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Abstract: This paper studies the model selection problem in a large class of causal time se-
ries models, which includes both the ARMA or AR(∞) processes, as well as the GARCH or
ARCH(∞), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we
consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient
conditions for the penalty term to ensure the consistency of the proposed procedure as well as the
consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the cho-
sen model. It appears from these conditions that the Bayesian Information Criterion (BIC) does
not always guarantee the consistency. We also propose a tool for diagnosing the goodness-of-fit
of the chosen model based on the portmanteau Test. Numerical simulations and an illustrative
example on the FTSE index are performed to highlight the obtained asymptotic results, includ-
ing a numerical evidence of the non consistency of the usual BIC penalty for order selection of
an AR(p) models with ARCH(∞) errors.
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1. Introduction

Model selection is an important tool for statisticians and all those who process data. This issue has
received considerable attention in the recent literature. There are several model selection procedures,
the main ones are : cross validation and penalized contrast based.

The cross validation ([43], [2]) consists in splitting the data into learning sample, which will be used for
computing estimators of the parameters and the test sample which allows to assess these estimators
by evaluate their risks.

The procedures using penalized objective function search for a model, minimizing a trade-off between
a sum of an empirical risk (for instance least squares, −2×log-likelihood), which indicates how well
the model fits the data, and a measure of model’s complexity so-called a penalty.
The idea of penalizing dates back to the 1970s with the works of [34] and [1]. By using the ordinary least
squares in regression framework, Mallows obtained the Cp criterion. Meanwhile, Akaike derived AIC
for density estimation using log-likelihood contrast. A few years later, following Akaike, [38] proposed
an alternative approach to density estimation and derived the Bayesian Information Criteria (BIC).
The penalty term of these criteria is proportional to the dimension of the model. In the recent decades,
different approaches of penalization have emerged such as the L2 norm for the Ridge penalisation [18],
the L1 norm used by [45] that provides the LASSO procedure and the elastic-net that mixes the L1

and L2 norms [50].
Model selection procedures can have two different objectives: consistency and efficiency. A procedure

is said to be consistent if given a family of models, including the "true model", the probability of
choosing the correct model approaches one as the sample size tends to infinity. On the other hand, a
procedure is efficient when its risk is asymptotically equivalent to the risk of the oracle. In this work,
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we are interested to construct a consistent procedure for the general class of times series known as
affine causal processes.

This class of affine causal time series can be defined as follows. Let R∞ be the space of sequences of
real numbers with a finite number of non zero, if M , f : R∞ → R are two measurable functions, then
an affine causal class is

Class AC(M,f) : A process X = (Xt)t∈Z belongs to AC(M,f) if it satisfies:

Xt = M
(
(Xt−i)i∈N∗

)
ξt + f

(
(Xt−i)i∈N∗

)
for any t ∈ Z; (1.1)

where (ξ)t∈Z is a sequence of zero-mean independent identically distributed random vectors (i.i.d.r.v)
satisfying E(|ξ0|r) <∞ for some r ≥ 2 and E[ξ2

0 ] = 1.

For instance,

• if M
(
(Xt−i)i∈N∗

)
= σ and f

(
(Xt−i)i∈N∗

)
= φ1Xt−1 + · · · + φpXt−p, then (Xt)t∈Z is an AR(p)

process;
• if M

(
(Xt−i)i∈N∗

)
=
√
a0 + a1X2

t−1 + · · ·+ apX2
t−p and f

(
(Xt−i)i∈N∗

)
= 0, then (Xt)t∈Z is an

ARCH(p) process.

Note that, numerous classical time series models such as ARMA(p, q), GARCH(p, q), ARMA(p, q)-
GARCH(p, q) (see [12] and [33]) or APARCH(δ, p, q) processes (see [12]) belongs to AC(M,f). The
existence of stationary and ergodic solutions of this class has been studied in [13] and [7].

We consider a trajectory (X1, . . . , Xn) of a stationary affine causal process AC(M∗, f∗), where M∗
and f∗ are unknown. We also consider a finite setM of parametric models m, which are affine causal
time series. We assume that the "true" model m∗ corresponds to M∗ and f∗. The aim is to obtain an
estimator m̂ of m∗ and testing the goodness-of-fit of the chosen model.

There already exist several important contributions devoted to the model selection for time series ;
we refer to the book of [35] and the references therein for an overview on this topic.
As we have pointed above, two properties are often used to evaluate a quality of a model selection pro-
cedure : consistency and efficiency. The first measure is often used when the true model is included in
the collection of model’s candidate ; otherwise, efficiency is the well-defined property. In many research
in this framework, the main goal is to develop a procedure that fulfills one of these properties. So, in
some classical linear time series models, the consistency of the BIC procedure has been established,
see for instance [17] or [46] ; and the asymptotic efficiency of the AIC has been proved, see, among
others, [41], [20] for a corrected version of AIC for small samples, [23], [21], [22] for the case of infinite
order autoregressive model. [40] propose the (consistent) residual information criteria (RIC) for regres-
sion model (including regression models with ARMA errors) selection. In the framework of nonlinear
threshold models, [25] proved consistency results of a large class of information criteria, whereas [16]
focussed on cross-validation type procedure for model selection in a class of semiparametric time series
regression model. Let us recall that, the time series model selection literature is very extensive and still
growing ; we refer to the monograph of [36], which provided an excellent summary of existing model
selection procedure, including the case of time series models as well as the recent review paper of [11].

The adaptive lasso, introduced by [49] for variable selection in linear regression models has been
extended by [37] to vector autoregressive models, [26] carried out this procedure in stationary and
nonstationary autoregressive models ; the oracle efficient is established. [28] considers model selection
for density estimation under mixing conditions and derived oracle inequalities of the slope heuristic
procedure ([9] or [5]) ; whereas [3] develop oracle inequalities for model selection for weakly depen-
dent time series forecasting. Recently, [39] have considered the model selection for ARMA time series
with trend, and proved the consistency of BIC for the detrended residual sequence, while [4] devel-
oped oracle inequalities of sequential model selection method for nonparametric autoregression. [19]
pointed out that most existing model selection procedure cannot simultaneously enjoy consistency
and (asymptotic) efficiency. They propose a misspecification-resistant information criterion that can
achieve consistency and asymptotic efficiency for prediction using model selection.

In this paper, we focus on the class of models (1.1), and addressed the following questions :
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1. What regularity conditions are sufficient to build a consistent model selection procedure? Does
the classic criterion such as BIC, still have consistent property for choosing a model among the
collectionsM?

2. How can we test the goodness-of-fit of the chosen model?

These questions have not yet been answered for the class of models and the framework considered
here, in particular in case of infinite memory processes. This new contribution provides theoretical and
numerical response of these issues.

(i) The estimator m̂ of m∗ is chosen by minimizing a penalized criterion Ĉ(m) = −2L̂n(m) +

|m|κn, where L̂n(m) is a Gaussian quasi-log-likelihood of the model m, |m| is the number of estimated
parameters of the model m and κn is a non-decreasing sequence of real numbers (see more details in
Section 2). Note that, in the cases κn = 2 or κn = log n we respectively consider the usual AIC and
BIC criteria. We provide sufficient conditions (essentially depending on the decreasing of the Lipschitz
coefficients of the functions f and M) for obtaining consistency of the model selection procedure. We
also theoretically and numerically exhibit an example of order selection (weak AR(p) processes with
ARCH(∞) errors) such that the consistency of the classical BIC penalty is not ensured.

(ii) We provide an asymptotic goodness-of-fit test for the selected model that is very simple to be
used (with the usual Chi-square distribution limit), which successively completes the model selection
procedure. Numerical applications show the accuracy of this test under the null hypothesis as well as
an efficient test power under an alternative hypothesis. Note that, similar test has been proposed by
[31] under the Gaussian assumption on the observations, whereas [32] focused for multivariate time
series with multivariate ARCH-type errors. Also, [14] proposed a portmanteau test statistic based on
generalized inverses and {2}-inverses for diagnostic checking in the class of model (1.1). Unlike these
authors, we apply the test to a model obtained from a model selection procedure.

The paper is organized as follows. Some definitions, notations and assumptions are described in Section
2. The consistency of the criteria and the asymptotic normality of the post-model-selection estimator
are studied in Section 3. In Section 4, the examples of AR(∞), ARCH(∞), APARCH(δ, p, q) and
ARMA(p, q)-GARCH(p′, q′) processes are detailed. The goodness-of-fit test is presented in Section 5.
Finally, numerical results are presented in Section 6 and Section 7 contains the proofs.

2. Definitions and Assumptions

Let us introduce some definitions and assumptions in order to facilitate the presentation.

2.1. Notation and assumptions

In the sequel, we will consider a subset Θ of Rd (d ∈ N). We will use the following norms:

• ‖.‖ denotes the usual Euclidean norm on Rν , with ν ≥ 1;
• if X is Rν-random variable with r ≥ 1 order moment, we set ‖X‖r =

(
E(‖X‖r

)1/r;
• for any set Θ ⊆ Rd and for any g : Θ→ Rd′ , d′ ≥ 1, denote ‖g‖Θ = sup

θ∈Θ

{
‖g(θ)‖

}
.

In the introduction, to be more concise, we have presented the problem of time series model selection
in a very general form. In reality, we will limit our field of study a little bit by considering a semi-
parametric framework. Hence, let (fθ)θ∈Θ and (Mθ)θ∈Θ be two families of known functions such as for
any θ ∈ Θ, both fθ,Mθ with real values defined on R∞.

We begin by giving a condition on fθ andMθ which ensure the existence of a r-order moment, stationary
and ergodic time series belonging to AC(Mθ, fθ). This condition, initially obtained in [13], is written
in terms of Lipschitz coefficients of both these functions. Hence, for Ψθ = fθ or Mθ, define:
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Assumption A(Ψθ,Θ): Assume that ‖Ψθ(0)‖Θ <∞ and there exists a sequence of non-negative real
numbers

(
αk(Ψθ,Θ)

)
k≥1

such that
∑∞
k=1 αk(Ψθ,Θ) <∞ satisfying:

‖Ψθ(x)−Ψθ(y)‖Θ ≤
∞∑
k=1

αk(Ψθ,Θ)|xk − yk| for all x, y ∈ R∞.

Now for r ≥ 1, where ‖ξ0‖r <∞, define:

Θ(r) =
{
θ ∈ Rd, A(fθ, {θ}) and A(Mθ, {θ}) hold with

∞∑
k=1

αk(fθ, {θ}) + ‖ξ0‖r
∞∑
k=1

αk(Mθ, {θ}) < 1
}
. (2.1)

Then, for any θ ∈ Θ(r), there exists a stationary and ergodic solution with r-order moment belonging
to AC(Mθ, fθ). (see [13] and [7]).

2.2. The framework

Let us start with an example to better understand the framework and the approach of model selection
we will follow.

Example: Assume that the observed trajectory (X1, . . . , Xn) is generated from an AR(2) process
and we would like to identify this family of process and its order. Then, we consider the collectionM
of ARMA(p, q) and GARCH(p′, q′) processes for 0 ≤ p, q, p′, q′ ≤ 9 and we would like to chose in this
family a "best" model for fitting (X1, . . . , Xn). Note that there is 200 possible models and we expect
to recognize the AR(2) as the selected model, at least when n is large enough.

We begin with the following property that allow to enlarge the family of models by extending the
dimension d of the parameter θ:

Proposition 1. Let d1, d2 ∈ N, Θ1 ⊂ Rd1 and Θ2 ⊂ Rd2 , and for i = 1, 2, define f (i)
θi
,M

(i)
θi

: R∞ → R
and for θi ∈ Θi. Then there exist max(d1, d2) ≤ d ≤ d1 + d2, Θ ⊂ Rd, and a family of functions
fθ : R∞ → R and Mθ : R∞ → [0,∞) with θ ∈ Θ, such that for any θ1 ∈ Θ1 and θ2 ∈ Θ2, there exists
θ ∈ Θ satisfying

AC
(
M

(1)
θ1
, f

(1)
θ1

)⋃
AC
(
M

(2)
θ2
, f

(2)
θ2

)
⊂ AC

(
Mθ, fθ

)
.

The proof of this proposition, as well as the other proofs, can be found in Section 7. This proposition
says that it is always possible to embed two parametric causal affine models in a larger one. Hence, for
instance, we can consider as well AR processes and ARCH processes in a unique representation, i.e.

AR

{
M

(1)
θ1

(
(Xt−i)i∈N∗

)
= σ

f
(1)
θ1

(
(Xt−i)i∈N∗

)
= φ1Xt−1 + · · ·+ φpXt−p

ARCH

{
M

(2)
θ2

(
(Xt−i)i∈N∗

)
=
√
a0 + a1X2

t−1 + · · ·+ aqX2
t−q

f
(2)
θ2

(
(Xt−i)i∈N∗

)
= 0

=⇒

{
Mθ

(
(Xt−i)i∈N∗

)
=
√
θ0 + θ1X2

t−1 + · · ·+ θqX2
t−q

fθ
(
(Xt−i)i∈N∗

)
= θq+1Xt−1 + · · ·+ θq+pXt−p

.

