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ABSTRACT:

Experimental characterization of plasma properties along the magnetic nozzle of an Electron Cyclotron

Resonance thruster is presented here. A permanent magnet prototype and a solenoid prototype are tested,

whose main difference relies on the magnetic field strength and topology. A cylindrical Langmuir probe is used

to measure plasma potential, plasma density and electron temperature. In the permanent magnet thruster

set-up, a Laser Induced Fluorescence diagnostics is performed simultaneously with the Langmuir probe to

measure the mean ion kinetic energy, and a Faraday gridded probe to characterize the angular plasma beam.

An effective electron cooling rate has been identified, as well as the dependence of the total plasma potential

drop with the mass flow rate. Results are compared with a supersonic collisionless fluid-kinetic 1D model where

electron dynamics account for magnetic mirror effects and potential barriers, while ions are treated as a fluid

cold species. The comparison allows to estimate the sonic transition of the plasma flow.

I INTRODUCTION

In simple terms, a magnetic nozzle (MN) consists of a divergent magnetic field generated by a a set of

solenoids or permanent magnets, whose main function is to confine and accelerate the plasma beam. Interest

in MNs has increased significantly during the past years, [1–3], accelerating the development of the so-called

MN plasma thrusters, such as the helicon thruster [2,4,5], the Variable Specific Impulse Magnetoplasma Rocket

(VASIMR) [6], the applied-field magnetoplasmadynamic thruster [7,8] or the electron cyclotron resonance (ECR)

thruster [9,10]. Among its numerous advantages over other acceleration systems, noteworthy are its contactless

character, which reduces erosion and can extend the thruster lifetime, its versatility which allows to adapt the

magnetic field topology in flight or its easy scalability. However, plasma dynamics in a MN involve complex

physical mechanisms that are yet not fully understood, and are crucial to determine the thruster performance.

Several authors have contributed significantly to the development of this device, providing insightful theoretical

and experimental research involving MN expansions, such as plasma detachment [11–15], formation of ambipolar

electric field [16–18] and magnetic thrust generation [19–21]. Ideally, modelling and testing must make progress

together, since one without the other may fall short under scientific scrutiny.

Experimental characterization of the plasma beam properties along a MN can reveal not only the thruster

performance, but also important physical aspects concerning plasma expansion dynamics that are still unclear.

For instance, the evolution of the electrons along the divergent magnetic field is still a subject of discussion.
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Takahashi et al. in [22] studied the thermodynamics of a magnetized electron gas expansion, showing the corre-

lation between an external electric field and the polytropic index. Little and Choueiri in [23] characterized the

axial variation of macroscopic quantities in a RF plasma beam and investigated the electron cooling phenomena,

comparing its results with a fluid 1D model that included electron heat conduction and revealing the critical

need for improved 1D models to describe the MN expansion. More recently, experimental studies performed by

Kim et al. in [24,25] showed the coexistence of adiabatic expanding electrons and isothermal confined electrons

along the MN of an ECR thruster. In this sense, the requirement for accurate experimental data and validation

of advanced theoretical models for MNs is clear.

On the experimental side, ONERA has been developing an ECR thruster during the past years consisting

of an ECR coaxial cavity followed by a divergent MN [10]. Multiple research has been done concerning this

technology: Vialis et al. performed the first direct thrust measurements in [21], an analytical model of the

ECR source was developed to identify the most important physical features in the ECR discharge [26], Lafleur

et al. performed a theoretical and experimental investigation in [27] to determine the relationship between the

maximum ion energy and the upstream electron temperature in this device, founding a value of 4-5. In order

to contribute to the previous research, and characterize longitudinally the plasma expansion along the center

line of the ECR thruster, this work presents the first complete measurements of plasma potential, electron

density, electron temperature, and ion velocity along the expansion. Two ECR prototypes are tested, with

two different MN topologies. A parametric study of variation of the mass flow rate ṁ is presented, which is

crucial to understand the expansion dynamics, since the electron temperature and the isotropization of the

electron energy distribution function are highly dependent on this parameter. Langmuir probes have been used

to characterize the evolution of plasma properties along the axis of the MN, and a Laser Induced Fluorescence

(LIF) diagnostics has been employed to determine the mean ion velocity in the thruster exit plane and along

the center line of the expansion [28]. Angular scans of the ion current have been performed at different xenon

mass flow rates to estimate thruster performances partially.

The fluid-kinetic quasi-1D steady-state model by Martinez-Sanchez, Ahedo and Navarro [29] is here

adapted to analyze the experimental data along the MN of the thruster. The model determines self-consistently

the axial profile of the ambipolar electric potential and the electron distribution function of a magnetized

fully-divergent plasma expansion. Contrary to the commonly used fitted polytropic laws, the model in [29]

determines directly the exact solution of the electron velocity distribution function and the total potential drop

in the magnetized expansion, which for near-cold ions, only depends on the ion to electron mass ratio.

This paper is organized as follows: Section II explains the set-up developed at ONERA, Section III

presents the main experimental results, Section IV describes the model used to predict the plasma proper-

ties along the expansion and compares the experimental data with the theoretical model. Finally, Section V

concludes the main results of the research.

