%0 Conference Paper %F Poster %T Raman spectroscopy of double-walled carbon nanotubes %+ Laboratoire Charles Coulomb (L2C) %+ Southern Federal University [Rostov-on-Don] (SFEDU) %+ Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) %+ Vietnam Academy of Science and Technology (VAST) %+ Institute of Materials Science, Vietnam Academy of Science and Technology %+ University of Zaragoza - Universidad de Zaragoza [Zaragoza] %+ Sofia University "St. Kliment Ohridski" %A Paillet, Matthieu %A Michel, Thierry %A Levshov, Dmitry I. %A Tran, Huy-Nam %A Parret, Romain %A Cao, Thi Thanh %A Nguyen, van Chuc %A Arenal, Raul %A Popov, Valentin N. %A Zahab, Ahmed Azmi %A Sauvajol, Jean-Louis %< sans comité de lecture %Z L2C:19-051 %B "Modeling Nanostructures" in honor of Philippe Lambin %C Namur, Belgium %8 2019-01-31 %D 2019 %Z Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] %Z Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Poster communications %X Double-walled carbon nanotubes (DWNTs), consisting of two coaxial and weakly van der Waals coupled single-walled carbon nanotubes (SWNTs), are one of the most ideal and fundamental systems to study the effects of inter-tube coupling on the physical properties in one-dimensional structures.On this poster, we report on the investigations of individual, spatially isolated and suspended double-walled carbon nanotubes (DWNTs) by combination of high-resolution electron microscopy, electron diffraction, Rayleigh spectroscopy and Raman spectroscopy (Figure 1) [1,2]. We first present an overview of the effect of the diameters, inter-tube distance and nature (metallic or semiconducting) on the Raman signature (Radial Breathing Like [1,3,4] and Tangential Modes [4-6]) of DWNTs. We then examine the features of tangential modes and find a clear frequency shift of the inner-layer G modes as a function of the inter-tube distance with respect to the corresponding G modes in equivalent single-walled carbon nanotubes (SWNT).[4-6] These results are understood by considering the effects of the relaxation of the layers and the interaction between the relaxed structures.[7] Finally, we study the experimental excitation dependence of the G modes intensity of the constituent inner and outer SWNTs. In particular, we discuss the effects of the quantum interference between different electronic transitions on the observed behaviors.[8]References[1] D.I. Levshov et al., Carbon, 114, 141 (2017). [2] D.I. Levshov et al., Phys Rev. B 96 (2017), 195410.[3] D.I. Levshov et al., Nano Lett. 11(11) (2011), 4800. [4] H.-N. Tran et al., Adv. Nat. Sci. Nanosci. Nanotechnol. (2017), 8, 15018.[5] D. Levshov et al., J. Phys. Chem. C 119(40) (2015), 23196.[6] D.I. Levshov et al., Phys. Status Solidi B 254(11) (2017), 1700251.[7] V.N. Popov et al., Phys. Rev. B 97 (2018), 165417.[8] H.-N. Tran et al., Phys. Rev. B 95 (2017), 95 (20), 205411 %G English %L hal-02103082 %U https://hal.science/hal-02103082 %~ CNRS %~ UNIV-AMU %~ L2C %~ CINAM %~ MIPS %~ UNIV-MONTPELLIER %~ UM-2015-2021 %~ TEST3-HALCNRS