From now and in all the sequel, we fix d ∈ N∗, and the family of functions fθ,Mθ : R∞ → R for
θ ∈ Θ ⊂ Θ(r) ⊂ Rd.

Let (X1, . . . , Xn) be an observed trajectory of an affine causal process X belonging to AC(Mθ∗ , fθ∗),
where θ∗ is an unknown vector of Θ, and therefore:

Xt = Mθ∗
(
(Xt−i)i∈N∗

)
ξt + fθ∗

(
(Xt−i)i∈N∗

)
for any t ∈ Z. (2.2)
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In the sequel, we will consider several models, which all are particular cases of AC(Mθ, fθ) with θ ∈
Θ ⊂ Rd. More precisely define:

• a model m as a subset of {1, . . . , d} and denote |m| = #(m);
• Θ(m) =

{
(θi)1≤i≤d ∈ Rd, θi = 0 if i /∈ m

}
∩Θ;

• M as a family of models, i.e.M⊂ P
(
{1, . . . , d}

)
.

Finally, for all m ∈ M, m ∈ AC(Mθ, fθ) when θ ∈ Θ(m) and denote m∗ the "true" model. We could
as well consider hierarchical or exhaustive families of models.

Example: From the previous example, we can consider:
• a familyM1 of models m1 such asM1 =

{
{1}, {1, 2}, . . . , {1, . . . , q + 1}

}
: this family is the hierar-

chical one of ARCH processes with orders varying from 0 to q.
• a family M2 of models m2 such as M2 = P

(
{1, . . . , p + q + 1}

)
: this family is the exhaustive one

and contains as well the AR(2) process Xt = φ2Xt−2 + θ0 ξt as the process Xt = φ1Xt−1 + φ3Xt−3 +

ξt

√
θ0 + a2X2

t−2.

To establish the consistency of the selected model, we will need to assume that the "true" model
m∗ with the parameter θ∗, is included in the model familyM.

2.3. The special case of NLARCH(∞) processes

As in [7], in the special case of NLARCH(∞) processes, including for instance GARCH(p, q) or
ARCH(∞) processes, a particular treatment can be realized for obtaining sharper results than us-
ing the previous framework. In such case, define the class:

Class ÃC(H̃θ): A process X = (Xt)t∈Z belongs to ÃC(H̃θ) if it satisfies:

Xt = ξt

√
H̃θ

(
(X2

t−i)i∈N∗
)

for any t ∈ Z. (2.3)

Therefore, if M2
θ

(
(Xt−i)i∈N∗

)
= Hθ

(
(Xt−i)i∈N∗

)
= H̃θ

(
(X2

t−i)i∈N∗
)
then, ÃC(H̃θ) = AC(Mθ, 0). In

case of the class ÃC(H̃θ), we will use the assumption A(H̃θ,Θ). By this way, we will obtain a new set
of stationary solutions. For r ≥ 2 define:

Θ̃(r) =
{
θ ∈ Rd, A(H̃θ, {θ}) holds with

(
‖ξ0‖r

)2 ∞∑
k=1

αk(H̃θ, {θ}) < 1
}
. (2.4)

Then, for θ ∈ Θ(r), a process (Xt)t∈Z belonging to the class ÃC(H̃θ) is stationary ergodic and satisfies
‖X0‖r <∞.

2.4. The Gaussian quasi-maximum likelihood estimation and the model selection
criterion

In the sequel, for a model m ∈M, a family of models of AC(Mθ, fθ) with θ ∈ Θ ⊂ Rd, where θ →Mθ

and θ → fθ are two fixed functions, we are going to consider Gaussian quasi-maximum likelihood
estimators (QMLE) of θ for each specific model m.

This approach as semi-parametric estimation has been successively introduced for GARCH(p, q) pro-
cesses in [24] where its consistency is also proved, and the asymptotic normality of this estimator has
been established in [8] and [15]. In [7], those results have been extended to affine causal processes, and
an extension to Laplacian QMLE has been also proposed in [6].
The Gaussian QMLE is derived from the conditional (with respect to the filtration σ

{
(Xt)t≤0

}
) log-

likelihood of (X1, . . . , Xn) when (ξt) is supposed to be a Gaussian standard white noise. Due to the
linearity of a causal affine process, we deduce that this conditional log-likelihood (up to an additional
constant) Ln is defined for all θ ∈ Θ by:

Ln(θ) := −1

2

n∑
t=1

qt(θ) , with qt(θ) :=
(Xt − f tθ)2

Ht
θ

+ log(Ht
θ) (2.5)
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where f tθ := fθ(Xt−1, Xt−2, · · · ),M t
θ := Mθ(Xt−1, Xt−2, · · · ) and Ht

θ =
(
M t
θ

)2. Since Ln(θ) depends on
(Xt)t≤0 that are unknown, the idea of the quasi log-likelihood is to replace qt(θ) by an approximation
q̂t(θ) and to compute θ̂ as in equation (2.7) even if the white noise is not Gaussian. Hence, the
conditional quasi log-likelihood (up to an additional constant) is given for all θ ∈ Θ by

L̂n(θ) := −1

2

n∑
t=1

q̂t(θ) , with q̂t(θ) :=
(Xt − f̂ tθ)2

Ĥt
θ

+ log(Ĥt
θ)

where


f̂ tθ := fθ(Xt−1, Xt−2, · · · , X1, u)

M̂ t
θ := Mθ(Xt−1, Xt−2, · · · , X1, u)

Ĥt
θ := (M̂ t

θ)
2

(2.6)

for any deterministic sequence u = (un) with finitely many non-zero values (u = 0 is very often chosen
without loss of generality).

However, the definitions of the conditional log-likelihood and quasi log-likelihood require that their
denominators do not vanish. Hence, we will suppose in the sequel that the lower bound of Hθ(·) =(
Mθ(·)

)2 (which is reached since Θ is compact) is strictly positive:

Assumption D(Θ): ∃h > 0 such that inf
θ∈Θ

(Hθ(x)) ≥ h for all x ∈ R∞.

Finally, under this assumption, for each specific model m ∈ M, we define the Gaussian QMLE θ̂(m)
as

θ̂(m) = argmax
θ∈Θ(m)

L̂n(θ). (2.7)

To select the "best" model m ∈M, we chose a penalized contrast Ĉ(m) ensuring a trade-off between
−2 times the maximized quasi log-likelihood, which decreases with the size of the model, and a penalty
increasing with the size of the model. Therefore, the choice of the "best" model m̂ among the estimated
can be performed by minimizing the following criteria

m̂ = argmin
m∈M

Ĉ(m) with Ĉ(m) = −2L̂n
(
θ̂(m)

)
+ |m|κn, (2.8)

where

• (κn)n an increasing sequence depending on the number of observations n.
• |m| denotes the dimension of the model m, i.e. the cardinal of m, subset of {1, . . . , d}, which is

also the number of estimated components of θ (the others are fixed to zero).

The consistency of the criterion Ĉ, i.e.

P(m̂ = m∗) −→
n→∞

1; (2.9)

will be established after showing that both of following probabilities are zero:

• the asymptotic probability of selecting a larger model containing the true model (overfitting
case);

• the asymptotic probability of selecting a false model that is a model not containing m∗.

3. Asymptotic results

3.1. Assumptions required for the asymptotic study

The following classical assumption ensures the identifiability of the model considered.

Assumption Id(Θ): For all θ, θ′ ∈ Θ, (f0
θ = f0

θ′ and M
0
θ = M0

θ′) a.s. =⇒ θ = θ′.
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Another required assumption concerns the differentiability of Ψθ = fθ or Mθ on Θ. This type of
assumption has already been considered in order to apply the QMLE procedure (see [7], [44], [48]).
First, the following Assumption Var(Θ) provides the invertibility of the "Fisher’s information matrix"
of X and is important to prove the asymptotic normality of the QMLE.

Assumption Var:
(∑d

i=1 αi
∂f0
θ

∂θ(i)
= 0 =⇒ ∀i = 1, . . . , d, αi = 0 a.s

)
or
(∑d

i=1 αi
∂H0

θ

∂θ(i)
= 0 =⇒

∀i = 1, . . . , d, αi = 0 a.s
)
.

Moreover, one of the following technical assumption is required to establish the consistency of the
model selection procedure.

Assumption K(Θ): Assumptions A(fθ,Θ), A(Mθ,Θ), A(∂θfθ,Θ), A(∂θMθ,Θ) and B(Θ) hold and
there exists r ≥ 2 such that θ∗ ∈ Θ(r). Moreover, with s = min(1, r/3), assume that the sequence
(κn)n∈N satisfies∑

k≥1

(
1

κk
)s
(∑
j≥k

αj(fθ,Θ) + αj(Mθ,Θ) + αj(∂θfθ,Θ) + αj(∂θMθ,Θ)
)s
<∞.

Assumption K̃(Θ): Assumptions A(H̃θ,Θ), A(∂θH̃θ,Θ) and B(Θ) hold and there exists r ≥ 2 such
that θ∗ ∈ Θ(r). Moreover, with s = min(1, r/4), assume that the sequence (κn)n∈N satisfies∑

k≥1

(
1

κk
)s
(∑
j≥k

αj(H̃θ,Θ) + αj(∂θH̃θ,Θ)
)s
<∞.

Remark 1. These conditions on (κn)n∈N have been deduced from conditions for strong law of large
numbers obtained in [27] and are not too restrictive: for instance, if the Lipschitzian coefficients of fθ,
Mθ (the case using H̃θ can be treated similarly) and their derivatives are bounded by a geometric or
Riemanian decrease:

1. the geometric case: αj(fθ,Θ) +αj(Mθ,Θ) +αj(∂θfθ,Θ) +αj(∂θMθ,Θ) = O(aj) with 0 ≤ a < 1,
then any (κn) such as 1/κn = o(1) can be chosen; for instance κn = log n or log(log n); this is
the case for instance of ARMA, GARCH, APARCH or ARMA-GARCH processes.

2. the Riemanian case: αj(fθ,Θ) + αj(Mθ,Θ) + αj(∂θfθ,Θ) + αj(∂θMθ,Θ) = O(j−γ) with γ > 1:

• if r ≥ 3 then

– if γ > 2 then any sequence such as 1/κn = o(1) can be chosen;
– if 1 < γ < 2, any (κn) such as κn = O(nδ) with δ > 2− γ can be chosen.

• if 1 ≤ r < 3

– if γ > (r + 3)/r then any sequence such as 1/κn = o(1) can be chosen;
– if 1 < γ < (r + 3)/r then any (κn) such as κn = nδ with δ > (r + 3)/r − γ can be

chosen.

In the last case of these two conditions on r, we can see the usual BIC choice, κn = log n
does not fulfill the assumption in general.

3.2. New versions of limit theorems in [7]

These assumptions K(Θ) and K̃(Θ) used in Lemmas 1 and 2 (see Section 7) and the detailed Riema-
nian convergence rates of the previous remark, provide an improvement of the two main limit theorems
established in [7]. More precisely, we obtain:

New version of Theorem 1 in [7]
Let (X1, . . . , Xn) be an observed trajectory of an affine causal process X belonging to AC(Mθ∗ , fθ∗) (or
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ÃC(H̃θ)) where θ∗ is an unknown vector of Θ, a compact set included in Θ(r) ⊂ Rd (or Θ̃(r) ⊂ Rd)
with r ≥ 2. Then, if assumptions A(fθ,Θ), A(Mθ,Θ) (or A(H̃θ,Θ)), D(Θ), Id(Θ) hold with{

αj(fθ,Θ) + αj(Mθ,Θ) = O
(
j−`
)

for some ` > max(1 , 3/r)

or αj(H̃θ,Θ) = O
(
j−

˜̀) for some ˜̀> max(1 , 4/r)
, (3.1)

then the QMLE θ̂(m∗) satisfies θ̂(m∗) a.s.−→
n→+∞

θ∗.

Proof. We use the same proof as in [7] except for establishing 1
n

∥∥L̂n(θ)− Ln(θ)
∥∥

Θ

a.s.−→
n→+∞

0. Indeed,

we can apply Lemma 1 with κn = n. Hence, this is checked under assumption K(Θ) under Riemanian
condition of Remark 1 if r ≥ 3 when γ = ` > 1 and if 2 ≤ r ≤ 3, when γ = ` > 3/r, implying the first
new conditions of the Theorem.
Under assumption K̃(Θ), an adaptation of Remark 1 implies that for r ≥ 4 we should have γ = ˜̀> 1

and if 2 ≤ r ≤ 4, when γ = ˜̀> 4/r. �

Therefore, in all the previous cases and when r = 4, we obtain a limiting decrease rate O
(
j−γ

)
with

γ > 1 instead of γ > 3/2 in [7]. This can also be used to improve Theorem 2 in [7]:

New version of Theorem 2 in [7]
If r ≥ 4 and under the assumptions of the previous new version of Theorem 1 in [7], and Var(Θ), and if
assumptions A(∂θfθ,Θ), A(∂θMθ,Θ), A(∂2

θ2fθ,Θ) and A(∂2
θ2Mθ,Θ) (or A(∂θH̃θ,Θ) and A(∂2

θ2H̃θ,Θ)
) hold with {

αj(∂θfθ,Θ) + αj(∂θMθ,Θ) = O
(
j−`

′)
or αj(∂θH̃θ,Θ) = O

(
j−`

′) for some `′ > 1, (3.2)

then the QMLE θ̂n(m∗) satisfies
√
n
((
θ̂(m∗)

)
i
− (θ∗)i

)
i∈m∗

L−→
n→+∞

N|m∗|
(
0 , F (θ∗,m∗)−1G(θ∗,m∗)F (θ∗,m∗)−1

)
, (3.3)

with
(
F (θ∗,m∗)

)
i,j

= E
[∂2q0(θ∗)

∂θi∂θj

]
and (G(θ∗,m∗))i,j = E

[∂q0(θ∗)

∂θi

∂q0(θ∗)

∂θj

]
for i, j ∈ m∗.