II EXPERIMENTAL SET-UP

II.1 The ECR thruster of ONERA

The experiments carried out in this work were performed along the MN of the ECR thruster developed

by ONERA [10]. It has an axisymmetric geometry and it is composed of a coaxial plasma source cavity of
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dimensions Ls = 15 mm and Rs = 13.5 mm followed by a divergent MN. 2.45 GHz electromagnetic waves are

emitted by a stainless steel antenna of 0.9 mm radius placed at the thruster axis and the electron resonance

condition is achieved at 875 G. Two different prototypes are tested, were the magnetic field is either generated

by a solenoid (SO) or by a permanent magnet (PM) named ECR-PM-V1 in [21]. The back of the source

is limited by a dielectric back plate made of boron nitride. The thrusters are electrically isolated by an in-

line microwave component called Direct Current Blocker (DC block), which allows them to be electrically

floating. The propellant is injected at the back plate of the source through two holes of 2 mm diameter located

symmetrically at two mid-points of the source radius. The external magnetic field strength at the thruster

back plate is fixed at 900 G for both prototypes, but the PM thruster has a smaller axial gradient, which shifts

downwards the plasma detachment and results in a less divergent plasma beam. Figure 1 compares the magnetic

field strength at the thruster’s axis as a function of the distance to the thruster exit plane (corresponding to

z = 0).

0 100 200 300
z (mm)

0

200

400

600

800

1000

B
z

(G
)

Figure 1: Applied magnetic field strength at thruster axis in the PM ( ) and SO ( ) ECR prototypes.

z = 0 corresponds to the thruster exit plane.

II.2 Subsystems and operating conditions

The microwave power is injected by means of a solid state amplifier. It is constituted by a signal generator

(between 2.3 and 2.6 GHz) and a linear amplifier, and the maximum power it can deliver is around 100 W.

The power is transmitted by a 50 Ohm coaxial cable, whose losses have been measured using a vector network

analyzer. The output of the generator is connected directly to a circulator with a 50 Ohm load, which allows the

reflected power to be absorbed and dissipated in the load. Subsequently and before entering the feedthrough,

the power line contains a bi-directional coupler connected to two different diodes that are in charge of measuring

the forward and reflected power at this point of the line. Figure 2 shows a schematic of the the microwave power

line set-up.

In this study, the power absorbed by the plasma was set at 30 ± 2 W (determined by recording the input

and reflected power measured by the bi-directional coupler). The measured reflected power was less than 3 % in

all the cases presented here. The level of radiated power was evaluated when the thruster was ignited and was

found to be negligible and the attenuation level in the coaxial cable inside the chamber was characterized with

a Vector Network Analyzer. With this procedure, the absorbed power was estimated to be very close to the
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50 Ohm 

load

8

Figure 2: Schematic of the thruster and subsystems in the vacuum setup

input power in this set-up (≈ 95%). Finally, the xenon mass flow rate varied within the range ṁ = (0.08− 0.2)

mg/s.

The tests have been done at ONERA-Palaiseau facilities. The vacuum chamber, known as B09, consists of

a cylindrical vessel with dimensions of 0.8 m diameter and 2 m long. The pumping is done by one primary

pump, three Pfeiffer Hipace (2000 l/s N2) turbomolecular pumps, and one cryogenic pump, allowing to achieve

a background pressure of 10−7 mbar and a xenon pumping speed of 13000 l/s.

II.3 Diagnostics

In order to characterize longitudinal profiles of the plasma properties along the MN expansion, two dif-

ferent diagnostics were installed: Laser Induced Fluorescence (LIF) optical set-up to measure the ion velocity

distribution function (IVDF) and cylindrical Langmuir probes to obtain information about the electron energy

probability function (EEPF). Additionally, a Faraday gridded probe was installed in a rotation stage placed at

28 cm from the thruster exit plane to perform angular scans of the total ion current. The different diagnostics

are detailed below.

II.3.1 Cylindrical Langmuir probe

A cylindrical Langmuir probe of 0.1 mm diameter and 6 mm length was placed in a 2D translation stage,

so it could operate at different longitudinal positions. The tip probe was made of tungsten wire and it was

held in a ceramic tube. The I-V characteristic curve was successfully obtained at different locations without

perturbing significantly the thruster performance (from 75 to 250 mm from the thruster exit plane for the
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PM prototype, and from 40 to 280 mm for the SO prototype) and local values of plasma potential, electron

density and electron temperature were computed. It was not possible to place the probe closer to the thruster,

because significant variations on the floating thruster potential were detected, an indication that the diagnostic

was interfering the thruster performance. The floating thruster potential was measured using a commercial

multimeter external to the vacuum chamber.

One of the main concerns when placing a Langmuir probe in the presence of a magnetic field is the tip

orientation with respect to the magnetic field lines. The Larmor or gyro radius was expected to be greater than

the probe radius in all the range studied here, so no magnetic field effect should in principle be captured [30].

To ensure this fact, and since the gyro radius was not well known due to the uncertainty on the electron

temperature, a previous test was performed with the Langmuir probe placed in a rotation stage. Acquisitions

were taken with the probe placed parallel and perpendicular to the magnetic field lines and no significant

difference in the I-V curve was found. For this reason, the effect of the probe orientation was neglected in the

present work, and the electron temperature shown here should be understood as a total value of the electron

energy (including parallel and perpendicular orientations).

