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https://youtu.be/Ju-Wsd84uG0

Abstract—There is a growing interest in leveraging differential geometry in the
machine learning community. Yet, the adoption of the associated geometric
computations has been inhibited by the lack of a reference implementation.
Such an implementation should typically allow its users: (i) to get intuition on
concepts from differential geometry through a hands-on approach, often not
provided by traditional textbooks; and (ii) to run geometric machine learning
algorithms seamlessly, without delving into the mathematical details. To address
this gap, we present the open-source Python package geomstats and intro-
duce hands-on tutorials for differential geometry and geometric machine learn-
ing algorithms - Geometric Learning - that rely on it. Code and documentation:
github.com/geomstats/geomstats and geomstats.ai.

Index Terms—differential geometry, statistics, manifold, machine learning

Introduction

Data on manifolds arise naturally in different fields. Hyperspheres
model directional data in molecular and protein biology [KHO05]
and some aspects of 3D shapes [JDM12], [HVS™ 16]. Density esti-
mation on hyperbolic spaces arises to model electrical impedances
[HKKM]10], networks [AS14], or reflection coefficients extracted
from a radar signal [CBA15]. Symmetric Positive Definite (SPD)
matrices are used to characterize data from Diffusion Tensor
Imaging (DTI) [PFAO06], [YZLM12] and functional Magnetic
Resonance Imaging (fMRI) [STKO05]. These manifolds are curved,
differentiable generalizations of vector spaces. Learning from data
on manifolds thus requires techniques from the mathematical
discipline of differential geometry. As a result, there is a growing
interest in leveraging differential geometry in the machine learning
community, supported by the fields of Geometric Learning and
Geometric Deep Learning [BBL " 17].

Despite this need, the adoption of differential geometric
computations has been inhibited by the lack of a reference
implementation. Projects implementing code for geometric tools
are often custom-built for specific problems and are not easily
reused. Some Python packages do exist, but they mainly focus
on optimization (Pymanopt [TKW16], Geoopt [BG18], [Koc19],
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McTorch [MJK " 18]), are dedicated to a single manifold (PyRie-
mann [Barl5], PyQuaternion [Wynl4], PyGeometry [Cenl2]),
or lack unit-tests and continuous integration (TheanoGeometry
[KS17]). An open-source, low-level implementation of differential
geometry and associated learning algorithms for manifold-valued
data is thus thoroughly welcome.

Geomstats is an open-source Python package built for
machine learning with data on non-linear manifolds [MGLB"]:
a field called Geometric Learning. The library provides object-
oriented and extensively unit-tested implementations of essential
manifolds, operations, and learning methods with support for
different execution backends - namely NumPy, PyTorch, and
TensorFlow. This paper illustrates the use of geomstat s through
hands-on introductory tutorials of Geometric Learning. These tu-
torials enable users: (i) to build intuition for differential geometry
through a hands-on approach, often not provided by traditional
textbooks; and (ii) to run geometric machine learning algorithms
seamlessly without delving into the lower-level computational
or mathematical details. We emphasize that the tutorials are not
meant to replace theoretical expositions of differential geometry
and geometric learning [PosO1], [PSF19]. Rather, they will com-
plement them with an intuitive, didactic, and engineering-oriented
approach.

Presentation of Geomstats

The package geomstats is organized into two main modules:
geometry and learning. The module geomet ry implements low-
level differential geometry with an object-oriented paradigm and
two main parent classes: Manifold and RiemannianMetric.
Standard manifolds like the Hypersphere or the Hyperbolic
space are classes that inherit from Manifold. At the time of
writing, there are over 15 manifolds implemented in geomstats.
The class RiemannianMetric provides computations related
to Riemannian geometry on such manifolds such as the inner
product of two tangent vectors at a base point, the geodesic
distance between two points, the Exponential and Logarithm maps
at a base point, and many others.

The module learning implements statistics and machine
learning algorithms for data on manifolds. The code is object-
oriented and classes inherit from scikit-learn base classes
and mixins such as BaseEstimator, ClassifierMixin,
or RegressorMixin. This module provides implementations
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of Fréchet mean estimators, K-means, and principal component
analysis (PCA) designed for manifold data. The algorithms can be
applied seamlessly to the different manifolds implemented in the
library.

The code follows international standards for readability and
ease of collaboration, is vectorized for batch computations, un-
dergoes unit-testing with continuous integration, and incorporates
both TensorFlow and PyTorch backends to allow for GPU ac-
celeration. The package comes with a visualization module that
enables users to visualize and further develop an intuition for
differential geometry. In addition, the datasets module provides
instructive toy datasets on manifolds. The repositories examples
and notebooks provide convenient starting points to get familiar
with geomstats.

