
unknown index α > 0 and unknown marginal scales is considered. To allow for this extension,
in the next theorem, we do not only prove a functional central limit theorem for M̂n,u,I(vI , p)
with v ∈ ∂B+

1 (0) and p ∈ N0, but already for a more general version.
Indeed, it will turn out to be useful to allow for multiplication of single components of X∗ by
a vector s ∈ [0,∞)d of factors, and for raising them up to a power of 1/β with β ∈ (0,∞)d.
In the following, let (s ◦X∗)1/β = (s

1/βi

i X∗i
1/βi)1≤i≤d. With this notation, we can write

ℓI(X
∗) = max

i∈I
|X∗i | = ∥(1I ◦X∗)1∥,

where 1 = (1, . . . , 1) ∈ Rd, i.e., according to the notation introduced above, 1I is the vector
with the ith component being equal to 1 if i ∈ I and being equal to 0 otherwise. Furthermore,
v⊤I X

∗ = v⊤(1I ◦X∗). Thus, we can rewrite

M̂n,u,I(vI , p) =
1

n

n∑
l=1

(
v⊤

1I ◦X∗l
∥1I ◦X∗l ∥

)p

1{∥1I ◦X∗l ∥ > u}

=
1

n

n∑
l=1

(
v⊤

1I ◦X∗l /u
∥1I ◦X∗l /u∥

)p

1{∥1I ◦X∗l /u∥ > u}, (22)
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where the right-hand side of the equation depends on the components vi, i ∈ I, of v only. In
our extended version of the functional central limit theorem, we will not restrict our attention
to the vector 1I ◦X∗ being extreme, but a perturbed vector (s ◦X∗)1/β with s being close
to 1I and β being close to 1. More precisely, we consider s ∈ Aδ,I and β ∈ [(1 + δ)−1, 1 + δ]d

where

Aδ,I =
{
x ∈ (0,∞)d : xi = 0 for all i /∈ I, (1 + δ)−1 ≤ xi ≤ 1 + δ for all i ∈ I

}
for some δ ≥ 0, i.e. we allow for a perturbation of a factor and a power between (1+ δ)−1 and
1+ δ in each component of s and in each component of β. We also denote the disjoint unions

Aδ =
⋃

∅̸=I⊂{1,...,d}

Aδ,I and A′δ =
⋃

∅̸=I⊂{1,...,d}

Aδ,I × [(1 + δ)−1, 1 + δ]d.

Replacing 1I ◦X∗/u in Eq. (22) by (s ◦X∗)1/β, we obtain the generalized estimator

M̂n,u(v, s, β, p) =
1

n

n∑
l=1

(
v⊤

(s ◦X∗l /u)1/β

∥(s ◦X∗l /u)1/β∥

)p

1{∥s ◦X∗l ∥ > u}

for v ∈ ∂B+
1 (0), (s,β) ∈ A′δ and p ∈ N0. By definition, M̂n,u,I(vI , p) = M̂n,u(vI ,1I ,1, p)

for every I ⊂ {1, . . . , d}. In particular, the corresponding index set I of components being
relevant for the maximum can be read off from the components of s that are strictly positive.
Analogously, with the convention 00 = 1 we define P̂n,u(s) = M̂n,u(v, s,β, 0) which depends
neither on v ∈ ∂B+

1 (0) nor on β ∈ [(1 + δ)−1, 1 + δ]d, and satisfies P̂n,u,I = P̂n,u(1I).
Analogously to Prop. 4, we obtain

a∗(u)E
[
M̂n,u(v, s,β, p)

]
= a∗(u)P(∥s ◦X∗∥ > u) · E

[(
v⊤

(s ◦X∗/u)1/β

∥(s ◦X∗/u)1/β∥

)p ∣∣∣∣ ∥s ◦X∗∥ > u

]

−→
u→∞

τ · E

[(
v⊤

(Y s ◦Θ)1/β

∥(Y s ◦Θ)1/β∥

)p

1{Y ∥s ◦Θ∥ > 1}

]
, (23)

where we used Eq. (14) and Eq. (15). Beyond the limiting behaviour of the expectation, the
following theorem establishes asymptotic normality of M̂n,u(v,1I ,1, p). A detailed proof is
given in Appendix A.

Theorem 5. Let X∗l , l ∈ N, be independent copies of a regularly varying [0,∞)d-valued
random vector X∗ with index α = 1 satisfying Eq. (3) and with spectral component denoted
by Θ. Furthermore, let un → ∞ such that n/a∗(un) → ∞. Then, for every finite set K0 ⊂ N0

and δ ≥ 0, the sequence of processes ({Gn(v, s,β, p); v ∈ ∂B+
1 (0), (s,β) ∈ A′δ, p ∈ K0})n∈N

with

Gn(v, s,β, p) =

√
n

a∗(un)

[
a∗(un)M̂n,un

(v, s,β, p)− a∗(un)E[M̂n,un
(v, s,β, p)]

]
(24)

converges weakly in ℓ∞(∂B+
1 (0) × A′δ × K0) to a tight centered Gaussian process G with

covariance

Cov(G(v, s,β, p1), G(w, t,γ, p2)) (25)

= τE

[(
v⊤

(Y s ◦Θ)1/β

∥(Y s ◦Θ)1/β∥

)p1 (
w⊤

(Y t ◦Θ)1/γ

∥(Y t ◦Θ)1/γ∥

)p2

1 {Y (∥s ◦Θ∥ ∧ ∥t ◦Θ∥) > 1}

]
.
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A direct consequence of the weak convergence of Gn is that a∗(un)M̂n,un
(v, s,β, p) con-

verges in probability to the limit expression in Eq. (23). Consequently, the ratio estimator
M̂n,un

(v, s,β, p)/P̂n,un
(s) is consistent:

M̂n,un
(v, s,β, p)

P̂n,un
(s)

=
M̂n,un

(v, s,β, p)

M̂n,un
(v, s,β, 0)

→p c(v, s,β, p) , n → ∞ , (26)

for all v ∈ ∂B+
1 (0), (s,β) ∈ A′δ and p ∈ N0 where

c(v, s,β, p) :=
1

E[∥s ◦Θ∥]
· E

[(
v⊤

(Y s ◦Θ)1/β

∥(Y s ◦Θ)1/β∥

)p

1{Y ∥s ◦Θ∥ > 1}

]
.

Applying Thm. 5 and using the functional Delta method, we can even establish the desired
functional limit theorem for the ratio estimator M̂n,un(v, s,β, p)/P̂n,un(s) provided that we
can neglect the preasymptotic bias that arises from the fact that Eq. (23) yields an asymptotic
relation only.

Corollary 6. Let the assumptions of Thm. 5 hold and assume that there exist some δ ≥ 0
and some finite subset K ⊂ N such that, for all p ∈ K ∪ {0},√

n

a∗(un)

∣∣∣a∗(un)E[M̂n,un
(v, s,β, p)]− τ E[∥s ◦X∗∥] c(v, s,β, p)

∣∣∣→ 0 (27)

uniformly in v ∈ ∂B∗1(0) and (s,β) ∈ A′δ.
Then, the sequence of processes ({G̃n(v, s,β, p); v ∈ ∂B+

1 (0), (s,β) ∈ A′δ, p ∈ K})n∈N with

G̃n(v, s,β, p) =

√
n

a∗(un)

(
M̂n,un(v, s,β, p)

P̂n,un
(s)

− c(v, s,β, p)

)
,

converges weakly in ℓ∞(∂B+
1 (0)×A′δ ×K) to a tight centered Gaussian process G̃.

The proof of Cor. 6 is deferred to Appendix B. The expression of the covariance of G̃ is
provided there in Eq. (48).
Remark 7. 1. For the original estimator with deterministic threshold as given in (21), it is

sufficient to restrict to the case that s = t = 1I and β = 1 in Cor. 6. Then, we have
∥s ◦Θ∥∞ = ∥t ◦Θ∥∞ = ℓI(Θ) and the covariance of G̃ given in (48) simplifies to

Cov
(
G̃(v,1I ,1, p1), G̃(w,1I ,1, p2)

)
=

1

τEℓI(Θ)
·
(

1

EℓI(Θ)
E
[(
v⊤

ΘI

ℓI(Θ)

)p1

·
(
w⊤

ΘI

ℓI(Θ)

)p2

· ℓI(Θ)

]
− 1

(EℓI(Θ))2
E
[(
v⊤

ΘI

ℓI(Θ)

)p1

· ℓI(Θ)

]
E
[(
w⊤

ΘI

ℓI(Θ)

)p2

· ℓI(Θ)

])
=

1

τI
Cov

(
(v⊤ΘI

I)
p1 , (w⊤ΘI

I)
p2
)
.

2. Using the same techniques as in the proof of Cor. 6, one can easily show the joint weak
convergence of (Gn(v, s,β, p1), G̃n(w, t,γ, p2))n∈N (v, s,β, p1), (w, t,γ, p2) in ∂B+

1 (0)×
A′δ×K to (G(v, s,β, p1), G̃(w, t,γ, p2)) which are jointly Gaussian. Then for β = γ = 1,
the covariances express as

Cov(G(v, s,1, p1), G̃(w, t,1, p2))

=
E
[(
v⊤ s◦Θ
∥s◦Θ∥

)p1
(
w⊤ t◦Θ

∥t◦Θ∥

)p2

(∥s ◦Θ∥ ∧ ∥t ◦Θ∥)
]

E[∥t ◦Θ∥]

−
E
[(
v⊤ s◦Θ
∥s◦Θ∥

)p1

(∥s ◦Θ∥ ∧ ∥t ◦Θ∥)
]
E
[(
w⊤ t◦Θ

∥t◦Θ∥

)p2

∥t ◦Θ∥
]

(E[∥t ◦Θ∥])2
.
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3. From the proofs of Thm. 5 and Cor. 6, it follows that, for fixed p ∈ N0, the sequences
of processes Gn(·, ·, ·, p) and G̃n(·, ·, ·, p) are asymptotically uniformly equicontinuous on
∂B+

1 (0)×A′δ w.r.t. the semimetric

ρ((v, s,β), (w, t,γ)) = max{∥v −w∥, ∥s− t∥, ∥β − γ∥}.

Consequently, almost all sample paths of the tight limits G and G̃, respectively, are
uniformly ρ-continuous [cf. Addendum 1.5.8 in Van der Vaart and Wellner, 1996]. Since
ρ induces the standard topology on ∂B+

1 (0)×A′δ as subset of Rd ×R|I| ×Rd, it follows
that almost all sample paths of G(·, ·, ·, p) and G̃(·, ·, ·, p) are uniformly continuous.

3.2. Asymptotic normality for random thresholds via order statistics

Consider the general case of a random vector X that is non standard regularly varying
such that X∗ = (r−11 Xα1

1 , . . . , r−1d Xαd

d ) is regularly varying with index 1 and satisfies (2).
In practice, the marginal distributions of X1, . . . , Xd are unknown. In particular, the indices
α = (α1, . . . , αd) of regular variation and the scaling factors r1, . . . , rd that are needed for the
transformation to X∗ cannot be assumed to be given. Furthermore, the normalizing function
a∗(·) ∼ P(X∗i > ·) is unknown. To cope with these difficulties, we propose to work with an
estimator α̂ of α and order statistics of X. More precisely, let Xk:n,i denote the kth upper
order statistic of X1i, . . . , Xni for i = 1, . . . , d and let Xk:n = (Xk:n,1, . . . , Xk:n,d). With no
loss of generality we assume that Xk:n,i > 0, 1 ≤ i ≤ d. We propose the following estimator

M̃n,k,I(v, p)

P̃n,k,I

=
n−1

∑n
l=1

(
v⊤I

(Xl/Xk:n)
α̂

ℓI((Xl/Xk:n)α̂)

)p
1{ℓI(Xl/Xk:n) > 1}

n−1
∑n

l=1 1{ℓI(Xl/Xk:n) > 1}

for some k < n, where the ratio of vectors Xl/Xk:n is to be interpreted componentwise.
Expanding each of the ratios Xl/Xk:n by r−11 , . . . , r−1d , respectively, and taking the power of
α coordinatewise, it can be easily seen that

M̃n,k,I(v, p)

P̃n,k,I

=
n−1

∑n
l=1

(
v⊤I

(X∗
l /X

∗
k:n)

α̂/α

ℓI((X∗
l /X

∗
k:n)

α̂/α)

)p
1{ℓI(X∗l /X∗k:n) > 1}

n−1
∑n

l=1 1{ℓI(X∗l /X∗k:n) > 1}
,

i.e. we can rewrite

M̃n,k,I(v, p)

P̃n,k,I

=
M̂n,un

(vI , un/X
∗
k:n ◦ 1I ,α/α̂, p)

P̂n,un(un/X∗k:n ◦ 1I)
. (28)

For an appropriate sequence {kn}n∈N ⊂ N with kn → ∞ such that kn/n → 0, we want to
show that ({√

kn

(
M̃n,kn,I(v, p)

P̃n,kn,I

− E[(v⊤I ΘI
I)

p]

)
; v ∈ ∂B+

1 (0)

})
n∈N

converges weakly to a Gaussian process. The functional central limit theorem will essentially
be proven by plugging the random scaling factor s = un/X

∗
k:n ◦ 1I and the random power

β = α/α̂ into the results of Subsection 3.1 according to Eq. (28). Provided that both the
random s and the random β are asymptotically normal, we can use the functional central
limit theorem given in Cor. 6 to obtain the desired result.

To this end, we will first specify our estimators α̂n,k = (α̂n,k,1, . . . , α̂n,k,d) of α which will be
componentwise Hill estimators. Similarly to Section 3.1, we will first start with an estimator
with a fixed sequence of thresholds {un}n∈N and normalized observations X∗1 , . . . ,X∗n. To
mimic the behaviour of the real non-normalized data X = (r ◦X∗)1/α where r = (r1, . . . , rd),



/Estimation of the Spectral Measure of Regularly Varying Random Vectors 11

we also allow for a scaling factor s ∈
⋃d

i=1 Aδ,{i}, that is, a scaling factor with exactly one
non-zero component, and take the logarithm of the scaled vector to the coordinatewise power
of 1/α. Thus, for s ∈ Aδ,{i}, 1 ≤ i ≤ d, we obtain the estimator

L̂n,u(s)

P̂n,u(s)
=

n−1
∑n

l=1 log

(∥∥∥∥(s ◦ X∗
l

un

)1/α∥∥∥∥)1{∥s ◦X∗l ∥ > un}

P̂n,u(s)
. (29)

Under the assumptions of Thm. 5, it can be shown that for s ∈ Aδ,{i}, 1 ≤ i ≤ d,

a∗(un)E[L̂n,un(s)] =
P(siX∗i > un)

P(X∗i > un)
· E
[ 1

αi
log
(siX∗i

un

) ∣∣∣ siX∗i > un

]
→ si

αi
(n → ∞) .