II.3.2 LIF

A 1D Laser Induced Fluorescence diagnostic was mounted together with the electrostatic probes (Lang-

muir and Faraday gridded) to measure the projection of the ion velocity distribution function along the thruster

axis direction. All optics were fixed to the vacuum chamber, and the thruster was moved using a 3D translation

stage. With this setup, any point in the thruster source and along the plume could be measured. It must be

noticed that this diagnostic was only installed when operating the PM thruster, since the SO prototype includes

water cooling tubes and high current cables (130 A) that were not compatible with the 3D translation stage.

The LIF calibration and specific details of the optical setup are explained in [28], as well as the main

results from the LIF measurements presented in this work. The laser consists of a SDL-TC10 tunable laser

diode with 20 mW of maximum output power and the frequency span for this measurements was 25 GHz, which

allowed measuring axial ion velocities up to 20 km/s.

The laser was aligned with the thruster axis and injected through a lens of 25 mm diameter. The detection

was composed of a 50 mm lens and a 200 µm optic fiber. The probed volume was around 1 mm diameter. The

optics were installed 450 mm from the measurement point, to avoid perturbation and intrusion in the plasma

beam. The detection was installed with an angle of 35o and a camera was fixed to the thruster to verify

alignment between the laser and the detection. Figure 3 schematizes the set-up.
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Figure 3: Schematic of optical LIF setup inside the vacuum chamber

II.3.3 Faraday gridded probe

To estimate the mass utilization efficiency at different mass flow rates, the total ion current was measured

with a one-grid Faraday probe. Angular profiles of the ion current density were obtained by performing angular

scans of current with the probe mounted in a rotation stage at 28 cm from the thruster exit plane. The beam is

assumed to be axisymmetric and composed by only single ionized ions. The probe used here is described in [27],

and consists of a 6 mm diameter collector with a front grid of 60% transparency. The voltage was biased at a

sufficiently negative value to ensure the probe was working in the ion saturation region of the I-V curve. The

procedure was the following: The probe was placed facing the plume at the thruster axis, and the collector was

biased more negatively until there was no variation in the collected current (≈ -300 V). Then, the ion current

was estimated by means of an external resistor. The Faraday probe was only mounted in the PM prototype

setup.

III RESULTS

This Section presents the results of the two magnetic systems setups used for the ECR thruster. All the

tests presented here were carried out at 30 ± 2W of absorbed power and xenon mass flow rates of 1, 1.5, 2.0

sccm for the PM thruster and 0.8, 1 sccm for the SO thruster. In both setups, the Langmuir probe described in

Section II was installed in a translation stage which allowed the probe tip to be aligned with the thruster axis

at different axial positions. Additionally, in the PM thruster setup, the LIF optical assembly and the Faraday

probe described in Section II were also installed. In this Section results are organized by diagnostic.

III.1 Langmuir probe: Plasma properties φ, ne, Te

The plasma potential at each axial position was obtained from the inflection point of the I-V characteristic

curve, and the electron energy distribution function (EEDF) was computed with the Druveysteyn formula [31],
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shown in equation 1, where F (ε) represents the EEDF, g(ε) the electron energy probability function (EEPF),

me and q the electron mass and charge respectively and A the probe surface area. Figure 4 shows an example

of the I-V curve and the calculated EEPF at 1 sccm, at 105 mm from the PM thruster exit plane. The

electron density and temperature can be computed by taking the corresponding integrals of the EEDF, as it is

shown in equations 2 and 3. Notice that since the EEPF is not Maxwellian, Te stands for an effective electron

temperature. These formulas give reliable results when a magnetic field is present if the condition rL >> rs

is satisfied, where rL represents the electron Larmor radius or gyroradius and rs the effective collecting area

of the probe. This assumption can be problematic at the closest locations to the thruster exit plane, since the

electron Larmor radius could remain of the same order as the probe sheath length. For instance, for the SO

thruster, at z=80 mm the rL expected should be around 4 mm, while the estimated rs is 2.61 mm. However,

in most of the analyzed region, the condition rL >> rs is well satisfied.
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Figure 4: a) I-V curves at 2 sccm of xenon, at different axial locations from the PM thruster exit plane and b)

the computed EEPF.

F (ε) = g(ε)
√
ε =

2
√

2meε

q3A

d2I

dV 2
(Eq. 1)

ne =
2
√

2me

|q|A

∫ −∞
0

d2I

dV 2

√
V

|q| dV (Eq. 2)

Te =
4
√

2me

3neA

∫ −∞
0

d2I

dV 2

(
V

|q|

)3/2

dV (Eq. 3)

Figure 5 shows the plasma properties measured with the Langmuir probe along the center line of the PM thruster

plume. Plasma potential φ, electron density ne and electron temperature Te have been estimated from 75 mm

to 250 mm downstream, at three different xenon mass flow rates 1, 1.5 and 2 sccm, where z = 0 corresponds to

the thruster exit plane. The plasma potential φ has been plotted referred to its value at z = 75 mm. Figure 5

(a) shows there is a direct relation between the mass flow rate and the plasma potential profile in the studied

region: at higher mass flow rates, lower is the plasma potential drop. This behaviour is directly related to the

electron temperature at the plasma source [27], which is highly dependant on the mass flow rate.