First Steps

To begin, we need to install geomstats. We follow the in-
stallation procedure described in the first steps of the online
documentation. Next, in the command line, we choose the backend
of interest: NumPy, PyTorch or TensorFlow. Then, we open
the iPython notebook and import the backend together with the
visualization module. In the command line:

export GEOMSTATS_BACKEND=numpy
then, in the notebook:

import geomstats.backend as gs
import geomstats.visualization as visualization

visualization.tutorial matplotlib ()

INFO: Using numpy backend

Modules related to matplotlib and 1logging should be im-
ported during setup too. More details on setup can be found on the
documentation website: geomstats.ai. All standard NumPy
functions should be called using the gs. prefix - e.g. gs.exp,
gs.log - in order to automatically use the backend of interest.

Tutorial: Statistics and Geometric Statistics

This tutorial illustrates how Geometric Statistics and Learning dif-
fer from traditional Statistics. Statistical theory is usually defined
for data belonging to vector spaces, which are linear spaces. For
example, we know how to compute the mean of a set of numbers
or of multidimensional arrays.

Now consider a non-linear space: a manifold. A manifold M of
dimension m is a space that is possibly curved but that looks like
an m-dimensional vector space in a small neighborhood of every
point. A sphere, like the earth, is a good example of a manifold.
What happens when we apply statistical theory defined for linear
vector spaces to data that does not naturally belong to a linear
space? For example, what happens if we want to perform statistics
on the coordinates of world cities lying on the earth’s surface: a
sphere? Let us compute the mean of two data points on the sphere
using the traditional definition of the mean.

from geomstats.geometry.hypersphere import \
Hypersphere

n_samples = 2

sphere = Hypersphere (dim=2)

points_in_manifold = sphere.random_uniform(
n_samples=n_samples)
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Fig. 1: Left: Linear mean of two points on the sphere. Right: Fréchet
mean of two points on the sphere. The linear mean does not belong to
the sphere, while the Fréchet mean does. This illustrates how linear
statistics can be generalized to data on manifolds, such as points on
the sphere.

linear_mean = gs.sum(

points_in_manifold, axis=0) / n_samples

The result is shown in Figure 1 (left). What happened? The mean
of two points on a manifold (the sphere) is not on the manifold.
In our example, the mean of these cities is not on the earth’s
surface. This leads to errors in statistical computations. The line
sphere.belongs (linear_mean) returns False. For this
reason, researchers aim to build a theory of statistics that is - by
construction - compatible with any structure with which we equip
the manifold. This theory is called Geometric Statistics, and the
associated learning algorithms: Geometric Learning.

In this specific example of mean computation, Geometric
Statistics provides a generalization of the definition of “mean”
to manifolds: the Fréchet mean.

from geomstats.learning.frechet_mean import \
FrechetMean

estimator = FrechetMean (metric=sphere.metric)
estimator.fit (points_in_manifold)
frechet_mean = estimator.estimate_

Notice in this code snippet that geomstats provides classes
and methods whose API will be instantly familiar to users of the
widely-adopted scikit-1learn. We plot the result in Figure 1
(right). Observe that the Fréchet mean now belongs to the surface
of the sphere!

Beyond the computation of the mean, geomstats provides
statistics and learning algorithms on manifolds that leverage their
specific geometric structure. Such algorithms rely on elementary
operations that are introduced in the next tutorial.

Tutorial: Elementary Operations for Data on Manifolds

The previous tutorial showed why we need to generalize tradi-
tional statistics for data on manifolds. This tutorial shows how
to perform the elementary operations that allow us to “translate”
learning algorithms from linear spaces to manifolds.

We import data that lie on a manifold: the world cities dataset,
that contains coordinates of cities on the earth’s surface. We
visualize it in Figure 2.
import geomstats.datasets.utils as data utils
data,

names = data_utils.load_cities()


https://github.com/geomstats/geomstats/blob/master/geomstats/visualization.py
https://github.com/geomstats/geomstats/tree/master/geomstats/datasets
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Fig. 2: Subset of the world cities dataset, available in

geomstats with the function load_cities from the module
datasets.utils. Cities’ coordinates are data on the sphere,
which is an example of a manifold.

