%0 Journal Article %T Back to Baxterisation %+ Laboratoire Charles Coulomb (L2C) %+ Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH) %A Crampé, Nicolas %A Ragoucy, E. %A Vanicat, M. %< avec comité de lecture %J Commun.Math.Phys. %V 365 %N 3 %P 1079-1090 %8 2019 %D 2019 %R 10.1007/s00220-019-03299-6 %Z Physics [physics]/Mathematical Physics [math-ph]Journal articles %X In the continuity of our previous paper (Crampe et al. in Commun Math Phys 349:271, 2017, arXiv:1509.05516 ), we define three new algebras, ${\mathcal{A}_{\mathfrak{n}}(a,b,c)}$ , ${\mathcal{B}_{\mathfrak{n}}}$ and ${\mathcal{C}_{\mathfrak{n}}}$ , that are close to the braid algebra. They allow to build solutions to the Yang-Baxter equation with spectral parameters. The construction is based on a baxterisation procedure, similar to the one used in the context of Hecke or BMW algebras. The ${\mathcal{A}_{\mathfrak{n}}(a,b,c)}$ algebra depends on three arbitrary parameters, and when the parameter a is set to zero, we recover the algebra ${\mathcal{M}_{\mathfrak{n}}(b,c)}$ already introduced elsewhere for purpose of baxterisation. The Hecke algebra (and its baxterisation) can be recovered from a coset of the ${\mathcal{A}_{\mathfrak{n}}(0,0,c)}$ algebra. The algebra ${\mathcal{A}_{\mathfrak{n}}(0,b,-b^2)}$ is a coset of the braid algebra. The two other algebras ${\mathcal{B}_{\mathfrak{n}}}$ and ${\mathcal{C}_{\mathfrak{n}}}$ do not possess any parameter, and can be also viewed as a coset of the braid algebra. %G English %L hal-02065989 %U https://hal.science/hal-02065989 %~ UNIV-SAVOIE %~ UGA %~ CNRS %~ LAPTH %~ L2C %~ TDS-MACS %~ MIPS %~ UNIV-MONTPELLIER %~ USMB-COMUE %~ UM-2015-2021