3.3. Asymptotic model selection

Using the above assumptions, we can establish the limit theorem below, which provides sufficient
conditions for the consistency of the model selection procedure.

Theorem 3.1. Let (X1, . . . , Xn) be an observed trajectory of an affine causal process X belonging to
AC(Mθ∗ , fθ∗) (or ÃC(H̃θ)) where θ∗ is an unknown vector of Θ a compact set included in Θ(r) ⊂ Rd (or
Θ̃(r) ⊂ Rd) with r ≥ 4. If assumptions D(Θ), Id(Θ), K(Θ) (or K̃(Θ)), A(∂2

θ2fθ,Θ) and A(∂2
θ2Mθ,Θ)

(or A(∂2
θ2H̃θ,Θ)) also hold, then

P(m̂ = m∗) −→
n→∞

1 and θ̂(m̂)
P−→

n→∞
θ∗. (3.4)

The following theorem shows the asymptotic normality of the QMLE of the chosen model.

Theorem 3.2. Under the assumptions of Theorem 3.1 and if θ∗ ∈
o
Θ and Var(Θ) hold, then

√
n
((
θ̂(m̂)

)
i
− (θ∗)i

)
i∈m∗

L−→
n→+∞

N|m∗|
(
0 , F (θ∗,m∗)−1G(θ∗,m∗)F (θ∗,m∗)−1

)
, (3.5)

where F and G are defined in (3.3).

Remark 2. In Remark 1, we detailed some situations where the assumption K(Θ) (or K̃(Θ)) holds,
which leads to the results of Theorem 3.1 and 3.2. In particular, the log n penalty usually linked to
BIC is consistent in the case of a geometric decrease of the Lipschitz coefficients of the functions fθ
and Mθ (and their first order derivative). In the case of a Riemanian rate, the consistency of BIC is
not ensured; see also the next section.
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4. Examples

In this section, some examples of time series satisfying the conditions of previous results are considered.
These examples include AR(∞), ARCH(∞), APARCH(δ, p, q) and ARMA(p, q)-GARCH(p′, q′).

4.1. AR(∞) models

For (ψk(θ))k∈N a sequence of real numbers depending on θ ∈ Rd, let us consider an AR(∞) process
defined by:

Xt =
∑
k≥1

ψk(θ∗)Xt−k + σ ξt for any t ∈ Z, (4.1)

where (ξt)t admits 4-order moments, and θ∗ ∈ Θ ⊂ Θ(4), the set of θ ∈ Rd such that
∑
k≥1 ‖ψk(θ)‖Θ <

1 and σ > 0. This process corresponds to (2.2) with fθ
(
(xi)i≥1

)
=
∑
k≥1 ψk(θ)xk and Mθ ≡ σ for any

θ ∈ Θ. The Lipschitz coefficients of fθ are αk(fθ) = ‖ψk(θ)‖Θ. Moreover, Assumption D(Θ) holds with
h = σ2 > 0.

Let us consider M a finite family of models. Of course, the main example of such family of models
is given by the one of ARMA(p, q) processes with 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax, providing
(pmax + 1)(qmax + 1) models and θ ∈ Rpmax+qmax+1.

Besides, assume that Id(Θ), Var(Θ) hold and that the sequence (ψk) is twice differentiable (with
respect to θ) on Θ, with

∑
k ‖∂2

θψk(θ)‖Θ < ∞ and ‖ψk(θ)‖Θ + ‖∂θψk(θ)‖Θ = O(k−γ) with γ > 1.
From Remark 1,

• if γ > 2, the condition κn −→
n→∞

∞ (for instance, the BIC penalization with κn = log(n), or

κn =
√
n) ensures the consistency of m̂ and the Theorem (3.2) holds if in addition θ∗ ∈

o
Θ;

• if 1 < γ < 2, κn = O(nδ) with δ > 2− γ has to be chosen (and we cannot insure the consistency
of m̂ in case of classical BIC penalization).

Finally, in the particular case of the family of ARMA processes, the stationarity condition implies that
any κn −→

n→∞
∞ can be chosen (BIC penalization with κn = log(n), or κn =

√
n), since the decreases

of ψk and its derivative are exponential.

4.2. ARCH(∞) models

For (ψk(θ))k∈N a sequence of nonnegative real numbers depending on θ ∈ Rd, with ψ0 > 0, let us
consider an ARCH(∞) process defined by :

Xt =
(
ψ0(θ∗) +

∞∑
k=1

ψk(θ∗)X2
t−k

)1/2

ξt for any t ∈ Z, (4.2)

where E
[
ξ4
0

]
< ∞, and θ∗ ∈ Θ ⊂ Θ̃(4), the set of θ ∈ Rd such that

∑
k≥1 ‖ψk(θ)‖Θ < 1. This

process corresponds to (2.2) with fθ
(
(xi)i≥1

)
≡ 0 and Hθ

(
(xi)i≥1

)
= ψ0(θ) +

∑∞
k=1 ψk(θ)x2

k, i.e.
H̃θ

(
(yi)i≥1

)
= ψ0(θ) +

∑∞
k=1 ψk(θ)yk, for any θ ∈ Θ. The Lipschitz coefficients of H̃θ are αk(H̃θ) =

‖ψk(θ)‖Θ. Moreover, Assumption D(Θ) holds if h = infθ∈Θ ψ0(θ) > 0.

Let us considerM a finite family of models. The main example of such family of models is given by the
GARCH(p, q) processes with 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax, providing (pmax + 1)(qmax + 1) models
and θ ∈ Rpmax+qmax+1.

Moreover, assume that Id(Θ), Var(Θ) hold and that the sequence (ψk) is twice differentiable (with
respect to θ) on Θ, with

∑
k ‖∂2

θψk(θ)‖Θ < ∞ and ‖ψk(θ)‖Θ + ‖∂θψk(θ)‖Θ = O(k−γ) with γ > 1.
From Remark 1,
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• if γ > 2, the condition κn −→
n→∞

∞ (for instance, the BIC penalization with κn = log(n), or

κn =
√
n) ensures the consistency of m̂ and the Theorem (3.2) holds if in addition, θ∗ ∈

o
Θ;

• if 1 < γ < 2, κn = O(nδ) with δ > 2− γ has to be chosen (and we cannot insure the consistency
of m̂ in the case of the classical BIC penalization).

Finally, in the particular case of the family of GARCH processes, the stationarity condition implies
that any κn −→

n→∞
∞ can be chosen (BIC penalization with κn = log(n), or κn =

√
n), since the

decreases of ψk and its derivative are exponential.

4.3. APARCH(δ, p, q) models

For δ ≥ 1 and from [12], (Xt)t∈Z is an APARCH(δ, p, q) process with p, q ≥ 0 if:{
Xt = σt ξt

(σt)
δ = ω +

∑p
i=1 αi(|Xt−i| − γiXt−i)

δ +
∑q
j=1 βj(σt−j)

δ for any t ∈ Z,
(4.3)

where ω > 0, −1 < γi < 1, αi ≥ 0, βj ≥ 0 for 1 ≤ i ≤ p and 1 ≤ j ≤ q, αp > 0, βq > 0 and∑q
j=1 βj < 1. From [6], with θ = (ω, α1, . . . , αp, γ1, . . . , γp, β1, . . . , βp)

′, the conditional variance σt can
be rewritten as follows

σδt = b0(θ) +
∑
k≥1

(
b+k (θ)(max(Xt−k, 0))δ − b−k (θ)(min(Xt−k, 0))δ

)
;

with fθ ≡ 0 and M t
θ = σt, we deduce that αk(Mθ,Θ) = max(‖b+k (θ)‖1/δΘ , ‖b−k (θ)‖1/δΘ ), and from the

assumption
∑q
j=1 βj < 1, the Lipschitz coefficients αk(Mθ,Θ) decrease exponentially fast. Then, the

stationarity set for r ≥ 1 is

Θ(r) =
{
θ ∈ R2p+q+1

/
‖ξ0‖r

∞∑
j=1

max
(
|b+j (θ)|1/δ, |b−j (θ)|1/δ

)
< 1
}
.

Now, assume that (Xt)t∈Z is an APARCH(δ, p∗, q∗) where 0 ≤ p∗ ≤ pmax and 0 ≤ q∗ ≤ qmax are
unknown orders as well as the other parameters: ω∗ > 0, −1 < γ∗i < 1, α∗i ≥ 0, β∗j ≥ 0 for 1 ≤ i ≤ pmax

and 1 ≤ j ≤ qmax, αp∗ > 0, βq∗ > 0.

Let M be the family of APARCH(δ, p, q) processes, with 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax. As a
consequence, we consider here d = 2pmax + qmax + 1, and

θ∗ = t
(
ω∗, α∗1, . . . , α

∗
p∗ , 0, . . . , 0, γ

∗
1 , . . . , γ

∗
p∗ , 0, . . . , 0, β

∗
1 , . . . , β

∗
q∗ , 0, . . . , 0

)
∈ Rd.

With all the previous conditions, assumptions D(Θ), Id(Θ), Var(Θ) are satisfied. Moreover, since the
Lipschitz coefficients decrease exponentially fast, K(Θ) is satisfied when κn → ∞. Therefore, the
consistency Theorem (3.1) and the Theorem (3.2) of the estimator of the chosen model are satisfied
when r = 4 and κn →∞ (for instance with the typical BIC penalty κn = log n).

4.4. ARMA(p, q)-GARCH(p′, q′) models

From [12] and [33], we define (Xt)t∈Z as an (invertible) ARMA(p, q)-GARCH(p′, q′) process with
p, q, p′, q′ ≥ 0 if:{

Xt =
∑p
i=1 aiXt−i + εt −

∑q
i=1 bi εt−i

εt = σt ξt, with σ2
t = c0 +

∑p′

i=1 ci ε
2
t−i +

∑q′

i=1 di σ
2
t−i

for all t ∈ Z,

where

• c0 > 0, cp′ > 0, ci ≥ 0 for i = 1, · · · , p′ − 1 and dq′ > 0, di ≥ 0 for i = 1, · · · , q′ − 1;
• P (x) = 1−

∑p
i=1 aix

i and Q(x) = 1−
∑q
i=1 bix

i are coprime polynomials.
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Here we will consider the case of a stationary invertible ARMA(p, q)-GARCH(p′, q′) process such as
‖X0‖4 <∞ and therefore we will consider:

Θp,q,p′,q′ =
{

(a1, . . . , dq′) ∈ Rp+q+p
′+1+q′ ,

q′∑
j=1

dj + ‖ξ0‖4
p′∑
j=1

cj < 1

and
(
1−

p∑
j=1

ajz
j
) (

1−
q∑
j=1

bjz
j
)
6= 0 for all |z| ≤ 1

}
.

Therefore, if (a1, . . . , dq′) ∈ Θp,q,p′,q′ , (εt)t is a stationary GARCH(p′, q′) process and (Xt)t is a sta-
tionary weak invertible ARMA(p, q) process.
Moreover, following Lemma 2.1. of [6], we know that a stationary ARMA(p, q)-GARCH(p′, q′) process
is a stationary affine causal process with functions fθ and Mθ satisfying the Assumption A(fθ,Θ) and
A(Mθ,Θ) with Lipschitzian coefficients decreasing exponentially fast, as well as their derivatives. Fi-
nally, if Θ is a bounded subset of Θp,q,p′,q′ , then assumptions D(Θ), Id(Θ) and Var(Θ) are automatically
satisfied.

Assume now that (Xt)t∈Z is an ARMA(p∗, q∗)-GARCH(p
′∗, q

′∗) process where 0 ≤ p∗ ≤ pmax, 0 ≤
q∗ ≤ qmax, 0 ≤ p

′∗ ≤ p′max and 0 ≤ q
′∗ ≤ q′max are unknown orders with also unknown parameters:

c∗0, . . . , c
∗
p′∗
, d∗1, . . . , d

∗
q′∗
, a∗1, . . . , a

∗
p∗ , b

∗
1, . . . , bq∗ .

Let M be the family of ARMA(p, q)-GARCH(p
′
, q
′
) processes, with 0 ≤ p ≤ pmax, 0 ≤ q ≤ qmax,

0 ≤ p′ ≤ p′max and 0 ≤ q′ ≤ q′max. Hence, we consider here d = pmax + qmax + p′max + q′max + 1, and

θ∗ =
(
c∗0, . . . , c

∗
p′∗
, 0, . . . , 0, d∗1, . . . , d

∗
q′∗
, 0, . . . , 0, a∗1, . . . , a

∗
p∗ , 0, . . . , 0, b

∗
1, . . . , bq∗ , 0, . . . , 0

)
∈ Rd.