The spatial range of the Langmuir probe measurements was limited to 250 mm from the thruster exit

plane due to the translation stage length. Moreover, positioning the probe closer than 75 mm from the exit
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plane disturbed significantly the thruster performance. For this reason, within 0-75 mm, the experiment was

considered highly intrusive. Although the plasma potential profiles have been found to be almost flat beyond

200 mm, upstream of 75 mm a high ambipolar potential gradient is expected, and therefore the near region can

not be neglected to estimate the entire plasma potential profile curve. In the ECR thruster tested here, with

its particular magnetic field topology, the first 10 cm down from the thruster exit plane are crucial to the ions

acceleration (and therefore to the plasma potential), as it is confirmed in Section III.2. In order to complete the

near region of the plasma potential profile, the LIF optical setup was installed, total ion energy was assumed

to be conserved, and the plasma potential in the near region was estimated by means of the LIF diagnostics.

Figure 5 (b) shows the estimated electron density ne measured with the Langmuir probe. As it is

expected, it shows an increase with the mass flow rate. At 75 mm, densities in the order of 1015 m−3 have

been found. Finally, the electron temperature Te shows the opposite behaviour; it decreases with the mass

flow rate (see figure 5 (c)). The total absorbed power measured for all cases is 30 W, so for lower mass flow

rates, more energy is spent in heating the electrons, instead of ionizing the plasma. An effective electron cooling

has been measured along the expansion at different operating conditions. To identify the electron cooling rate,

the electron temperature has been plotted against the electron density in a logarithm scale in figure 5 (d).

Polytropic coefficients of 1.23 ± 0.02, have been found, all of them below the adiabatic expansion coefficient

5/3 and similar to the values found by other authors in magnetically expanding plasmas [23,32]. However, this

value only corresponds to a delimited region of the expansion.
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Figure 5: Plasma properties measured with the Langmuir probe, along the center line of the PM thruster. z = 0

corresponds to the thruster exit plane. Measurements were taken at 30 W of power and different mass flow

rates: 1 sccm ( ) 1.5 sccm ( ) , 2 sccm ( ).
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Experimentally, covering the whole region of the expansion can add insight on the electron cooling

mechanism, and in this sense, the Langmuir probe measurements in the SO thruster plume represent a farther

zone of the MN, where there is a higher drop of the magnetic field strength. Figure 6 shows the plasma properties

measured with the Langmuir probe along the magnetic field expansion of the SO thruster. The Langmuir probe

was operated from z = 40 to z = 290 mm. In this experiment, the thruster performance was found stable from

40 mm downwards. As it can be observed in figure 6 (a), in the range from z = 75 mm to z = 250 mm, at 1

sccm, the plasma potential has decreased around 35 V, while in the same spatial region for the PM thruster,

the total drop was around 80 V. This is due to the fact that the acceleration region for the PM thruster is wider

than for the SO thruster, which is a direct consequence of the MN topology. Concerning the plasma density, a

factor of two has been found between the SO thruster and the PM thruster for the same operation conditions,

being higher in the SO thruster plume (see figure 6 (b)).

Interestingly, the electron temperature profile measured in the SO thruster plume differs from the ten-

dency measured along the nozzle of the PM thruster. As it is shown in figure 6 (c), it is possible to identify

two different regions; while the first measurements from z = 40 to z = 100 mm reveal a sharp decrease in the

electron temperature, beyond z = 100 mm the curve remains almost flat, reaching an asymptotic value around

10 eV. In order to study this behaviour, the electron temperature is plotted against the electron density in a

logarithm scale (figure 6 (d)). In contrast to the PM thruster, two different polytropic coefficients γ have been

identified here, γ = 1.55 close to the thruster exit and γ = 1.17 farther downstream. Similar trends have been

found at 0.8 sccm ( ) and 1 sccm ( ) of xenon in the SO thruster plume, being the total plasma potential

drop at 0.8 sccm slightly higher. The experiments by Kim et. al in [24, 25] also found various values of the

polytropic index along a MN expansion. In conclusion , these results indicate that the plasma expansion is

more complex than polytropic. Indeed, the the MN model briefly presented later will confirm that there is not

a simple polytropic law.

In figure 7 the electron density has been plotted against the plasma potential in logarithm scale, and

compared to the Boltzmann relation and the different polytropic cooling laws. In the PM thruster (figure 7

(a)), a polytropic cooling law represents well the near region of the expansion, but downstream it leads to

a non-negligible deviation. In the SO thruster plume (figure 7 (b)), the non local behaviour (i.e. change in

polytropic factor) is again visible.
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Figure 6: Plasma properties measured with the Langmuir probe, along the center line of the SO thruster. z = 0

corresponds to the thruster exit plane. Measurements were taken at 30 W of power and different mass flow

rates: 0.8 sccm ( ) 1 sccm ( )

.
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Figure 7: Normalized plasma density ne/ne75 versus e(φ− φ75)/Te75 estimated with the Langmuir probe for a)

PM thruster and Normalized plasma density ne/ne40 versus e(φ− φ40)/Te40 b) SO thruster. 0.8, 1, 1.5, and 2

sccm are represented by ( ), ( ),( ),( ), respectively. The solid line corresponds to the Boltzmann expansion,

while the dashed lines in a) represent polytropic expansions with γ = 1.23± 0.02.
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III.2 LIF: Mean axial ion velocity ui

The optical LIF diagnostics were installed together with the Langmuir probe in the PM thruster set-up.