How can we compute with data that lie on such a manifold?
The elementary operations on a vector space are addition and
subtraction. In a vector space (in fact seen as an affine space),
we can add a vector to a point and subtract two points to get a
vector. Can we generalize these operations in order to compute on
manifolds?

For points on a manifold, such as the sphere, the same
operations are not permitted. Indeed, adding a vector to a point
will not give a point that belongs to the manifold: in Figure 3,
adding the black tangent vector to the blue point gives a point that
is outside the surface of the sphere. So, we need to generalize to
manifolds the operations of addition and subtraction.

On manifolds, the exponential map is the operation that
generalizes the addition of a vector to a point. The exponential
map takes the following inputs: a point and a tangent vector to the
manifold at that point. These are shown in Figure 3 using the blue
point and its tangent vector, respectively. The exponential map re-
turns the point on the manifold that is reached by “shooting” with
the tangent vector from the point. “Shooting” means following a
“geodesic” on the manifold, which is the dotted path in Figure 3.
A geodesic, roughly, is the analog of a straight line for general
manifolds - the path whose, length, or energy, is minimal between
two points, where the notions of length and energy are defined by
the Riemannian metric. This code snippet shows how to compute
the exponential map and the geodesic with geomstats.

from geomstats.geometry.hypersphere import \
Hypersphere

sphere = Hypersphere (dim=2)

initial_point = paris = data[l9]

vector = gs.array([1l, 0, 0.8]

tangent_vector = sphere.to_tangent (
vector, base_point=initial_point)

end_point = sphere.metric.exp (
tangent_vector, base_point=initial_point)

geodesic = sphere.metric.geodesic(
initial_point=initial_point,
initial_tangent_vec=tangent_vector)

Similarly, on manifolds, the logarithm map is the operation that
generalizes the subtraction of two points on vector spaces. The
logarithm map takes two points on the manifold as inputs and
returns the tangent vector required to “shoot” from one point to
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Fig. 3: Elementary operations on manifolds illustrated on the sphere.
The exponential map at the initial point (blue point) shoots the black
tangent vector along the geodesic, and gives the end point (orange
point). Conversely, the logarithm map at the initial point (blue point)
takes the end point (orange point) as input, and outputs the black
tangent vector. The geodesic between the blue point and the orange
point represents the path of shortest length between the two points.

the other. At any point, it is the inverse of the exponential map.
In Figure 3, the logarithm of the orange point at the blue point
returns the tangent vector in black. This code snippet shows how
to compute the logarithm map with geomstats.

log = sphere.metric.log(
point=end_point, base_point=initial_point)

We emphasize that the exponential and logarithm maps depend
on the “Riemannian metric” chosen for a given manifold: observe
in the code snippets that they are not methods of the sphere
object, but rather of its met ric attribute. The Riemannian metric
defines the notion of exponential, logarithm, geodesic and distance
between points on the manifold. We could have chosen a different
metric on the sphere that would have changed the distance between
the points: with a different metric, the “sphere” could, for example,
look like an ellipsoid.

Using the exponential and logarithm maps instead of linear
addition and subtraction, many learning algorithms can be gen-
eralized to manifolds. We illustrated the use of the exponential
and logarithm maps on the sphere only; yet, geomstats pro-
vides their implementation for over 15 different manifolds in its
geometry module with support for a variety of Riemannian
metrics. Consequently, geomstats also implements learning
algorithms on manifolds, taking into account their specific geo-
metric structure by relying on the operations we just introduced.
The next tutorials show more involved examples of such geometric
learning algorithms.

Tutorial: Classification of SPD Matrices
Tutorial context and description

We demonstrate that any standard machine learning algorithm can
be applied to data on manifolds while respecting their geometry. In
the previous tutorials, we saw that linear operations (mean, linear
weighting, addition and subtraction) are not defined on manifolds.
However, each point on a manifold has an associated tangent
space which is a vector space. As such, in the tangent space, these
operations are well defined! Therefore, we can use the logarithm
map (see Figure 3 from the previous tutorial) to go from points on
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manifolds to vectors in the tangent space at a reference point. This
first strategy enables the use of traditional learning algorithms on
manifolds.

A second strategy can be designed for learning algorithms,
such as K-Nearest Neighbors classification, that rely only on
distances or dissimilarity metrics. In this case, we can compute
the pairwise distances between the data points on the manifold,
using the method metric.dist, and feed them to the chosen
algorithm.

Both strategies can be applied to any manifold-valued data. In
this tutorial, we consider symmetric positive definite (SPD) matri-
ces from brain connectomics data and perform logistic regression
and K-Nearest Neighbors classification.