In order to neglect the bias we assume the following second order condition from De Haan
and Ferreira [2006]:
There exists an auxiliary positive function A∗i such that A∗i (t) → 0 as t → ∞ and

lim
x→∞

a∗(x)P(X∗i > xs)− s−1

A∗i (a
∗(x))

= Ki(s) (30)

where Ki is not identically 0 for any 1 ≤ i ≤ d.
Now if we choose un such that un → ∞ and

√
n/a∗(un)A

∗
i (a
∗(un)) → 0 as n → ∞ for some

1 ≤ i ≤ d we obtain

sup
s∈Aδ,{i}

√
n

a∗(un)

∣∣∣∣a∗(un)E[L̂n,un(1{i}, s)]−
si
αi

∣∣∣∣→ , n → ∞ , (31)

as well as

sup
(1+δ)−1≤si≤1+δ

√
n

a∗(un)
|a∗(un)P(siX∗i > un)− si| → 0 , n → ∞ , (32)

which is nothing else than Eq. (27) for p = 0 and s ∈ Aδ,{i}, δ > 0. As Eq. (31) and (32)
ensure that the biases of the marginal Hill estimators become asymptotically negligible, the
second-order condition (30) will be sufficient for us to establish asymptotic normality of our
final marginal Hill estimators α̂k,n,i defined via order statistics

1

α̂n,k,i
=

n−1
∑n

l=1 log
(
ℓ{i}(Xl/Xk:n)

)
1
{
ℓ{i}(Xl/Xk:n) > 1

}
P̃n,k,{i}

(33)

in the following theorem. A detailed proof is given in Appendix C.

Theorem 8. LetXl, l ∈ N, be independent copies of a non-standard regularly varying [0,∞)d-
valued random vector X. Assume that the vector X∗ = (r−11 Xα

1 , . . . , r
−1
d Xα

d ) satisfies Eq. (3)
and (30). Let {kn}n∈N ⊂ N be a sequence such that kn → ∞, kn/n → 0 and

√
knA

∗
i (n/kn) → 0

for all 1 ≤ i ≤ d. Then we have√
kn

(
α̂−1n,kn

−α−1
)
→d H̃, n → ∞,

where H̃ is a d-dimensional centered Gaussian random vector with covariances

Cov(H̃i, H̃j) =
τ

αiαj
E [Θi ∧Θj ] =

2− τij
αiαj

.

This result is in line to results for the joint asymptotic behaviour of marginal Hill estimators
obtained in Stupfler [2019].
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Remark 9. We can show joint convergence of the different estimates to the limit processes
G and G̃ and the variables H̃i, i = 1, . . . , d, as obtained in Thm. 5, Cor. 6 and Thm. 8,
respectively. The covariance between the processes G and G̃ is given in Rem. 7.2. Similar
calculations as above reveal that, for all v ∈ ∂B+

1 (0), J ⊂ {1, . . . , d} and p ∈ N0,

Cov(H̃i, G(v,1J ,1, p)) =
τ

αi
E
[
− log

(
1 ∧ ∥ΘJ∥

Θi

)
·
(
v⊤

ΘJ

∥ΘJ∥

)p
· (Θi ∧ ∥ΘJ∥)

]
. (34)

Here, using similar arguments as above, we obtain

Cov(H̃i, G̃(v,1J ,1, p)) (35)

=
1

αiE[∥ΘJ∥]

(
E
[
− log

(
1 ∧ ∥ΘJ∥

Θi

)(
v⊤

ΘJ

∥ΘJ∥

)p

(Θi ∧ΘJ)

]

− E
[
− log

(
1 ∧ ∥ΘJ∥

Θi

)
(Θi ∧ΘJ)

] E[∥ΘJ∥
(
v⊤ ΘJ

∥ΘJ∥

)p
]

E[∥ΘJ∥]

)
for all v ∈ ∂B+

1 (0) and p ∈ N0. In particular, this implies that Cov(H̃i, G̃(v,1J ,1, p)) = 0 if
i ∈ J .
Making use of the asymptotic results for the Hill-type estimator in Thm. 8 and for the estima-
tors in the case of deterministic thresholds given in Section 3.1, we will establish a functional
central limit theorem for M̃n,k,I(vI , p)/P̃n,k,I . Compared to its analogue for deterministic
thresholds, the estimator is blurred by the random marginal normalization based on the order
statistics. To ease notation, we just write G0(s) = G(·, s, ·, 0).
Imposing some additional conditions on the function c, we obtain the following main result.

Theorem 10. Let Xl, l ∈ N, be independent copies of a non-standard regularly varying
[0,∞)d-valued random vector X satisfying the assumptions of Cor. 6 and Thm. 8 for a∗(un) ∼
n/kn, some δ > 0 and some K ⊂ N. Assume that all the partial derivatives

csi(v, s,β, p) =
∂

∂si
c(v, s,β, p), i ∈ {1, . . . , d}, p ∈ K,

cβi(v, s,β, p) =
∂

∂βi
c(v, s,β, p), i ∈ {1, . . . , d}, p ∈ K,

exist and are continuous on ∂B+
1 (0)×A′δ. Then, for non-empty I ⊂ {1, . . . , d}, we have{

√
k

(
M̃n,k,I(vI , p)

P̃n,k,I

− c(vI ,1I ,1, p)

)
; v ∈ ∂B+

1 (0), p ∈ K

}
−→

{
G̃(vI ,1I ,1, p)−

∑
i∈I

(
csi(vI ,1I ,1, p)G

0(1{i}) + cβi
(vI ,1I ,1, p)αiH̃i

)}
weakly in ℓ∞(∂B+

1 (0)×K) as n → ∞.

The proof of Thm. 10 is deferred to Appendix D.
Remark 11. In the case p = 1 we notice that the limiting process is linear in vI because the
process G̃ and the functions csi and cβi are all linear in vI :

G̃(vI ,1I ,1, 1)−
∑

i∈I

(
csi(vI ,1I ,1, 1)G

0(1{i}) + cβi
(vI ,1I ,1, 1)αiH̃i

)
=
∑
j∈I

vj

(
G̃(1j ,1I ,1, 1)−

∑
i∈I

(
csi(1j ,1I ,1, 1)G

0(1{i}) + cβi(1j ,1I ,1, 1)αiH̃i

))
.
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4. Application: Estimation of extremal coefficients

One of the most popular summary statistics for extremal dependence in the (sub-)vector
(X∗i )i∈I is the extremal coefficient τI given by Eq. (13), i.e.

τI = lim
u→∞

a∗(u)P
(
max
i∈I

X∗i > u

)
∼ P(maxi∈I X

∗
i > u)

P(X∗j > u)
, for all j ∈ I.

From this representation and the union bound for P(maxi∈I X
∗
i > u), it can be easily seen

that τI ∈ [1, |I|] where τI = 1 corresponds to the case that all the components of (Xi)i∈I are
(asymptotically) fully dependent, while they are all asymptotically independent if τI = |I|.
This gives rise to the common interpretation of the extremal coefficient as the number of
asymptotically independent variables among (X∗i )i∈I [cf. Schlather and Tawn, 2003]. Even
though, in general, the spectral measure of the vector X = (X1, . . . , Xd) cannot be fully
described by the set of extremal coefficients (τI)I⊂{1,...,d}, they allow for the identification of
the parameters in many popular parametric families and, consequently, statistical efficiency
in the estimation of the extremal coefficients is expected to carry over to the estimation of the
corresponding model parameters. Illustrations on the Hüsler-Reiss are given in Section 5.
From Eq. (16), we obtain that

E
[
v⊤I Θ

I
]
= E

[
(v⊤I Θ

I)+ ∧ 1
]
=

1

τI
,

for all vI ∈ ∂B+
1 (0). This motivates the use of the two classes of estimators considered

in Eq. (20) and Eq. (21), respectively. We will distinguish two cases; Section 4.1 collects the
asymptotic normality results for the case of known marginal distributions where we can exploit
the results for deterministic thresholds given in Section 3.1 with s = 1I and β = 1. The results
derived in Section 3.2 can be used when the margins are unknown as we will investigate in
Section 4.2.

4.1. Known margins

In this section, we focus on the case where the margins are known, i.e. X∗i is observed.

4.1.1. The inefficiency of the benchmark

For this case, as a first class of estimators, we can directly consider the estimators based on
relative frequencies of threshold exceedances by convex combinations, see Eq. (20), namely

P̂
(conv)
n,u,I (vI)

Pn,u,I
=

n−1
∑n

l=1 1{v⊤I X∗l > u}
n−1

∑n
l=1 1{ℓI(X∗l ) > u}

, vI ∈ ∂B+
1 (0),

where we use the fact that v⊤I X
∗ > u already implies that ℓI(X∗) > u. This type of estimator

will serve as a benchmark. By standard arguments, for a sequence {un}n∈N of thresholds such
that un → ∞ and n/a∗(un) → ∞ as n → ∞, we obtain the asymptotic normality√

n

a∗(un)

(
a∗(un)P̂

(conv)
n,un,I

(vI)− a∗(un)P(v⊤I X∗ > un)

a∗(un)P̂n,un,I − a∗(un)P(ℓI(X∗) > un)

)
d−→ N (0,Σ),

where

Σ =

(
τIE[v⊤I ΘI ] τIE[v⊤I ΘI ]
τIE[v⊤I ΘI ] τI

)
=

(
1 1
1 τI

)
.
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Assuming that the bias is negligible, i.e.√
n

a∗(un)

(
a∗(un)P(v⊤I X∗ > un)− 1

)
→ 0

and √
n

a∗(un)
(a∗(un)P(ℓI(X∗) > un)− τI) → 0, (36)

the Delta method yields asymptotic normality of the benchmark estimator for the case of
known margins,

1

τ̂BK
I,n (vI)

=
P̂

(conv)
n,un,I

(vI)

P̂n,un,I

, v ∈ ∂B+
1 (0),

i.e. √
n

a∗(un)

(
1

τ̂BK
n (vI)

− 1

τI

)
d−→ N (0, τ−3I (τI − 1)).

Here, we note that the asymptotic variance does not depend on the choice of v ∈ ∂B+
1 (0).

Secondly, we consider moment-based estimators as discussed in Section 3.1, i.e. estimators
based on empirical means of convex combinations, namely M̂n,u,I(vI , 1)/P̂n,u,I with weights
vI ∈ ∂B+

1 (0) as defined in Eq. (21). Provided that the bias is negligible, i.e.√
n

a∗(un)

(
a∗(un)E

[
v⊤I

X∗

ℓI(X∗)
· 1{ℓI(X∗) > un}

]
− 1

)
→ 0

and (36), we obtain the asymptotic normality√
n

a∗(un)

(
M̂n,un,I(vI)

P̂n,un,I

− 1

τI

)
d−→ N

(
0, τ−1I Var(v⊤I Θ

I)
)
,

cf. the results in Cor. 6 and the first part of Rem. 7.

Since v⊤I Θ
I ≤ 1 a.s., we have that

1

τI
Var(v⊤I Θ

I) =
1

τI

(
E[(v⊤I ΘI)2]− 1

τ2I

)
≤ 1

τI

(
E[(v⊤I ΘI)]− 1

τ2I

)
=

τI − 1

τ3I

and, therefore, the asymptotic variance of the moment-based approach is always less than or
equal to the asymptotic variance of the benchmark estimator. Notice that the variances of
both estimators are equal, i.e. E[(v⊤I ΘI)2] = E[v⊤I ΘI ] = 1/τI , if and only if ΘI

i ≡ 1 a.s. for
all i with vi > 0. This is the case if and only if τI = 1 and then both asymptotic variances
are equal to 0. Thus, except for this degenerate case, the moment-based approach is always
preferable to the benchmark in terms of the asymptotic variance.
Furthermore, in general, the asymptotic variance of the moment-based estimator depends on
the vector vI ∈ ∂B+

1 (0). As we will see in Example 14, the minimal variance is typically not
achieved for a standard vector of the type v{i} for i ∈ I, i.e. the empirical estimators of E[Θi],
but by a non-trivial mixture of different basis vectors. This improvement can be attributed
to the fact that the moment-based estimator is linear in v. Thus optimizing in vI ∈ ∂B+

1 (0)
can be interpreted as aggregating different estimators. It is well-known that the use of a
combination of estimators can improve the accuracy. We note that we could also aggregate
the benchmark estimator for different v. However this strategy is much more intricate to study
as the benchmark estimator is not linear in v.
Based on this discussion, for the remainder of Section 4.1, we focus on convex combinations
of moment-based estimators rather than on the benchmark. In the following, we optimize
the asymptotic variance τ−1I Var(v⊤I Θ

I) w.r.t. the weight vectors vI and we find some ap-
proximation of this best aggregation. We should notice that the optimal asymptotic variance
Var(v⊤I Θ

I) may be degenerate even when τI > 1. In these cases the results hereinafter still
hold with a null limit.
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Remark 12. The asymptotic variance of the moment-based estimator is zero if and only if
there exists a weight vector vI such that v⊤I Θ

I
I = 1/τI almost surely. This happens in case

of an asymptotically independent vector X with v satisfying vi =
1
|I| for i ∈ I. It might also

happen in more complex cases. For instance, assume that the vector ΘI
I takes at only a finite

number of different possible values θ(j)I , j ∈ 1, . . . ,m. Then, vI is given as the solution of the
linear system v⊤I θ

(j)
I = 1/τI , j ∈ 1, . . . ,m, provided that the solution is in the simplex.

4.1.2. Variance minimization

We focus on the moment estimators M̂n,u,I(vI , 1)/P̂n,u,I for different vI ∈ ∂B+
1 (0). As all

of these estimators are consistent, it is appealing to choose the estimator that provides the
minimal asymptotic variance. Thus, in the following, we will focus on determining the weight
vectors v∗I ∈ ∂B+

1 (0) that minimize the asymptotic variance

τ−1I Var(v⊤I Θ
I
I) = τ−3I

(
τ2I · E[(v⊤I ΘI

I)
2]− 1

)
,

or, equivalently, the function
f (I) : vI 7→ E[(v⊤I ΘI

I)
2].

We will show that, under mild conditions, the minimizer of f (I) in ∂B+
1 (0) is unique.

Proposition 13. Let Θ be a spectral vector. Then, for non-empty I ⊂ {1, . . . , d}, it holds: If
the matrix VI = (E[ΘI

iΘ
I
j ])i,j∈I is conditionally positive definite, i.e.

a⊤VIa > 0 ,

for all a ∈ R|I| \ {0} such that
∑

i∈I ai = 0, then the function vI 7→ f (I)(vI) attains its
minimum on ∂B+

1 (0) at some unique v∗I ∈ ∂B+
1 (0).

Proof. First, we note that

f (I)(vI) =
∑

i∈I

∑
j∈I

vivjE(ΘI
iΘ

I
j ) = (vi)

⊤
i∈IVI(vi)i∈I .