With Θ a bounded subset of Θpmax,qmax,p′max,q
′
max

, all the previous assumptions D(Θ), Id(Θ), Var(Θ)
are satisfied and K(Θ) is also satisfied as soon as κn → ∞. As a consequence, in this framework the
consistency Theorem (3.1) and the Theorem (3.2) of the estimator of the chosen model are satisfied
when r = 4 and κn →∞ (for instance with the typical BIC penalty κn = log n).

5. Portmanteau test

From the above section, we are now able to asymptotically pick up a best model in a family of models.
We can also obtain asymptotic confident regions of the estimated parameter of the chosen model.
However, it is also important to check whether the chosen model is appropriate. This section attempts
to answer this question by constructing a portmanteau test as a diagnostic tool based on the squares
of the residuals sequence of the chosen model.
This test has been widely considered in the time series literature, with procedures based on the squared
residual correlogram (see for instance [31], [32] ) and the absolute residual (or usual residuals) correl-
ogram (see for instance [30], [14], [29]), among others.
Since our goal is to provide an efficient test for the entire affine class that contains weak white noise
processes, we consider in this setting the autocorrelation of the squared residuals and then we will
follow the same scheme of procedure used in ([31], [32]) while relying on some of their results.

For m ∈ M, for K a positive integer, denote the vector of adjusted correlogram of squares residuals
by:

ρ̂(m) :=
(
ρ̂1(m), . . . , ρ̂K(m)

)′
,

where for k = 1, . . . ,K, ρ̂k(m) :=
γ̂k(m)

γ̂0(m)
with

γ̂k(m) :=
1

n

n∑
t=k+1

(
ê2
t (m)− 1

)(
ê2
t−k(m)− 1

)
and êt(m) :=

(
M̂ t
θ̂(m)

)−1(
Xt − f̂ tθ̂(m)

)
.

Finally, the following theorem provides central limit theorems for ρ̂(m∗) and ρ̂(m̂) as well as for a
portmanteau test statistic.
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Theorem 5.1. Under the assumptions of Theorem 3.2, if

• E[ξ3
0 ] = 0;

•
∞∑
t=1

t−1/4
(∑
j≥t

αj(fθ,Θ) + αj(Mθ,Θ)
)1/2

<∞ or
∞∑
t=1

t−1/4
(∑
j≥t

αj(H̃θ,Θ)
)1/2

<∞;

then,

1. With V (θ∗,m∗) defined in (7.37), it holds that

√
n ρ̂(m∗)

L−→
n→+∞

NK
(
0 , V (θ∗,m∗)

)
. (5.1)

2. With Q̂K(m∗) := n ρ̂(m∗)′
(
V (θ̂(m∗),m∗)

)−1
ρ̂(m∗), we have

Q̂K(m∗)
L−→

n→+∞
χ2(K). (5.2)

3. The previous points 1. and 2. also hold when m∗ is replaced by m̂.

Using the Theorem 5.1, we can asymptotically test: H0 : ∃m∗ ∈M, such as (X1, . . . , Xn) is a trajectory of X ∈ AC(Mθ, fθ∗) with θ∗ ∈ Θ(m∗)

H1 : @m∗ ∈M, such as (X1, . . . , Xn) is a trajectory of X ∈ AC(Mθ, fθ∗) with θ∗ ∈ Θ(m∗)
.

Therefore, Q̂K(m̂) can be used as a portmanteau test statistic to decide between H0 and H1 and
diagnose the goodness-of-fit of the selected model.

Remark 3. 1. Like in [31], it is important to point out that for ARCH(p) model, since f tθ = 0, we
have E

[(
ξ2
0−1

)
∂θ log

(
Mk
θ∗

)]
= 0 for all k > p. Hence, for these models, the matrix V (θ∗,m∗)−IK

will have approximately zero entries from the (p+1)th row onwards and then the standard errors
of ρ̂(m∗)i are in this case equal to 1/

√
n for i = p + 1, . . . ,K. The statistic Q̂K(m∗) yields to

Q̂(p,K) := n
∑K
i=p+1[ρ̂(m∗)i]

2 which will be asymptotically χ2 distributed with K − p degrees
of freedom.

2. In practice the constant µ4 and the rows of the matrix V (θ̂(m∗),m∗) involved in the previ-
ous theorem are estimated by the correspondent sample average; they are respectively µ̂4 =
1
n

∑n
t=1(êt(m̂))4 and

(
V̂ (θ̂((m̂)), (m̂))

)
k,.

= 1
n

∑n
t=k+1[(êt(m̂))2 − 1][∂θ log

(
Mk
θ )](θ=θ̂(m̂)).

6. Numerical Results

This section features some simulation experiments that are performed to assess the usefulness of the
asymptotic results obtained in Section 3. The various configurations studied are presented below and
we compare the performance of penalties log n and

√
n. The process used to generate the trajectory is

indicated each time.

Each model is generated independently 1000 times over a trajectory of length n. Different sample
sizes are considered to identify possible discrepancies between asymptotically expected properties and
those obtained at finite distance. We will consider n belongs to {100, 500, 1000, 2000}. Throughout this
section, (ξt) represents a Gaussian white noise with variance unity.

6.1. Classical configurations

We first simulate some classical model illustrated as follows and the results are displayed in the Table
1.

1. Model 1, AR(2) process: Xt = 0.4Xt−1 + 0.4Xt−2 + ξt.
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2. Model 2, ARMA(1, 1) process: Xt = 0.3Xt−1 + ξt + 0.5ξt−1.
3. Model 3, ARCH(2) process: Xt = ξt

√
0.2 + 0.4X2

t−1 + 0.2X2
t−2.

We considered as competitive models all the models in the familyM defined by:

M =
{
ARMA(p, q) or GARCH(p′, q′) processes with 0 ≤ p, q, p′ ≤ 5, 1 ≤ q′ ≤ 5

}
.

As a consequence, there are 66 candidate models.

The Table 1 shows for each penalty (log n and
√
n) the percentage of times the associated crite-

rion selects respectively a wrong model, the true model and an overfitted model (here a model which
contains the true model).

Table 1: Percentage of selected order based on 1000 replications depending on sample’s length for
Model 1, 2 and 3 respectively.

Sample length n 100 500 1000 2000
Penalty log n

√
n log n

√
n log n

√
n log n

√
n

Wrong 21 32.3 3 0.9 0.9 0 0.2 0
Model 1 True 74.6 67.5 95.8 99.1 98.2 100 99 100

Overfitted 4.4 0.2 1.2 0 0.9 0 0.8 0

Wrong 81.8 97.5 30.1 67.4 19.9 33.2 10.2 10.5
Model 2 True 16.1 2.5 69.1 32.6 79.5 66.8 89.4 89.5

Overfitted 2.1 0 0.8 0 0.6 0 0.4 0

Wrong 78.9 92.9 25.7 70.5 11.6. 39.2 5.4 11.4
Model 3 True 20.4 7.0 73.2 29.5 88.1 60.8 94.3 88.6

Overfitted 0.1 0.1 1.1 0 0.3 0 0.3 0

From these results, it is clear that the consistency of our model selection procedure is numerically
convincing, which is in accordance with Theorem 3.1, where both the criteria are consistent for Model
1, 2 and 3. Note also that the typical BIC log n penalty is the most interesting for retrieving the true
model than the

√
n-penalized likelihood for a small sample size. But the larger the sample size, the

more accurate the
√
n penalty case.

For each of the three models, we also applied the portmanteau test statistic Q̂K(m̂), using the
√
n

penalty. Table 2 shows the empirical size and empirical power of this test. We call by empirical
size, the percentage of falsely rejecting the null hypothesis H0. On the other hand, the empirical
power represents the percentage of rejection of H0 when we arbitrary chose a false model, which is a
AR(3) process Xt = 0.2Xt−1 + 0.2Xt−2 + 0.4Xt−1 + ξt for Model 1 and 2, and a ARCH(3) process
Xt = ξt

√
0.4 + 0.2X2

t−1 + 0.2X2
t−2 + 0.2X2

t−3 for Model 3.

It is important to note that choosing the maximum number of lags K is sometimes tricky. To our
knowledge, there is no real theoretical study to justify the choice of one value or another. However,
some Monte Carlo simulations have suggested some ways to make a good choice . For instance [31]
suggested that the autocorrelations ρ̂k(m̂) with 1 ≤ k ≤ K have a better asymptotic behaviour for
small values of k. Therefore, the finite sample performance of the size and power of the test may also
vary with the choice of K and could be better for small values of K. On the other hand, [47] suggested
that K = p+ q + 1 may be an appropriate choice for the GARCH(p, q) family.
Thus, in our tests, we consider K = 3 and K = 6 so that the rejection is based on the upper 5th
percentile of the χ2(3) distribution on the one hand and χ2(6) on the other hand.

Table 2: The empirical size and empirical power of the portmanteau test statistic Q̂K(m̂) based on
1000 independent replications (in %) with K = 3 and K = 6.
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Sample length 100 500 1000 2000
size power size power size power size power

K = 3
Model 1 3.5 13.6 3.8 48.1 3.5 82.7 3.2 97.7
Model 2 4.0 6.7 5 21.7 4.8 38.6 4.4 64.2
Model 3 4.3 52.7 4.2 98.6 3.2 99.6 3.6 99.9

K = 6
Model 1 3.5 9.4 4.8 43.1 5.3 74.6 4.5 97.6
Model 2 2.1 6.3 4.9 18 4.5 32.2 6.4 61.3
Model 3 3 18.3 3.1 91.5 3.4 99.6 6.8 99.7

Once again, the results of Table 2 numerically confirms the asymptotic results of Theorem 5.1. Remark
that the test is more powerful by using values of K not too large as mentioned above especially for
small samples.

6.2. Subset model selection

Now, we exhibit the performance of the criteria on a particular case of dimension selection. The process
generated data is considered as follows:

Model 4 : Xt = 0.4Xt−3 + 0.4Xt−4 + ξt.

Here, we will consider the case of a nonhierarchical but exhaustive familyM of AR(4) models , i.e.

M = P({1, 2, 3, 4})
=⇒ Xt = θ1Xt−1 + θ2Xt−2 + θ3Xt−3 + θ4Xt−4 + ξt and θ = (θ1, θ2, θ3, θ4)′ ∈ Θ(m).

As a consequence, 16 = 24 candidate models are considered and Table 3 presents the results of the
selection procedure.

Table 3: Percentage of selected model based on 1000 replications depending on sample’s length for
Model 4

Sample length 100 500 1000 2000
log n

√
n log n

√
n log n

√
n log n

√
n

true model 85.9 68 97.5 100 96.8 100 98.9 100
overfitted 7.9 2 2.5 0 3.2 0 1.1 0
false model 6.2 30 0 0 0 0 0 0

We deduce that the consistency of our model selection procedure is also numerically convincing in this
case of exhaustive model selection, which is in accordance with Theorem 3.1

6.3. Slow decrease of the Lipschitz coefficients

In this subsection, we consider an AR(2)−ARCH(∞) with a slow decrease of its Lipschitz coefficients
in order to numerically show that the penalty log n is not consistent in all cases. The considered data
generating process is featured as follows:

Model 5 : Xt = −0.45Xt−1 + 0.4Xt−2 + ξt with ξt = εt

√
0.5 + 0.1

∑
i≥1

ξ2
t−i/i

3,

where εt is an i.i.d random sequence with mean 0 and variance 1. The sequence (αi)i≥1 verifies αi =

O(i−3) so that the sequence of Lipschitz coefficients of Mξ
θ is given by αi(M

ξ
θ ) = O(i−1.5) and then

the decrease rate of the sequence
(
αi(M

X
θ )
)
is equal to O(i−1.5). From Remark 1, all penalties such

as nδ with δ > 2− 1.5 = 0.5 will lead to a consistent model selection criterion and this is not the case
for the typical BIC log n penalty. We have considered δ = 2/3 as in the Bridge Criteria (BC) recently
proposed in [10]. Here the family of modelM is defined by

M =
{
AR(p)-ARCH(∞) processes with 1 ≤ p ≤ 8, where the ARCH(∞) is defined as in Model 5

}
.

The results of simulations are featured in Table 4.
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Table 4: Percentage of selected order based on 1000 replications depending on sample’s length for
model 5

Sample length 100 500 1000 2000
log n n2/3 log n n2/3 log n n2/3 log n n2/3

p < 2 8.9 69.1 0.1 17.6 0 6.1 0 0.9
p = 2 88.9 30.9 75.3 82.4 71.4 93.9 72.5 99.1
p > 2 2.2 0 24.6 0 28.6 0 27.5 0

Note that we also computed the log n criterion for n = 5000 and n = 10000 in additional numerical
experiments and its frequencies of choice of the true order p = 2 were almost 72%. As a consequence,
for this model selection framework of the infinite memory process with a slow decrease of Lipschitz
coefficients, the usual BIC penalty log n seems numerically not sufficient to avoid overfitting in contrast
with a n2/3 penalty that leads to a consistent criterion.