SPD matrices in the literature

Before diving into the tutorial, let us recall a few applications of
SPD matrices in the machine learning literature. SPD matrices are
ubiquitous across many fields [CS16], either as input of or output
to a given problem. In DTI for instance, voxels are represented
by "diffusion tensors" which are 3x3 SPD matrices representing
ellipsoids in their structure. These ellipsoids spatially characterize
the diffusion of water molecules in various tissues. Each DTI thus
consists of a field of SPD matrices, where each point in space
corresponds to an SPD matrix. These matrices then serve as inputs
to regression models. In [YZLM12] for example, the authors use
an intrinsic local polynomial regression to compare fiber tracts
between HIV subjects and a control group. Similarly, in fMRI, it is
possible to extract connectivity graphs from time series of patients’
resting-state images [WZD " 13]. The regularized graph Laplacians
of these graphs form a dataset of SPD matrices. This provides a
compact summary of brain connectivity patterns which is useful
for assessing neurological responses to a variety of stimuli, such
as drugs or patient’s activities.

More generally speaking, covariance matrices are also SPD
matrices which appear in many settings. Covariance clustering
can be used for various applications such as sound compression in
acoustic models of automatic speech recognition (ASR) systems
[SMA10] or for material classification [FHP15], among others.
Covariance descriptors are also popular image or video descriptors
[HHLS16].

Lastly, SPD matrices have found applications in deep learning.
The authors of [GWB ™ 19] show that an aggregation of learned
deep convolutional features into an SPD matrix creates a robust
representation of images which outperforms state-of-the-art meth-
ods for visual classification.

Manifold of SPD matrices

Let us recall the mathematical definition of the manifold of
SPD matrices. The manifold of SPD matrices in n dimensions
is embedded in the General Linear group of invertible matrices
and defined as:

SPD = {S€Ryyp: 8" =8,Vz€R",2#0,2 S2>0}.

The class SPDMatricesSpace inherits from the class
EmbeddedManifold and has an embedding_manifold
attribute which stores an object of the class Generallinear.
SPD matrices in 2 dimensions can be visualized as ellipses
with principal axes given by the eigenvectors of the SPD ma-
trix, and the length of each axis proportional to the square-
root of the corresponding eigenvalue. This is implemented in the
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Fig. 4: Simulated dataset of SPD matrices in 2 dimensions. We
observe 3 classes of SPD matrices, illustrated with the colors red,
green, and blue. The centroid of each class is represented by an ellipse
of larger width.

visualization module of geomstats. We generate a toy
data-set and plot it in Figure 4 with the following code snippet.

import geomstats.datasets.sample_sdp_2d as sampler
n_samples = 100

dataset_generator =
n_samples, n_features=2,

sampler.DatasetSPD2D (
n_classes=3)

ellipsis = visualization.Ellipsis2D ()
for i,x in enumerate (data) :

y = sampler.get_label_ at_index (i, labels)
ellipsis.draw (
x, color=ellipsis.colors[y], alpha=.1)

Figure 4 shows a dataset of SPD matrices in 2 dimensions
organized into 3 classes. This visualization helps in developing an
intuition on the connectomes dataset that is used in the upcoming
tutorial, where we will classify SPD matrices in 28 dimensions
into 2 classes.

Classifying brain connectomes in Geomstats

We now delve into the tutorial in order to illustrate the use of
traditional learning algorithms on the tangent spaces of manifolds
implemented in geomstats. We use brain connectome data from
the MSLP 2014 Schizophrenia Challenge. The connectomes are
correlation matrices extracted from the time-series of resting-state
fMRIs of 86 patients at 28 brain regions of interest: they are
points on the manifold of SPD matrices in n = 28 dimensions.
Our goal is to use the connectomes to classify patients into two
classes: schizophrenic and control. First we load the connectomes
and display two of them as heatmaps in Figure 5.

import geomstats.datasets.utils as data utils

data, patient_ids, labels = \
data_utils.load_connectomes ()

Multiple metrics can be used to compute on the manifold of SPD
matrices [DKZ09]. As mentionned in the previous tutorial, differ-
ent metrics define different geodesics, exponential and logarithm
maps and therefore different algorithms on a given manifold. Here,
we import two of the most commonly used metrics on the SPD
matrices, the log-Euclidean metric and the affine-invariant metric
[PFA06], but we highlight that geomstat s contains many more.
We also check that our connectome data indeed belongs to the
manifold of SPD matrices:


https://www.kaggle.com/c/mlsp-2014-mri/data
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Fig. 5: Subset of the connectomes dataset, available in
geomstat s with the function 1oad_connectomes from the mod-
ule datasets.utils. Connectomes are correlation matrices of
28 time-series extracted from fMRI data: they are elements of the
manifold of SPD matrices in 28 dimensions. Left: connectome of a
schizophrenic subject. Right: connectome of a healthy control.