By a slight abuse of notation, henceforth, we will write f (I)(vI) = v
⊤
I VIvI . Now, assume that

f (I) attains its minimum at two distinct points vI ∈ ∂B+
1 (0) and wI ∈ ∂B+

1 (0). Then, for all
λ ∈ (0, 1), we have λvI + (1− λ)wI ∈ ∂B+

1 (0),
∑

i∈I(vi − wi) = 0 and, therefore,

f (I)(λvI+(1− λ)wI) = (wI + λ(vI −wI))
⊤VI(vI + (1− λ)(wI − vI))

= − λ(1− λ)(vI −wI)
⊤VI(vI −wI) + λv⊤I VIvI + (1− λ)w⊤I VIwI

< λf (I)(vI) + (1− λ)f (I)(wI),

which is a contradiction to the choice of vI and wI as minimizers of f (I).

Example 14. In the case of a pairwise extremal coefficient τI with I = {i, j}, we obtain an
explicit expression for the minimizer v∗{i,j} with v∗i , v

∗
j ≥ 0 and v∗i + v∗j = 1 of the function

f (I)(v{i,j}) = E[(viΘI
i + vjΘ

I
j )

2] = (vi, vj)VI(vi, vj)
⊤. To this end, we note that the function

vi 7→ (vi, 1− vi)VI

(
vi

1− vi

)
= v2i E[(ΘI

i )
2] + 2vi(1− vi)E[ΘI

iΘ
I
j ] + (1− vi)

2E[(ΘI
j )

2]

is a quadratic function which possesses a unique minimizer v∗i ∈ [0, 1] if and only if E[(ΘI
i )

2]−
2E[ΘI

iΘ
I
j ] + E[(ΘI

j )
2] > 0, i.e. if and only if VI is conditionally positive definite, cf. Prop. 13.

From

E
[
ΘI

i ·ΘI
j

]
=

1

E[ℓI(Θ)]
· E
[

ΘiΘj

Θi ∨Θj

]
=

1

E[ℓI(Θ)]
· E [Θi ∧Θj ]

=
1

E[ℓI(Θ)]
· E [Θi +Θj −Θi ∨Θj ] =

τ

τI
·
(
2

τ
− τI

τ

)
=

2

τI
− 1,
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we obtain that
E[(ΘI

i )
2] ≥ [E(ΘI

i )]
2 =

1

τ2I
≥ 2

τI
− 1 = E

[
ΘI

i ·ΘI
j

]
(37)

and, analogously,
E[(ΘI

j )
2] ≥ E

[
ΘI

i ·ΘI
j

]
. (38)

Note that equality in Eq. (37) and in Equation (38) holds if and only if we have E[(ΘI
i )

2] =
E[ΘI

i ] = 1 and E[(ΘI
j )

2] = E[ΘI
j ] = 1, respectively. Thus, for τI > 1, there exists a unique

minimizer which can be easily computed:

v∗i =
E[(ΘI

j )
2]− E[ΘI

iΘ
I
j ]

E[(ΘI
i )

2]− 2E[ΘI
iΘ

I
j ] + E[(ΘI

j )
2]

=
E[(ΘI

j )
2]− E[ΘI

iΘ
I
j ]

E[(ΘI
i −ΘI

j )
2]

and v∗j = 1− v∗i =
E[(ΘI

i )
2]− E[ΘI

iΘ
I
j ]

E[(ΘI
i −ΘI

j )
2]

.

By Eq. (37) and (38), we obtain v∗i , v
∗
j > 0, i.e. v∗{i,j} ∈ ∂B+

1 (0). Some further calculations
lead to the minimal asymptotic variance τ−3I (τ2I · f (I)(vI)− 1) with

f (I)(v∗I ) =
E[(ΘI

i )
2] · E[(ΘI

j )
2]−

(
E[ΘI

iΘ
I
j ]
)2

E[(ΘI
i −ΘI

j )
2]

.

4.1.3. Asymptotic normality of the plug-in estimator

We use the functional central limit theorems Cor. 6 and Thm. 10 to show that estimators
with minimal asymptotic variance can be obtained by plugging-in consistent estimators of the
optimal weight vectors.
The variance minimizing vector v∗I can be estimated by taking the minimum of the empirical
counterpart of f (I):

v̂∗n,u,I = argminvI∈∂B+
1 (0)

M̂n,u,I(vI , 2)

P̂n,u,I

.

It is important to notice that, being constructed as the empirical second moment of a convex
combination, vi 7→ M̂n,u,I(vI , 2)/P̂n,u,I is a positive semi-definite quadratic form. Thus, the
evaluation of M̂n,u,I(vI , 2)/P̂n,u,I for a finite number of vectors vI is sufficient to reconstruct
the whole function {M̂n,u,I(vI , 2)/P̂n,u,I : vI ∈ ∂B+

1 (0)} and, thus, to calculate its minimizer.
Even though f (I) is conditionally positive definite, i.e. the theoretical minimizer v∗I is unique,
definiteness of the empirical counterpart vI 7→ M̂n,u,I(vI , 2)/P̂n,u,I is not guaranteed for a
finite sample, i.e. its minimizer v̂∗n,u,I might no longer be unique. In such a case, we just
choose an arbitrary minimizer. Moreover, if ℓI(X∗l ) ≤ u then v̂∗n,u,I is not well defined and
can be an arbitrary vector of ∂B+

1 (0) for all l ∈ {1, . . . , n}. We first show consistency of this
estimator.

Proposition 15. Let X∗l = (X∗l1, . . . , X
∗
ld)
⊤, l ∈ N, be independent copies of a d-dimensional

random vector X∗ satisfying the assumptions of Prop. 13 for all non-empty set I ⊂ {1, . . . , d}.
Furthermore, let {un}n∈N be a sequence such that un → ∞ and n/a∗(un) → ∞ as n → ∞
and assume that Eq. (27) holds for p = 0, 2 and δ = 0. Then,

v̂∗n,un,I
p−→ v∗I

for any sequence of minimizers v̂∗n,un,I
and any I ⊂ {1, . . . , d}.

Furthermore, M̂n,un,I(v̂
∗
n,un,I

, 2) →p f (I)(v∗I ).
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Proof. We observe that, non-empty I ⊂ {1, . . . , d}, we have f (I)(vI) = c(vI ,1I , 2) for all
vI ∈ ∂B+

1 (0) and, thus, Cor. 6 yields

supvI∈∂B+
1 (0) |M̂n,un,I(vI , 2)− f (I)(vI)|

p−→ 0. (39)

As the continuous function f (I) attains its unique minimum on ∂B+
1 (0) at v∗I (see Prop. 13),

for every ε > 0, there exists some η = η(ε) > 0 such that f (I)(v)− f (I)(v∗I ) > η for all v with
∥v−v∗∥ > ε. Consequently, if ∥v̂∗n,un,I

−v∗∥ > ε then we have that f (I)(v̂∗n,un,I
)−f (I)(v∗I ) > η,

which further implies

f (I)(v̂∗n,un,I)− M̂n,un,I(v̂
∗
n,un,I , 2) + M̂n,un,I(v

∗
I , 2)− f (I)(v∗I ) > η

as M̂n,un,I(v̂
∗
n,un,I

, 2) ≤ M̂n,un,I(v
∗
I , 2) by definition of v̂∗n,un,I

. In particular,

sup
v∈∂B+

1 (0)

|M̂n,un,I(v, 2)− f (I)(v)| > η/2.

Noticing that v̂∗n,un,I
is well defined only if

∨
1≤l≤n ℓI(X

∗
l ) > un, we obtain

P(∥v̂∗n,un,I − v
∗
I∥ > ε) ≤ P (ℓI(X

∗) ≤ un)
n
+ P

(
sup

vI∈∂B+
1 (0)

|M̂n,un
(vI , 2)− f (I)(vI)| >

η

2

)
,

which tends to 0 as n → ∞ by Eq. (39).
The statement that

M̂n,un,I(v̂
∗
n,un,I , 2) →p f (I)(v∗I )

follows from the facts that f (I)(v̂∗n,un,I
)−M̂n,un,I(v̂

∗
n,un,I

, 2) →p 0 by Eq. (39) and f (I)(v̂∗n,un,I
)−

f (I)(v∗I ) →p 0 due to v̂∗n,un,I
→p v

∗
I and the continuity of f (I).

The second part can be shown analogously using the results from Thm. 10 instead of Cor. 16.

Now, we are ready establish the desired limit theorem for the plug-in estimator, the moment-
based estimator for the known margin case,

1

τ̂MK
I,n

=
M̂n,un,I(v̂

∗
n,un,I

)

P̂n,un,I

,

by combining the results of Prop. 15 with Cor. 6.

Corollary 16. Let X∗l = (X∗l1, . . . , X
∗
ld)
⊤, l ∈ N, be independent copies of a d-dimensional

random vector X∗ satisfying the assumptions of Prop. 13 for all non-empty I ⊂ {1, . . . , d}.
Furthermore, let {un}n∈N be a sequence such that un → ∞ and n/a∗(un) → ∞ as n → ∞ and
assume that Eq. (27) holds for p = 0, 1, 2 and δ = 0. Then, for all non-empty I ⊂ {1, . . . , d},√

n

a∗(un)

(
1

τ̂MK
I,n

− 1

τI

)
d−→ N

(
0, τ−1I Var(v∗I

⊤ΘI)
)
.

4.2. Unknown margins

Similarly, in case that the marginal distributions of X1, . . . , Xd are unknown, i.e. Eq. (3) is
no longer satisfied and the indices α1. . . . , αd of regular variation may be different from 1,
we need to replace the deterministic threshold both in the benchmark estimator and in the
moment-based estimator by a random one and include Hill type estimators as described in
Subsection 3.2.
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4.2.1. The benchmark and the moment-based estimator

In case of the benchmark defined in Eq. (20), the transformations above lead to the estimator

P̃
(conv)
n,k,I (vI)

P̃n,k,I

=
n−1

∑n
l=1 1{v⊤I (Xl/Xk:n)

α̂ > 1}
n−1

∑n
l=1 1{ℓI(Xl/Xk:n) > 1}

, vI ∈ ∂B+
1 (0).

Of particular interest is the case that vI is a standard basis vector, i.e. vI = 1{i} for some
i ∈ I, since then the numerator satisfies P̃

(conv)
n,k,I (1{i}) = k/n a.s., i.e. it possesses variance

zero. Thus, the estimator simplifies to

1
n
k P̃n,k,I

=
1

L̂k,n(1I)

where L̂kn,n is the well-known non-parametric estimator for the stable-tail dependence function
[cf. Drees and Huang, 1998]. Provided that the bias is negligible and that the function s 7→
E[∥s ◦ΘI∥] is differentiable at s = 1I , this estimator is asymptotically normal:√

kn

(
1

L̂kn,n(1I)
− 1

τI

)
d−→ N

(
0,

σ2
L

τ4I

)
where the asymptotic variance of the stable dependence function estimator L̂kn,n(1I) is pro-
vided in Chapter 7.4 of De Haan and Ferreira [2006] by the expression

σ2
L = τ3I

∑
i∈I

∑
j∈I

∂

∂si
E[∥s ◦ΘI∥]

∣∣∣
s=1I

∂

∂sj
E[∥s ◦ΘI∥]

∣∣∣
s=1I

E[ΘI
i ∧ΘI

j ]− τI .

Using that E[ΘI
i ∧ ΘI

j ] ≤ E(Θ∗i ) = 1/τI for all i ∈ I and
∑

i∈I
∂
∂si

E[∥s ◦ ΘI∥]
∣∣
s=1I

= 1
by Euler’s homogeneous function theorem due to the positive 1-homogeneity of the function
s 7→ E[∥s ◦ΘI∥], we obtain that

σ2
L

τ4I
≤ τ2I − τI

τ4I
=

τI − 1

τ3I
,

i.e. the asymptotic variance of 1/L̂kn,n(1I) is always smaller than the asymptotic variance of
the benchmark estimators for known margins, 1/τ̂I,n(vI). In particular, the estimator becomes
more efficient by using order statistics even if the marginal distributions are known.

For the moment-based estimators, as already discussed in Subsection 3.2, the marginal trans-
formations yield estimators of the type M̃n,k,I(vI , 1)/P̃n,k,I , vI ∈ ∂B+

1 (0). Provided that the
assumptions of Thm. 10 hold, we obtain the asymptotic normality√

kn

(
M̃n,kn,I(vI , 1)

P̃n,kn,I

− 1

τI

)
d−→ N (0, Ṽ (vI)), n → ∞ ,

with Ṽ (vI , 1) is the variance of the limiting process given in Thm. 10.

4.2.2. Variance minimization

Analogously to Section 4.1, we aim at choosing the estimator that provides the minimal
asymptotic variance, i.e. use the weight vector ṽI ∈ ∂B+

1 (0) that minimizes Ṽ (·), respectively.
To this end, we first exploit the results given in Rem. 11; By linearity of this limiting process
Ṽ (vI) is a quadratic form vTI Σ̃IvI for the symmetric positive semidefinite covariance matrix

ṼI = Var
((

G̃(1j ,1I ,1, 1)−
∑
i∈I

[csi(1j ,1I ,1, 1)G
0(1{i}) + cβi

(1j ,1I ,1, 1)αiH̃i]
)
j∈I

)
.

We obtain an analogous result to Prop. 13 and the analogous proof is omitted.
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Proposition 17. Let Θ be a spectral vector. Assume that all the partial derivatives

csi(v, s, β, 1) =
∂

∂si
c(v, s, β, 1), i ∈ {1, . . . , d},

cβi
(v, s, β, 1) =

∂

∂β
c(v, s, β, 1),

exist and are continuous on ∂B+
1 (0) × A′δ and that all the partial derivatives of the function

s 7→ E(∥s ◦ΘI∥) exist and are continuous in Aδ.
Then, for all non-empty I ⊂ {1, . . . , d}: If the matrix ṼI is conditionally positive definite, then
the function vI 7→ Ṽ (vI) attains its minimum on ∂B+

1 (0) at some unique ṽI ∈ ∂B+
1 (0).

4.2.3. Asymptotic normality of the plug-in estimator

Note that, in contrast to f (I), there is no direct empirical counterpart of Ṽ (·). To enable
analytical minimization of that function, we consider an estimator that retains the quadratic
form of Ṽ (·) by estimating consistently the symmetric conditionally definite matrix ṼI . We
consider a quadratic form Ṽn,I(vI) = v

⊤
I Ṽn,IvI for a sequence of random symmetric matrices

(Ṽn,I)n∈N. Then we define

ṽn,I = argminvI∈∂B+
1 (0) Ṽn,I(vI).

Here, without further conditions on the underlying estimators, no kind of (semi-)definiteness
is guaranteed for the matrices Ṽn,I . However, being a continuous function, vi 7→ Ṽn,I(vI)
attains its minimum on the compact set ∂B+

1 (0) at least once. Here, an arbitrary minimizer
might be chosen for ṽn,I provided that it is not unique.
Analogously to Prop. 15, consistency of the estimator can be shown.

Proposition 18. Let Θ be a spectral vector satisfying the assumptions of Prop. 17. Then, for
all non-empty I ⊂ {1, . . . , d}, it holds: If ṼI,n →p ṼI , then we have that ṽn,I →p ṽI for any
sequence of minimizers ṽn,I . Furthermore, Ṽn,I(ṽn,I) →p Ṽ (ṽI).

