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Abstract: This paper considers worst-case robustness analysis of a network of locally controlled
uncertain systems with uncertain parameter vectors belonging to the ellipsoid sets found by
identification procedures. In order to deal with computational complexity of large-scale systems,
an hierarchical robustness analysis approach is adapted to these uncertain parameter vectors
thus addressing the trade-off between the computation time and the conservatism of the result.
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1. INTRODUCTION

In this paper, the problem of worst-case robustness anal-
ysis of a network of locally controlled uncertain Linear
Time Invariant (LTI) subsystems is under consideration.
The uncertainty of each subsystem is an uncertain real
vector that belongs to an ellipsoid: an uncertainty set
in the model parameter space typically obtained after
identification.

This work is motivated by recent technological advances
in Microelectronics, Computer Sciences, Robotics, and re-
lated topics in the field of the Multi-Agent systems Cao
et al. (2013). The control of these network systems is
usually decentralized and in order to compute controllers
achieving high performance level, the model of the subsys-
tems needs to be known. An efficient method to build the
appropriate models is system identification Ljung (1999).
However, due to the presence of the noise and since the
identification experiment is limited in time, the model
parameters can only be identified within some prescribed
uncertainty region which is typically an ellipsoid. For these
reasons, in order to ensure that the computed controllers
achieve the performance not only for the nominal identified
model but for the true network system, it is important
to take into account these uncertainties. The evaluation
of the uncertainty effects on the system stability and
performance is called robustness analysis.

The large scale of today’s systems raises additional chal-
lenges on identification, controller design as well as on the
robustness analysis. This paper focuses on the robustness
analysis in the context of large-scale network systems.

In the 80’s-90’s, µ-analysis Doyle (1982); Safonov (1982)
was developed to investigate the performance of LTI sys-
tems in the presence of structured uncertainties. The per-
formance is evaluated in the frequency domain Skogestad
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and Postlethwaite (2005). This approach is based on the
computation of the structured singular value µ of the
frequency dependent matrices, which was proved to be NP-
hard Braatz et al. (1994). Fortunately, upper bound on µ
can be efficiently computed, see Fan et al. (1991), ensuring
a certain level of performance with some conservatism.
By efficient, it is understood that the computation time
is bounded by a polynomial function of the problem size
Garey and Johnson (1979). An adaptation of these results
to classes of the uncertainties obtained by identification
can be found in Bombois et al. (2001); Scorletti et al.
(2007); Barenthin et al. (2008).

Nevertheless, even if the computation time of the µ upper
bound is polynomial function, it can still be important in
the case of uncertain large-scale systems. The purpose of
this paper is to extend the results Bombois et al. (2001);
Scorletti et al. (2007); Barenthin et al. (2008) to the
context of large-scale interconnected systems, addressing
the trade-off between computation time and conservatism.
To do so, we adapt the hierarchical robustness analysis
approach of Dinh et al. (2013, 2014); Laib et al. (2015,
2017), initially proposed in Safonov (1983), to the class
of uncertainties obtained from system identification. A
similar subject is presented in Bombois et al. (2017). The
main contribution of this paper is, however, a deeper
investigation of the robustness analysis aspects, allowing,
in contrast to Bombois et al. (2017), for several types of
embedding and their combinations.

The next section of the paper formulates the problem un-
der consideration, while the third section presents the main
result of the paper, the hierarchical analysis approach. The
computationnal complexity of the hierarchical analysis is
discussed in section four while the fifth section is dedicated
to the numerical illustration example. The last section
concludes the paper.

Notations We denote by R and C the sets of real com-
plex numbers and by H ?M the transfer function M22 +



M21H (I −M11H)
−1
M12 withMij being appropriate par-

titions of M and ? standing for the Redheffer star product.
The matrix X1 0 0

0
. . . 0

0 0 XN


is denoted as diagi(Xi) with (block-)diagonal elements Xi

(i = 1, ..., N). For a complex number y, we denote yy∗

by y2 while σ̄(A) denotes the maximal singular value of
a complex matrix A. The notation (�)∗ + X stands for
X∗ +X for any expression X right next to the sum sign.