import geomstats.geometry.spd matrices as spd

manifold = spd.SPDMatrices (n=28)

le_metric = spd.SPDMetricLogEuclidean (n=28)
ai_metric = spd.SPDMetricAffine (n=28)
logging.info(gs.all (manifold.belongs (data)))

INFO: True

Great! Now, although the sum of two SPD matrices is an SPD
matrix, their difference or their linear combination with non-
positive weights are not necessarily. Therefore we need to work in
a tangent space of the SPD manifold to perform simple machine
learning that relies on linear operations. The preprocessing
module with its ToTangentSpace class allows to do exactly
this.

from geomstats.learning.preprocessing import \
ToTangentSpace

ToTangentSpace has a simple purpose: it computes the
Fréchet Mean of the data set, and takes the logarithm map of
each data point from the mean. This results in a data set of
tangent vectors at the mean. In the case of the SPD mani-
fold, these are simply symmetric matrices. ToTangent Space
then squeezes each symmetric matrix into a ld-vector of size
dim = 28 % (28 + 1) / 2, and outputs an array of shape
[n_connectomes, dim], which can be fed to your favorite
scikit-learn algorithm.

We emphasize that ToTangent Space computes the mean
of the input data, and thus should be used in a pipeline (as
e.g. scikit-learn’s StandardScaler) to avoid leaking
information from the test set at train time.

from sklearn.pipeline import make_pipeline
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import cross_validate

pipeline = make_pipeline(

ToTangentSpace (le_metric), LogisticRegression (C=2)
We use a logistic regression on the tangent space at the Fréchet
mean to classify connectomes, and evaluate the model with cross-
validation. With the log-Euclidean metric we obtain:

result = cross_validate (pipeline, data, labels)
logging.info(result['test_score'] .mean())
INFO: 0.67
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And with the affine-invariant metric, replacing le_metric by
ai_metric in the above snippet:

INFO: 0.71

We observe that the result depends on the metric. The Riemannian
metric indeed defines the notion of the logarithm map, which
is used to compute the Fréchet Mean and the tangent vectors
corresponding to the input data points. Thus, changing the metric
changes the result. Furthermore, some metrics may be more
suitable than others for different applications. Indeed, we find
published results that show how useful geometry can be with data
on the SPD manifold (e.g [WAZF18], [NDV " 14]).

We saw how to use the representation of points on the manifold
as tangent vectors at a reference point to fit any machine learning
algorithm, and we compared the effect of different metrics on the
manifold of SPD matrices. Another class of machine learning al-
gorithms can be used very easily on manifolds with geomstats:
those relying on dissimilarity matrices. We can compute the
matrix of pairwise Riemannian distances, using the dist method
of the Riemannian metric object. In the following code-snippet,
we use ai_metric.dist and pass the corresponding matrix
pairwise_dist of pairwise distances to scikit—-learn’s
K-Nearest-Neighbors (KNN) classification algorithm:

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier (
metric="precomputed"')

result = cross_validate(
classifier, pairwise_dist, labels)
logging.info(result['test_score'].mean())

INFO: 0.72

This tutorial showed how to leverage geomstat s to use standard
learning algorithms for data on a manifold. In the next tutorial, we
see a more complicated situation: the data points are not provided
by default as elements of a manifold. We will need to use the low-
level geomstats operations to design a method that embeds
the dataset in the manifold of interest. Only then, we can use a
learning algorithm.