The thruster was operated at 30 W and at three different mass flow rates. LIF measurements were performed at

several axial positions along the center line of the thruster axis; inside the thruster source and in the near plume

region (from z = −5 mm and z = 125 mm). Three examples of different LIF spectra obtained with the same

acquisition parameters (sweep time of the laser and time constant of the lock-in amplifier) are shown in figure

8 (a). It is noteworthy that there is a broadening of the peaks inside the thruster, which could be either due to

Zeeman splitting of the 834.7 nm transition, or to the production of charge ex-change ions. The possible effect of

Zeeman splitting in this region is a current line of research. Relative density and mean axial velocity have been

computed and represented in figure 8 (b). Since the ECR region is located near the backplate, and the magnetic

field is fully divergent, the generated ions are already slightly accelerated inside the source. The measured ion

velocity at the thruster exit plane is 2250, 1950 and 1900 m/s at 1, 1.5 and 2 sccm, respectively. Currently, an

uncertainty of the ECR thruster performance is the location of the sonic transition from a subsonic plasma jet to

a supersonic beam, due precisely to the coupling of ionization and acceleration processes, so obtaining accurate

data of the ion velocity and density in this region can be crucial to understand this phenomenon. Figure 8

(b) shows a unexpected trend of the relative ion density between 5 and 10 mm from the thruster exit. These

results could be due to production of secondary ions in this region, but it must be confirmed with additional

measurements.
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Figure 8: a) LIF signal already centered with the reference discharge at different axial positions: -5 mm ( ),

10 mm ( ) and 35 mm ( ). b) Computed relative density ( ) and mean axial velocity ( ) from

the LIF signals. Operating conditions were 1.5 sccm and 30 W.

The mean axial ion velocity has been determined from the LIF signal for each axial position, at 30 W of

absorbed power and three different mass flow rates 1, 1.5 and 2 sccm. The longitudinal profiles are shown in

figure 9 (a). Lower mass flow rates lead to higher ion velocities. The highest ion velocity measured at 100 mm

from the thruster exit in this set-up was 16 km/s for 1 sccm. However, the current density also decreases with

the distance, and LIF measurements could not be performed beyond 100 mm at 1 sccm. The ion velocity axial

gradient has been also plotted in figure 9 (b). It can be seen that the strongest gradient is located between 5

and 15 mm from the thruster exit plane, region where the electric field is more intense. As well, the maximum

velocity gradient is shifted at the different operating conditions, being closer to the thruster exit plane at lower
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mass flow rates.

It can be seen that the acceleration region is not complete at the end of the LIF measurement range,

henceforth LIF results in the near plume region have been completed with Langmuir probe measurements in

the far plume region.
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Figure 9: a) Mean axial ion velocity measured with the LIF set-up, along the center line of the PM thruster and

b) its axial derivative normalized between 0 and 1. z = 0 corresponds to the thruster exit plane. Measurements

were taken at 30 W of power and different mass flow rates: 1 sccm ( ) 1.5 sccm ( ) , 2 sccm ( ).

Finally, by assuming total ion energy is conserved, it is possible to calculate the plasma potential in the

near plume from LIF measurements by overlapping the curves of kinetic energy and plasma potential in the

region where LIF and Langmuir probe operated simultaneously. The resulting plasma potential profile from the

thruster exit to the farthest measurement point, referred to the plasma potential at the ECR source is shown

later in figure 14 (b). The total plasma potential drop from 0 to 250 mm is 236, 145 and 104 V, for 1, 1.5

and 2 sccm, respectively. It is noteworthy that this potential drop is not necessarily the total ion energy, since

although the plasma potential profile is almost flat beyond 200 mm, the plasma expansion is not complete. One

of the main contributions of this work is to compute the finite potential drop based on a fluid-kinetic plasma

expansion model, and relate the percentage of plasma expansion with the spatial coordinates.

III.3 Faraday probe: Ion current

The gridded Faraday probe detailed in Section II.3.3 was installed in the PM thruster set-up. Angular

scans of current density were taken at 28 cm from the thruster exit plane, at 30 W of absorbed power and three

different mass flow rates 1, 1.5 and 2 xenon sccm. Figure 10 shows the measured angular profiles of ion current

density, computed taking into account the surface of the probe and the grid transparency. It is noteworthy

that the angular profiles of figure 10 do not reach the maximum current at 0 degrees, which is probably due to

the fact that the antenna is located at the center line of the thruster, and influences the shape of the plasma

beam. As well, the current design of the gas injection could also lead to non-homogeneities already in the

plasma source, as it was pointed out by Vialis et al. in [21]. There is also a residual current at 90 degrees,

which increases with the mass flow rate, which suggests that it could be due to charge ex-change collisions or

additional ionization due to collisions between the ambient plasma and plume electrons.