6.4. Illustrative Example

We consider the returns of the daily closing prices of the FTSE index of the London Stock Exchange
100. They are 2273 observations from January 4th, 2010 to December 31st, 2018. The mean and
standard deviation of the returns are -0.54 and 57.67, respectively. The Time plot and the correlograns
for the log returns and squared log returns are plotted in Figure 1.

The Figures (1a) and (1c) exhibit the conditional heteroskedasticity in the log return time series.
Moreover, Figure (1b) shows that more than 5 per cent of the autocorrelations are out of the confidence
interval ±1.96/

√
2273 and specially the Figure (1d) suggests that the strong white noise assumption

cannot be sustained for this log-returns sequence of FTSE index.
Therefore, the GARCH(p, q) family was considered for the modelling of the FTSE index with

(p, q) ∈ J1; 10K × J0; 10K which lead us to 110 candidate models. The penalization log n and
√
n have

been applied to identify the best order and the goodness-of-fit of the selected model has been tested
by the portmanteau test. Based on the results of the simulations, we set K = 3 for the portmanteau
test statistic.

The GARCH(1, 1) is the "best" model according to both criteria (related to above penalizations)
and the portmanteau statistic Q̂3(m̂) ' 2.13 is associated with a p-value of 0.55. Hence, the selected
model GARCH(1, 1) is adequate to model the FTSE 100 index using either criterion.

7. Proofs

We start with the proof of the Proposition 1.

Proof. For ease of writing, consider only the general case where f (i)
θi

= g
(i)
αi and M

(i)
θi

= N
(i)
βi

where
θi = t(αi, βi) for i = 1, 2. Now, assume that there exist α ∈ Rδ, where 0 ≤ δ ≤ min(d1, d2) and a
function hα such as g(1)

α1 = hα+ `
(1)
α′1

, f (2)
α2 = hα+ `

(2)
α′2

with α1 = t(α, α′1) and α2 = t(α, α′2) and `(i)0 = 0.

Similarly, assume that there exist β ∈ Rδ′ , where 0 ≤ δ′ ≤ min(d1, d2) and a function Rβ such as
N

(1)
β1

= Rβ +m
(1)
β′1

, N (2)
β2

= Rβ +m
(2)
β′2

with β1 = t(β, β′1) and β2 = t(β, β′2) and m(i)
0 = 0.

Consider now θ = t(α, α′1, α
′
2, β, β

′
1, β
′
2) ∈ Rd (and therefore max(d1, d2) ≤ d ≤ d1 + d2), fθ = hα +

`
(1)
α′1

+ `
(2)
α′2

and Mθ = Rβ +m
(1)
β′1

+m
(2)
β′2

. Then if X ∈ AC
(
Mθ, fθ

)
, for any t ∈ Z,

Xt =
(
Rβ((Xt−k)k≥1) +m

(1)
β′1

((Xt−k)k≥1) +m
(2)
β′2

((Xt−k)k≥1)
)
ξt

+
(
hα((Xt−k)k≥1) + `

(1)
α′1

((Xt−k)k≥1) + `
(2)
α′2

((Xt−k)k≥1)
)
.

Then, for α′2 = β′2 = 0, X ∈ AC
(
M

(1)
θ1
, f

(1)
θ1

)
and for α′1 = β′1 = 0, X ∈ AC

(
M

(2)
θ2
, f

(2)
θ2

)
.

�
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(a) Time plot of log returns. (b) Correlograms of log returns.

(c) Time plot of squared log returns. (d) Correlograms of squared log returns.

Figure 1: Daily closing FTSE 100 index (January 4th, 2010 to December 31 st, 2018).
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In the sequel, some lemmas are stated and theirs proofs are given.

Lemma 1. Let X ∈ AC(Mθ, fθ) (or ÃC(H̃θ)) and Θ ⊆ Θ(r) (or Θ ⊆ Θ̃(r)) with r ≥ 2. Assume that
the assumptions D(Θ) and K(Θ) (or K̃(Θ)) hold. Then:

1

κn

∥∥L̂n(θ)− Ln(θ)
∥∥

Θ

a.s.−→
n→+∞

0. (7.1)

Proof. We have |L̂n(θ)− Ln(θ)| ≤
∑n
t=1 |q̂t(θ)− qt(θ)|. Then,

1

κn

∥∥L̂n(θ)− Ln(θ)
∥∥

Θ
≤ 1

κn

n∑
t=1

‖q̂t(θ)− qt(θ)‖Θ.

By Corollary 1 of [27], with r ≤ 3, (7.1) is established when:∑
k≥1

(
1

κk
)r/3E

(
‖q̂k(θ)− qk(θ)‖r/3Θ

)
<∞. (7.2)

With r ≥ 3, and under the assumptions, we first recall some results already obtained in [7]: for any
t ∈ Z,

• E
[
|Xt|r + ‖f tθ‖rΘ + ‖f̂ tθ‖rΘ + ‖M t

θ‖rΘ + ‖M̂ t
θ‖rΘ + ‖Ht

θ‖
r/2
Θ + ‖Ĥt

θ‖
r/2
Θ

]
<∞ (7.3)

•


E
[
‖f tθ − f̂ tθ‖rΘ

]
≤ C

(∑
j≥t αj(fθ,Θ)

)r
E
[
‖M t

θ − M̂ t
θ‖rΘ

]
≤ C

(∑
j≥t αj(Mθ,Θ)

)r
E
[
‖Ht

θ − Ĥt
θ‖
r/2
Θ

]
≤ C

(
min

{∑
j≥t αj(Mθ,Θ) ,

∑
j≥t αj(Hθ,Θ)

})r/2
.

(7.4)

For any θ ∈ Θ, we have:

|q̂t(θ)− qt(θ)| =
∣∣∣ (Xt − f̂ tθ)2

Ĥt
θ

+ log(Ĥt
θ)−

(Xt − f tθ)2

Ht
θ

− log(Ht
θ)
∣∣∣

≤ (Ht
θĤ

t
θ)
−1
∣∣Ht

θ(Xt − f̂ tθ)2 − Ĥt
θ(Xt − f tθ)2

∣∣+
∣∣ log(Ĥt

θ)− log(Ht
θ)
∣∣

≤ (Ht
θĤ

t
θ)
−1
∣∣(Ht

θ − Ĥt
θ)(Xt − f tθ)2 −Ht

θ(Xt − f tθ)2 +Ht
θ(Xt − f̂ tθ)2

∣∣+
∣∣ log(Ĥt

θ)− log(Ht
θ)
∣∣

≤ h−3/2
(
|Xt|2 + 2|Xt‖f tθ|+ |f tθ|2

) ∣∣M t
θ − M̂ t

θ

∣∣+ h−1
(
2|Xt|+ |f tθ|+ |f̂ tθ|

) ∣∣f tθ − f̂ tθ∣∣+ 2
∣∣ log(M̂ t

θ)− log(M t
θ)
∣∣

≤ h−3/2
(
|Xt|2 + 2|Xt| × ‖f tθ‖Θ + ‖f tθ‖2Θ

)
‖M t

θ − M̂ t
θ‖Θ

+ h−1
(
2|Xt|+ ‖f tθ‖Θ + ‖f̂ tθ‖Θ

)
‖f tθ − f̂ tθ‖Θ + 2h−1/2‖M̂ t

θ −M t
θ‖Θ.

1/ If X ⊂ AC(Mθ, fθ), we deduce

E
[
‖q̂t(θ)− qt(θ)‖r/3Θ

]
≤ C

(
E
[(
‖Xt + f tθ‖2Θ + 1

)r/3 ‖M t
θ − M̂ t

θ‖
r/3
Θ

]
+ E

[(
2|Xt|+ ‖f tθ‖Θ + ‖f̂ tθ‖Θ

)r/3 ‖f tθ − f̂ tθ‖r/3Θ

])
. (7.5)

Then, by Hölder’s inequality and (7.3) we have:

E
[(
‖Xt + f tθ‖2Θ + 1

)r/3 ‖M t
θ − M̂ t

θ‖
r/3
Θ

]
≤
(
E
[
‖Xt + f tθ + 1‖rΘ

])2/3 (
E
[
‖M t

θ − M̂ t
θ‖rΘ

])1/3

≤ C
(
E
[
‖M t

θ − M̂ t
θ‖rΘ

])1/3

. (7.6)

Again with Hölder’s inequality and (7.3) ,

E
[(

(2|Xt|+ ‖f tθ‖Θ + ‖f̂ tθ‖Θ)‖f tθ − f̂ tθ‖Θ
)r/3] ≤ C (E[‖f tθ − f̂ tθ‖rΘ]

)1/3
. (7.7)
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Therefore, from (7.6), (7.7) and (7.4), there exists a constant C such that

E
[
‖(q̂t(θ)− qt(θ)‖r/3Θ

]
≤ C

(∑
j≥t

αj(fθ,Θ) +
∑
j≥t

αj(Mθ,Θ)
)r/3

. (7.8)

Hence, ∑
k≥1

(
1

κk
)r/3E

[
‖q̂k(θ)− qk(θ)‖r/3Θ

]
≤ C

∑
k≥1

(
1

κk
)r/3

(∑
j≥k

αj(fθ,Θ) + αj(Mθ,Θ)
)r/3

,

which is finite by assumption K(Θ), and this achieves the proof.

2/ If X ⊂ ÃC(H̃θ) and using Corollary 1 of [27], with r ≤ 4, (7.1) is established when:∑
k≥1

(
1

κk
)r/4E

(
‖q̂k(θ)− qk(θ)‖r/4Θ

)
<∞. (7.9)

By proceeding as in the previous case, we deduce

|q̂t(θ)− qt(θ)| ≤ h−2|Xt|2 ‖Ht
θ − Ĥt

θ‖Θ + h−1‖Ĥt
θ −Ht

θ‖Θ.

In addition, we deduce that there exists a constant C such that

E
[
‖(q̂t(θ)− qt(θ)‖r/4Θ

]
≤ C

(∑
j≥t

αj(Hθ,Θ)
)r/4

. (7.10)

�

Lemma 2. Let X ∈ AC(Mθ, fθ) (or ÃC(H̃θ)) and Θ ⊆ Θ(r) (or Θ ⊆ Θ̃(r)) with r ≥ 2. Assume that
the assumptions D(Θ) and K(Θ) (or K̃(Θ)) hold. Then:

1

κn

∥∥∥∂L̂n(θ)

∂θ
− ∂Ln(θ)

∂θ

∥∥∥
Θ

a.s.−→
n→+∞

0. (7.11)

Proof. We will go along similar lines as in the proof of Lemma 1. We have:

1

κn

∥∥∥∂L̂n(θ)

∂θ
− ∂Ln(θ)

∂θ

∥∥∥
Θ
≤ 1

κn

n∑
t=1

∥∥∥∂q̂t(θ)
∂θi

− ∂qt(θ)

∂θi

∥∥∥
Θ
.

Using again Corollary 1 of [27], it is sufficient to prove for r ≤ 3 that∑
k≥1

(
1

κk
)r/3 E

[∥∥∥∂q̂t(θ)
∂θi

− ∂qt(θ)

∂θi

∥∥∥r/3
Θ

]
<∞. (7.12)

For any θ ∈ Θ, with Hθ = M2
θ , the first partial derivatives of qt(θ) are

∂qt(θ)

∂θi
=
−2(Xt − f tθ)

Ht
θ

∂f tθ
∂θi
− (Xt − f tθ)2

(Ht
θ)

2

∂Ht
θ

∂θi
+

1

Ht
θ

∂Ht
θ

∂θi

= −2(Ht
θ)
−1(Xt − f tθ)

∂f tθ
∂θi

+ (Xt − f tθ)2 ∂(Ht
θ)
−1

∂θi
+ (Ht

θ)
−1 ∂H

t
θ

∂θi
,

for i = 1, · · · , d. Hence,

∣∣∣∂q̂t(θ)
∂θi

− ∂qt(θ)

∂θi

∣∣∣ ≤ 2
∣∣∣(htθ)−1(Xt − f tθ)

∂f tθ
∂θi
− (ĥtθ)

−1(Xt − f̂ tθ)
∂f̂ tθ
∂θi

∣∣∣
+
∣∣∣(Xt − f̂ tθ)2 ∂(Ĥt

θ)
−1

∂θi
− (Xt − f tθ)2 ∂(Ht

θ)
−1

∂θi

∣∣∣+
∣∣∣(Ĥt

θ)
−1 ∂Ĥ

t
θ

∂θi
− (Ht

θ)
−1 ∂H

t
θ

∂θi

∣∣∣.
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Then, using |a1b1c1−a2b2c2| ≤ |a1−a2| |b2| |c2|+|a1| |b1−b2| |c2|+|a1| |b1| |c1−c2| for any a1, a2, b1, b2, c1, c2
in R, we obtain∣∣∣∂q̂t(θ)
∂θi

− ∂qt(θ)

∂θi

∣∣∣ ≤ 2
(∣∣(Ht

θ)
−1 − (Ĥt

θ)
−1
∣∣× ∣∣Xt − f̂ tθ

∣∣ ∣∣∣∂f̂ tθ
∂θi

∣∣∣+
∣∣(Ht

θ)
−1
∣∣× ∣∣f̂ tθ − f tθ∣∣ ∣∣∣∂f̂ tθ∂θi

∣∣∣
+
∣∣(Ht

θ)
−1
∣∣× ∣∣Xt − f tθ

∣∣ ∣∣∣∂f tθ
∂θi
− ∂f̂ tθ
∂θi

∣∣∣)+
∣∣Xt − f̂ tθ

∣∣2 ∣∣∣∂(Ĥt
θ)
−1

∂θi
− ∂(Ht

θ)
−1

∂θi

∣∣∣
+ 2

∣∣∣∂(Ht
θ)
−1

∂θi

∣∣∣ ∣∣Xt

∣∣ ∣∣f tθ − f̂ tθ∣∣+
∣∣(Ĥt

θ)
−1
∣∣ ∣∣∣∂Ĥt

θ

∂θi
− ∂Ht

θ

∂θi

∣∣∣+
∣∣∣∂Ht

θ

∂θi

∣∣∣ ∣∣(Ĥt
θ)
−1 − (Ht

θ)
−1
∣∣.