Tutorial: Learning Graph Representations with Hyperbolic
Spaces

Tutorial context and description

This tutorial demonstrates how to make use of the low-level
geometric operations in geomstats to implement a method that
embeds graph data into the hyperbolic space. Thanks to the dis-
covery of hyperbolic embeddings, learning on Graph-Structured
Data (GSD) has seen major achievements in recent years. It had
been speculated for years that hyperbolic spaces may better rep-
resent GSD than Euclidean spaces [Gro87] [KPK ' 10] [BPK10]
[ASM13]. These speculations have recently been shown effec-
tive through concrete studies and applications [NK17] [CCD17]
[SDSGR18] [GZH " 19]. As outlined by [NK17], Euclidean em-
beddings require large dimensions to capture certain complex
relations such as the Wordnet noun hierarchy. On the other
hand, this complexity can be captured by a lower-dimensional
model of hyperbolic geometry such as the hyperbolic space of
two dimensions [SDSGR18], also called the hyperbolic plane.
Additionally, hyperbolic embeddings provide better visualizations
of clusters on graphs than their Euclidean counterparts [CCD17].
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This tutorial illustrates how to learn hyperbolic embeddings
in geomstats. Specifically, we will embed the Karate Club
graph dataset, representing the social interactions of the members
of a university Karate club, into the Poincaré ball. Note that we
will omit implementation details but an unabridged example and
detailed notebook can be found on GitHub in the examples and
notebooks directories of geomstats.

Hyperbolic spaces and machine learning applications

Before going into this tutorial, we review a few applications of
hyperbolic spaces in the machine learning literature. First, Hy-
perbolic spaces arise in information and learning theory. Indeed,
the space of univariate Gaussians endowed with the Fisher metric
densities is a hyperbolic space [CSS05]. This characterization is
used in various fields, for example in image processing, where
each image pixel can be represented by a Gaussian distribution
[AVF14], or in radar signal processing where the corresponding
echo is represented by a stationary Gaussian process [ABY13].
Hyperbolic spaces can also be seen as continuous versions of
trees and are therefore interesting when learning representations
of hierarchical data [NK17]. Hyperbolic Geometric Graphs (HGG)
have also been suggested as a promising model for social networks
- where the hyperbolicity appears through a competition between
similarity and popularity of an individual [PKS™12] and in learn-
ing communities on large graphs [GZH " 19].

Hyperbolic space

Let us recall the mathematical definition of the hyperbolic space.
The n-dimensional hyperbolic space H, is defined by its embed-
ding in the (n+ 1)-dimensional Minkowski space as:

)]

In geomstats, the hyperbolic space is implemented in the
class Hyperboloid and PoincareBall, which use dif-
ferent coordinate systems to represent points. These classes
inherit from the class EmbeddedManifold and have an
embedding_manifold attribute which stores an object of the
class Minkowski. The 2-dimensional hyperbolic space is called
the hyperbolic plane or Poincaré disk.

H,= {xER”H:—x%—i—...—l—x%H =—1}.

Learning graph representations with hyperbolic spaces in
geomstats

Parameters and Initialization: We now proceed with the
tutorial embedding the Karate club graph in a hyperbolic space.
In the Karate club graph, each node represents a member of the
club, and each edge represents an undirected relation between two
members. We first load the Karate club dataset, display it in Figure
6 and print information regarding its nodes and vertices to provide
insights into the graph’s complexity.

karate_graph = data_utils.load_karate_graph()
nb_vertices_by_edges = (
[len(e_2) for _, e_2 in
karate_graph.edges.items () ])
logging.info(
'Number of vertices: 'y
logging.info(
'Mean edge-vertex ratio: ',
(sum(nb_vertices_by_edges, 0) /
len (karate_graph.edges)))

len (karate_graph.edges))

INFO: Number of vertices: 34

INFO: Mean edge-vertex ratio: 4.588235294117647
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Fig. 6: Karate club dataset, available in geomstat s with the func-
tion load_karate_graph from the module datasets.utils.
This dataset is a graph, where each node represents a member of the
club and each edge represents a tie between two members of the club.

Parameter Description Value
dim Dimension of the hyperbolic space 2
max_epochs Number of embedding iterations 15

Ir Learning rate 0.05
n_negative Number of negative samples 2
context_size Size of the context for each node 1

karate_graph Instance of the Graph class returned by the function

load_karate_graphindatasets.utils

TABLE 1: Hyperparameters used to embed the Karate Club Graph
into a hyperbolic space.

Table 1 defines the parameters needed to embed this graph into
a hyperbolic space. The number of hyperbolic dimensions should
be high (n > 10) only for graph datasets with a large number
of nodes and edges. In this tutorial we consider a dataset with
only 34 nodes, which are the 34 members of the Karate club. The
Poincaré ball of two dimensions is therefore sufficient to capture
the complexity of the graph. We instantiate an object of the class
PoincareBall in geomstats.

from geomstats.geometry.poincare_ball
import PoincareBall

hyperbolic_manifold = PoincareBall (dim=2)

Other parameters such as max_epochs and 1r will be tuned
specifically for each dataset, either manually leveraging visu-
alization functions or through a grid/random search that looks
for parameter values maximizing some performance function (a
measure for cluster separability, normalized mutual information
(NMI), or others). Similarly, the number of negative samples and
context size are hyperparameters and will be further discussed
below.