The total ion current Ii is computed integrating the ion current density assuming an axisymmetric plume
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Figure 10: Angular scan of ion current density at 28 cm from the thruster exit: 1 sccm ( ), 1.5 sccm ( )

and 2 sccm ( ).

and taking into account the distance to the thruster axis. Related to that current, a first parameter assessing

the performance efficiency of the thruster is the mass efficiency, defined as

ηm =
Iimi

ṁq
(Eq. 4)

where: mi is the ion mass, q is the elementary electric charge, and ṁ is the neutral gas mass flow rate. A

second efficiency parameter is related to the plume divergence: if λ represents an effective far field divergence

angle [33], a “plume efficiency” is given by cos2 λ. Table 1 details these two performance parameters, together

with the measured chamber pressure. The low measured mass efficiency is an indication of a poor ionization,

which is directly related to the mass-flow rate to power ratio, as it was reported in [21].

ṁ(sccm) pch (10−6 mbar) ηm(%) cos2 λ Te∗ (eV) z0 (mm)

1 2.8 23.2 0.857 44 7.4

1.5 3.5 17.6 0.892 27 11.8

2 3.7 14.2 0.887 19 12.5

Table 1: Chamber pressure, mass utilization efficiency ηm and plume efficiency cos2 λ for the PM thruster. Two

last columns: estimated electron temperature at the sonic point and its location for the MN model fitting.

IV COMPARISON OF PLUME DATA WITH THEORY

In order to understand and analyze the experimental data on the magnetized plasma plume emitted by

the thruster, we resort to models of the MN. The most suitable one for a near-collisionless plasma is the kinetic

one by Mart́ınez-Sánchez et al. [29] which considers the expansion of a collisionless, quasineutral, magnetized

plasma in a paraxial convergent-divergent MN, and solves for the ion and electron velocity distribution functions

and the ambipolar electric potential. In the next Subsection, that ideal model is adapted to a divergent-only

nozzle, in a way similar to the one Merino et al. [34] followed for an unmagnetized plasma plume. Then,

Subsection IV.2 compares the experimental data with that model.
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IV.1 Divergent nozzle model

Let us consider a divergent nozzle created by an applied magnetic field B(z) monotonically decreasing

from z = z0, where from a plasma beam is with near-sonic conditions, to be defined below. This plasma

is collisionless, quasineutral, current-free and fully-magnetized. Therefore, ions and electrons are perfectly

channeled by the magnetic streamtubes. The model, being paraxial, determines only axial flows of radially-

averaged magnitudes. If the initial cross-section of the beam is A0, the evolution of the cross section is inversely

proportional to B: A = A0B0/B.

Individual electrons conserved their total energy Ee, and magnetic moment µe, defined as

Ee =
mew

2
e‖

2
+
mew

2
e⊥

2
− e∆φ (Eq. 5)

µe =
mew

2
e⊥

2B
(Eq. 6)

where: we‖ and we⊥ are velocity components parallel (i.e. axial) and perpendicular to the magnetic field (we‖

is also the electron gyrocenter velocity) and ∆φ = φ− φ0 ≤ 0.

For a current-free plasma, the self-consistent electric potential φ is monotonically decreasing, its role

being to adjust the downstream current of very mobile electrons to the ion current, in a similar way a Debye

sheath does close to a dielectric wall. However, when electrons are magnetized there is an additional effect.

Combining the above two equations, the electron axial velocity satisfies

mew
2
e‖

2
= Ee − µeB + e∆φ. (Eq. 7)

Therefore, the axial forward-motion (we‖ > 0) of electrons is governed by two opposing forces: the electric

one, which decelerates them, and the magnetic mirror effect, which accelerates them. The opposite is naturally

true for back-marching electrons. As a consequence three different populations of electrons can be found in a

divergent nozzle [35]: free electrons, emitted by the source and lost downstream (which constitute the electron

current); reflected electrons, emitted by the source and turned back to the source; and doubly-trapped electrons,

bouncing between two intermediate positions of the plume.

At the source, only the forward-marching velocity distribution function fe+(z0) can be postulated, while

the backward-marching distribution fe−(z) (at any location) is part of the solution. The semi-Maxwellian

distribution

fe+(Ee)|z0 = ne∗

(
me

2πTe∗

)3/2

exp

(
− Ee

Te∗

)
, we‖ > 0, (Eq. 8)

is chosen here. Parameters ne∗ and Te∗ would be the electron density and temperature at the source, ne0 and

Te0, only if fe+ = fe−. Since most source electrons are reflected back, ne∗ ≈ ne0 and Te∗ ≈ Te0. While the

populations of free and reflected electrons are totally determined in terms of B(z) and φ(z), the determination

of the population of doubly-trapped electrons is out of the capabilities of a collisionless, stationary model. The

same postulates than in [29] will be used here for that population. Macroscopic electron magnitudes such

as density ne, parallel particle flow neue, pressure neTe, and parallel heat flux qe, are determined as velocity

moments of the local distribution function fe = fe+ + fe−, in the way explained in [29].

Ions also conserve their total energy and magnetic moment, but in this case, both the electric force and

the magnetic mirror accelerate them downstream the divergent nozzle. As a consequence all ions constitute a
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free population, expanding supersonically, and a simple “cold fluid model” seems a good approximation [35].

Then, ion continuity and momentum equations are

niui/B = const = ni0ui0/B0, ui =
√
u2i0 − 2e∆φ/mi. (Eq. 9)

Using B as independent variable instead of z, the self-consistent electric potential profile, φ(B), is deter-

mined by satisfying [29] plasma quasineutrality

ne(φ(B), B) = ni(φ(B), B) ≡ n(B), (Eq. 10)

and the current free condition, i.e. the (constant) ion and electron flows are identical. This, together with

quasineutality states that macroscopic ion electron velocities are the same: ue(B) = ui(B).
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Figure 11: Plasma expansion according to the magnetic nozzle model.