Proof. Recall that, by construction, Ṽn,I(vI) = v
⊤
I Ṽn,IvI while Ṽ (vI) = v

⊤
I ṼIvI for a condi-

tionally positive definite matrix ṼI . The assumptions on the consistency of all the estimators
involved in Ṽn,I imply that ∥Ṽn,I − ṼI∥∞ →p 0. Consequently,

sup
vI∈∂B+

1 (0)

|Ṽn,I(vI)− Ṽ (vI)| ≤ d2∥Ṽn,I − ṼI∥∞ →p 0,

which is the analogue to Eq. (39). The remainder of the proof runs analogously to the proof
of Prop. 15.

Combining the results of Prop. 18 and Thm. 10, we obtain the desired limit theorem for the
plug-in estimator, the moment based estimator for the case of unknown margins

1

τ̂MU
I,n

=
M̃n,k,I(ṽn,I , 1)

P̃n,k,I

.

Corollary 19. Let Xl, l ∈ N, be independent copies of a regularly varying [0,∞)d-valued
random vector X satisfying the assumptions of Prop. 18 for all non-empty I ⊂ {1, . . . , d} and
the assumptions of Thm. 10 for K = {1}. Then, the plug-in estimator satisfies

√
k

(
1

τ̂MU
I,n

− 1

τI

)
d−→ N (0, Ṽ (ṽI)) , n → ∞ .
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In order to get a consistent estimator Ṽn,I of ṼI we use the m-out-of-n bootstrap procedure.
From Thm. 10 it is very natural to consider the covariance matrix of the vector(√

kn

(
M̃n,kn,I(1{i}, 1)

P̃n,kn,I

− c(1{i},1I ,1, 1)

))
1≤i≤d

as an approximation of ṼI . In order to estimate each entry of this covariance matrix, we
consider Nm subsamples (X

(j)
1 , . . . ,X

(j)
m ), 1 ≤ j ≤ Nm, of the original sample (X1, . . . ,Xn)

drawn uniformly without replacement. We denote M̃
(j)
m,km,I and P̃

(j)
m,km,I the statistics of in-

terest using the subsample (X
(j)
1 , . . . ,X

(j)
m ). Then we derive a bootstrapped distribution for

any pair i, i′ ∈ I such as

L
(m)
n,i,i′(x) =

1

Nm

Nm∑
j=1

1

{√
km

(
M̃

(j)
m,km,I(1{i}, 1) + M̃

(j)
m,km,I(1{i′}, 1)

2P̃
(j)
m,km,I

−
M̃n,kn,I(1{i}, 1) + M̃n,kn,I(1{i′}, 1)

2P̃n,kn,I

)
≤ x

}
.

We then calculate the first and third quartiles q(m)
1,i,i′ and q

(m)
3,i,i′ of the bootstrapped distribution

and consider the standardized interquartile statistics

σ̃
(m)
i,i′ =

q
(m)
3,i,i′ − q

(m)
1,i,i′

q3 − q1

where q1 and q3 are the first and third quartiles of a standard Gaussian random variable.
Finally, we define the entries of our estimator Ṽ (m)

n,I such as

Ṽ
(m)
n,I,i,i′ =

 σ̃
(m)
i,i

2
if i = i′ ,

2σ̃
(m)
i,i′

2
−
(
σ̃
(m)
i,i

2
+ σ̃

(m)
i,i

2)
/2 else .

Notice that our estimation procedure also depends on the number of subsamples Nm that we
do not fix at

(
n
m

)
for computational efficiency. We suppress this dependence for clarity.

Proposition 20. Let Xl, l ∈ N, be independent copies of a regularly varying [0,∞)d-valued
random vectorX satisfying the assumptions of Cor. 19. Then choosing mn such that mn → ∞,
mn/n → 0 and kn/kmn → ∞ and Nm → ∞ we have Ṽ

(m)
I,n →p ṼI as n → ∞ for all

I ⊂ {1, . . . , d}.

Proof. We apply Theorem 2.1 (ii) of Politis and Romano [1994] to the statistics(√
kn

(
M̃n,kn,I(1{i}, 1) + M̃n,kn,I(1{i′}, 1)

2P̃n,kn,I

− 1

2
(c(1{i},1I ,1, 1) + c(1{i′},1I ,1, 1))

))
remarking that the limiting centered Gaussian distribution with variance

σ̃2
i,i′ =

{
ṼI,i,i′ if i = i′ ,

ṼI,i,i′/2 + ṼI,i,i′/4 + ṼI,i,i′/4 else ,
(40)

is continuous for all i, i′ ∈ I. Then L
(m)
n,i,i′(x) converges in probability to the limiting distribu-

tions, Li,i′(x) say, uniformly for all x ∈ R. The uniform convergence ensures the convergence
in probability of the quantiles q

(m)
j,i,i′ towards σ̃i,i′qj for all i, i′ ∈ I and j = 1, 3. Thus σ̃

(m)
i,i′

converges in probability to σ̃i,i′ and Ṽ
(m)
I,n to ṼI as well because of the expression (40) of the

limiting variances σ̃2
i,i′ , i, i

′ ∈ I.
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Note that, by construction, the estimated matrices Ṽ
(m)
I,n might be indefinite, which impedes

the minimization of the quadratic form vI 7→ Ṽ
(m)
I,n (vI) on ∂B+

1 (0). In practice, it turns out to

define σ̃(m)
i,i′ as the sample variance of the bootstrap sample. Provided that the same subsamples

(X
(j)
1 , . . . ,X

(j)
m ), 1 ≤ j ≤ Nm, are used for each pair (i, i′) ∈ {1, . . . , d}2, this guarantees that

the corresponding matrix Ṽ (m)
n,I is positive semi-definite. Numerical experiments illustrate that

the resulting estimator performs as expected (see Section 5.1) in practice. However, a rigorous
proof of weak consistency of Ṽ (m)

n,I would require convergence of second order moments of the
bootstrapped distribution to the corresponding moments of the Gaussian limits, which we
cannot show without imposing strong additional assumptions.

5. Numerical illustrations

5.1. Simulated example I: Hüsler-Reiss distribution

As a first simulated example, we consider a popular class of multivariate extreme value models,
the Hüsler-Reiss distribution [Hüsler and Reiss, 1989] whose cumulative distribution is given
by

P(X1 ≤ x1, . . . , Xd ≤ xd) = exp

(
−E

[
max

i=1,...,d

1

xi
eWi−Var(Wi/2)

])
, x1, . . . , xd > 0,

where (W1, . . . ,Wd) is a centered Gaussian random vector. By definition, the random vector
X is max-stable with unit Fréchet margins. Note that its distribution is uniquely determined
by the variogram matrix

Γ = (Γij)1≤i,j≤d, Γij = Var(Wi −Wj).

5.1.1. Bivariate Case

In the bivariate case, the extremal coefficient of the vector (X1, X2) is of the form

τ = τ{1,2} = 2Φ(
√
Γ12/2) ∈ [1, 2],

i.e. the model can interpolate between full dependence (Γ12 = 0) and asymptotic independence
(Γ12 → ∞).
We compare the four types of estimators for τ , namely the benchmark estimators and the
moment-based estimators, both with known and unknown margins as described in Sections
4.1 and 4.2, respectively. More precisely, in the case of known margins where we can work
with standardized observations X∗1 ,X∗2 , . . . ,X∗n and use

• the benchmark estimator
1

τ̂BK
I,n (v)

=
P̂

(conv)
n,u,{1,2}(v)

Pn,u,{1,2}
;

• the moment-based plug-in estimator

1

τ̂MK
I,n

=
M̂n,un,{1,2}(v̂

∗
n,un,{1,2})

P̂n,un,{1,2}

based on the estimated “optimal” weights v̂∗n,un,{1,2};
• and, for comparison, the perfect moment-based estimator

1

τ̂MK
I,n,opt

=
M̂n,un,{1,2}(v

∗)

P̂n,un,{1,2}

with theoretically optimal weight v∗.
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Note that, for simulated data from the bivariate Hüsler–Reiss model, no standardization is
required as the (unit Fréchet) marginal distributions are already identical and regularly varying
with index α = 1. From Example 14, it can be seen that the variance minimizing linear
combination is unique whenever 0 < Γ12 < ∞ and is given by v∗ = (1/2, 1/2). As discussed
in Section 4.1, the asymptotic distribution of the benchmark estimator does not depend on
the choice of vI ∈ ∂B+

1 (0). Here we choose τ̂BK
I,n = τ̂BK

I,n (v∗) as benchmark.

Even though the margins are known, it might sometimes be beneficial to work with the rank
transformations designed for the case of unknown margins as discussed in Section 4.2. Thus,
we also consider

• the “benchmark” estimator

1

τ̂BU
I,n

=
1

n
k P̃n,k,{1,2}

=
1

L̂k,n(1)
;

• the moment-based plug-in estimator

1

τ̂MU
I,n

=
M̃n,k,{1,2}(ṽn,{1,2}, 1)

P̃n,k,{1,2}

based on estimated “optimal” weights ṽn,{1,2};
• and, again, the perfect moment-based plug-in estimator

1

τ̂MU
I,n,opt

=
M̃n,k,{1,2}(ṽ, 1)

P̃n,k,{1,2}

with theoretically optimal weight ṽ.

From symmetry arguments, it can be easily seen that the “optimal” linear combination (if
unique) is necessarily given by ṽ = (1/2, 1/2).
We perform a simulation study to compare the estimators in a setting with finite sample sizes.
Here, we consider three different scenarios:

• Scenario 1: Γ12 = 0.1 (strong dependence; τ ≈ 1.13)
• Scenario 2: Γ12 = 2 (medium dependence; τ ≈ 1.52)
• Scenario 3: Γ12 = 10 (weak dependence; τ ≈ 1.89)

In each of these scenarios, we consider n = 5000 independent observations of X = (X1, X2)
and apply the estimators with a threshold un = Φ−11 (0.98) and kn = 0.02 · n, respectively.
For the bootstrap procedure that is needed to estimate the optimal variance, we choose the
subsample size mn = 0.25 · n and Nm = n. We determine the biases and standard deviations
by 500 repetitions.
The results are displayed in Table 1. First, it can be seen that, at least in the cases of strong
and moderate dependence, all the biases are much smaller than the standard deviations and
are therefore negligible. Additional calculations of the asymptotic variances AVarBK , AVarMK

opt ,
AVarBU and AVarMU

opt according to the theoretical results given in Sections 4.1 and 4.2, re-
spectively, show that the empirical standard deviations are very close to their theoretical
counterparts even though the bootstrap procedure tends to slightly underestimate the true
asymptotic standard deviation of the moment-based estimator in case of unknown margins
(by roughly 10%). In particular, we obtain the expected ordering of the four methods if the
optimal weights for the moment-based estimators are chosen:

AVarMK
opt < AVarMU

opt < AVarBU < AVarBK .

This ordering is kept if we replace the theoretically optimal weights by the estimated ones;
in our simulation study the variances of the plug-in moment estimators are almost identical
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Γ12 = 0.1 (τ ≈ 1.13, strong dependence)

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂MK
I,n,opt 1/τ̂BU

I,n 1/τ̂MU
I,n 1/τ̂MU

I,n,opt

bias 0.003 0.001 0.000 0.019 -0.001 0.001
std. deviation 0.030 0.007 0.007 0.019 0.012 0.012

Γ12 = 2 (τ ≈ 1.52, moderate dependence)

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂MK
I,n,opt 1/τ̂BU

I,n 1/τ̂MU
I,n 1/τ̂MU

I,n,opt

bias 0.009 0.005 0.004 0.010 0.004 0.004
std. deviation 0.040 0.010 0.010 0.020 0.016 0.016

Γ12 = 10 (τ ≈ 1.89, weak dependence)

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂MK
I,n,opt 1/τ̂BU

I,n 1/τ̂MU
I,n 1/τ̂MU

I,n,opt

bias 0.022 0.014 0.014 0.010 0.013 0.013
std. deviation 0.038 0.006 0.006 0.009 0.007 0.007

Table 1
Results for 500 simulations from the max-stable Hüsler–Reiss models in the three scenarios specified above

with n = 5000, k = 100 and un = Φ−1
1 (1− k/n) = Φ−1

1 (0.98).
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Asymptotic Standard Deviations for the Moment−Based Estimators as Function of v

Fig 1. The asymptotic standard deviations
√

V ((v, 1− v)) (solid lines) and
√

Ṽ ((v, 1− v)) (dashed line) of
the moment-based estimators with known and unknown margins, respectively, for each of the three scenarios
reflecting strong, moderate and weak dependence (from left to right).

to the ones with optimal wights v∗ and ṽ, which is well in line with the theoretical results.
However, it has to be noted that taking non-optimal weights might result in significantly
larger variances – in particular in the case of known margins. This is demonstrated in Figure 1
where the asymptotic variance is plotted as a function of the weight vector v. Compared to the
case of known margins, the relative changes of the asymptotic variance for the moment-based
estimator for unknown margins turn out to be rather small.
As mentioned at the beginning of the section, there is a one-to-one correspondence between
τ = τ{1,2} and Γ12 via τ = 2Φ(

√
Γ12/2) or, equivalently, Γ12 =

[
2Φ−1

(
τ
2

)]2. Thus, we obtain
a plugin estimator Γ̂m

12,n from τ̂m
I,n via

Γ̂m
12,n =

[
2Φ−1

(
τ̂m
I,n

2

)]2
, m ∈ {BK,MK,BU,MU}.

By the delta method, the asymptotic variances are expected to be ordered in the same way
as the variances for the estimators for τ . To confirm this behaviour also in a finite sample
setting, we apply the plugin estimators to the data from the simulation study above. The
results are displayed in Table 2. Similarly to the study above, in the cases of strong and
moderate dependence, the bias is negligible and the standard deviations show the expected
ordering. In the case of weak dependence, the biases of the of the estimators for Γ12 are even
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Γ̂BK
12,n Γ̂MK

12,n Γ̂BU
12,n Γ̂MU

12,n

Γ12 = 0.1
bias 0.007 -0.001 -0.016 0.004
std. deviation 0.069 0.013 0.036 0.025

Γ12 = 2
bias -0.001 -0.008 -0.016 -0.006
std. deviation 0.889 0.207 0.381 0.323

Γ12 = 10
bias NA -2.123 -1.457 -1.983
std. deviation NA 0.760 1.413 0.956

Table 2
Results for the plugin estimators for Γ12 for 500 simulations from the max-stable Hüsler–Reiss models in the

three scenarios specified above with n = 5000, k = 100 and un = Φ−1
1 (1− k/n) = Φ−1

1 (0.98).

