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Abstract. Blending problems aim to select a subset of inputs from a set of existing ones and to define the 

input quantities to be mixed in order to produce a particular output using a predefined set of outputs. The 

structure of these existing inputs, defined by the % of some components in their total weight, is known. The 

structure of an output varies according to the chosen mixture which is constrained by % ranges that must 

be respected for each component. Reverse blending is an extension of the blending problem in which the 

set of inputs does not preexist but must be defined to be able to produce any output. In this problem, never 

addressed to our knowledge, the number of inputs to be produced must be as small as possible and the 

composition of each input is to be defined. This problem arises in the context of a growing diversity of 

fertilizers to be managed both in production and in distribution logistics. A real-life application example of 

this new approach is provided. 

Keywords: fertilizer, diversity, reverse blending, input creation. 

1. Introduction 

Mass customization, a major trend in modern economy, involves assembling components in discrete 

production, while, in continuous production, it consists in a sequence of batches of different products. This 

both reduces achievable diversity and multiplies transportation issues. This situation is addressed by the 

fertilizer industry which, to enable sustainable agriculture, must provide highly customized fertilizers. 

Sustainable agriculture aims to both increase agricultural yield and preserve soil fertility. To do so, the use 

of fertilizers is essential. In fact, of all the short-term factors that can rapidly increase agricultural 

production, chemical fertilizers are the most efficient in obtaining the highest yields and delivering the best 

return on investment (Pratt, 1965). However, these fertilizers must be used selectively using specifically 

adapted formulas whose nutrients and proportions differ according to the pedological characteristics and 

the crops involved. For a fertilizer manufacturer, this constraint implies developing complex fertilizer 

compounds, manufactured through raw material chemical reactions upstream of granulation. This involves 

managing a wide variety of distribution flows. An alternative is to produce fertilizers by blending simple 

or compound fertilizers that are already granulated or compacted. This alternative solution simplifies 

logistical problems somewhat but requires substantial investments, without actually meeting final demand. 

Our objective therefore, is to find a good compromise between producing a large variety of customized 

fertilizers and reducing logistics costs. 

To this end, rather than blending ready-made fertilizers of known nutritional composition, this paper 

proposes a new approach, which involves delayed differentiation (performed near end-users, through small 

blending units). It is based on the chemical identification of a limited number of new inputs to be developed. 

Blends of these new products enable production of the widest variety of required custom-made fertilizers 

(outputs). This new approach, which we call Reverse Blending (RB), aims, through a parameterized 

quadratic program, to define the optimal specifications of a number N, which we seek to keep down to a 

minimum, of primary inputs whose blending enables production of the required diversity of outputs 

(fertilizer formulas). This problem, therefore aims to define input optimal composition, respect fertilizer 

components constraints and cater to any type of demand. 

Thanks to this drastically new approach, we will be able to rely on small capacity blending units located 

close to actual end-use areas and fed by substantial flows. This approach is crucial to delayed differentiation 

since we aim to perform the blending as close as possible to local markets. This will lead to flow 
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consolidation to both streamline production and transportation management. Note that delayed 

differentiation does not take place at original production sites but, which is unusual, in the vicinity of 

customers. The management of diversity involving this type of remote differentiation is already performed 

in the automotive industry (e.g. Smart) or in the production of paints in department stores: these paints 

(over 2000 colors), listed in a color catalog, are produced by blending a very limited number of primary 

paints. This is exactly the approach that we seek to apply through remote blending, except that in the case 

of the paint industry, the ingredients enabling this diversity are already known, while our aim is to create 

them. 

Section 2 is devoted to a brief literature review: we first discuss the blending problem to highlight the 

unique value of RB before explaining the need for fertilizer customization to achieve reasoned and 

sustainable agriculture. We then show that nutrient needs are highly diversified. In section 3, we describe 

our RB model and go on to illustrating it with a simplified real-life example in section 4. 

2. Literature review 

2.1 Blending Vs Reverse Blending  

After years of using fertilizers made from substances extracted or isolated from natural sources, farmers 

had started using chemical fertilizers since 1849 when the first patent for the production of chemical 

fertilizers was issued (RC. Sheridan, 1979). Fertilizers are manufactured by chemical reactions from various 

raw materials that depend on the nutritive composition of the final product. Admittedly, chemical 

production enables obtaining the nutritional structures that a granule must present, but the variety generated 

by this mode of production encourages producers to opt for the alternative technique of ‘fertilizer blending’. 