The dimensionless solution of this problem depends on the injection location z0 (or B0), the initial

velocity ui0/cs∗, with cs∗ =
√
Te∗/mi and the mass ratio mi/me. Figure 11 plots plasma profiles for xenon,

ui0/cs∗ = 1, and different z0. Observe, first, that Te0 ' Te∗ indicating that fe(z0) is fully Maxwellian except

for the high-energy tail of free electrons. Second, electron (collisionless) cooling is high and motivated by the

emptying of regions in the electron velocity space [34]. Third, the total drop of the electric potential in the

divergent nozzle for a current-free xenon plasma is about 7.4.

Figure 12 plots an ”equivalent” local polytropic coefficient defined as

γ =
d ln pe
d lnne

, (Eq. 11)

. which presents large variations along the plume. The main message is then that there is not a polytropic

behavior of the electrons. With this precaution taken, it still can be said that near the source electrons are
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Figure 12: Equivalent local polytropic coefficient given by the model ( ). The dashed horizontal red line

( ) represents the average experimental value measured along the MN of the PM thruster.

near-isothermal, then tend to an adiabatic behavior, and finally to a (cold) isothermal behavior again. Observe

that these changes occur along a range of B much larger than the experimental one.

Before experimental data is fitted to this model in the next Subsection, it is worth to highlight the main

limitations of this ideal model. First, the model is paraxial and ignores partially the radial plasma expansion

and totally the turning-back of magnetic lines. Second, it considers ions and electrons fully-magnetized down

to z∞, so, in practice, results are valid only in nozzle near-region. Third, the electron temperature at the source

is assumed isotropic, which is not the situation expected in an ECR thruster. Theoretical work is underway to

cancel or at least reduce these model restrictions [34,36–38]

IV.2 Fitting of experimental data along the MN of the PM thruster

The experimental results for the PM thruster presented in Section III are here fitted to the model just

described. For a given mass flow, the fitting method is applied to the ion velocity profile experimental data of

figure 9 (a) and consists in the following. A range of values of Te∗ is selected; remember that Te∗ ≈ Te0. For

each Te∗, the experimental point where ui = cs∗ is taken as origin z0 for the fitted curve and the full theoretical

curve is plotted. Figure 13 shows the model prediction for three different values of Te∗ overlapped with the

experimental data, for 2 sccm flow. There is clearly a significant sensitivity to Te∗. A Least Square Error

method is implemented to select the optimal Te∗. The ion velocity profiles were used for this fitting process

because, first, LIF diagnostics allow to perform measurements from the thruster cavity to far downstream and,

second, the uncertainty in the measurement of ion velocity is lower than the one regarding plasma density or

electron temperature.

The optimal Te∗ for each of the experimental curves (1, 1.5 and 2 sccm) is shown with its corresponding

sonic location z0 in Table 1 (two last columns). Observe first, that the fitted sonic point is located around 1

cm from the thruster exit plane and shifts slightly downstream when increasing the mass flow rate. Second, the

fitted electron temperature at the sonic point Te0 ≈ Te∗ decreases with the mass flow rate, a trend in agreement

with experimental evidence [27].

Figure 14 compares the experimental and best-fitted theoretical curves for the ion velocity, the plasma

potential, the electron density and the electron temperature. Figure 14 (a) shows that the agreement is rather
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Figure 13: Experimental ion velocity curve ui(z) with the model predictions at different values of Te∗ for 2 sccm.
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Figure 14: Plasma properties from LIF and Langmuir probe measurements compared to the quasi 1D model

prediction ( ) at 1 sccm ( , ), 1.5 sccm ( , ) and 2 sccm ( , ). a) Ion velocity ui b) Plasma potential

∆φ c) Electron density ne d) Electron temperature Te.

good for the supersonic ui; a bit worse for 1sccm. Figure 14 (b) shows also a good agreement for the plasma

potential. The model estimates that at the farthest measurement point (z = 250 mm), the expansion is almost

70 % complete, and therefore the ratio between the total potential drop and the estimated electron temperature

is around 5, which correlates well with the values found by Lafleur et al. in [27] in the SO thruster described

here.

Figure 14 (c) compares the plasma density measured with the Langmuir probe and the theoretical curves.

The plasma density at the plasma reservoir n0 has been estimated assuming flux is conserved along the mea-
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surement line (recall n0 ≈ ne∗), that is nui/B = const. The estimated plasma density at the sonic point n0

is 2.77, 5.56, and 10.0 in 1016 m−3 units, for 1, 1.5 and 2 sccm, respectively. The model fairly describes the

density drop in the measurement region, although additional data nearest the thruster exit s would be necessary

to confirm the results. However, figure 14 (d) highlights that the electron temperature estimated by the model

only agrees reasonably with the experimental results at 1.5 sccm, disagreeing significantly at 1 and 2 sccm.

Finally, Figure 12 compares the average experimental polytropic coefficient (in a limited plume region) with the

local coefficient from the model.