Γ̂BU
12,n Γ̂MU

12,n

Γ12 = 0.1
bias -0.011 0.005
std. deviation 0.037 0.024

Γ12 = 2
bias -0.071 0.081
std. deviation 0.383 0.333

Γ12 = 10
bias -0.720 0.317
std. deviation 1.580 1.378

Table 3
Results for the plugin estimators for Γ12 for 500 simulations from the Hüsler–Reiss–Pareto models in the

three scenarios specified above with n = 5000, k = 100 and un = Φ−1
1 (1− k/n) = Φ−1

1 (0.98).

more pronounced then the biases of the estimators for 1/τ . In particular, in some simulations,
the benchmark estimator τ̂MK

I,n even exceeds the theoretical maximum of 2 – consequently, the
corresponding value for Γ12 cannot be calculated, i.e., we obtain invalid estimates. For the
other three estimators, the standard deviations again exhibit the expected ordering.
Here, it is important to note that neither the benchmark nor the moment-based estimator
are restricted to the setting of limiting multivariate extreme value distributions, but allow for
estimation of the extremal coefficients, or, equivalently, the estimation of the corresponding
dependence parameters, for any distribution from the max-domain of attraction. Thus, we
duplicate the setting of the simulation study above simulating from the Hüsler–Reiss–Pareto
distributions from the max-domain of attraction instead. As the marginal distributions are no
longer unit Fréchet, but only asymptotically equivalent to that distribution, we do not consider
the estimators for known margins, but only their variants for the case of unknown margins.
The results are displayed in Table 3. While the results for the cases of strongly and moderately
dependent data are very similar to the max-stable setting, the biases in the weakly dependent
case are much smaller now, coming with the price of slightly larger standard deviations. This
phenomenon can be explained by the fact that the angular part of a Hüsler–Reiss–Pareto
random vector exactly follows the spectral measure, while the spectral measure still provides
an approximation in the max-stable setting. In any case, the newly developed moment-based
estimators provide smaller variances than the corresponding benchmark estimators.

5.1.2. Multivariate case

We repeat our study for the multivariate case. Here, we consider the case of a fully symmetric
variogram matrix

Γ =



0 1 . . . . . . 1

1 0
. . .

...
...

. . . . . . . . .
...

...
. . . 0 1

1 . . . . . . 1 0


∈ Rd×d.

We consider three different scenarios with dimensions d = 3, d = 5 and d = 8, respectively.
For each of these scenarios, we compare the same six estimators as in the previous subsection.
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d = 3 :

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂MK
I,n,opt 1/τ̂BU

I,n 1/τ̂MU
I,n 1/τ̂MU

I,n,opt

bias 0.006 0.003 0.002 0.010 0.002 0.001
std. deviation 0.038 0.010 0.010 0.024 0.020 0.020

d = 5 :

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂MK
I,n,opt 1/τ̂BU

I,n 1/τ̂MU
I,n 1/τ̂MU

I,n,opt

bias 0.008 0.003 0.002 0.010 0.002 0.003
std. deviation 0.034 0.009 0.009 0.022 0.021 0.022

d = 8 :

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂MK
I,n,opt 1/τ̂BU

I,n 1/τ̂MU
I,n 1/τ̂MU

I,n,opt

bias 0.008 0.004 0.003 0.009 0.000 0.001
std. deviation 0.034 0.007 0.007 0.021 0.023 0.023

Table 4
Simulation results for the three multivariate scenarios specified above with n = 5000, k = 100 and

un = Φ−1
1 (1− k/n) = Φ−1

1 (0.98).

Again we can argue that, for symmetry reasons, the optimal weight vector, if unique, is
necessarily given by v∗ = ṽ = (1/d, . . . , 1/d). The results for n = 5000, k = 100 and 500
repetitions, i.e., the same setup as in the bivariate case, are displayed in Table 4.
The ordering of the estimators is similar to the bivariate setting with the exception that the
asymptotic variances of the estimators with unknown margins are very close to each other:

AVarMK
opt < AVarMU

opt ≈ AVarBU < AVarBK .

Again, the observed standard deviations correspond well to theoretical ones apart from the
fact that the asymptotic standard deviation of the moment-based estimator for the case of
unknown margins is again slightly underestimated (again by roughly 10%) by the bootstrap
procedure with mn = 0.2 · n and Nm = n.

5.2. Simulated example II: Multivariate Gaussian distribution

In order to demonstrate the performance of our estimators in the case of asymptotic indepen-
dence, we also consider the case that X follows a distribution with unit Fréchet margins, but
a multivariate Gaussian copula. We consider the symmetric case with

1 ρ . . . . . . ρ

ρ 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 ρ

ρ . . . . . . ρ 1


∈ Rd×d

being the covariance matrix of the underlying Gaussian copula. Thus, we obtain the theoretical
extremal coefficient τ{1,...,d} = d whenever ρ < 1. Here, we choose ρ = 0.5 and consider the 3-,
5- and 8-dimensional case, respectively. In the case of asymptotic independence, the matrices
V and Ṽ might be degenerate, which hampers the optimization of the asymptotic variance.
Therefore, we just fix the weights to the default choice v∗ = ṽ = (1/d, . . . , 1/d). The results
for n = 5000, k = 100 and 500 repetitions are displayed in Table 5.
Here, it is important to note that all the estimators exhibit a significant bias which can
be explained by the fact that the true value is on the boundary of the estimation interval.
However, it can be seen that the variance of the moment estimators is still smaller than the
one of the benchmark estimators, which indicates that the moment estimators still show a
reasonably good performance in the case of asymptotic independence.
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d = 3 :

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂BU
I,n 1/τ̂MU

I,n

bias 0.087 0.075 0.049 0.071
std. deviation 0.017 0.005 0.008 0.005

d = 5 :

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂BU
I,n 1/τ̂MU

I,n

bias 0.084 0.077 0.047 0.072
std. deviation 0.013 0.003 0.005 0.003

d = 8 :

1/τ̂BK
I,n 1/τ̂MK

I,n 1/τ̂BU
I,n 1/τ̂MU

I,n

bias 0.072 0.071 0.041 0.067
std. deviation 0.009 0.002 0.003 0.002

Table 5
Simulation results for the three asymptotically independent multivariate scenarios specified above with

n = 5000, k = 100 and un = Φ−1
1 (1− k/n) = Φ−1

1 (0.98) based on Gaussian copulas with ρ = 0.5.

region based on different tail indices based on single tail index
northwest 1.89 (0.020) 1.85 (0.018)
south 1.98 (0.019) 1.89 (0.018)
northeast 1.95 (0.020) 1.95 (0.019)

Table 6
Estimated extremal coefficients for extreme precipitation within each region. The estimated standard

deviations via bootstrap are given in brackets.

5.3. Application to Precipitation Data in France

We apply our estimators to estimate extremal dependence among different weather stations
in France recording heavy precipitation. More precisely, we use daily precipitation data for
the years 1976 to 2015 at nine weather stations in France, grouped into three regions (north-
west, south and northeast) consisting of three stations per region. This dataset has also been
analyzed in [Buriticá and Naveau, 2021]. In order to avoid marginal standardization we make
use of our flexible moment estimator for unknown margins τ̂MU

I,n . While this estimator allows
for varying tail behaviour in the different components of the random vector X, in particular
for different tail indices, we also consider a modified version τ̃MU

I,n based on the assumption of
a single tail index:

τ̃MU
I,n :=

n−1
∑n

l=1

(
v⊤I

(Xl/Xk:n)
α̂

ℓI((Xl/Xk:n)α̂)

)p
1{ℓI(Xl/Xk:n) > 1}

n−1
∑n

l=1 1{ℓI(Xl/Xk:n) > 1}
,

using a unique tail index estimator over each region I

1

α̂n,k
=

n−1
∑n

l=1 log (ℓI(Xl/Xk:n))1 {ℓI(Xl/Xk:n) > 1}
n−1

∑n
l=1 1{ℓI(Xl/Xk:n) > 1

.

We first consider each region separately, i.e. we consider three different 3-dimensional vectors
X(northwest), X(south) and X(northeast). In order to avoid effects of temporal clustering, we
consider block maxima over 5 days leading to a (nearly uncorrelated) time series of 720 obser-
vations at each station. For both estimators, we choose k = 40. The results for the estimated
extremal coefficients within each region are displayed in Table 6.
It can be seen that there is moderate dependence within each region with extremal indices
between 1.85 and 2 given a theoretical range of [1, 3]. Interestingly, for both regions in the
north, there are only little differences between the two estimators, while there are larger differ-
ences in the south. There the use of a single tail index would yield spurious dependence among
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the stations and reduce artificially the estimated tail dependence coefficient. The estimated
standard deviations of both estimators are similar.

Furthermore, we consider extremal dependence across the different regions. To this end, we
consider the vector Y = (max{X(northwest)},max{X(south)},max{X(northeast)}) ∈ R3 and
estimate the extremal coefficient using the same estimators as above. This results in estimates
of 2.62 (0.007) and 2.60 (0.007), respectively, showing that there is only very little dependence
across the different regions.

6. Conclusion

We show some benefits of estimating extremal properties with moments of convex combina-
tion of spectral components. An analysis of the asymptotic variances yields a natural strategy
consisting in plugging in the asymptotically optimal weights. This methodology is shown to ef-
ficiently reduce the variance when estimating the extremal coefficient by first order moments.
As demonstrated in the case of Hüsler–Reiss models, for many popular parametric models
in multivariate extremes there is a one-to-one correspondence between the extremal coeffi-
cients and the parameters. Consequently, our approach will result in more accurate parameter
estimation for these models.
For more sophisticated parametric models, moments of higher orders E[(vTI ΘI)p], p ≥ 1, are
also meaningful and can be used for asserting other properties of the spectral distribution.
They represent interesting alternatives to the stable tail dependence function L as, for small
p, such functions of v have nice regularity properties (constant for p = 1, quadratic for p = 2)
that have proven to be very useful for inference purpose.
We focus on reducing the variance under ad-hoc assumptions implying bias negligibility. In our
numerical illustrations, the biases of our procedures were empirically small. A systematic bias
analysis and potential bias reduction for this new class of estimators should be considered
in the future. Remind that, in the case of unknown margins, our procedure requires some
variance estimation. To this end, we propose a subsampling step which could also be useful
for other inference methods in extremes. In our simulation study, we found empirically that a
subsampling ratio of 1/4 provides sufficiently accurate estimates of the asymptotic standard
deviation. Larger ratios lead to significant underestimation of the standard deviation. A more
detailed analysis of this phenomenon in a general setting, however, is beyond the scope of this
paper.
Finally the first two steps of our procedure in the unknown margin settings are specific to
tail-equivalence of transformed margins X∗i = riX

αi
i , 1 ≤ i ≤ d. A one-step procedure based

on rank transforms similar to the one of Einmahl et al. [2001] could be investigated. However
the ratio-type statistics involved in moment estimators have not yet been proven to relate well
with rank transforms.
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Appendix A: Proof of Theorem 5

In order to prove functional convergence, we apply the functional Central Limit Theorem
2.11.9 in Van der Vaart and Wellner [1996]. Let us first check the convergence of the covari-
ances.
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For v ∈ ∂B+
1 (0), (s,β) ∈ A′δ and p ∈ K0, define the function

fv,s,β,p : (0,∞)d → [0,∞), fv,s,β,p(x) =

(
v⊤
(
s ◦ x
∥s ◦ x∥

)1/β
)p

1{∥s ◦ x∥ > 1}.

Define the function space F = {fv,s,β,p : v ∈ ∂B+
1 (0), (s,β) ∈ A′δ, p ∈ K0} equipped with

the semimetric ρ(fv,s,β,p1
, fw,t,γ,p2

) = max{∥v−w∥, ∥s−t∥, ∥β−γ∥, |p1−p2|}. Furthermore,
for l = 1, . . . , n, n ∈ N, let

Znl(f) =

√
a∗(un)

n
f(u−1n X∗l ), f ∈ F .

Then, each element of the sequence ({Gn(v, s,β, p); v ∈ ∂B+
1 (0), (s,β) ∈ A′δ, p ∈ K0})n∈N

can be rewritten as

{Gn(v, s,β, p)}v∈∂B+
1 (0), (s,β)∈A′

δ, p∈K
=
{∑n

l=1
(Znl(f)− EZnl(f))

}
f∈F

, n ∈ N .

Analogously to the results from Prop. 4, we can calculate

Cov
(∑n

l=1
Znl(fv,s,β,p1

),
∑n

l=1
Znl(fw,t,γ,p2

)
)

= a∗(un)E
[
fv,s,β,p1(u

−1
n X∗)fw,t,γ,p2(u

−1
n X∗)

]
− a∗(un)E[fv,s,β,p1

(u−1n X∗)]E[fw,t,γ,p2
(u−1n X∗)]

= E

[(
v⊤
(
s ◦X∗

∥s ◦X∗∥

)1/β
)p1

(
w⊤

(
t ◦X∗

∥t ◦X∗∥

)1/γ
)p2 ∣∣∣ ∥s ◦X∗∥ ∧ ∥t ◦X∗∥ > un

]
· a∗(un)P (∥s ◦X∗∥ ∧ ∥t ◦X∗∥ > un)

− 1√
a∗(un)

E

[(
v⊤
(
s ◦X∗

∥s ◦X∗∥

)1/β
)p1 ∣∣∣ ∥s ◦X∗∥ > un

)
· a∗(un)P (∥s ◦X∗∥ > un)

· 1√
a∗(un)

E

[(
w⊤

(
t ◦X∗

∥t ◦X∗∥

)1/γ
)p2 ∣∣∣ ∥t ◦X∗∥ > un

)
· a∗(un)P (∥t ◦X∗∥ > un) .

This sequence of covariances converges to, as n → ∞,

E
[(
v⊤
(

s◦Θ
∥s◦Θ∥

)1/β)p1
(
w⊤

(
t◦Θ
∥t◦Θ∥

)1/γ)p2

(∥s ◦Θ∥ ∧ ∥t ◦Θ∥)
]

E [∥s ◦Θ∥ ∧ ∥t ◦Θ∥]
· τ · E [∥s ◦Θ∥ ∧ ∥t ◦Θ∥]

= τ · E

[(
v⊤
(
s ◦Θ
∥s ◦Θ∥

)1/β
)p1

(
w⊤

(
t ◦Θ
∥t ◦Θ∥

)1/γ
)p2

(∥s ◦Θ∥ ∧ ∥t ◦Θ∥)

]
.

Furthermore, as supx∈(0,∞)d |f(x)| ≤ 1 for all f ∈ F , we have that

∥Znl∥F = sup
f∈F

|Znl(f)| ≤
√

a∗(un)

n
a.s.

for all l = 1, . . . , n and n ∈ N.

Consequently, we check the Lindeberg condition: for any k ∈ N, we have

lim
n→∞

n∑
i=1

E[∥Zni∥kF1{∥Zni∥F > η}] ≤ lim
n→∞

n

(
a∗(un)

n

)k/2

1{
√

a∗(un)/n > η} = 0, (41)
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where we used that, for any η > 0, eventually a∗(un)/n < η2 since limn→∞ n/a∗(un) = ∞.
Making use of (41) for k = 2 one can easily see that, for all ai, . . . , am ∈ R, f1, . . . , fm ∈ F
and m ∈ N, the triangular arrays (

∑m
i=1 aiZnl(fi))1≤l≤n,n∈N satisfy a Lindeberg condition

and, therefore, Gn converges to G in terms of finite-dimensional distributions. Setting k = 1
in (41) gives the Lindeberg type condition of Theorem 2.11.9 in Van der Vaart and Wellner
[1996].