Thus,∥∥∥∂q̂t(θ)
∂θi

− ∂qt(θ)

∂θi

∥∥∥
Θ
≤ 2h−1

(∥∥f̂ tθ − f tθ∥∥Θ

∥∥∥∂f̂ tθ
∂θi

∥∥∥
Θ

+
∥∥Xt − f tθ

∥∥
Θ

∥∥∥∂f tθ
∂θi
− ∂f̂ tθ
∂θi

∥∥∥
Θ

)
+ 2

∥∥(Ht
θ)
−1 − (Ĥt

θ)
−1
∥∥

Θ

∥∥Xt − f̂ tθ
∥∥

Θ

∥∥∥∂f̂ tθ
∂θi

∥∥∥
Θ

+
∥∥Xt − f̂ tθ

∥∥2
∥∥∥∂(Ĥt

θ)
−1

∂θi
− ∂(Ht

θ)
−1

∂θi

∥∥∥
+ 2

∣∣Xt

∣∣ ∥∥f tθ − f̂ tθ∥∥Θ

∥∥∥∂(Ht
θ)
−1

∂θi

∥∥∥
Θ

+
∥∥(Ĥt

θ)
−1
∥∥

Θ

∥∥∥∂Ĥt
θ

∂θi
− ∂Ht

θ

∂θi

∥∥∥
Θ

+
∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1‖Θ

∥∥∥∂Ht
θ

∂θi

∥∥∥
Θ
.

Using again the results of [7], we know that:

• E
[∥∥∥∂f tθ
∂θi

∥∥∥r
Θ
+
∥∥∥∂f̂ tθ
∂θi

∥∥∥r
Θ
+
∥∥∥∂M t

θ

∂θi

∥∥∥r
Θ
+
∥∥∥∂M̂ t

θ

∂θi

∥∥∥r
Θ
+
∥∥∥∂Ht

θ

∂θi

∥∥∥r/2
Θ

+
∥∥∥∂(Ht

θ)
−1

∂θi

∥∥∥r
Θ

]
<∞ (7.13)

•



E
[∥∥(Ht

θ)
−1 − (Ĥt

θ)
−1
∥∥r

Θ

]
≤ C

(∑
j≥t

αj(Mθ,Θ)
)r

E
[∥∥∥∂f tθ
∂θi
− ∂f̂ tθ
∂θi

∥∥∥r
Θ

]
≤ C

(∑
j≥t

αj(∂fθ,Θ)
)r

E
[∥∥∥∂Ht

θ

∂θi
− ∂Ĥt

θ

∂θi

∥∥∥r/2
Θ

]
≤ C

(∑
j≥t

(
αj(Mθ,Θ) + αj(∂Mθ,Θ)

))r/2
E
[∥∥∥∂(Ht

θ)
−1

∂θi
− ∂(Ĥt

θ)
−1

∂θi

∥∥∥r/2
Θ

]
≤ C

(∑
j≥t

(
αj(Mθ,Θ) + αj(∂Mθ,Θ)

))r/2
(7.14)

1. If X ⊂ AC(Mθ, fθ), we deduce from the Hölder’s Inequality that,

E
[∥∥∥∂q̂t(θ)

∂θi
− ∂qt(θ)

∂θi

∥∥∥r/3
Θ

]
≤ C

[(
E
[∥∥f̂ tθ − f tθ∥∥rΘ])1/3(E[∥∥∥∂f̂ tθ∂θi

∥∥∥r/2
Θ

])2/3

+
(
E
[∥∥Xt − f tθ

∥∥2r/3

Θ

])1/2(E[∥∥∥∂f tθ
∂θi
− ∂f̂ tθ
∂θi

∥∥∥r
Θ

])1/3

+
(
E
[∥∥(Ht

θ)
−1 − (Ĥt

θ)
−1
∥∥r

Θ

])1/3 (E[∥∥Xt − f̂ tθ
∥∥r

Θ

]
E
[∥∥∥∂f̂ tθ
∂θi

∥∥∥r
Θ

])1/3

+
(
E
[∥∥Xt − f̂ tθ

∥∥r
Θ

])1/3(
E
[∥∥∥∂(Ĥt

θ)
−1

∂θi
− ∂(Ht

θ)
−1

∂θi

∥∥∥r/2])2/3

+
(
E
[∥∥∥∂(Ht

θ)
−1

∂θi

∥∥∥r
Θ

])1/3(
E
[
|Xt|r

]
E
[∥∥f tθ − f̂ tθ∥∥rΘ])1/3

+
(
E
[∥∥∥∂Ĥt

θ

∂θi
− ∂Ht

θ

∂θi

∥∥∥r/3
Θ

]
+
(
E
[∥∥∥∂Ht

θ

∂θi

∥∥∥r/2
Θ

])2/3(
E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥r

Θ

])1/3]
.

Using (7.13) and (7.14), we deduce

E
[∥∥∥∂q̂t(θ)

∂θi
− ∂qt(θ)

∂θi

∥∥∥r/3
Θ

]
≤ C

(∑
j≥t

αj(fθ,Θ) + αj(Mθ,Θ) + αj(∂fθ,Θ) + αj(∂Mθ,Θ)
)r/3

.
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Therefore,

∑
k≥1

1

κ
r/3
k

E
[∥∥∥∂q̂k(θ)

∂θi
− ∂qk(θ)

∂θi

∥∥∥r/3
Θ

]
≤ C

∑
k≥1

1

κ
r/3
k

(∑
j≥t

αj(fθ,Θ) + αj(Mθ,Θ) + αj(∂fθ,Θ) + αj(∂Mθ,Θ)
)r/3

.

We conclude the proof of (7.12) from assumption K(Θ).

2. If X ⊂ ÃC(H̃θ), we deduce

∥∥∥∂q̂t(θ)
∂θi

− ∂qt(θ)

∂θi

∥∥∥
Θ
≤
∣∣Xt

∣∣2 ∥∥∥∂(Ĥt
θ)
−1

∂θi
− ∂(Ht

θ)
−1

∂θi

∥∥∥
Θ

+ h−1
∥∥∥∂Ĥt

θ

∂θi
− ∂Ht

θ

∂θi

∥∥∥
Θ

+
∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1‖Θ

∥∥∥∂Ht
θ

∂θi

∥∥∥
Θ
.

As a consequence,

E
[∥∥∥∂q̂t(θ)

∂θi
− ∂qt(θ)

∂θi

∥∥∥r/4
Θ

]
≤
(
E
[∣∣Xt

∣∣r E[∥∥∥∂(Ĥt
θ)
−1

∂θi
− ∂(Ht

θ)
−1

∂θi

∥∥∥r/2
Θ

])1/2

+ h−r/4E
[∥∥∥∂Ĥt

θ

∂θi
− ∂Ht

θ

∂θi

∥∥∥r/4
Θ

]
+
(
E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1‖r/2Θ

]
E
[∥∥∥∂Ht

θ

∂θi

∥∥∥r/2
Θ

])1/2

,

implying

E
[∥∥∥∂q̂t(θ)

∂θi
− ∂qt(θ)

∂θi

∥∥∥r/4
Θ

]
≤ C

(∑
j≥t

αj(Hθ,Θ) + αj(∂Hθ,Θ)
)r/4

,

which achieves the proof, according to Corollary 1 of [27]. �

Lemma 3. Under the assumptions of Theorem 3.1 and if a model m ∈ M is such that θ∗ ∈ Θ(m),
then:

1

κn

∣∣L̂n(θ̂(m))− L̂n(θ∗)
∣∣ = oP (1). (7.15)

Proof. We have:

1

κn

∣∣L̂n(θ̂(m))− L̂n(θ∗)
∣∣ =

1

κn

∣∣L̂n(θ̂(m))− Ln(θ̂(m)) + Ln(θ̂(m))− Ln(θ∗) + Ln(θ∗)− L̂n(θ∗)
∣∣

≤ 2

κn

∥∥L̂n(θ)− Ln(θ)
∥∥

Θ(r)
+

1

κn

∣∣Ln(θ̂(m))− Ln(θ∗)
∣∣.

According to Lemma 1, 1
κn

∥∥L̂n(θ)− Ln(θ)
∥∥

Θ(r)

a.s.−→
n→+∞

0. The proof will be achieved if we prove

1

κn

∣∣Ln(θ̂(m))− Ln(θ∗)
∣∣ = oP (1). (7.16)

Applying a second order Taylor expansion of Ln around θ̂(m) for n sufficiently large such that θ(m) ∈
Θ(m) which are between θ̂(m) and θ∗, yields:

1

κn

(
Ln(θ̂(m))− Ln(θ∗)

)
=

1

κn

(
θ̂(m)− θ∗

)∂Ln(θ̂(m))

∂θ
+

1

2κn

(
θ̂(m)− θ∗

)′ ∂2Ln(θ(m))

∂θ2

(
θ̂(m)− θ∗

)
. (7.17)
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Let us deal first with the first term on the right hand side of last equality:

1

κn

(
θ̂(m)− θ∗

) ∂Ln(θ̂(m))

∂θ
=

1

κn

√
n
(
θ̂(m)− θ∗

) 1√
n

∂Ln(θ̂(m))

∂θ
.

Since 1
κn

= o(1) and from [7] we have
√
n
(
θ̂(m) − θ∗

)
= OP (1) and 1√

n
∂Ln(θ̂(m))

∂θ = oP (1), it follows
that:

1

κn

(
θ̂(m)− θ∗

)∂Ln(θ̂(m))

∂θ
= oP (1). (7.18)

On the other hand, for the second term of the right hand side of equality (7.17), let us note that, we
have from [7]:

•
√
n
(
θ̂(m)− θ∗

) L−→
n→+∞

Aθ∗,m a Gaussian random variable from (3.3).

• − 2

n

(∂2Ln(θ(m))

∂θi∂θj

)
i,j∈m

a.s.−→
n→+∞

F (θ∗,m) since θ̂(m)
a.s.−→

n→+∞
θ∗ and using the assumption Var(Θ)

insuring that the matrix F (θ∗,m) exists and is definite positive (see [7]).

Hence,

(
θ̂(m)− θ∗

)′ (∂2Ln(θ(m))

∂θi∂θj

)
i,j∈m

(θ̂(m)− θ∗)

=
−1

2

√
n
(
θ̂(m)− θ∗

)′ (
F (θ∗,m) + oP (1)

)√
n
(
θ̂(m)− θ∗

)
P−→

n→∞

−1

2
A′θ∗,m F (θ∗,m)Aθ∗,m.

We deduce that(
θ̂(m)− θ∗

)′ (∂2Ln(θ(m))

∂θi∂θj

)
i,j∈m

(θ̂(m)− θ∗) = OP (1)

=⇒ 1

κn

(
θ̂(m)− θ∗

)′ (∂2Ln(θ(m))

∂θi∂θj

)
i,j∈m

(θ̂(m)− θ∗) = oP (1). (7.19)

Thus, (7.16) follows from (7.17), (7.18) and (7.19); which completes the proof of Lemma 3. �

7.1. Misspecified model

When a model m is misspecified, we will show that P(m̂ = m∗) −→
n→∞

0 following the same scheme of

proof than in [42]. Before dealing with this proof, we state some useful results.

Proposition 2. Let X ∈ AC(Mθ, fθ) (or ÃC(H̃θ)) and Θ ⊆ Θ(r) (or Θ ⊆ Θ̃(r)) with r ≥ 2. Then,
when the assumption D(Θ) holds,∥∥∥ 1

n
Ln(θ)− L(θ)

∥∥∥
Θ

a.s.−→
n→+∞

0 with L(θ) := −1

2
E[q0(θ)]. (7.20)

Proof. See the proof of Theorem 1 in [7]. �

Lemma 4. Under the assumptions of Theorem 3.1 and for m ∈M such as m∗ ⊂ m, then:

Ln(θ̂(m))− Ln(θ∗) = OP (1). (7.21)

Proof. Applying a second order Taylor expansion of Ln around θ̂(m∗) for n sufficiently large such that
θ(m) ∈ Θ(m) which are between θ∗ and θ̂(m∗), yields:

Ln(θ̂(m))− Ln(θ∗) = (θ̂(m)− θ∗)∂Ln(θ̂(m))

∂θ
+

1

2
(θ̂(m)− θ∗)′ ∂

2Ln(θ(m))

∂θ∂θ′
(θ̂(m)− θ∗)

=
√
n(θ̂(m)− θ∗) 1√

n

∂Ln(θ̂(m))

∂θ
+

1

2

√
n(θ̂(m)− θ∗)′ 1

n

∂2Ln(θ(m))

∂θ∂θ′
√
n(θ̂(m)− θ∗)

= op(1) + OP (1)

= OP (1),
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by using equality (7.19). �

7.2. Proof of Theorem 3.1

As we point out in Subsection 2.4, the proof is divided into two parts.

