%0 Journal Article %T The 2014 TeV $\gamma$-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation %+ Centre de Physique des Particules de Marseille (CPPM) %+ Laboratoire d'Annecy de Physique des Particules (LAPP) %+ Laboratoire Univers et Théories (LUTH (UMR_8102)) %+ Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)) %+ Laboratoire Univers et Particules de Montpellier (LUPM) %+ Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG) %+ Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU) %+ Laboratoire Leprince-Ringuet (LLR) %+ AstroParticule et Cosmologie (APC (UMR_7164)) %+ Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) %A Abdalla, H. %A Aharonian, F. %A Ait Benkhali, F. %A Angüner, E.O. %A Arakawa, M. %A Arcaro, C. %A Armand, C. %A Arrieta, M. %A Backes, M. %A Barnard, M. %A Becherini, Y. %A Becker Tjus, J. %A Berge, D. %A Bernhard, S. %A Bernlöhr, K. %A Blackwell, R. %A Böttcher, M. %A Boisson, C. %A Bolmont, J. %A Bonnefoy, S. %A Bordas, P. %A Bregeon, J. %A Brun, F. %A Brun, P. %A Bryan, M. %A Büchele, M. %A Bulik, T. %A Bylund, T. %A Capasso, M. %A Caroff, S. %A Carosi, A. %A Cerruti, M. %A Chakraborty, N. %A Chandra, S. %A Chaves, R.C.G. %A Chen, A. %A Colafrancesco, S. %A Condon, B. %A Davids, I.D. %A Deil, C. %A Devin, J. %A Dewilt, P. %A Dirson, L. %A Djannati-Atai, A. %A Dmytriiev, A. %A Donath, A. %A Doroshenko, V. %A Drury, L.O'C. %A Dyks, J. %A Egberts, K. %A Emery, G. %A Ernenwein, J.-P. %A Eschbach, S. %A Fegan, S. %A Fiasson, A. %A Fontaine, G. %A Funk, S. %A Füssling, M. %A Gabici, S. %A Gallant, Y.A. %A Gaté, F. %A Giavitto, G. %A Glawion, D. %A Glicenstein, J.F. %A Gottschall, D. %A Grondin, M.-H. %A Hahn, J. %A Haupt, M. %A Heinzelmann, G. %A Henri, G. %A Hermann, G. %A Hinton, J.A. %A Hofmann, W. %A Hoischen, C. %A Holch, T.L. %A Holler, M. %A Horns, D. %A Huber, D. %A Iwasaki, H. %A Jacholkowska, A. %A Jamrozy, M. %A Jankowsky, D. %A Jankowsky, F. %A Jouvin, L. %A Jung-Richardt, I. %A Kastendieck, M.A. %A Katarzyński, K. %A Katsuragawa, M. %A Katz, U. %A Kerszberg, D. %A Khangulyan, D. %A Khélifi, B. %A King, J. %A Klepser, S. %A Kluźniak, W. %A Komin, Nu. %A Kosack, K. %A Krakau, S. %A Kraus, M. %A Krüger, P.P. %A Lamanna, G. %A Lau, J. %A Lefaucheur, J. %A Lemière, A. %A Lemoine-Goumard, M. %A Lenain, J.-P. %A Leser, E. %A Lohse, T. %A Lorentz, M. %A López-Coto, R. %A Lypova, I. %A Malyshev, D. %A Marandon, V. %A Marcowith, Alexandre %A Mariaud, C. %A Martí-Devesa, G. %A Marx, R. %A Maurin, G. %A Meintjes, P.J. %A Mitchell, A.M.W. %A Moderski, R. %A Mohamed, M. %A Mohrmann, L. %A Moulin, E. %A Murach, T. %A Nakashima, S. %A de Naurois, M. %A Ndiyavala, H. %A Niederwanger, F. %A Niemiec, J. %A Oakes, L. %A O'Brien, P. %A Odaka, H. %A Ohm, S. %A Ostrowski, M. %A Oya, I. %A Padovani, M. %A Panter, M. %A Parsons, R.D. %A Perennes, C. %A Petrucci, P.-O. %A Peyaud, B. %A Piel, Q. %A Pita, S. %A Poireau, V. %A Priyana Noel, A. %A Prokhorov, D. %A Prokoph, H. %A Pühlhofer, G. %A Punch, M. %A Quirrenbach, A. %A Raab, S. %A Rauth, R. %A Reimer, A. %A Reimer, O. %A Renaud, Matthieu %A Rieger, F. %A Rinchiuso, L. %A Romoli, C. %A Rowell, G. %A Rudak, B. %A Ruiz-Velasco, E. %A Sahakian, V. %A Saito, S. %A Sanchez, D.A. %A Santangelo, A. %A Sasaki, M. %A Schlickeiser, R. %A Schüssler, F. %A Schulz, A. %A Schwanke, U. %A Schwemmer, S. %A Seglar-Arroyo, M. %A Senniappan, M. %A Seyffert, A.S. %A Shafi, N. %A Shilon, I. %A Shiningayamwe, K. %A Simoni, R. %A Sinha, A. %A Sol, H. %A Spanier, F. %A Specovius, A. %A Spir-Jacob, M. %A } Stawarz, Ł. %A Steenkamp, R. %A Stegmann, C. %A Steppa, C. %A Takahashi, T. %A Tavernet, J.