We further check the equi-continuity condition, i.e. the second condition of that theorem.
To this end, we consider two elements fv(1),s(1),β,p ∈ F and fv(2),s(2),γ,p ∈ F with distance
max{∥v(1) − v(2)∥, ∥s(1) − s(2)∥, ∥β − γ|} < η for some 0 < η < δ. Notice that for sufficiently
small η, we have that s(1) and s(2) necessarily belong to Aδ,I for the same non-empty index set
I, i.e. that the same components of both vectors are different from zero. Moreover we assume
with no loss of generality that there exists some y ∈ Aδ,I satisfying s

(1)
i , s

(2)
i ∈ [yi, yi + η] for

all i ∈ I.
We distinguish three cases to obtain an upper bound for |fv(1),s(1),β(1),p(x)−fv(2),s(2),β(2),p(x)|:

1. ∥s(1) ◦ x∥ ≤ 1 and ∥s(2) ◦ x∥ ≤ 1:
In this case, we have

|fv(1),s(1),β(1),p(x)− fv(2),s(2),β(2),p(x)| = |0− 0| = 0.

2. ∥s(1) ◦ x∥ ≥ 1 and ∥s(2) ◦ x∥ ≥ 1:
In this case, both the indicator functions in fv(1),s(1),β(1),p(x) and in fv(2),s(2),β(2),p(x)

are equal to 1. The fact that bp − ap =
∫ b

a
pxp−1 dx ≤ p(b − a) for 0 ≤ a ≤ b ≤ 1 and

p ∈ N0, leads to the bound

|fv(1),s(1),β(1),p(x)− fv(2),s(2),β(2),p(x)| ≤ p · |fv(1),s(1),β(1),1(x)− fv(2),s(2),β(2),1(x)|.

Thus, with v = v(1) ∧ v(2), s = s(1) ∧ s(2) and β = β(1) ∧ β(2) denoting componentwise
minima and the fact that s+ η1I ≤ (1 + (1 + δ)η)s for s ∈ Aδ,I , we obtain

|fv(1),s(1),β(1),p(x)− fv(2),s(2),β(2),p(x)|

≤ p(v + η1I)
⊤

[(
(s+ η1I) ◦ x

∥s ◦ x∥

)1/(β+η1)

∨
(
(s+ η1I) ◦ x

∥s ◦ x∥

)1/β
]

− pv⊤

[(
s ◦ x

∥(s+ η1I) ◦ x∥

)1/β

∧
(

s ◦ x
∥(s+ η1I) ◦ x∥

)1/(β+η1)
]

≤ p(v + η1I)
⊤

[(
s ◦ x

∥s ◦ x∥
(1 + (1 + δ)η)

)1/(β+η1)

∨
(
s ◦ x
∥s ◦ x∥

(1 + (1 + δ)η)

)1/β
]

− pv⊤

[(
s ◦ x
∥s ◦ x∥

1

1 + (1 + δ)η

)1/β

∧
(
s ◦ x
∥s ◦ x∥

1

1 + (1 + δ)η

)1/(β+η1)
]

≤ p(v + η1)⊤
(
s ◦ x
∥s ◦ x∥

)1/(β+η1)

(1 + (1 + δ)η)1+δ − pv⊤
(
s ◦ x
∥s ◦ x∥

)1/β
1

(1 + (1 + δ)η)1+δ

≤ pη1⊤1I(1 + (1 + δ)η)1+δ

+ pv⊤1I max
i∈I

((
sixi

∥s ◦ x∥

)1/(β+η1)

(1 + (1 + δ)η)1+δ −
(

sixi

∥s ◦ x∥

)1/β
1

(1 + (1 + δ)η)1+δ

)
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≤ pηd(1 + (1 + δ)η)1+δ + pmax
i∈I

(
sixi

∥s ◦ x∥

)1/(β+η1)

·
[
(1 + (1 + δ)η)1+δ − 1

(1 + (1 + δ)η)1+δ

]
+ pmax

i∈I

((
sixi

∥s ◦ x∥

)1/(β+η1)

−
(

sixi

∥s ◦ x∥

)1/β
)

· 1

(1 + (1 + δ)η)1+δ

≤ pd(1 + (1 + δ)η)1+δη + p
(1 + (1 + δ)η)2+2δ − 1

(1 + (1 + δ)η)1+δ

+ pmax
i∈I

((
sixi

∥s ◦ x∥

)1/(β+η1)

−
(

sixi

∥s ◦ x∥

)1/β
)

≤ pd(1 + (1 + δ)η)1+δη + p2(1 + δ)2(1 + (1 + δ)η)δη + p(1 + δ)2
[
supz∈[0,1] log(z)z

1/(1+δ)
]
η.

Bounding p by pmax = maxp∈K0
p and noting that supz∈[0,1] log(z)z1/(1+δ) < ∞, we have

an overall bound of the form Cη some constant C = C(δ, pmax, d) > 0 for sufficiently
small η.
This case occurs only if (1 + δ)∥x∥ > 1 as s(1) and s(2) belong to Aδ,I .

3. min{∥s(1) ◦ x∥, ∥s(2) ◦ x∥} ≤ 1 < max{∥s(1) ◦ x∥, ∥s(2) ◦ x∥}:
In this case one of the functions fv(1),s(1),β(1),p(x) and fv(2),s(2),β2,p(x) equals zero, while
the other one is bounded by 1. Consequently, noting that this case does not appear if
s(1) = s(2), we have

|fv(1),s(1),β(1),p(x)− fv(2),s(2),β(2),p(x)|

≤ 1

{⋃
i∈I,s(1)i ̸=s

(2)
i

{un/(s
(1)
i ∨ s

(2)
i ) ≤ xi < un/(s

(1)
i ∧ s

(2)
i )}

}
. (42)

As, by construction, yi ≤ min{s(1)i , s
(2)
i } ≤ max{s(1)i , s

(2)
i } ≤ yi+ η this case occurs only

if yixi ≤ 1 < (yi + η)xi for at least one i ∈ I.

Combining the three cases, we obtain the following uniform bound on ∥v(1) − v(2)∥ < η,
∥β(1) − β(2)∥ < η and s

(1)
i , s

(2)
i ∈ [yi, yi + η], i ∈ I, for some y ∈ Aδ,I :

(Znl(fv(1),s(1),β(1),p)− Znl(fv(2),s(2),β2,p))
2

≤ a∗(un)

n
C2 η2 1

{
∥X∗l ∥ > (1 + δ)−1un}

}
+

a∗(un)

n
· 1
{⋃

i∈I
{un(yi + η)−1 ≤ X∗li < uny

−1
i }

}
=: Q

(1)
nl (η) +Q

(2)
nl (η,y) . (43)

In the following, we will consider the two summands separately. From the definition of Q(1)
nl

and regular variation of the function a∗, it directly follows that

n∑
l=1

E
[
Q

(1)
nl (η)

]
≤ a∗(un)C

2 η2 P
(
∥X∗∥ > (1 + δ)−1un

)
∼ τ

a∗(un)

a∗((1 + δ)−1un)
C2 η2 ∼ τ (1 + δ)C2 η2 , n → ∞.

As τ ≤ d we obtain for n sufficiently large

n∑
l=1

E
[
Q

(1)
nl (η)

]
≤ 2 d (1 + δ)C2 η2. (44)
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For Q
(2)
nl we have that, as n → ∞,

n∑
l=1

E
[
Q

(2)
nl (η,y)

]
≤ a∗(un)

∑
i∈I

P
(
un(yi + η)−1 ≤ X∗i < uny

−1
i

)
∼
∑
i∈I

(
P(X∗i > un(yi + η)−1)

P(X∗i > un)
− P(X∗i > uny

−1
i )

P(X∗i > un)

)
.

with s(1), s(2) in Aδ,I . As the function u 7→ P(X∗i > u) is regular varying with index −1
for each i = 1, . . . , d, the convergence of P(X∗i > uny)/P(X∗i > un) → y−1 is uniform in
y ∈ [(1 + δ)−1, 1 + δ], i.e. there exists a sequence of positive numbers {fn}n∈N with fn → 0
such that

(1− fn)y
−1 ≤ P(X∗i > uny)

P(X∗i > un)
≤ (1 + fn)y

−1

for all n ∈ N, i ∈ {1, . . . , d} and y ∈ [(1 + δ)−1, 1 + δ]. Thus, we obtain, as n → ∞,

sup
y∈Aδ,I

∑
i∈I

(
P(X∗i > un(yi + η)−1)

P(X∗i > un)
− P(X∗i > uny

−1
i )

P(X∗i > un)

)
≤ |I| · (1 + fn) · η + 2fn · sup

y∈Aδ,I

∑
i∈I

yi ≤ 2dη + 2dfn(1 + δ)

for sufficiently large n.
Combining the estimates obtained for Q

(1)
nl and Q

(2)
nl and denoting s(1), s(2) ∈ [y,y + η] for

s(1), s(2) ∈ Aδ,I satisfying s
(1)
i , s

(2)
i ∈ [yi, yi+η] for all i ∈ I, I uniquely determined by y ∈ Aδ,I

for any y ∈ Aδ, we obtain for n large enough

sup
y∈Aδ

n∑
l=1

E

[
sup

∥v(1)−v(2)∥<η,(s(1),s(2))∈[y,y+η]2,∥β(1)−β(2)∥<η

(Znl(fv(1),s(1),β(1),p)− Znl(fv(2),s(2),β(2),p))
2

]
≤ 2 d

(
(1 + δ)C2 η2 + η + (1 + δ)fn

)
.

Reminding that fn → 0, we obtain

sup
ρ(f,g)<ηn

n∑
l=1

E
[
(Znl(f)− Znl(g))

2
]
≤ 2 d

(
(1 + δ)C2 η2n + ηn + (1 + δ)fn

)
→ 0

as ηn → 0.
Now, we are checking the entropy condition of Theorem 2.11.9 in Van der Vaart and Wellner
[1996] by constructing and counting ε-brackets for ε > 0. To this end, for each i ∈ I and n ∈ N,
we consider the conditional distribution of un/X

∗
i | X∗i > (1 + δ)−1un which, by definition is

supported on (0, 1 + δ).

Putting all the atoms {m(i,n)
j } of mass larger than ε2/(4(1 + δ)d) separately into singletons

(there are at most 1 ≤ j ≤ ⌈4(1 + δ)d/ε2⌉ of them), the set [(1 + δ)−1, 1 + δ] \ ∪j{m(i,n)
j } can

be divided in at most ⌈4(1+ δ)d/ε2⌉ sets J (i,n)
j , ⌈4(1+ δ)d/ε2⌉+1 ≤ j ≤ 2⌈4(1+ δ)d/ε2⌉ such

that

P
(
un

X∗i
∈ J

(i,n)
j

∣∣∣∣X∗i > (1 + δ)−1un

)
≤ ε2

4(1 + δ)d
,

for ⌈4(1 + δ)d/ε2⌉ + 1 ≤ j ≤ 2⌈4(1 + δ)d/ε2⌉. Thus, denoting J
(i,n)
j = {m(i,n)

j } for any
1 ≤ j ≤ ⌈4(1 + δ)d/ε2⌉, the set Aδ ⊂ [0, 1 + δ]d can be divided into 2d⌈4(1 + δ)d/ε2⌉d sets of
the form

J = J
(n)
j1,...,jd

= J
(1,n)
j1

× J
(2,n)
j2

× . . .× J
(d,n)
jd

, 1 ≤ j1, . . . , jd ≤ 2⌈4(1 + δ)d/ε2⌉ . (45)
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Choosing n sufficiently large such that a∗(un) ≤ 2(1 + δ)P(X∗i > un(1 + δ)−1)−1 for all
i = 1, . . . , d, we obtain that

E

[
sup

s(1),s(2)∈J
a∗(un)1

{⋃
i∈I,s(1)i ̸=s

(2)
i

{un/(s
(1)
i ∨ s

(2)
i ) ≤ X∗i < un/(s

(1)
i ∧ s

(2)
i )}

}]

≤ 2(1 + δ)
∑

i∈I,ji>⌈4(1+δ)d/ε2⌉

P
(
un

X∗i
∈ J

(i,n)
ji

∣∣∣X∗i > (1 + δ)−1un

)
≤ ε2

2

Setting η0 = ε/(2C
√
d(1 + δ)), Eq. (42) and (44) imply that

E

[
sup

∥v(1)−v(2)∥<η0,∥s(1)−s(2)∥<η0,s(1),s(2)∈J,∥β(1)−β(2)∥<η0

(Znl(fv(1),s(1),β(1),p)− Znl(fv(2),s(2),β(2),p))
2

]

≤
n∑

l=1

E
[
Q

(1)
nl (η0)

]
+ E

[
sup

s(1),s(2)∈J
a∗(un)1

{⋃
i∈I,s(1)i ̸=s

(2)
i

{un/(s
(1)
i ∨ s

(2)
i ) ≤ X∗i < un/(s

(1)
i ∧ s

(2)
i )}

}]

≤ ε2

2
+

ε2

2
= ε2.

Now, we note that ∂B+
1 (0) ⊂ [0, 1]d can be covered by ⌈1/η0⌉d hyperrectangles B1, B2, . . . of

side length η0, while A′δ ⊂ [0, 1+δ]2d can be covered by at most ⌈(1+δ)/η0⌉2d hyperrectangles
C1, C2, . . . of the same side length: Combining each set Bk with each intersection of a set Cj

with each set J
(n)
j1,...,jd

from (45) extended to J
(n)
j1,...,jd

× [(1 + δ)−1, 1 + δ]d, we obtain at most

⌈
1

η0

⌉d
·
⌈
1 + δ

η0

⌉2d
·
⌈
4(1 + δ)

ε2

⌉d
=

⌈
2C
√
d(1 + δ)

ε

⌉d

·

⌈
2C
√

d(1 + δ)3

ε

⌉2d

·
⌈
4(1 + δ)

ε2

⌉d
sets of the type D

(n)
k,j,j1,...,jd

= Bk × (Cj ∩ (J
(n)
j1,...,jd

× [(1 + δ)−1, 1 + δ])) satisfying

E

 sup
(v(1),s(1),β(1),p),(v(2),s(2),β(2),p)∈D(n)

k,j,j1,...,jd

(Znl(fv(1),s(1),β(1),p)− Znl(fv(2),s(2),β(2),p))
2

 ≤ ε2.

As this number are the same for each p ∈ K0, the function space F can be partitioned into at
most

N[ ](ε,F , L2) = |K0|

⌈
2C
√
d(1 + δ)

ε

⌉d

·

⌈
2C
√

d(1 + δ)3

ε

⌉2d

·
⌈
4(1 + δ)

ε2

⌉d
∈ O(ε−5d)

ε-brackets. Consequently, ∫ εn

0

√
logN[ ](ε,F , L2) dε → 0

as εn → 0. Now, weak convergence follows from Theorem 2.11.9 in Van der Vaart and Wellner
[1996].