Learning the embedding by optimizing a loss function:
Denote V as the set of nodes and E C V x V the set of edges of the
graph. The goal of hyperbolic embedding is to provide a faithful
and exploitable representation of the graph. This goal is mainly
achieved by preserving first-order proximity that encourages nodes
sharing edges to be close to each other. We can additionally pre-
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— Gradient direction for context samples
— Gradient direction for negative samples

Fig. 7: Embedding of the graph’s nodes {v;}; as points {§;}; of the
hyperbolic plane H,, also called the Poincaré ball of 2 dimensions.
The blue and red arrows represent the direction of the gradient of the
loss function £ from Equation 2. This brings context samples closer
and separates negative samples.

serve second-order proximity by encouraging two nodes sharing
the “same context”, i.e. not necessarily directly connected but
sharing a neighbor, to be close. We define a context size (here
equal to 1) and call two nodes “context samples” if they share a
neighbor, and “negative samples” otherwise. To preserve first and
second-order proximities, we adopt the following loss function
similar to [NK17] and consider the “negative sampling” approach
from [MSC " 13]:

Z=-Y Y |log(c(~d*(¢0}))+ Y, log(c(d(9:,9})))

v;,eV VjEC,' Vk’“yn
2

where o (x) = (1+e*)~! is the sigmoid function and ¢; € H; is
the embedding of the i-th node of V, C; the nodes in the context
of the i-th node, d)]’» € H; the embedding of v; € C;. Negatively
sampled nodes v, are chosen according to the distribution &2,
such that 2, (v) = (deg(v)*/*).(L,,ev deg(vi)*¥/*) 1.

Intuitively one can see in Figure 7 that minimizing . makes
the distance between ¢; and ¢; smaller, and the distance between
¢; and ¢y larger. Therefore by minimizing ., one obtains repre-
sentative embeddings.

Riemannian optimization: Following the literature on op-
timization on manifolds [GBH18], we use the following gradient

updates to optimize .Z:
0¥ )
Ir——
¢

where ¢ is a parameter of £, r € {1,2,---} is the iteration
number, and [r is the learning rate. The formula consists of
first computing the usual gradient of the loss function for the
direction in which the parameter should move. The Riemannian
exponential map Exp is the operation introduced in the second
tutorial: it takes a base point ¢’ and a tangent vector T and returns
the point ¢'*!. The Riemannian exponential map is a method of
the PoincareBallMetric class in the geometry module
of geomstats. It allows us to implement a straightforward
generalization of standard gradient update in the Euclidean case.
To compute the gradient of ., we need to compute the gradients
of: (i) the squared distance d”(x,y) on the hyperbolic space, (ii)

¢z‘+l = EXp¢r <—
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the log sigmoid log(o(x)), and (iii) the composition of (i) with
(ii).

For (i), we use the formula proposed by [ABY13] which
uses the Riemannian logarithmic map. Like the exponen-
tial Exp, the logarithmic map is implemented under the
PoincareBallMetric.

def grad_squared_distance (point_a, point_b, manifold):
log = manifold.metric.log(point_b, point_a)
return -2 * log

For (ii), we compute the well-known gradient of the logarithm of
the sigmoid function as: (logo)’(x) = (1 +exp(x))~!. For (iii),
we apply the composition rule to obtain the gradient of .#. The
following function computes ¥ and its gradient on the context
samples, while ignoring the part dealing with the negative samples
for simplicity of exposition. The code implementing the whole
loss function is available on GitHub.

def loss (example, context_embedding, manifold):

context_distance = manifold.metric.squared_dist (
example, context_embedding)

context_loss = log_sigmoid(-context_distance)

context_log_sigmoid_grad = —grad_log_sigmoid (
—context_distance)

context_distance_grad =
example,

grad_squared_distance (
context_embedding, manifold)

context_grad = (context_log_sigmoid_grad
« context_distance_grad)

return context_loss, —context_grad

Capturing the graph structure: We perform initialization
computations that capture the graph structure. We compute ran-
dom walks initialized from each v; up to some length (five by
default). The context nodes v; will be later picked from the random
walk of v;.

random_walks = karate_graph.random_walk ()