Fertilizer blending problems have drawn a lot of attention, as demonstrated in the papers by Babcock, Rister 

et al. (1984), Minguez, Romero and Domingo (1988), Ashayeri and Eijs (1994), Traoré, Koulibaly and 

Dakuo (2007), Lima, Severino et al. (2011), Aldeseit (2014), Srichaipanya, Artrit, and Sangrung (2014), 

Cole and Bradshaw (2015), Loh, Cheong et al. (2015), and their respective references. These problems 

consist in determining the optimal quantities to be taken from a subset of inputs in order to produce one or 

more fertilizer formulas. The inputs used can be either nutritious raw materials (Barrie M. Cole & Steven 

Bradshawa, Artrit, and Sangrung, 2014) or fertilizers, obtained by chemical reaction or by blending, for 

which we know the percentage of each nutrient (Minguez, Romero and Domingo, 1988). In both cases, 

these inputs, either supplied or produced, are already available. 

On the other hand, in the RB approach, consisting in determining the composition of a minimum of inputs 

enabling the production of a wide variety of outputs, inputs are not pre-existing but are to be created and 

their compositions have to be specified. After pursuing several research avenues, we wish to emphasize the 

originality of the RB approach because, as far as we know, all the inputs of blending problems addressed 

in the literature already exist. To reach this conclusion, we researched multiple scientific databases, 

included in the bib.cnrs.fr metabase, using several combinations of keywords (blending / inputs, blending 

/ inputs properties, blending / inputs characteristics / modelling, blending / inputs specifications, blending 

/ raw materials, blending / raw materials properties / modelling, mixture problems / identifying inputs, 

mixture problems / non-existing inputs ...). The papers resulting from this research all deal with blending 

that involves the mixing of inputs, the exact composition of which we admittedly may ignore, but which 

we know that they already exist. In this regard, it is important not to confuse the case of an unknown input 

with that of an existing one. The first case may correspond to inputs that exist, but whose properties change 

over time, are unmeasured, unknown or poorly known. The component percentages of this type of inputs 

are first retrieved or estimated before integrating them, as parameters, in the optimization model, which is 

not the case in RB where they become decision variables. 

2.2 Customized fertilizers: a prerequisite of reasoned agriculture 

In order to feed a global population of 9.1 billion people by 2050, food production will have to increase by 

about 70% by 2050 from its 2005 level (FAO, 2009). Rising to this challenge demands rational fertilization 

to provide plants with needed nutrients in the most appropriate way. However, as a result of low fertilizer 

utilization and high nutrient extraction rates, soils are often unable to provide these nutrients without 

recourse to supplementary ingredients (Fixen et al., 2015). These ingredients must contain the appropriate 

435



7th International Conference on Information Systems, Logistics and Supply Chain 

ILS Conference 2018, July 8-11, Lyon, France 

proportions of a number of nutrients, the most important of which are Nitrogen (N), Phosphorus (P) and 

Potassium (K). 

- Nitrogen plays a key role in plant growth and crop yield (Hirel et al., 2007; Krapp et al., 2014; Ruffel et 

al., 2014; Vidal et al., 2014; Wang et al., 2012). Its availability and internal concentration affect the 

distribution of biomass between roots and shoots (Bown et al., 2010) as well as metabolism, physiology 

and plant development (O'Brien et al., 2016). 

- Phosphorus is an essential nutrient for root development and nutrient availability (Jin et al., 2005). It is 

essential for cell division, reproduction and metabolism of plants and allows to store energy and regulate 

its use (Epstein and Bloom, 2004). 

- Potassium plays a major role in regulating the opening and closing of stomata which is necessary for 

photosynthesis, the transport of water and nutrients and the cooling of plants (Kalavati and Modi, 2012). 

Recommending fertilizer blends of these three elements requires a good knowledge of the different aspects 

of fertilization including objective yield, crop nutrient need and nutrient supply by the soil (Cottenie, 1978). 