Appendix B: Proof of Cor. 6

From Thm. 5 and Eq. (27), we deduce that{√ n

a∗(un)

(
a∗(un)M̂n,un(v, s,β, p)− τE

[(
v⊤
( s ◦Θ
∥s ◦Θ∥

)1/β)p
∥s ◦Θ∥

])}
→ G (46)
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weakly in ℓ∞(∂B+
1 (0)×A′δ × (K ∪ {0})) as n → ∞.

For the case p = 0 where M̂n,un
(v, s,β, 0) = P̂n,un

(s), we can use the monotonicity of P̂n,un

to conclude that, for all s ∈ Aδ,I ,

a∗(un)P̂n,un,ℓ(s) ≥ a∗(un)P̂n,un,ℓ((1 + δ)−11I) →p τ · E(∥(1 + δ)−1 ·Θ∥) = τI(1 + δ)−1,

due to Eq. (13). Thus, for any ε ∈ (0, τI(1 + δ)−1), we have

lim
n→∞

P(a∗(un)P̂n,un
(s) > ε for all s ∈ Aδ,I) (47)

≥ lim
n→∞

P(a∗(un)P̂n,un
((1 + δ)−11I) > ε) = 1.

This can be strengthened to

lim
n→∞

P(a∗(un)P̂n,un
(s) > ε for all s ∈ Aδ) = 1

as they are only finitely many ∅ ≠ I ⊂ {1, . . . , d}. This implies that, for p = 0 in Eq. (46), the
term a∗(un)M̂n,un

(v, s,β, 0) = a∗(un)P̂n,un
(s) may be replaced by the pointwise maximum

ε ∨ {a∗(un)P̂n,un(s)}. As the map

ϕ : ℓ∞(∂B+
1 (0)×A′δ)×

(
ℓ∞(∂B+

1 (0)×A′δ) ∩ [ε,∞)∂B
+
1 (0)×A′

δ

)
→ ℓ∞(∂B+

1 (0)×A′δ),

ϕ(f, g)(v, s,β) = f(v, s,β)/g(v, s,β)

is Hadamard-differentiable [cf. Lemma 3.9.25 in Van der Vaart and Wellner, 1996], weak
convergence of the process({√

n

a(un)

(a∗(un)M̂n,un
(v, s,β, p)

ε ∨ {a∗(un)P̂n,un(s)}
− c(v, s,β, p)

)
;v ∈ ∂B+

1 (0), (s,β) ∈ A′δ, p ∈ K

})
n∈N

to G̃ is obtained by the functional delta method [cf. Theorem 3.9.4 in Van der Vaart and
Wellner, 1996, for instance] with covariance of the form

Cov(G̃(v, s,β, p1), G̃(w, t,γ, p2)) (48)

=
E
[(
v⊤
(

s◦Θ
∥s◦Θ∥

)1/β)p1
(
w⊤
(

t◦Θ
∥t◦Θ∥

)1/γ)p2
(∥s ◦Θ∥ ∧ ∥t ◦Θ∥)

]
τ · E [∥s ◦Θ∥] · E [∥t ◦Θ∥]

−
E
[(
v⊤
(

s◦Θ
∥s◦Θ∥

)1/β)p1∥s ◦Θ∥
]
· E
[(
w⊤
(

t◦Θ
∥t◦Θ∥

)1/γ)p2
(
∥s ◦Θ∥ ∧ ∥t ◦Θ∥

)]
τ · (E [∥s ◦Θ∥])2 · E [∥t ◦Θ∥]

−
E
[(
v⊤
(

s◦Θ
∥s◦Θ∥

)1/β)p1
(
∥s ◦Θ∥ ∧ ∥t ◦Θ∥

)]
· E
[(
w⊤
(

t◦Θ
∥t◦Θ∥

)1/γ)p2∥t ◦Θ∥
]

τ · E [∥s ◦Θ∥] · (E [∥t ◦Θ∥])2

+
E
[(
v⊤
(

s◦Θ
∥s◦Θ∥

)1/β)p1∥s ◦Θ∥
]
· E
[(
w⊤
(

t◦Θ
∥t◦Θ∥

)1/γ)p2∥t ◦Θ∥
]
· E [∥s ◦Θ∥ ∧ ∥t ◦Θ∥]

τ · (E [∥s ◦Θ∥])2 · (E [∥t ◦Θ∥])2
.

Using again Eq. (47), the assertion follows.

Appendix C: Proof of Thm. 8

Analogously to Cor. 6, We first show a functional limit theorem for the estimator L̂n,u(s)/P̂n,un
(s)

based on normalized observations X∗i .



/Estimation of the Spectral Measure of Regularly Varying Random Vectors 35

Proposition 21. Let the assumptions of Thm. 5 hold and assume that there exists some δ > 0
such that Eq. (31) is satisfied and Eq. (27) holds for p = 0. Then, the sequence of processes
({H̃n(s) : s ∈

⋃d
i=1 Aδ,{i}})n∈N with

H̃n(s) =

√
n

a∗(un)

(
L̂n,u(s)

P̂n,un(s)
− 1

αi

)
, s ∈ Aδ,{i}, 1 ≤ i ≤ d,

converges weakly in ℓ∞(Aδ) to a tight centered Gaussian process H̃ with covariance

Cov(H̃(s), H̃(t)) =
1

ταiαj
· E [(siΘi) ∧ (tjΘj)]

E [siΘi] · E [tjΘj ]
, s ∈ Aδ,{i}, t ∈ Aδ,{j}, 1 ≤ i, j ≤ d. (49)

Proof. First, we will show that the sequence of processes ({Hn(s) : s ∈
⋃d

i=1 Aδ,{i}})n∈N with

Hn(s) =

√
n

a∗(un)

(
a∗(un)L̂n,un(s)− a∗(un)E[L̂n,un(s)]

)
converges weakly in ℓ∞(

⋃d
i=1 Aδ,{i}) to a centered Gaussian process H. Analogously to the

proof of Thm. 5, we define the function space F ′ = {fs : s ∈
⋃d

i=1 Aδ,{i}} equipped with the
semi-metric ρ′(fs(1) , fs(2)) = ∥s(1) − s(2)∥ where

fs : (0,∞)d → [0,∞), fs(x) = log(∥(s ◦ x)1/α∥)1{∥s ◦ x∥ > 1}.

For l = 1, . . . , n, n ∈ N, we set

Znl(f) =

√
a∗(un)

n
f(u−1n X∗l )

such that
{Hn(s)}s∈⋃d

i=1 Aδ,{i}
=
{∑n

l=1
(Znl(f)− EZnl(f))

}
f∈F ′

.

By construction, each Hn is a centered process and it can be shown that its covariance function
converges pointwise.
Now, using the Potter bound, for every ε > 0, there exists some Cε > 0 such that

P(∥X∗I ∥ > unt)

P(∥X∗I ∥ > un)
≤ Cεt

−(1−ε), t ≥ 1,

for sufficiently large n. Thus, for every η > 0 and k ∈ {1, 2}, we obtain

n∑
l=1

E[∥Zn,l∥kF ′1{∥Zn,l∥F ′ > η}]

≤ n

(
a∗(un)

n

)k/2 ∥∥∥∥ 1α
∥∥∥∥k E [logk((1 + δ)∥X∗I ∥/un)1{log((1 + δ)∥X∗I ∥/un) >

√
n/a∗(un)η}

]
= n

(
a∗(un)

n

)k/2 ∥∥∥∥ 1α
∥∥∥∥k ∫ ∞

0

P
(
logk((1 + δ)∥X∗I ∥/un)1{log((1 + δ)∥X∗I ∥/un) >

√
n/a∗(un)η} > x

)
dx
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= n

(
a∗(un)

n

)k/2 ∥∥∥∥ 1α
∥∥∥∥k [P(∥X∗I ∥ >

un

1 + δ
exp

(√
n

a∗(un)
η

))
·
(√

n

a∗(un)
η

)k

+

∫ ∞
(
√

n/a∗(un)η)k
P
(
∥X∗I ∥ >

un

1 + δ
exp(x1/k)

)
dx

]

= n

(
n

a∗(un)

)k/2 ∥∥∥∥ 1α
∥∥∥∥k ηk ·

[
P
(
∥X∗I ∥ >

un

1 + δ
exp

(√
n

a∗(un)
η

))
+

∫ ∞
1

P
(
∥X∗I ∥ >

un

1 + δ
exp

(√
n

a∗(un)
ηu1/k

))
du

]
≤ CεnP(∥X∗I ∥ > un)

(
n

a∗(un)

)k/2 ∥∥∥∥ 1α
∥∥∥∥k ηk

(1 + δ)1−ε

·
[
exp

(
−(1− ε)η

√
n

a∗(un)

)
+

∫ ∞
1

exp

(
−(1− ε)η

√
n

a∗(un)
u1/k

)
du

]
∼ CετI

(
n

a∗(un)

)1+k/2 ∥∥∥∥ 1α
∥∥∥∥k ηk

(1 + δ)1−ε
·
[
exp

(
−(1− ε)η

√
n

a∗(un)

)
+

∫ ∞
1

exp

(
−(1− ε)η

√
n

a∗(un)
u1/k

)
du

]
→ 0

because of n/a∗(un) → 0 as n → ∞. For k = 2, this results in a Lindeberg condition that
guarantees convergence of Hn to a centered Gaussian process H in terms of finite-dimensional
distributions.
Analogously to the proof of Thm. 5, we verify the conditions from Theorem 2.11.9 in Van der
Vaart and Wellner [1996] in order to ensure functional convergence. Thus, we consider two
functions fs(1) , f,s(2) ∈ F ′ such that ∥s(1) − s(2)∥ < η for some 0 < η < δ and η < 1 so that
s(1) ∈ Aδ,{i} and s(2) ∈ Aδ,{i} for the same index i ∈ {1, . . . , d}, that is, there exists some
y ∈ Aδ,{i}} such that s

(1)
i , s

(2)
i ∈ [yi, yi + η]. Again, denoting α = min1≤i≤d αi, we distinguish

three cases:

1. ∥s(1) ◦ x∥ ≤ 1 and ∥s(2) ◦ x∥ ≤ 1:
In this case, we have

|fs(1)(x)− fs(2)(x)| = |0− 0| = 0.

2. ∥s(1) ◦ x∥ ≥ 1 and ∥s(2) ◦ x∥ ≥ 1:
In this case, both the indicator functions in fs(1)(x) and in fs(2)(x) are equal to 1.
Choosing 0 < β < 1/2 and using that | log(x)− log(y)| < β−1|x− y|β , we obtain that

|fs(1)(x)− fs(2)(x)| ≤
1

αiβ
ηβxβ

i ≤
∥∥∥∥ 1α
∥∥∥∥ · 1β · ηβ · ∥x∥β .

This case occurs only if (1 + δ)∥x∥ > 1 as s(1) and s(2) belong to
⋃d

i=1 Aδ,{i} ⊂ Aδ.
3. min{∥s(1) ◦ x∥, ∥s(2) ◦ x∥} ≤ 1 < max{∥s(1) ◦ x∥, ∥s(2) ◦ x∥}:

In this case one of the functions fs(1)(x) and fs(2)(x) equals zero, while the other one is
bounded by 1. Here, it is important to use that ∥s◦X∥ ≤ un for some s ∈ Aδ,{i} implies
that ∥u−1n Xi∥ ≤ 1 + δ. Thus, we will have maxj=1,2 fs(j)(x) ≤ α−1i log((1 + δ)2) in this
case, and, thus,

|fs(1)(x)− fs(2)(x)| ≤
1

αi
log(1 + δ)1

{
un/(s

(1)
i ∨ s

(2)
i ) ≤ xi < un/(s

(1)
i ∧ s

(2)
i )
}
.

This case occurs only if yixi ≤ 1 < (yi + η)xi.

Thus, for each i ∈ {1, . . . , d} we obtain a uniform bound on s
(1)
i , s

(2)
i ∈ [yi, yi + η], i ∈ I, for
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some y ∈ Aδ,{i}

(Znl(fs(1))− Znl(fs(2)))2 ≤ a∗(un)

n

∥∥∥∥ 1

αβ

∥∥∥∥2 · ∥u−1n X∗∥2βη2β1{∥X∗l ∥ > (1 + δ)−1un}

+
a∗(un)

n

∥∥∥∥ 1α
∥∥∥∥2 log2(1 + δ) · 1

{
un(yiη)

−1 ≤ X∗li ≤ uny
−1
i

}
=: Q̃

(1)
nl (η) +

∥∥∥∥ 1α
∥∥∥∥2 log2(1 + δ) ·Q(2)

nl (η,y)

where Q
(2)
nl (η,y) is as in (43).

The definition of Q̃(1)
nl (η) and regular variation of the function a∗ imply that

∑n

l=1
E
[
Q̃

(1)
nl (η)

]
≤ a∗(un)

∥∥∥∥ 1

αβ

∥∥∥∥2 η2βE (∥u−1n X∗∥2β1{∥X∗∥ > (1 + δ)−1un}
]

∼ τ
a∗(un)

a∗((1 + δ)−1un)

∥∥∥∥ 1

αβ

∥∥∥∥2 η2βE (∥u−1n X∗∥2β | ∥X∗∥ > (1 + δ)−1un

]
∼
∥∥∥∥ 1α
∥∥∥∥2 τ(1 + δ)1−2β

β2
E(∥YΘ∗∥2β) · η2β ≤

∥∥∥∥ 1α
∥∥∥∥2 τ(1 + δ)1−2β

(1− 2β)β2
· η2β , n → ∞,

since E(Y 2β) = 1/(1 − 2β) < ∞ for all β < 1/2. Thus, analogously to (44), for n sufficiently
large, we have that

n∑
l=1

E
[
Q̃

(1)
nl (η)

]
≤ 2

∥∥∥∥ 1α
∥∥∥∥2 d(1 + δ)1−2β

(1− 2β)β2
· η2β

Combining this bound with the bound with the bounds for
∑n

l=1 E
[
Q

(2)
nl (η)

]
provided in the

proof of Thm. 5, the equi-continuity condition and the entropy condition of Theorem 2.11.9 in
Van der Vaart and Wellner [1996] can be verified, following the lines of the proof of Thm. 5.
Thus, we obtain weak convergence of of {Hn(s) : s ∈

⋃d
i=1 Aδ,{i}} to H in ℓ∞(

⋃d
i=1 Aδ,{i}).