Negatively sampled nodes v are chosen according to the pre-
viously defined probability distribution function Z2,(v;) imple-
mented as

negative_table_parameter = 5
negative_sampling_table = []

for i, nb_v in enumerate (nb_vertices_by_edges) :
negative_sampling_table += (
[i] * int ((nb_v+* (3. / 4.)))
* negative_table_parameter)

Numerically optimizing the loss function: We can now em-
bed the Karate club graph into the Poincaré disk. The details of the
initialization are provided on GitHub. The array embeddings
contains the embeddings ¢;’s of the nodes v_i’s of the current
iteration. At each iteration, we compute the gradient of .. The
graph nodes are then moved in the direction pointed by the
gradient. The movement of the nodes is performed by following
geodesics in the Poincaré disk in the gradient direction. In practice,
the key to obtaining a representative embedding is to carefully tune
the learning rate so that all of the nodes make small movements at
each iteration.

A first level loop iterates over the epochs while the table
total_ loss records the value of & at each iteration. A second
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level nested loop iterates over each path in the previously com-
puted random walks. Observing these walks, note that nodes hav-
ing many edges appear more often. Such nodes can be considered
as important crossroads and will therefore be subject to a greater
number of embedding updates. This is one of the main reasons
why random walks have proven to be effective in capturing the
structure of graphs. The context of each v; will be the set of nodes
v; belonging to the random walk from v;. The context_size
specified earlier will limit the length of the walk to be considered.
Similarly, we use the same context_size to limit the number
of negative samples. We find ¢; from the embeddings array.

A third and fourth level nested loops will iterate on each v;
and vy. From within, we find ¢; and ¢; and call the 1oss function
to compute the gradient. Then the Riemannian exponential map is
applied to find the new value of ¢; as we mentioned before.

for epoch in range (max_epochs) :
total_loss = []
for path in random_walks:
for example_index,
one_path in enumerate (path) :

context_index = path[max(
0, example_index - context_size):
min (example_index + context_size,
len (path)) ]

negative_index = gs.random.randint (

negative_sampling_table.shape[0],
size=(len (context_index), n_negative))
negative_index = (

negative_sampling_table[negative_index])

example_embedding =
for one_context_i, one_negative_i in \
zip (context_index, negative_index):
context_embedding = (
embeddings[one_context_i])
negative_embedding = (
embeddings[one_negative_i])
g_ex = loss(
example_embedding,
context_embedding,
negative_embedding,
hyperbolic_manifold)
total_loss.append(l)

embeddings [one_path]

l!

example_to_update = (
embeddings [one_path])
embeddings[one_path] = (
hyperbolic_metric.exp (
-1lr * g_ex, example_to_update))
logging.info(
'iteration
epoch,

loss_value ',

sum(total_loss, 0) / len(total_loss))

INFO:
INFO:

iteration 0 loss_value 1.819844
iteration 14 loss_value 1.363593

Figure 8 shows the graph embedding at different iterations with
the true labels of each node represented with color. Notice how the
embedding at convergence separates well the two clusters. Thus,
it seems that we have found a useful representation of the graph.

To demonstrate the usefulness of the embedding learned, we
show how to apply a K-means algorithm in the hyperbolic plane
to predict the label of each node in an unsupervised approach.
We use the 1learning module of geomstats and instantiate
an object of the class RiemannianKMeans. Observe again how
geomstats classes follow scikit—-learn’s APL. We set the
number of clusters and plot the results.

from geomstats.learning.kmeans import RiemannianKMeans

kmeans = RiemannianKMeans (
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Fig. 8: Embedding of the Karate club graph into the hyperbolic plane
at different iterations. The colors represent the true label of each node.

True labels Predicted labels
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Fig. 9: Results of the Riemannian K-means algorithm on the Karate
graph dataset embedded in the hyperbolic plane. Left: True labels as-
sociated to the club members. Right: Predicted labels via Riemannian
K-means on the hyperbolic plane. The centroids of the clusters are
shown with a star marker.

hyperbolic_manifold.metric, n_clusters=2,
mean_method="'frechet-poincare-ball"')
centroids = kmeans.fit (X=embeddings, max_iter=100)
labels = kmeans.predict (X=embeddings)

Figure 9 shows the true labels versus the predicted ones: the two
groups of the karate club members have been well separated!

Conclusion

This paper demonstrates the use of geomstats in performing
geometric learning on data belonging to manifolds. These tu-
torials, as well as many other learning examples on a variety
of manifolds, can be found at geomstats.ai. We hope that
this hands-on presentation of Geometric Learning will help to
further democratize the use of differential geometry in the machine
learning community.
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