To quantify this supply, farmers must perform soil tests to manage nutrients and avoid long-term nutritional 

and health problems (Watson et al., 2007). These tests are required at least every three years (Warncke et 

al., 2000) as soil properties vary over time in response to changes in land management practices and 

inherent soil characteristics (Jenny, 1941). As a matter of fact, soils undergo multiple processes: biological, 

physical, chemical and human. Thus, not a single hectare of cultivated soil is completely homogenous from 

a pedological standpoint. This results in a very large variety of fertilizer needs, hence the need to produce 

customized fertilizer formulas. 

Such customization can encourage farmer loyalty and therefore increase market share, provided it is 

affordable, which is practically impossible where multiple fertilizers are to be produced and transported. 

The RB approach addresses this problem of effective and efficient delayed differentiation in a radically 

different way. It aims to produce a very large number of fertilizers (outputs) by combining a very limited 

number of inputs that are not ready-made ones but inputs the optimal composition of which we are 

attempting to define. 

3. Modelling 

3.1 Classical blending  

In the traditional formulation of a blending problem, a set of N possible inputs ( 1..N)i  is available. Any 

input i is characterized by a set of C components ( 1..C)c  (N, P, K…). The relative weight of component 

c in input i is αci  and their values are known. They satisfy relation (1) that parameters must comply with. 

α 1,cic
i    (1) 

Blending aims at defining the optimal mixture of selected inputs taken in quantities ijx  (order variables) 

to obtain quantity D j , requested quantity of output j ( =1..J)j , which complies with constraint (2).  

D ,j iji
x j   (2) 

The relative weight of component c in output j obtained by blending β α / Dcj ci ij ji
x   may have to 

belong to a range of values flowing from constraints (3). 
Min Maxβ α /D β , ,cj ci ij j cji

x i j       (3) 

The inputs requirements ijx  must respect availability Ai  of each input (if A Di jj
 implies that input i 

can match any output request). 

A ,ij ij
x i     (4) 

Input i has an acquisition cost i  and the problem of traditional blending is generally to identify the blends 

that minimize acquisition cost (4). 

,i j i iji j
Max x 

     (5) 
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3.2 Reverse blending 

The RB problem is an extension of traditional blending where the inputs are not available. We do not know 

their composition but we know that they are characterized by the components c (N, P, K ...) contained in 

the outputs. In this approach, we are actually supposed to start from output demand to define the 

characteristics αci  of N inputs (hence the name of reverse blending given to it). The characteristics αci , 

therefore, become decision variables and relation (1), which was an integrity constraint for the set of 

parameters used in the blending problem, and become a constraint to be respected by the set of new 

variables that, in RB, replace this parameter set. 

The constraint related to the respect of required quantity for each output remains the same (2). On the other 

hand, the formulation of the constraint related to respect of compositional structures remains the same (3) 

but the fact that ijx and αci are decision variables makes the problem quadratic. 

As we seek to keep the number N of inputs down to a minimum, RB becomes a parametric quadratic 

problem where one looks for the solution of the lowest possible value of N, starting with 3 and adding to it 

until a solution is found.  

Among the possible solutions with the lowest N, the best ones are those where the weight of a very limited 

number of inputs represent the highest percentage of total inputs needed for output production. To this end, 

criterion (4) is replaced by (7) which maximizes use of input i=1. 

1 jj
Max x 

     (6) 

3.3 Efficiency limits of the fertilizers blending solution 

As mentioned before, RB aims to minimize the number of inputs whose optimal composition is to be found. 

To demonstrate the usefulness of this new approach versus the current one of trying to obtaining a fertilizer 

by blending existing fertilizers, we decided to develop a blending model, whose results are shown in (§4.2), 

that, rather than being guided by cost-minimization, aims to determine the minimum number of existing 

inputs to be mixed to produce the desired variety of outputs. This model uses the above formulation and 

complements it with two binary variables: 

jw  which is equal to 1 if output j is produced, 

iv  which is equal to 1 if input i is used. 