Making use of (31), the bias can be neglected asymptotically, i.e.{√
n

a∗(un)

(
a∗(un)L̂n,un(s)−

si
αi

)
; s ∈ Aδ,{i}, i = 1, . . . , d

}
→
{
H(s); s ∈

⋃d

i=1
Aδ,{i}

}
weakly in ℓ∞(Aδ). By Thm. 5 and (27) for p = 0, we also obtain{√

n

a∗(un)

(
a∗(un)P̂n,un

(s)− si

)
; s ∈ Aδ,{i}, i = 1, . . . , d

}
→
{
G(v, s, β, 0); s ∈

⋃d

i=1
Aδ,{i}

}
weakly ℓ∞(

⋃d
i=1 Aδ,{i}) for any fixed v ∈ ∂B+

1 (0) and β ∈ [(1+δ)−1, 1+δ] as the RHS does not
depend on these variables. Note that both convergences hold jointly. Thus, analogously to the
proof of Cor. 6, we can apply the functional Delta method to obtain the desired convergence{√

n

a(un)

(
L̂n,u(s)

P̂n,un(s)
− si

αi

)
; s ∈ ×Aδ,{i}, i = 1, . . . , d

}
→w

{
H̃(s); s ∈

⋃d

i=1
Aδ,{i}

}

for some centered Gaussian process H̃. The covariance structure of H̃ follows from classical
computation.

Using this result, we are ready to prove Thm. 8.
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Proof of Thm. 8. First, we note that

1

α̂n,kn,{i}
=

n−1
∑n

l=1 log(∥1{i} ◦Xl/Xkn:n∥)1{∥1{i} ◦Xl/Xkn:n∥ > 1}
P̃n,kn.{i}

=
n−1

∑n
l=1 log(∥1{i} ◦X∗l /X∗kn:n

∥1/αi)1{∥1{i} ◦X∗l /X∗kn:n
∥ > 1}

P̃n,kn.{i}

=
L̂n,un

(un/X
∗
kn:n

◦ 1{i})
P̂n,un(un/X∗kn:n

◦ 1{i})
,

cf. Eq. (28). Thus, we have to show that

(H̃n(un/X
∗
kn:n ◦ 1{i}))1≤i≤d → (H̃(1{i}))1≤i≤d =: H̃.

To this end, we use the consistency of the tail empirical measure to obtain

un

X∗kn:n

∼

(
(F ∗i )

−1(1− kn/n)

X∗kn:n,i

)
i=1,...,d

→p 1 , n → ∞ , (50)

cf. Equation (4.17) in Resnick [2007]. By Skohorod’s representation theorem, without loss of
generality, we may reformulate the statement in Prop. 21 as

sup
s∈

⋃d
i=1 Aδ,{i}

∣∣∣H̃n(s)− H̃(s)
∣∣∣→ 0 a.s. , n → ∞. (51)

Now, we estimate∥∥∥(H̃n(un/X
∗
kn:n ◦ 1{i}))1≤i≤d − H̃

∥∥∥
≤ max

1≤i≤d

∣∣∣H̃n(un/X
∗
kn:n ◦ 1{i})− H̃(un/X

∗
kn:n ◦ 1{i})

∣∣∣+ ∥∥∥(H̃(un/X
∗
kn:n ◦ 1{i}))1≤i≤d − H̃

∥∥∥ .
(52)

Eq. (50) guarantees that, with probability tending to 1, {un/X
∗
kn:n

◦ 1{i} ∈ Aδ,{i}}, and, in
that case, we can bound the right-hand side of Eq. (52) by

sup
s∈

⋃d
i=1 Aδ,{i}

∣∣∣H̃n(s)− H̃(un/X
∗
kn:n ◦ s)

∣∣∣+ ∥∥∥(H̃(un/X
∗
kn:n ◦ 1{i}))1≤i≤d − H̃

∥∥∥ .
Here, the first term vanishes asymptotically by Eq. (51) and the second term tends to zero
because of Eq. (50) and the uniform continuity of the sample paths of the tight process H̃
(cf. Thm. 21). Thus, we obtain the desired convergence∥∥∥(H̃n(un/X

∗
kn:n ◦ 1{i}))1≤i≤d − H̃

∥∥∥→p 0.

Appendix D: Proof of Thm. 10

Before showing Thm. 10, we prove two auxiliary results. We start by establishig a first (but bi-
ased) version of the functional central limit theorem for the sequence {M̃n,kn,I(v, p)/P̃n,kn,I ; v ∈
∂B+

1 (0), p ∈ K} of processes.
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Proposition 22. Let Xl, l ∈ N, be independent copies of a non-standard regularly varying
[0,∞)d-valued random vector X satisfying the assumptions of Cor. 6 and Thm. 8 for some
δ > 0 and some K ⊂ N. Then, for all non-empty I ⊂ {1, . . . , d}, we have that{√

kn

(
M̃n,kn,I(v, p)

P̃n,kn,I

− c

(
v,

un

X∗kn:n

◦ 1I ,
α

α̂n,kn

, p

))
; v ∈ ∂B+

1 (0), p ∈ K

}
→
{
G̃(v,1I ,1, p); v ∈ ∂B+

1 (0), p ∈ K
}

, n → ∞ ,

weakly in ℓ∞(∂B+
1 (0)×K) where X∗kn:n

denotes the kn-th order statistics of the transformed
vector sample X∗l , 1 ≤ l ≤ n, and G̃ is defined as in Cor. 6.

Proof. By Eq. (28), we have that

√
kn

(
M̃n,kn,I(v, p)

P̃n,kn,I

− c

(
v,

un

X∗kn:n

◦ 1I ,
α

α̂n,kn

, p

))
= G̃n

(
v,

un

X∗kn:n

◦ 1I ,
α

α̂n,kn

, p

)
,

where G̃N is defined as in Cor. 6. Furthermore, Eq. (50) and Thm. 8 provide(
un

X∗kn:n

◦ 1I ,
α

α̂n,kn

)
→p (1I ,1), n → ∞ . (53)

Again, Skohorod’s representation theorem allows us to rewrite the result of Cor. 6 as

sup
v∈∂B+

1 (0),(s,β)∈A′
δ,p∈K

∣∣∣G̃n(v, s,β, p)− G̃(v, s,β, p)
∣∣∣→ 0 a.s. , n → ∞. (54)

Using Eq. (53), with probability tending to 1, we can bound the right-hand side of

sup
v∈∂B+

1 (0),p∈K

∣∣∣G̃n(v, un/X
∗
kn:n ◦ 1I ,α/α̂n,kn

, p)− G̃(v,1I ,1, p)
∣∣∣

≤ sup
v∈∂B+

1 (0),p∈K

∣∣∣G̃n(v, un/X
∗
kn:n ◦ 1I ,α/α̂n,kn

, p)− G̃(v, un/X
∗
kn:n ◦ 1I ,α/α̂n,kn

, p)
∣∣∣

+ sup
v∈∂B+

1 (0),p∈K

∣∣∣G̃(v, un/X
∗
kn:n ◦ 1I ,α/α̂n,knp)− G̃(v,1I ,1, p)

∣∣∣ .
by

sup
v∈∂B+

1 (0),(s,β)∈A′
δ,p∈K

∣∣∣G̃n(v, s,β, p)− G̃(v, s,β, p)
∣∣∣

+ sup
v∈∂B+

1 (0),p∈K

∣∣∣G̃(v, un/X
∗
kn:n ◦ 1I ,α/α̂n,kn

, p)− G̃(v,1I ,1, p)
∣∣∣ .

While the first term tends to zero by Eq. (54), the second term vanishes asymptotically because
of Eq. (53) and the uniform continuity of G̃(·, ·, p), cf. the third part of Rem. 7. Consequently,

sup
v∈∂B+

1 (0),p∈K

∣∣∣G̃n(v, un/X
∗
kn:n ◦ 1I ,α/α̂n,kn , p)− G̃(v,1I ,1, p)

∣∣∣→p 0 , n → ∞.

Note that the centering term in Prop. 22, c(vI , un/X
∗
kn:n

◦1I ,α/α̂n,kn
, p) is random and needs

to be replaced by the desired limit c(vI ,1I ,1, p). It turns out that, in general, the difference
is not negligible, i.e. the replacement of the centering term will influence the asymptotic
distribution. The proof will rely on the following lemma.
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Lemma 23. Let the assumptions of Prop. 22 hold and assume that there exists some δ > 0
such that Eq. (32) holds for all i ∈ {1, . . . , d}. Then we have{√

kn

(
un

X∗⌊skn⌋:n,i
− s

)
; (1 + δ)−1 ≤ s ≤ 1 + δ

}
→w

{
−G0(s1{i})

}
in ℓ∞([(1 + δ)−1, 1 + δ]).

Proof. Applying Thm. 5 to the case p = 0 and s = s1{i} and making use of Eq. (32), we
obtain that{√

kn

(
1

kn

∑n

l=1
1{sX∗li > un} − s

)
; (1 + δ)−1 ≤ s ≤ 1 + δ

}
→w

{
G0(s1{i})

}
in ℓ∞([(1 + δ)−1, 1 + δ]) as n → ∞. Using the notation F̂n,i for the empirical cumulative
distribution function of the sample X∗1i, . . . , X

∗
ni and Skohorod’s representation theorem, we

may assume that

sup
(1+δ)−1≤s≤1+δ

∣∣∣∣√kn

(
n

kn
(1− F̂n,i(un/s))− s

)
−G0(s1{i})

∣∣∣∣→ 0 a.s. , n → ∞.

Applying Vervaat’s Lemma [cf. Lemma A.0.2 in De Haan and Ferreira, 2006, for instance] to
the nondecreasing functions xn(s) = n/kn(1− F̂n,i(un/s)), we obtain

sup
(1+δ)−1≤s≤1+δ

∣∣∣√kn

(
un/X

∗
⌊skn⌋:n,i − s

)
+G0(s1{i})

∣∣∣→ 0 a.s.,

where we used that x←n (s) = un/X
∗
⌊skn⌋:n,i.

Imposing some additional conditions on the function c and using our previous results, we can
follow the same lines as the proof of Theorem 4.6 in Einmahl et al. [2012] in order to establish
the desired convergence result.

Proof of Thm. 10. By Skohorod’s representation theorem, we may assume that the weak con-
vergences in Thm. 8, Prop. 22 and in Lemma 23 take place a.s. Then, the triangular inequality
yields the bound

sup
v∈B+

1 (0),p∈K

∣∣∣∣√k

(
M̃n,kn

(vI , p)

P̃n,kn

− c(vI ,1I , p)

)
− G̃(vI ,1I ,1, p)

+
∑
i∈I

(
csi(vI ,1I ,1, p) ·G0(1{i})− cβi

(vI ,1I ,1, p) ·αi · H̃i

) ∣∣∣∣
≤ sup

v∈∂B+
1 (0),p∈K

∣∣∣∣∣G̃n

(
vI ,

un

X∗kn:n

◦ 1I ,
α

α̂n,kn

, p

)
− G̃(vI ,1I ,1, p)

∣∣∣∣∣
+ sup

v∈∂B+
1 (0),p∈K

∣∣∣∣√k

(
c

(
vI ,

un

X∗kn:n

◦ 1I ,
α

α̂n,kn

, p

)
− c(vI ,1I ,1, p)

)

+
∑
i∈I

(
csi(vI ,1I ,1, p) ·G0(1{i})− cβi

(vI ,1I ,1, p) ·αi · H̃i

) ∣∣∣∣
=: D1 +D2.

We will show that D1 →p 0 and D2 →p 0. By Prop. 22, we directly obtain that D1 → 0 a.s.
In order to show that D2 →p 0, we first define

Cn(vI , p) :=
√
k

(
c

(
vI ,

un

X∗k:n
◦ 1I ,

α

α̂n,kn

, p

)
− c(vI ,1I ,1, p)

)
, vI ∈ ∂B+

1 (0), p ∈ K.
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The mean value theorem yields

1√
k
Cn(vI , p) =

∑
i∈I

(( un

X∗k:n,i
− 1
)
· csi(vI , ξn,ψn, p) +

( αi

α̂n,kn,i
− 1
)
· cβi

(vI , ξn,ψn, p)
)

(55)
for some ξn = ξn(vI , p) between un/X

∗
k:n ◦ 1I and 1I and ψn = ψn(vI , p) between α/α̂n,kn

and 1. If (un/X
∗
k:n ◦ 1I ,α/α̂n,kn

) ∈ A′δ,I , which happens with probability tending to 1 by
Eq. (53), we obtain from (55) that

D2 = sup
v∈∂B+

1 (0),p∈K

∣∣∣Cn(vI , p) +
∑

i∈I
csi(vI ,1I ,1, p)G

0(1{i})− cβi(vI ,1I ,1, p)αiH̃i

∣∣∣
≤
∑
i∈I

sup
v∈∂B+

1 (0),p∈K

∣∣∣∣∣csi(vI , ξn,ψn, p)
√
k

(
un

X∗kn:n,i

− 1

)
+ csi(vI ,1I ,1, p)G

0(1{i})

∣∣∣∣∣
+
∑
i∈I

sup
v∈∂B+

1 (0),p∈K

∣∣∣∣cβi
(vI , ξn,ψn, p)

√
k

(
αi

α̂n,kn,i
− 1

)
− cβi

(vI ,1I ,1, p)αiH̃i

∣∣∣∣
≤
∑
i∈I

(
sup

v∈B+
1 (0),(s,β)∈A′

δ,I ,p∈K
|csi(vI , s,β, p)| ·

∣∣∣∣∣√k

(
un

X∗k:n,i
− 1

)
+G0(1{i})

∣∣∣∣∣
+ sup

v∈B+
1 (0),p∈K

|csi (vI , ξn, p)− csi(vI ,1I , p)| · |G0(1{i})|

+ sup
v∈B+

1 (0),(s,β)∈A′
δ,I ,p∈K

|cβi(vI , s,β, p)| ·
∣∣∣∣√k

(
αi

α̂n,kn,i
− 1

)
−αiH̃I

∣∣∣∣
+ sup

v∈B+
1 (0),p∈K

|cβi
(vI , ξn,ψn, p)− cβi

(vI ,1I ,β, p)| · |αiH̃i|

)
=:
∑

i∈I
(D3,i ·D4,i +D5,i ·D6,i +D3,β,i ·D4,β,i +D5,β,i ·D6,β,i).

Since csi and cβi
, i ∈ I, are continuous on the compact set ∂B∗1(0) × A′δ,I × K, we have

D3,i < ∞, i ∈ I, and D3,β,i < ∞ while D4,i →p 0, i ∈ I and D4,β,i →p 0 by Lemma 23 and
Thm. 8, respectively. Furthermore, we have

sup
v∈B+

1 (0),p∈K

∥∥∥∥( ξn
ψn

)
−
(

1I

1I

)∥∥∥∥ ≤

∥∥∥∥∥
(

un

X∗
kn:n

◦ 1I

α
α̂n,kn

◦ 1I

)
−
(

1I

1I

)∥∥∥∥∥→p 0

by (53). Consequently, using the uniform continuity of csi and cβi
, i ∈ I, we obtain that

D5,i →p 0 and D5,β,i →p 0. The facts that D6,i < ∞ a.s., i ∈ I, and D6,β,i < ∞ a.s. finally
yield

D2 = sup
v∈∂B+

1 (0),p∈K

∣∣∣∣∣Cn(vI , p) +
∑
i∈I

csi(vI ,1I ,1, p)G
0(1{i})− cβi(vI ,1I ,1, p)αiH̃i

∣∣∣∣∣→p 0.
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