Proof. 1. For m ∈ M such as m∗ ⊂ m and m 6= m∗ (overfitting), then using with Ĉ(m) =

−2L̂n
(
θ̂(m)

)
+ |m|κn (see (2.8)), we have:

P(m̂ = m) ≤ P
(
Ĉ(m) ≤ −2L̂n

(
θ∗
)

+ |m∗|κn
)

≤ P
(
− 2
(
L̂n(θ̂)− L̂n(θ∗)

)
≤ κn(|m∗| − |m|)

)
≤ P

( 1

κn

(
L̂n(θ∗)− L̂n(θ̂)

)
≤ (|m∗| − |m|)

2

)
−→
n→∞

0

by virtue of Lemma 3 and because |m| − |m∗| ≥ 1.

2. Let m ∈M such as m∗ 6⊂ m. Then,

L̂n(θ̂(m∗))− L̂n(θ̂(m)) =
(
L̂n(θ̂(m∗))− Ln(θ̂(m∗))

)
−
(
L̂n(θ̂(m))− Ln(θ̂(m))

)
+
(
Ln(θ̂(m∗))− Ln(θ̂(m))

)
. (7.22)

It follows from Lemma 1 that the first and the second term of the right part of (7.22) are equal to
oP (κn). Moreover, the third term can be written as follows:

Ln(θ̂(m∗))− Ln(θ̂(m)) =
(
Ln(θ̂(m∗))− Ln(θ∗)

)
+
(
Ln(θ∗)− Ln(θ̂(m))

)
.

From Lemma 4, one deduces Ln(θ̂(m∗))−Ln(θ∗) = OP (1). In addition, in the sequel, we are going to
show that

Ln(θ∗)− Ln(θ̂(m)) = n
(
A(m) + oP (1)

)
, with A(m) > 0. (7.23)

For any θ ∈ Θ(m), we have from Proposition 2

Ln(θ∗)− Ln(θ) =
(
Ln(θ∗)− nL(θ∗)

)
−
(
Ln(θ)− nL(θ)

)
+ n

(
L(θ∗))− L(θ))

)
= oP (n) + n

(
L(θ∗))− L(θ)

)
.

Let us denote by Ft := σ
(
Xt−1, Xt−2, · · ·

)
. Using conditional expectation, we obtain

L(θ∗)− L(θ) = −1

2
E
[
E
[
q0(θ)− q0(θ∗) | F0

]]
. (7.24)

But,

E
[
q0(θ)− q0(θ∗) | F0

]
= E

[ (X0 − f0
θ )2

H0
θ

+ log(H0
θ )− (X0 − f0

θ∗)
2

H0
θ∗

− log(H0
θ∗) | F0

]
= log

( H0
θ

H0
θ∗

)
+

E
[
(X0 − f0

θ )2 | F0

]
H0
θ

−
E
[
(X0 − f0

θ∗)
2 | F0

]
H0
θ∗

= log
( H0

θ

H0
θ∗

)
− 1 +

E
[
(X0 − f0

θ∗ + f0
θ∗ − f0

θ )2 | F0

]
H0
θ

=
H0
θ∗

H0
θ

− log
(H0

θ∗

H0
θ

)
− 1 +

(f0
θ∗ − f0

θ )2

H0
θ

As a consequence, from (7.24),

A(m) := 2
(
L(θ∗)− L(θ)

)
= E

[H0
θ∗

H0
θ

− log
(H0

θ∗

H0
θ

)
− 1 +

(f0
θ∗ − f0

θ )2

H0
θ

]
≥ E

[H0
θ∗

H0
θ

]
− log

(
E
[H0

θ∗

H0
θ

])
− 1 + E

[ (f0
θ∗ − f0

θ )2

H0
θ

]
by Jensen Inequality.
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Since x− log(x)− 1 > 0 for any x > 0, x 6= 1 and x− log(x)− 1 = 0 for x = 1, we deduce that

• If f0
θ∗ 6= f0

θ then E
[

(f0
θ∗−f

0
θ )2

H0
θ

]
> 0 and A(m) > 0.

• Otherwise, if f0
θ∗ = f0

θ , then

A(m) = E
[H0

θ∗

H0
θ

− log
(H0

θ∗

H0
θ

)
− 1
]
,

From Assumption ID(Θ), when θ∗ /∈ Θ(m) and if f0
θ∗ = f0

θ , we necessarily have H0
θ∗ 6= H0

θ so
that H0

θ∗
H0
θ
6= 1. Then A(m) > 0.

Therefore A(m) > 0 for any θ ∈ Θ(m) and particularly for θ = θ̂(m) and (7.23) holds. Thus, (7.22)
yields to

L̂n(θ̂(m∗))− L̂n(θ̂(m)) = oP (κn) +OP (1) + nA(m) + oP (n) = OP (1) + nA(m) + oP (n).

Finally, when m ∈M such as m∗ 6⊂ m, we have

Ĉ(m)− Ĉ(m∗) = 2nA(m) + oP (n) +OP (1) + κn(|m| − |m∗|) P−→
n→∞

+∞

since κn = o(n), therefore P
(
Ĉ(m) > Ĉ(m∗)

)
−→
n→∞

1.

Thus we have proved the first and most difficult part of Theorem (3.1). The next lines show the second
part which is about the consistency of θ̂(m̂).

Given ε > 0, we have :

P
(
‖θ̂(m̂)− θ∗‖i∈m∗ > ε

)
= P

(
‖θ̂(m̂)− θ∗‖i∈m∗ > ε|m̂ = m∗

)
P
(
m̂ = m∗

)
+P
(
‖θ̂(m̂)− θ∗‖i∈m∗ > ε|m̂ 6= m∗

)
P
(
m̂ 6= m∗

)
.

From the strong consistency of the QMLE (see New version of Theorem 1 of [7]), the first term of
the right hand side of the above equation is asymptotically zero and also the second one under the
assumptions of the first part of Theorem 3.1 which gives P

(
m̂ 6= m∗

)
−→
n→∞

0.
�

7.3. Proof of Theorem 3.2

Proof. For x = (xi)1≤i≤d ∈ Rd, denote Fn(x) = P
( ⋂

1≤i≤d

√
n
(
θ̂(m̂)− θ∗

)
i
≤ xi

)
.

First, we have:

Fn(x) = P
( ⋂

1≤i≤d

√
n
(
θ̂(m̂)− θ∗

)
i
≤ xi

∣∣ m̂ = m∗
)
P
(
m̂ = m∗

)
+P
( ⋂

1≤i≤d

√
n
(
θ̂(m̂)− θ∗

)
i
≤ xi

∣∣ m̂ 6= m∗
)
P
(
m̂ 6= m∗

)
.

Under the assumptions of Theorem 3.1, P
(
m̂ = m∗

)
−→
n→∞

1 and P
(
m̂ 6= m∗

)
−→
n→∞

0. Therefore the
second term in the right side of the previous equality asymptotically vanishes. For the first term, we
can write,

P
( ⋂

1≤i≤d

√
n
(
θ̂(m̂)− θ∗

)
i
≤ xi

∣∣ m̂ = m∗
)

= P
({ ⋂

i∈m∗

√
n
(
θ̂(m∗)− θ∗

)
i
≤ xi

} ⋂ { ⋂
i/∈m∗

√
n
(
θ̂(m∗)− θ∗

)
i
≤ xi

})
.
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Since θ(m∗) ∈ Θ(m∗),
((
θ̂(m∗)

)
i

)
i/∈m∗ =

(
θ∗i
)
i/∈m∗ = 0, for (xi)i/∈m∗ a family of non negative real

numbers we have:

P
({ ⋂

i∈m∗

√
n
(
θ̂(m∗)− θ∗

)
i
≤ xi

} ⋂ { ⋂
i/∈m∗

√
n
(
θ̂(m∗)− θ∗

)
i
≤ xi

})
= P

( ⋂
i∈m∗

√
n
(
θ̂(m∗)− θ∗

)
i
≤ xi

)
−→
n→∞

P
((
F (θ∗,m∗)−1G(θ∗,m∗)F (θ∗,m∗)−1

)−1/2
Z ≤ (xi)i∈m∗

)
,

with Z a standard Gaussian random vector in R|m∗| from the central limit theorem (3.3), and this
achieves the proof of 3.5 of Theorem 3.2. �

7.4. Proof of Theorem 5.1

Consider the following notation: for θ ∈ Θ and m ∈M, denote the residuals and quasi-residuals by:{
et(θ) :=

(
M t
θ

)−1(
Xt − f tθ

)
and êt(θ) :=

(
M̂ t
θ

)−1(
Xt − f̂ tθ

)
et(m) :=

(
M t
θ̂(m)

)−1(
Xt − f tθ̂(m)

)
and êt(m) :=

(
M t
θ̂(m)

)−1(
Xt − f̂ tθ̂(m)

) .

For k ∈ {0, 1, . . . , n− 1}, θ ∈ Θ and m ∈ M, define also the adjusted lag-k covariograms and correlo-
grams of the squared (standardized) residual by:

γk(θ) :=
1

n

n−k∑
t=1

(
e2
t (θ)− 1

)(
e2
t+k(θ)− 1

)
and γ̂k(θ) :=

1

n

n−k∑
t=1

(
ê2
t (θ)− 1

)(
ê2
t+k(θ)− 1

)
γk(m) :=

1

n

n−k∑
t=1

(
e2
t (m)− 1

)(
e2
t+k(m)− 1

)
and γ̂k(m) :=

1

n

n−k∑
t=1

(
ê2
t (m)− 1

)(
ê2
t+k(m)− 1

)
and ρk(θ) :=

γk(θ)

γ0(θ)
, ρ̂k(θ) :=

γ̂k(θ)

γ̂0(θ)
, ρk(m) :=

γk(m)

γ0(m)
and ρ̂k(m) :=

γ̂k(m)

γ̂0(m)
.

Finally, for K a positive integer, denote the vector of adjusted correlogram:

ρ̂(θ) :=
(
ρ̂1(θ), . . . , ρ̂K(θ)

)′ and ρ̂(m) :=
(
ρ̂1(m), . . . , ρ̂K(m)

)′
.

Proof. (1) This proof is divided into two parts. In (i) we prove a result that ensures that the
asymptotic distributions of the vectors ρ̂(θ) and ρ(θ) are the same. In (ii) we show that the large
sample distribution of

√
nρ(m∗) is normal with a covariance matrix V (θ∗,m∗) . Those two conditions

do lead well to the asymptotic normality (5.1).

(i) In this part, we first show that for any k ∈ N,
√
n
∥∥γ̂k(θ)− γk(θ)

∥∥
Θ

a.s.−→
n→∞

0. (7.25)

We have:

√
n
(
γ̂k(θ)− γk(θ)

)
=

1√
n

n∑
t=k+1

(
ê2
t (θ)− 1

)(
ê2
t−k(θ)− 1

)
− 1√

n

n∑
t=k+1

(
e2
t (θ)− 1

)(
e2
t−k(θ)− 1

)
=

1√
n

n∑
t=k+1

(
ê2
t (θ)ê

2
t−k(θ)− e2

t (θ)e
2
t−k(θ)

)
+

1√
n

n∑
t=k+1

(
ê2
t (θ)− e2

t (θ)
)

+
1√
n

n∑
t=k+1

(
e2
t−k(θ)− ê2

t−k(θ)
)

=: I1 + I2 + I3.
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Now, we show that ‖I1‖Θ
a.s.−→

n→+∞
0. We can rewrite I1 as follows

I1 =
1√
n

n∑
t=k+1

ê2
t−k(θ)

(
ê2
t (θ)− e2

t (θ)
)

+
1√
n

n∑
t=k+1

e2
t (θ)

(
ê2
t−k(θ)− e2

t−k(θ)
)

=
1√
n

n∑
t=k+1

(
ê2
t−k(θ)− e2

t−k(θ)
)(
ê2
t (θ)− e2

t (θ)
)

+
1√
n

n∑
t=k+1

e2
t−k(θ)

(
ê2
t (θ)− e2

t (θ)
)

+
1√
n

n∑
t=k+1

e2
t (θ)

(
ê2
t−k(θ)− e2

t−k(θ)
)

:= I1
1 + I2

1 + I3
1 .