2. PROBLEM STATEMENT

Let us consider a network of Nmod Single-Input Single-
Output (SISO) subsystems Si (i = 1...Nmod) operated
in closed loop with a SISO decentralized controller Ki

(i = 1...Nmod):

Si(θi) : yi(t) = Gi(s, θi)ui(t) + vi(t) (1)

ui(t) = Ki(s)(ri(t)− yi(t)) (2)

r̄(t) = A ȳ(t) + B ref(t) (3)

where s, in order to keep the discussion as general as
possible and to consider both cases, defines the Laplace
variable s in the continuous time domain or the shift
variable z in the discrete time domain. The vector θi ∈
Rnθi represents the parameter vector of the ith system. We
will distinguish hereafter between a variable θi ∈ Rnθi , its
unknown true value, θi,0 ∈ Rnθi , and its estimated value,

θ̂i ∈ Rnθi . Let us also define θ = [θ1, . . . , θN ]
T ∈ Rnθ ,

θ0 ∈ Rnθ and θ̂ ∈ Rnθ : the stacked version of the previous
parameter vectors, with nθ =

∑
i nθi . The signal ui is the

input applied to the system Si and yi is the measured
output. This output is made up of a contribution of the
input ui and of a disturbance term vi that represents
both process and measurement noises and is modeled as
a stochastic random process Ljung (1999). The different
true systems are thus described by transfer functions

Gi(s, θi,0). Moreover, the vector v̄
∆
= (v1, v2, ..., vNmod)T

is assumed to have mutually independent components vi.

In this paper, the interconnection form used in formation
control or multi-agent systems (see e.g. Fax and Murray
(2004); Korniienko et al. (2016)) is under consideration.
Therefore, the signal ri is a locally available reference
signal that will be computed via (3). The matrices A,
called the normalized adjacency matrix, and B in (3) rep-
resent the interconnection (flow of information) physically
present in the network and they can be easily obtained
for any interconnection topologies. Furthermore, r̄, ȳ are
defined in the same way as v̄ above. A possible main global
objective of the network could be the tracking perfor-
mance: each output yi(t) has to approach in a specified
time the reference signal: ref(t) which is generally only
available (throughout ri) at one or a few nodes of the
network, which is defined by the matrix B.

As an example, let us consider the network in Fig. 1 with
Nmod systems connected in a chain, all of the form (1) and
all with a decentralized controller Ki, see (2).

Using (3), it is possible to define the local tracking error
signals ei = ri − yi and it can be proven that such
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Fig. 1. Example of a network

an interconnection allows good tracking if different loops
[Ki Gi] are designed to make the tracking error ei as small
as possible. Our objective is thus to design (or redesign)
local controllers Ki ensuring this global objective for a
given interconnection topology A, B and given subsystem
dynamics Gi(s, θi,0), see (1)-(3).

To do so, let us define general performance specifications
that cover the expressed tracking performance objective
but also other additional specifications. Performance input
w̄ and output z̄ are added with a (possible dynamic)
interconnection matrix M such that[

r̄
z̄

]
= M

[
ȳ
w̄

]
(4)

Different components of the matrix M depend on the
information flow in the network, i.e. matrices A and B,
as well as on the specific performance measure, as will
be detailed in Section 4. In this article, we focus on
the performance specifications expressed in the frequency
domain, see Skogestad and Postlethwaite (2005). For this
purpose, let us further define the local, independent from
the network, transfer function Ti and the global transfer
function of the network Tw̄→z̄ between local (ri → yi) and
global (w̄ → z̄) signals respectively. Based on (1), (2) and
(4) the following expression are obtained :

Ti(s, θi) =
Ki(s)Gi(s, θi)

1 +Ki(s)Gi(s, θi)

Tw̄→z̄(s, θ) = diagi(Ti(s, θ1)) ?M
The global performance specification will be deemed

satisfactory if:
∀ω, σ̄ (Tw̄→z̄($, θ)) < W (ω) (5)

where $ defines jω in the continuous time domain or ejω

in the discrete time domain.