It can be concluded that the comparison of data and model is acceptable and promising taking into

consideration the idealizations of the model. Temperature anisotropy, likely present in the plasma at the source

and neglected in the MN model here, is a first major source of discrepancies here, and possibly more acute

in the temperature profiles and for low mass flow rates (due to less electron-electron collisions). Work is in

progress to include anisotropy in the MN model [36]. A second one is the relevance of ionization and collisional

process in the real plasma plume, also neglected in the model. Incidentally, collisions would also justify that the

sonic point is here placed inside the divergent nozzle and not at a MN throat [39,40]. And finally, discrepancies

should not be attributed exclusively to the theory. For instance, it is acknowledged that, in the data-set at 2

sccm, the uncertainty in the Langmuir probe post-processing or the increase of the background pressure could

have an impact on the results.

IV.3 Differences between the PM and SO thrusters

Measurements of the complete plasma potential profile were only performed along the MN of the PM

thruster, since it was not possible to install the SO thruster in the LIF set-up. Therefore, the experimental

data from the SO thruster can not be directly related to the model results. However, interesting features can

be discussed. The model enhances the large variation of the local polytropic index along the expansion, a

consequence of the collisionless cooling of the different electron subpopulations. The pysical mechanisms that

populate the doubly-trapped electron regions are a current subject of study; two of them are collisionality and

variations of the plasma potential profile during the transient set-up [37]. The 2D magnetic field topology may

influence the formation of the doubly-trapped regions, and therefore have a direct impact in the local electron

cooling. As commented before, Kim et al. [24, 25] also found different polytropic indices when varying the

strength and configuration of the magnetic nozzle.

V CONCLUSIONS

Experimental measurements of ion acceleration and plasma properties along the MN of two ECR thruster

prototypes have been performed. The difference between both versions relies on the MN topology, one generated

by a permanent magnet (PM) and the other by a set of solenoids (SO). Langmuir probe measurements along

the thruster’s axis at several mass flow rates have added insight of the plasma response at different upstream

conditions. The dependence of the total plasma potential drop with the mass flow rate has been identified, as

well as a significant electron cooling rate along the expansion.

In the PM thruster set-up, simultaneously with the Langmuir probe, laser induced fluorescence (LIF)

diagnostics have been performed to obtain the mean ion velocity from the thruster cavity to 125 mm downstream.
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By assuming total ion energy is conserved, it has been possible to estimate the complete profile of plasma

potential from the thruster exit to far downstream overlapping Langmuir probe and LIF measurements. Close

to the thruster cavity, a broadening of the ion distribution function has been observed, which could be due to

the Zeeman splitting effect. Further experiments are however needed to fully understand this outcome.

In parallel, a quasi-1D stationary fluid-kinetic model has been adapted to a fully divergent magnetic field,

assuming quasineutrality and current-free expansion. The ion population is treated as a cold fluid species, while

the electron distribution function is solved self-consistently accounting for magnetic mirror effects and electric

potential barriers. The unique solution for the ambipolar potential profile depends only on the ion to electron

mass ratio mi/me and the initial ion Mach number. A total potential drop of 7.4 times the upstream electron

temperature is found for xenon.

A least square error method has been implemented to compare the experimental results with the theo-

retical model. With this method, it has been found that the ion velocity, plasma potential and electron density

profiles for different mass flow rates fit well with the model. The highest error between the model and the

experimental data has been found at low mass flow rates and for the temperature profiles, which is probably

related to the anisotropy of the electron energy distribution function already at the plasma reservoir plus the

effects in the expansion of ionization and other collisional effects. A next step in this research will be to improve

the model to incorporate electron temperature anisotropy in the plasma source and collisional effects.

On the experimental side, further work should address additional non-intrusive measurements close to

the thruster exit, since for this ECR thruster prototype, the main acceleration region is concentrated in the

first 10 cm from the thruster exit plane. Additionally, other diagnostics capable of detecting anisotropic plasma

properties would definitely add insight to this research.
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[29] Mart́ınez-Sánchez, M., Navarro-Cavallé, J., and Ahedo, E., “Electron cooling and finite potential drop in

a magnetized plasma expansion,” Physics of Plasmas, Vol. 22, No. 5, 2015, pp. 053501.

[30] Hutchinson, I. H., “Principles of plasma diagnostics,” Plasma Physics and Controlled Fusion, Vol. 44,

No. 12, 2002, pp. 2603.

[31] Druyvesteyn, M. and Penning, F. M., “The mechanism of electrical discharges in gases of low pressure,”

Reviews of Modern Physics, Vol. 12, No. 2, 1940, pp. 87.

[32] Zhang, Y., Charles, C., and Boswell, R., “Thermodynamic study on plasma expansion along a divergent

magnetic field,” Physical review letters, Vol. 116, No. 2, 2016, pp. 025001.

21

Page 21 of 22 AUTHOR SUBMITTED MANUSCRIPT - PSST-103177.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[33] Brown, D. L., Walker, M. L., Szabo, J., Huang, W., and Foster, J. E., “Recommended practice for use

of Faraday probes in electric propulsion testing,” Journal of Propulsion and Power , Vol. 33, No. 3, 2016,

pp. 582–613.

[34] Merino, M., Mauriño, J., and Ahedo, E., “Kinetic electron model for plasma thruster plumes,” Plasma

Sources Science and Technology , Vol. 27, No. 3, 2018, pp. 035013.
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