Let us show that ‖I1
1‖Θ

a.s.−→
n→+∞

0 in our two frameworks.

a/ If X ⊂ AC(Mθ, fθ), by Hölder’s inequality, it follows from (7.8) that,

E
[∥∥∥(ê2

t−k(θ)− e2
t−k(θ)

)(
ê2
t (θ)− e2

t (θ)
)∥∥∥1/2

Θ

]
≤

(
E
[∥∥ê2

t (θ)− e2
t (θ)

∥∥
Θ

]
× E

[∥∥ê2
t−k(θ)− e2

t−k(θ)
∥∥

Θ

])1/2

.

But we have∥∥ê2
t (θ)− e2

t (θ)
∥∥

Θ
≤ 1

h

(
2|Xt|+ ‖f̂ tθ‖Θ + ‖f tθ‖Θ

)∥∥f̂ tθ − f tθ‖Θ +
4

h3/2

(
|Xt|2 + ‖f tθ‖2Θ

)∥∥M̂ t
θ −M t

θ‖Θ.

Therefore,

E
[∥∥ê2

t (θ)− e2
t (θ)

∥∥
Θ

]
≤ C

(
E
[(
|Xt|2 + ‖f̂ tθ‖2Θ + ‖f tθ‖2Θ

)]
× E

[∥∥f̂ tθ − f tθ‖2Θ])1/2

+C
(
E
[(
|Xt|4 + ‖f tθ‖2Θ

)]
× E

[∥∥M̂ t
θ −M t

θ‖2Θ
])1/2

≤ C
(
E
[∣∣∣∑
j≥t

αj(fθ,Θ)Xt−j
∣∣2])1/2

+ C
(
E
[∣∣∣∑
j≥t

αj(Mθ,Θ)Xt−j
∣∣2])1/2

≤ C
∑
j≥t

αj(fθ,Θ) + αj(Mθ,Θ),

using E
[
|Xt|4 + ‖f tθ‖2Θ + ‖f̂ tθ‖2Θ

]
<∞ and Cauchy-Schwarz Inequality. Hence,

E
[∥∥∥(ê2

t−k(θ)− e2
t−k(θ)

)(
ê2
t (θ)− e2

t (θ)
)∥∥∥1/2

Θ

]
≤ C

∑
j≥t−k

αj(fθ,Θ) + αj(Mθ,Θ).

Therefore, from [27], ‖I1
1‖Θ

a.s.−→
n→+∞

0 when

∞∑
t=1

t−1/4
∑
j≥t

αj(fθ,Θ) + αj(Mθ,Θ) <∞. (7.26)

b/ if X ⊂ ÃC(H̃θ), same computations imply ‖I1
1‖Θ

a.s.−→
n→+∞

0 when

∞∑
t=1

t−1/4
∑
j≥t

αj(H̃θ,Θ) <∞. (7.27)

Since E
[
‖e2
t (θ)‖Θ

]
≤ 2h−1E

[
X2
t + ‖f tθ‖2Θ

]
< ∞ and similarly E

[
‖ê2
t (θ)‖Θ

]
< ∞, we deduce from the

same inequalities as in the first case of I1
1 that ‖I2

1‖Θ
a.s.−→

n→+∞
0 and ‖I3

1‖Θ
a.s.−→

n→+∞
0 when

∞∑
t=1

t−1/4
(∑
j≥t

αj(fθ,Θ) + αj(Mθ,Θ) + αj(H̃θ,Θ)
)1/2

<∞, (7.28)
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which is also the condition for insuring that ‖I2‖Θ
a.s.−→

n→+∞
0 and ‖I3‖Θ

a.s.−→
n→+∞

0. This ends the proof

of (7.25).
Finally, since ρ̂k(θ) = γ̂k(θ)/γ̂0(θ) and ρk(θ) = γk(θ)/γ0(θ), with γ0(θ) > 0, we deduce under condition
(7.28) that √

n
∥∥ρ̂k(θ)− ρk(θ)

∥∥
Θ

a.s.−→
n→+∞

0 for any k ≥ 1. (7.29)

This also implies √
n
∣∣ρ̂k(m∗)− ρk(m∗)

∣∣ a.s.−→
n→+∞

0 for any k ≥ 1. (7.30)

(ii) The proof of this result has already been done in [31] but in a Gaussian framework. We recall
here the main lines while avoiding the Gaussian assumption. The first step is to use a Taylor expansion
of the function γ. Hence, we have for each k = 1, . . . ,K,

√
nγk(m∗) =

√
nγk(θ̂(m∗)) =

√
nγk(θ∗) + ∂θγk(θ

(k)
)
√
n
(
(θ̂(m∗))i − θ∗i

)
i∈m∗ , (7.31)

where ∂θγk = t
(
∂γk/∂θi

)
i∈m∗ , and θ

(k)
is in the ball of centre θ∗ and radius ‖(θ̂(m∗)− θ∗)i∈m∗‖. We

also have

∂θγk(θ) = − 2

n

( n∑
t=k+1

e2
t (θ)

(
e2
t−k(θ)− 1

)∂θM t
θ

M t
θ

+ et(θ)
(
e2
t−k(θ)− 1

) ∂θf tθ
M t
θ

+ et−k(θ)
(
e2
t (θ)− 1

)∂θf t−kθ

M t−k
θ

+ e2
t−k(θ)

(
e2
t (θ)− 1

)∂θM t−k
θ

M t−k
θ

)
. (7.32)

We have E
[
et−k(θ∗)

(
e2
t (θ
∗)− 1

)∂ft−k
θ∗

Mt−k
θ∗
| σ
(
(ξs)s≤t−k

)]
= et−k(θ∗)

∂ft−k
θ∗

Mt−k
θ∗

E
[
e2
t (θ
∗)− 1

]
= 0 since we have

assumed E[ξ2
0 ] = 1. Moreover, E

[
et(θ

∗)
∂ftθ∗
Mt
θ∗

]
= E

[
ξt

∂ftθ∗
Mt
θ∗

]
= 0 and this implies E

[
et(θ

∗)
(
e2
t−k(θ∗) −

1
) ∂ftθ∗
Mt
θ∗

]
= 0. As a consequence, the expectation of the three last terms of (7.32) vanishes for θ = θ∗.

By using the Ergodic Theorem, we finally obtained:

∂θγk(θ∗)
a.s.−→

n→+∞
− 2E

[
e2
k(θ∗)

(
e2

0(θ∗)− 1
)∂θMk

θ∗

Mk
θ∗

]
= −2E

[(
ξ2
0 − 1

)
∂θ log

(
Mk
θ∗
)]
.

Moreover, since ∂2
θ2fθ and ∂2

θ2Mθ exist, and since θ̂(m∗) a.s.−→
n→+∞

θ∗, we deduce that the same almost

sure convergence occurs for ∂θγk(θ
(k)

). Then, we finally obtain(
∂θγk(θ

(k)
)
)

1≤k≤K
a.s.−→

n→+∞
JK(m∗) = −2

(
E
[(
ξ2
0 − 1

) ∂

∂θj
log
(
M i
θ∗
)])

1≤i≤K, j∈m∗
. (7.33)

We also established a central limit theorem for θ̂(m∗) in (3.3), and this implies

(
∂θγk(θ

(k)
)
)

1≤k≤K
√
n
(
(θ̂(m∗))i − θ∗i

)
i∈m∗

L−→
n→+∞

NK
(

0 , JK(m∗)F (θ∗,m∗)−1G(θ∗,m∗)F (θ∗,m∗)−1J ′K(m∗)
)
. (7.34)

On the other hand, when θ = θ∗, e2
t (θ
∗) = ξ2

t for any t ∈ Z and since E[ξ2
0 ] = 1, we deduce that(

e2
t (θ
∗) − 1

)
t
is a sequence of centred iid random variables with variance µ4 − 1 with µ4 = E[ξ4

0 ]. In
such as case, the asymptotic behavior of the covariograms is well known and we deduce:

√
n
(
γk(θ∗)

)
1≤k≤K

L−→
n→+∞

NK
(
0 , (µ4 − 1)2 IK

)
, (7.35)

with Ik the (K ×K) identity matrix.

We would like to use (7.31) for obtaining the asymptotic behavior of γ(m∗). In (7.34) and (7.35), we
obtained the asymptotic normality of each of the two terms composing γ(m∗). Now we need to study
the joint asymptotic behavior of

√
nγ(θ∗) and

√
n
(
(θ̂(m∗))i − θ∗i

)
i∈m∗ .
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Using the proof of the asymptotic normality of the QMLE (see for instance [7]), a Taylor expansion of
log-likelihood for large n leads to(

(θ̂(m∗))i − θ∗i
)
i∈m∗ ≈ −

(
F (θ∗,m∗)

)−1 1

n

∂

∂θ
Ln(θ∗).

Therefore, the asymptotic cross expectation between
(
∂θγk(θ

(k)
)
)
k

√
n
(
(θ̂(m∗))i−θ∗i

)
i∈m∗ and

√
nγ(θ∗)

is equal to:

− JK(m∗)F (θ∗,m∗)−1E
[ ∂
∂θ
Ln(θ∗) γ(θ∗)′

]
. (7.36)

From (2.5), a direct differentiation of Ln provides

∂

∂θ
Ln(θ∗) =

n∑
t=1

(
e2
t (θ
∗)− 1

) ∂
∂θ

log
(
M t
θ∗
)

+

n∑
t=1

et(θ
∗)

∂

∂θ
f tθ∗

so that,

E
[ ∂
∂θ
Ln(θ∗) γk(θ∗)

]
=

1

n
E
[ n∑
i=1

(
e2
i (θ
∗)− 1

) ∂
∂θ

log
(
M i
θ∗
) n∑
j=k+1

(
e2
j (θ
∗)− 1

) (
e2
j−k(θ∗)− 1

)]
+

1

n
E
[ n∑
i=1

ei(θ
∗)

∂

∂θ
f iθ∗

n∑
j=k+1

(
e2
j (θ
∗)− 1

) (
e2
j−k(θ∗)− 1

)]
=

1

n

n∑
i=1

n∑
j=k+1

E
[(
ξ2
i − 1

) (
ξ2
j − 1

) (
ξ2
j−k − 1

) ∂
∂θ

log
(
M i
θ∗
)]

+
1

n

n∑
i=1

n∑
j=k+1

E
[
ξi
(
ξ2
j − 1

) (
ξ2
j−k − 1

) ∂
∂θ
f iθ∗
]
.

Using conditional expectations, we have E
[(
ξ2
i − 1

) (
ξ2
j − 1

) (
ξ2
j−k − 1

)
∂
∂θ log

(
M i
θ∗

)]
= 0 for i 6= j

since k ≥ 1. Moreover, for i = j, we obtain:

E
[(
ξ2
i − 1

) (
ξ2
j − 1

) (
ξ2
j−k − 1

) ∂
∂θ

log
(
M i
θ∗
)]

= (µ4 − 1)E
[(
ξ2
i−k − 1

) ∂
∂θ

log
(
M i
θ∗
)]
,

which is the row k of matrix − (µ4−1)
2 JK(m∗). Similarly, and using the assumption E

[
ξ3
0 ] = 0, we

obtain E
[
ξi
(
ξ2
j − 1

) (
ξ2
j−k − 1

)
∂
∂θf

i
θ∗

]
= 0 for any i, j and k. As a consequence,

Cov
(√
nγ(θ∗) ,

(
∂θγk(θ

(k)
)
)
k

√
n
(
(θ̂(m∗))i − θ∗i

)
i∈m∗

)
−→
n→∞

1

2
(µ4 − 1) JK(m∗)F (θ∗,m∗)−1 J ′K(m∗).

Finally, we deduce the asymptotic covariance matrix of
√
nγ(m∗), which is

(µ4 − 1)2 IK + JK(m∗)F (θ∗,m∗)−1G(θ∗,m∗)F (θ∗,m∗)−1J ′K(m∗)

+ (µ4 − 1) JK(m∗)F (θ∗,m∗)−1 J ′K(m∗).

Moreover the vector γ(m∗) is normal distributed from Lemma 3.3 of [32].
Thus, using Slutsky Lemma and with γ0(m∗)

a.s.−→
n→+∞

µ4 − 1, and with ρk(m∗) = γk(m∗)/γ0(m∗), the

limit theorem (5.1) holds with

V (θ∗,m∗) := IK + (µ4 − 1)−2 JK(m∗)F (θ∗,m∗)−1G(θ∗,m∗)F (θ∗,m∗)−1J ′K(m∗)

+ (µ4 − 1)−1 JK(m∗)F (θ∗,m∗)−1 J ′K(m∗). (7.37)

The proof is achieved after using the limit theorem (7.30).
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(2) (5.2) follows directly from (5.1).

(3) We follow a same reasoning like in the proof of Theorem 3.2. For x = (xk)1≤k≤K ∈ RK , denote
by Fn(x) = P

( ⋂
1≤k≤K

√
n
(
ρ̂(m̂)

)
k
≤ xk

)
the distribution function of

√
nρ̂(m̂).

Applying the Total Probability Rule and by virtue of Theorem 3.1, we obtain:

Fn(x) = P
( ⋂

1≤k≤K

√
n
(
ρ̂(m∗)

)
k
≤ xk

)
.

Therefore, the vectors
√
nρ̂(m̂) and

√
nρ̂(m∗) have exactly the same distribution. �
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