It is thus necessary to design (or redesign) the local
controllers in order to ensure (or improve) the network
performance and respect (5) with θ = θ0. However, since θ0

is unknown, it will be necessary to identify a model for each
of the systems Si(θi,0). We assume that there is an identifi-
cation procedure leading to a consistent parameter vector

estimate θ̂i of each subsystem true parameter vector θi,0
as well as an estimate of the corresponding covariance ma-
trices Pθi . Such an identification procedure exists in open
or closed-loop for each module independently, see Ljung
(1999); Barenthin et al. (2008), or when the modules are
connected to the network Bombois et al. (2017). It implies
with some probability that the true parameter vector θi,0
belongs to some uncertainty set Ui defined as :

Ui = {θi | (θi − θ̂i)TP−1
θi

(θi − θ̂i) < χ} (6)

with a constant χ given the probability level we would like
to ensure and the number of elements in θi,0.

We also assume that there is a design procedure allowing
to compute local controllers Ki(s) such that the nominal



global transfer function Tw̄→z̄(s, θ), with θ = θ̂ an estimate
of θ0, respects the frequency dependent bound (5). Such
design procedures could be found in Scorletti and Duc
(2001); Korniienko et al. (2016).

Of course since θ̂ is not necessarily equal to θ0 this will not
necessarily ensure the constraint (5) for the true system.
In order to ensure the performance of the true system, in
this article we would like to solve the following worst-case
robustness analysis problem. Since θi,0 ∈ Ui for all i, it is
possible to ensure (5) with θ = θ0 by computing the worst-
case gain of Tw̄→z̄($, θ), evaluated in terms of maximum
singular values, ∀θi ∈ Ui. Similarly to the robustness
analysis approaches Doyle (1982); Safonov (1982); Fan
et al. (1991), this computation will be performed frequency
by frequency ∀ω ∈ Ω = {ω1, . . . , ωNω}. Even though it is
possible to propose a method of an appropriate frequency
gridding choice, in this paper, this question is not under
consideration. We therefore assume that the properties
ensured ∀ωj ∈ Ω imply that they are ensured ∀ω ∈ R.

Problem 2.1. Given system (1)-(3),(4), given uncertainty
sets (6), compute for each ωj ∈ Ω:

min
θi∈Ui(i=1...Nmod)

γ(ωj) subject to

σ̄ (Tw̄→z̄($j , θ)) < γ(ωj) (7)

where $j is defined similar to $.

If the minimal solution of the previous problem respects

γ(ωj) ≤W (ωj)

for all ωj , then the computed controllers ensure that the
true system Tw̄→z̄($, θ0) respects the frequency dependent
bound in (5) and thus the global performance.

Problem 2.1 is close to the well-known problem of worst-
case robustness analysis (or µ-analysis procedure) from the
Robust Control Community Skogestad and Postlethwaite
(2005). However the uncertainty sets (6), representing el-
lipsoids in parameter space, are not the traditional ones
considered in this field. The adaptation of traditional
worst-case robust analysis methods to the case of the un-
certainty set obtained from the identification can be found
in Bombois et al. (2001); Scorletti et al. (2007); Barenthin
et al. (2008). However direct application of these results in
the case of a large-scale network system, i.e. when Nmod
is large, is not possible due to the high system complexity
implying prohibitive computation time. As was mentioned
in the introduction, the main contribution of this paper is
to extend these methods to the network context i.e. to de-
rive tractable robustness performance analysis conditions
while keeping computation time reasonable.

3. HIERARCHICAL ANALYSIS APPROACH

3.1 Keys ideas

The main idea of the hierarchical approach Dinh et al.
(2013, 2014); Laib et al. (2015, 2017) is to decompose the
network into two or more hierarchical levels and to perform
the robustness analysis level by level by propagating the
analysis results from one level to another. For some net-
work systems such decomposition appears naturally, as for
example for the system under consideration in this paper :

(i) local hierarchical level : subsystem dynamics Ti(s, θi)
defined by (1) and (2) and (ii) global hierarchical level : the
global information exchange (3) and (4). The robustness
analysis at each hierarchical level allows to embed the
subsystem dynamics with a possibly complex non-convex
(and non-linear) dependence on the uncertainty, into a
much simpler subsystem description with a convex depen-
dence on the uncertainty. We will call it the embedding
procedure in the sequel. Then in the next hierarchical level,
the subsystem is replaced by this simple description and
the procedure is repeated once again until reaching the
last hierarchical level. The last step consists in the worst-
case robustness analysis based on the propagated subsys-
tem descriptions in order to evaluate the global network
performance i.e. solve the Problem 2.1. The complexity
and time computation reduction is ensured thanks to the
embedding procedures and by the fact that all embeddings
at each hierarchical level are independent and thus can be
easily performed in parallel.