-P. %A Tavernier, T. %A Taylor, A.M. %A Terrier, R. %A Tibaldo, L. %A Tiziani, D. %A Tluczykont, M. %A Trichard, C. %A Tsirou, M. %A Tsuji, N. %A Tuffs, R. %A Uchiyama, Y. %A van Der Walt, D.J. %A van Eldik, C. %A van Rensburg, C. %A van Soelen, B. %A Vasileiadis, George %A Veh, J. %A Venter, C. %A Vincent, P. %A Vink, J. %A Voisin, F. %A Völk, H.J. %A Vuillaume, T. %A Wadiasingh, Z. %A Wagner, S.J. %A Wagner, R.M. %A White, R. %A Wierzcholska, A. %A Yang, R. %A Zaborov, D. %A Zacharias, M. %A Zanin, R. %A Zdziarski, A.A. %A Zech, A. %A Zefi, F. %A Ziegler, A. %A Zorn, J. %A Żywucka, N. %< avec comité de lecture %J Astrophys.J. %V 870 %N 2 %P 93 %8 2019 %D 2019 %Z 1901.05209 %R 10.3847/1538-4357/aaf1c4 %K astroparticle physics %K BL Lacertae objects: individual %K gamma rays: galaxies %K invariance: Lorentz %K violation: Lorentz %K gamma ray: VHE %K photon: dispersion relation %K perturbation: linear %K spectral %K HESS %K energy dependence %K Cherenkov counter %K exceptional %K attenuation %K time delay %K background %K blazar %K flux %Z Physics [physics]/Astrophysics [astro-ph]Journal articles %X The blazar Mrk 501 (z = 0.034) was observed at very-high-energy (VHE, E ≳ 100 GeV) gamma-ray wavelengths during a bright flare on the night of 2014 June 23–24 (MJD 56832) with the H.E.S.S. phase-II array of Cherenkov telescopes. Data taken that night by H.E.S.S. at large zenith angle reveal an exceptional number of gamma-ray photons at multi-TeV energies, with rapid flux variability and an energy coverage extending significantly up to 20 TeV. This data set is used to constrain Lorentz invariance violation (LIV) using two independent channels: a temporal approach considers the possibility of an energy dependence in the arrival time of gamma-rays, whereas a spectral approach considers the possibility of modifications to the interaction of VHE gamma-rays with extragalactic background light (EBL) photons. The non-detection of energy-dependent time delays and the non-observation of deviations between the measured spectrum and that of a supposed power-law intrinsic spectrum with standard EBL attenuation are used independently to derive strong constraints on the energy scale of LIV (E QG) in the subluminal scenario for linear and quadratic perturbations in the dispersion relation of photons. For the case of linear perturbations, the 95% confidence level limits obtained are E QG,1 > 3.6 × 1017 GeV using the temporal approach and E QG,1 > 2.6 × 1019 GeV using the spectral approach. For the case of quadratic perturbations, the limits obtained are E QG,2 > 8.5 × 1010 GeV using the temporal approach and E QG,2 > 7.8 × 1011 GeV using the spectral approach. %G English %Z H.E.S.S. %L hal-02000028 %U https://hal.science/hal-02000028 %~ IN2P3 %~ OBSPM %~ CEA %~ INSU %~ UNIV-PARIS7 %~ X %~ UNIV-SAVOIE %~ UGA %~ CENBG %~ CPPM %~ LAPP %~ LLR %~ LPNHE %~ APC %~ CNRS %~ UNIV-AMU %~ INPG %~ IRSTEA %~ CNES %~ OSUG %~ LUTH %~ X-LLR %~ X-DEP %~ X-DEP-PHYS %~ LUPM %~ IPAG %~ DSM-IRFU %~ DSV %~ CEA-UPSAY %~ PSL %~ USPC %~ UNIV-PARIS-SACLAY %~ AGREENIUM %~ CEA-UPSAY-SACLAY %~ X-SACLAY %~ UNIV-MONTPELLIER %~ CEA-DRF %~ SORBONNE-UNIVERSITE %~ SORBONNE-UNIV %~ LUPM_EMA %~ SU-SCIENCES %~ INRAE %~ UNIV-PARIS %~ UP-SCIENCES %~ TEST-HALCNRS %~ OBSPM-PSL %~ UGA-COMUE %~ USMB-COMUE %~ SU-TI %~ ALLIANCE-SU %~ UM-2015-2021 %~ LPNHE-2 %~ INEE-CNRS