Relations (2), (3) and (4) are therefore respectively replaced by relations (2’), (3’) and (4’): 

D . ,ij j ji
x w j    (2’) 

Min Maxβ . α /D β . , ,cj j ci ij j cj ji
w x w i j      (3’) 

A ,ij i ij
x i      (4’) 

Knowing that S is equal to the number of inputs used (6) and that the objective function of this model is to 

maximize the number of produced outputs (7), we seek to find the minimum number that will take S if we 

want to produce the full variety of outputs. To do this, we start with S = J and we decrement S until finding 

the minimum necessary number of inputs so that all the J outputs are produced. 

S ii
v   (6) 

( )jj
Max w   (7) 

These problems are linear. Since the problem variables are continuous, there is an infinite number of 

possible solutions or none, if the problem is insoluble. 
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4. Case study 

We set forth below a simplified case study based on actual data. We begin by defining the demand to be 

satisfied (§4.1) before presenting the results obtained after optimizing our RB model (§4.2). 

4.1 Characteristics of the custom-made fertilizer demand 

To help Moroccan farmers identify their exact needs in N, P and K, OCP, one of the world phosphate 

market leaders, in collaboration with the Moroccan Ministry of Agriculture and Maritime Fisheries, has 

developed a solution "Fertimap". This tool was designed by leading Moroccan agronomy experts. This 

software recommends the appropriate quantities, in kg / hectare, to be applied to a pre-defined parcel of 

land, according to the relevant soil fertility indicators, the desired crop and the yield objective. We used 

this tool to deduce the calculation formulas of nutrient needs so that we could use them for the determination 

of custom fertilizers. Rather than aiming to serve actual farmers and achieve specific yields, our purpose is 

to use these formulas to identify nutrient needs for optimal yields of crops whose ecological requirements 

are compatible with the pre-selected soil area. These formulas were deduced from linear regression using 

reverse engineering of the Fertimap approach. This regression was based on a sample of about 30 records 

taken from the Fertimap platform for each of the three nutrients. This allowed, for a particular crop, to 

extrapolate the functional relationships linking the explained variables (N, P and K needs) to the 

explanatory variables (soil fertility indicators and target yield). The optimal doses of these nutrients are 

determined independently since in addition to the target yield the need for N, P and K depends on organic 

material, available phosphorus (P2O5) and exchangeable potassium (K2O). Figure 1 shows the N and K 

requirement curves for three different yields relevant for wheat.  

 

Figure 1: N and K requirement behavior versus soil indicators for three different yields 

We document the customization needs calculated by these linear formulas for five different crops (olive, 

almond, lentil, wheat and orange citrus). The selected geographical areas are those whose soil properties 

are compatible with the ecological requirements for these crops. Table 1 represents the J 40 fertilizer 

formulas inferred from Fertimap quantitative recommendations. The customized fertilizer formulas being 

the outputs j of the models developed in (§3). 
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Table 1: 40 custom-made fertilizer formulas and demand types 

 

Fertilizers are sold in the form of fertilizer formulas for which the percentage of N, P and K is known. 

However, besides these nutrients, a fertilizer has an additional component that generally has no impact on 

yield, called the filler. The filler is used for chemical (stabilization of granule composition) and practical 

reasons (excess fertilizer concentration would burn the soil). In our example, when converting 

recommended quantities (Kg/ha) into percentages, we opted for 33% filler in fertilizer composition. 

The optimal formulas are characterized by a tolerance resulting in ranges of values for these percentages. 

We do not know this tolerance in advance, but in our model it is translated by a parameterized variable and 

we set it at ± 1% in the following calculations. Table 2 shows the target demand structure. 

Globally, Moroccan soils are rich in potassium which is why recommended K levels are almost always of 

zero (see table 1). In fact, there is no level at which potassium becomes toxic to plants. Nevertheless, when 

plants get too much potassium, the absorption of some other nutrients (Nitrogen, Magnesium and 

Manganese) is inhibited. Therefore, even though the tolerance was fixed at 1%, if the percentage of K in 

the fertilizer formula is zero, it is best to keep it that way, as a first step. 

 
Table 2: Constraints on the nutrient composition of fertilizer formulas 
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Let's now see how to satisfy these J = 40 outputs with N = 3 inputs (the lowest value found in the parametric 

quadratic program) whose optimal composition is to be determined. 

