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Intuitive control of a prosthetic elbow

Manelle Merad, Étienne de Montalivet, Agnès Roby-Brami, and Nathanaël Jarrassé

Abstract— Many transhumeral amputees deplore the lack of
functionality of their prosthesis, mostly caused by a counter-
intuitive control strategy. This work is the first implementation
of an automatic prosthesis control approach based on natu-
ral coordinations between upper limb joints and IMU-based
humeral orientation measurement. One healthy individual was
able to use the prosthetic elbow, fitted with a prosthetic forearm
and attached to the subject’s upper arm, to point at targets with
an encouragingly small error.

I. INTRODUCTION

Transhumeral amputations impair severely a person’s
ability to perform activities of daily living (ADLs). The
missing limb replacement by a prosthetic device is then
often required. Among commercialized solutions, there are
passive prosthetic elbows (12K44 ErgoArm R©Hybrid Plus,
Ottobock c©) that can be locked manually into a desired
position, as well as active prosthetic elbows (DynamicArm
12K100, Ottobock c©, and UtahArm3+, Motion Control,
Inc.), that are combined with myoelectric wrists and hands
(mainly VarySpeed hand, Ottobock c©). The most common
strategy to control an upper limb prosthetic limb is myo-
electric control which uses the residual muscles contractions
to initiate the prosthesis motion. Transhumeral amputees
control the hand, wrist, and sometimes even elbow motion
with only two control signals (usually biceps and triceps
when available). Myoelectric control requires the user to
decompose prosthetic movements, and to focus intensively
on the prosthesis control and motion. Many research groups
are seeking solutions to improve myoelectric control [1], but
alternatives to myoelectric signals as control inputs [2] are
also investigated.

Contrary to prosthetic movements, natural human upper
limb movements are intuitive and object-centered: instead
of focusing on the movement of each joint along the upper
limb, one concentrates on the task to achieve. This ability
is explained by the existence of a coordination between
the joint kinematics [3]–[5]. This concept when applied to
prosthetics yields the automatized motion of replaced joints,
like a prosthetic elbow, based on an inter-joint coordination
model relating residual and missing joints kinematics. Sev-
eral studies have shown that distal joint motion could be
predicted from proximal joints kinematics using a model of
coordination between upper limb joints [6], [7]; however,
residual limb motion were measured with motion capture
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systems that were not compatible with outside-the-lab envi-
ronments, and thus, the control laws were not implemented
on real prostheses.

An automatic prosthetic control method, based on natural
coordinations between shoulder and elbow kinematics, was
implemented, and this paper presents the obtained results.
An healthy individual was able to point at targets with an
automatically-driven prosthetic forearm (1 degree of freedom
(DoF)). Inertial measurement unit (IMU)-based arm orienta-
tion were used as input signals of the prosthesis controller.

II. MATERIALS AND METHODS

One right-handed subject (male, 24 years old, 182 cm)
participated in the study. Two consecutive parts, the training
data set acquisition and the control test, constituted the
experimental session. In the first part, the subject performed
pointing movements while the arm and forearm kinematics
were recorded. The inter-joint coordination model was built
from the training data set, and drove the prosthesis during
the second part of the experiment.

Experimental setup: The prosthesis was designed based
on the functional characteristics of commercialized active
elbow prostheses. The prototype, shown in Fig. 1A, was
controlled by a Raspberry Pi, which controlled the motor
driver and read the data from an x-IMU (x-io Technologies,
Ltd.) (Fig. 1A). The subject used a rod attached to the back
of a wrist splint or to the prosthesis in order to reach the
targets. The targets were represented by a bright push button
mounted on a 7-DoF robotic arm (WAMTM arm, Barrett
Technology, Inc.). The prosthesis controller processed only
IMU signals, however, for analysis purpose, upper limb
motion was recorded with a camera-based motion capture
system, Codamotion (Charnwood Dynamics, Ltd.). Seven
markers were placed on the subject’s arm, and the eighth
measured the prosthesis rod tip position (Fig. 1A). The
experimental session was videotaped.

Experimental protocol: During the first part of the ex-
periment, the subject pointed at 19 targets in front of
him (workspace dimension: 20x60x60 cm3), with the rod
attached to the wrist splint. Upper limb kinematics are
influenced by external weights applied on the arm segments,
thus the prosthesis was attached to the subject, in an inactive
mode (locked into an extended position), even during the
training session. The starting position was defined with
the subject’s forearm on the arm rest (Fig. 1A). For each
target, the subject stayed for 2s at the starting position, went
towards the target, pushed the button with the rod tip, stayed
immobile for 2s, and went back to the starting position, while
the WAM robotic arm’s end effector was moving to the next



Fig. 1. The elbow prosthesis, to which an IMU is connected, was mounted on an orthosis attached to the participant’s arm and forearm. Equipped with
Codamotion markers, the subject is pointing at targets with a rod attached to a wrist splint during the training data acquisition or to the prosthetic elbow
during the control test. Targets were presented by a WAM robotic arm. B: Anatomical angles γ,α,β describe the upper limb posture.

target location. One trial consisted in pointing at 19 targets,
and was repeated three times. Offline, the shoulder angles,
γ the humeral direction and α the humeral inclination, were
derived from the x-IMU data, while the elbow angle, β, was
derived from Codamotion data (Fig. 1B). A Radial Basis
Function Network (RBFN)-based regression was performed
to model the inter-joint relationship between (γ̇,α̇) and β̇.
Kinematic data from 10 targets were included in the training
data set; including more targets would result in over-training
effects. During the second part of the experiment, the IMU
was connected to the prosthesis controller that ran the
embedded RBFN-based regression algorithm with the model
parameters obtained during the training phase. The subject’s
arm was locked into a constant position with the elbow
orthosis. The subject pointed at the same targets as previously
using a rod that extended the prosthetic forearm (Fig. 1A).

III. RESULTS

The task performance was assessed with the precision er-
ror and the movement duration. The precision error between
the position reached by the prosthesis end tool and the target
was 1.5cm ± 1.2cm averaged over all targets. The time
needed to reach the target naturally, i.e. with the rod attached
to the hand, is 1.56s ± 0.20s, while the time needed to reach
the target with the rod attached to the prosthesis is 2.33s ±
0.42s. The results are depicted in Fig. 2.

Fig. 2. The pointing movements are assessed with the precision error
(distance between rod tip and target) and the movement duration (time
needed to reach the target), which is compared to the natural movement
duration from the first training trial. Values are averaged over all targets;
mean and standard deviation values are displayed.

IV. DISCUSSION

One healthy subject was able to reach targets using a
prosthetic elbow, driven by his own inter-joint coordination
model. To the authors’ knowledge, this study is the first
reported implementation of such control strategy using IMU-
based control input signals. Although the algorithm was
trained on 10 targets and tested on 19, the low precision error
demonstrates the control strategy’s spatial generalization
property. The fact that the subject slowed down his move-
ments when using the prosthesis could suggest the emergence
of compensatory strategies. They will be investigated in
further analyses.

V. CONCLUSION

Based on natural inter-joint coordinations, the control
strategy developed in this paper is intuitive. The subject
did not learn how to control the prosthesis prior to the
experimental session: the reported results correspond to his
first and only trial. Thus, better results could be expected with
short training. Learning and control training effects will be
further investigated. We will also work on the development
of a inter-joint coordination generic model for future tests
with amputated patients.
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