In this paper, a two level hierarchical structure (local
and global) is under consideration. Before formalizing this
approach separately for the local and global hierarchical
levels, let us first define what we mean by subsystem
dynamics and subsystem description.

Since the performance measure in this paper is expressed
in the frequency domain, see (5), the subsystem dynamics
are defined by the structured frequency response set T si (ω)
of the subsystem transfer function at frequency ω:

T si (ω) = {Ti($, θi) | θi ∈ Ui} (8)

The subsystem description in turn is defined by an un-
certainty set Ti(xi(ω), yi(ω), zi(ω)) of complex numbers
∆i(ω) ∈ C that respects a frequency dependent quadratic
constraint imposed by xi(ω) ∈ R, yi(ω) ∈ C, zi(ω) ∈ R:

Ti(xi(ω), yi(ω), zi(ω)) = {∆i(ω) |[
∆i(ω)

1

]∗ [
xi(ω) yi(ω)
yi(ω)∗ zi(ω)

] [
∆i(ω)

1

]
≤ 0

} (9)

Let us introduce the following definition characterizing the
frequency response of a system :

Definition 3.1. (Dissipativity). An LTI system H(s) is
{x(ω), y(ω), z(ω)} - dissipative at ω for some x(ω) ∈ R,
y(ω) ∈ C, z(ω) ∈ R, if its frequency response H($)
respects the following quadratic constraint at ω:[

H($)
1

]∗ [
x(ω) y(ω)
y(ω)∗ z(ω)

] [
H($)

1

]
≤ 0.

If the following additional constraint is imposed on x(ω),
then the corresponding quadratic constraint defines a
convex set :

x(ω) ≥ 0. (10)

Please note that, in the case of x(ω) > 0, by Defini-
tion 3.1 and the Schur complement Boyd et al. (1994),
the following constraint is implied: y2(ω) ≥ x(ω)z(ω).
When x(ω) = 0, no constraint is imposed on y(ω) and
z(ω). In order to reduce the computational complexity,
the convexity constraint (10) will be used in the sequel.

If each subsystem Ti(s, θi) is {xi(ω), yi(ω), zi(ω)} - dis-
sipative for some frequency dependent xi(ω), yi(ω), zi(ω)
and for all θi ∈ Ui and ∀ω, we then obtain the fol-
lowing embedding T si (ω) ⊂ Ti((xi(ω), yi(ω), zi(ω)), ∀ω;



and the frequency responses of the uncertain subsystems
T1(s, θi), . . . , TNmod(s, θi) generated by varying θi ∈ Ui,
can be replaced in the global hierarchical level by the cor-
responding subsystem description Ti((xi(ω), yi(ω), zi(ω)).

Of course, since the set Ti((xi(ω), yi(ω), zi(ω)) is in gen-
eral larger than the set T si (ω) the result of the corre-
sponding worst-case analysis might be conservative. In
order to reduce this conservatism, it is important to
choose suitable xi(ω), yi(ω), zi(ω) for each subsystem. It
is also possible to compute several complementary triplets
xki (ω), yki (ω), zki (ω) for k = 1 . . . Nd defining therefore Nd
dissipativity properties for each subsystem. It allows to
define for each subsystem a basis of dissipativity properties
(a set of subsystem descriptions) and propagate it to the
global hierarchical level. Such a suitable choice in the
context of the uncertainty set (6) obtained through an
identification procedure is presented in the next subsection
while Subsection 3.3 presents how the embeddings are
combined and propagated in a global hierarchical step in
order to efficiently solve Problem 2.1. It is clear that the
more dissipativity characterizations are used for each sub-
system, the more the conservatism is reduced. Of course,
the price to pay for this is the increase of computation
time. For this reason it is important to find appropriate
triples xki (ω), yki (ω), zki (ω) at each hierarchical step ensur-
ing as tight embedding as possible.