4.2 Case Study Results  

In this example, we have 129 variables and 280 constraints of which 240 are quadratic non convex. The 

other 40 constraints are those related to the requested quantities of fertilizers. These quantities depend on 

the surface of the cultivated areas as well as on the rate of fertilizer use. (The quantities shown in table 1 

were found by assuming that the rate of fertilizer use is 100%). The solution of this problem is presented 

in Table 3. 

Since the search for the optimal solution is guided by the maximization of the first input concentration in 

the final blends, the solver has managed to consume about 93726.30 tons from Input 1 (65.78 % of total 

demand). The solver (Xpress-Non Linear solver of Xpress-IVE of Fico) yields no solution by setting the 

number of inputs to two, and gives an infinity of solutions beyond three inputs. In this way, RB was able 

to find the minimum number of inputs (N=3) that allowed us to produce, under the same economic 

conditions, forty fertilizer formulas. 

Although these formulas were established for optimal agriculture, the requested quantities are not fixed as 

the cultivated areas and the fertilizer use rate may change from one season to the next. This wouldn’t be a 

problem though since these quantities will surely impact the proportion of inputs needed to meet demand 

but not their number and composition. To demonstrate this, we will first solve the model by taking identical 

demands ( D 100,j j  ) (see table 4). Subsequently, we will start from the optimal inputs proposed by this 

last model, but this time we take different demand types (those shown in table 1), to see how this change 

impacts input concentrations in total demand (see table 5). 
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Table 3: Optimal solution for potential demand types 

 

Table 4: Optimal solution for identical demand types 

By setting demand at 100 tons by default, total demand for the 40 fertilizers is 4000 tons of which 58.9% 

is from the first input, 10% from the second and 31.10% from the third one. 

 

Table 5: Input consumption when combining optimal composition obtained for identical demand types and different 

demand types of table 1 

We note that starting from the same inputs and having changed demand structure, the proportion of the 

inputs in total production (142492.08 tons) is no longer the same (64.36% of input 1, 10.72% of input 2 

and 24.92% of input 3). The concentration flows, therefore, depend on demand structure: changing it may 

imply a diversity of flows. An analysis of the results of the RB model shown in Table 2, revealed that the 
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share of the first input in total demand increased slightly (65.78% of input 1, 8.48% of input 2 and 24.92% 

of input 3). This means that when defining new inputs based on a new demand structure, the structure of 

input flows may vary slightly. 

Basically, RB is a new, valuable, approach for fertilizer producers: instead of responding to a wide variety 

of fertilizer requirements by blending a multitude of them, they can now do so by blending a very limited 

number of components that may not be ready-to-use fertilizers. To show the benefits of this new approach 

compared with the existing way of producing fertilizers from a blend of fertilizers using the traditional 

blending model (§3.1), we have tested this approach to find the minimum number S of fertilizers (inputs) 

that will be able to produce the 40 fertilizer formulas (outputs). With 32 inputs (from the 40 potential ones) 

one is able to produce the 8 other outputs (see table 6). Under S=32 inputs, some outputs are impossible to 

produce. 

 
Table 6: The selected inputs required for the production of the other 8 outputs 

5. Conclusion 

Reverse blending is a very efficient way to deliver customized fertilizers that exactly satisfy the needs of 

sustainable agriculture while reducing production and transportation issues. The data used, deduced from 

Fertimap by linear regression may not be the right ones but they do not put the approach into question. The 

theoretical feasibility of this innovative approach has now definitely been demonstrated. For it to be 

operational, several complementary studies are required: first, the rules for establishing fertilizer needs, 

which have been determined empirically must be validated by agronomists. In addition, the census of these 

needs for an entire country, that depends on the “soil / crop” couple is indispensable and involves 

cooperating with agronomists. Similarly, chemists shall be required to assess the constraints related to 

chemical feasibility of the inputs. Finally, we will have to work on large instances and study the impact of 

this transformation of production processes on OCP’s supply chain and eventually design new distribution 

schemes. These will be based on several scenarios describing the impact of huge transportation flow 

consolidation as well as the nature, location and sizing of post-manufacturing blending facilities to be 

implemented in Africa, one of OCP’s largest markets. 
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