3.2 Local Step

In this subsection we present how to efficiently com-
pute different dissipativity triplets x, y, z at a given fre-
quency ωj ∈ Ω such that an uncertain system T (s, θi) is
{x(ωj), y(ωj), z(ωj)} - dissipative, ∀θi ∈ Ui with Ui defined
in (6).

For this purpose let us define the following factorization
of the transfer function T (s, θi), suitable for the system
identification Bombois et al. (2001):

T (s, θi) =
e(s) + ZN (s)θi

1 + ZD(s)θi
(11)

with θ ∈ Rnθ and then present the following Lemma.

Lemma 1. Given the uncertain LTI system T (s, θi) in (11),
it is {x(ωj), y(ωj), z(ωj)} - dissipative for all θi ∈ Ui
and for given ωj , x(ωj) ∈ R, y(ωj) ∈ C, z(ωj) ∈ R
respecting (10), if and only if
(i) in the case of x(ωj) > 0 :[

−α(ωj) λ(ωj)
λ∗(ωj) −A1(ωj)− ξ(ωj)B + jX (ωj)

]
≤ 0 (12)

(ii) in the case of x(ωj) = 0 :

(�)∗ + y∗(ωj)A2(ωj) +A1(ωj)z(ωj)− ξ(ωj)B + jX (ωj) ≤ 0(13)

with λ(ωj) =

[
ZN ($j) +

y(ωj)

x(ωj)
ZD($j) e($j) +

y(ωj)

x(ωj)

]
,

A1(ωj) =

[
Z∗
D($j)ZD($j) Z

∗
D($j)

ZD($j) 1

]
,

A2(ωj) =

[
Z∗
D($j)ZN ($j) Z

∗
D($j)e($j)

ZN ($j) e($j)

]
,

α(ωj) =
y2(ωj)

x2(ωj)
− z(ωj)

x(ωj)
, B =

[
P−1
θi

−P−1
θi

θ̂i

−θ̂Ti P
−1
θi

θ̂Ti P
−1
θi

θ̂i − χ

]
and

some ξ(ωj) ≥ 0 ∈ R, X (ωj) = −X T (ωj) ∈ Rnθ×nθ .

Proof. See the detailed proof in Korniienko et al. (2018)

Please note that the sufficiency of Lemma 1 can be proved
using the result of Dinh et al. (2014) (see Corollary 2.2).
As is shown in the proof of Lemma 1, the result of Dinh
et al. (2014) is adapted to the case of uncertain vectors
that belong to an ellipsoid which recovers sufficient and
necessary conditions of {x(ωj), y(ωj), z(ωj)} - dissipativ-
ity. This lemma is an extension of the robustness analysis
result of Bombois et al. (2017) and will be used to generate
different types of embeddings.

We will now consider two types of embedding: the disc and
the band embedding, and formulate a convex optimization
problem to compute them. Please note that thanks to
Lemma 1, it is possible to study other types of embedding,
as for example cone embedding Laib et al. (2015), half
planes etc.

Disc Embedding Given system T (s, θ) in (11), its fre-
quency response set {T ($j , θi) | θi ∈ Ui} is embedded in
a disc set at ωj if

|T ($j , θi)− c(ωj)| ≤ ρ(ωj), ∀θi ∈ Ui (14)

where c(ωj) ∈ C is the center of the disc and ρ(ωj) ∈ R is
its radius, see Dinh et al. (2014). The size measure of this
embedding is the radius of the disc, and the problem of the
computation of the tightest embedding can be formulated
as follows, assuming appropriate gridding Ω.

Problem 3.1. Given system (11) and its uncertainty set (6),
compute for each ωj ∈ Ω:

min
ρ(ωj),c(ωj)

ρ(ωj) subject to (14)

This problem is efficiently solved by the following theorem.

Theorem 2. (Disc embedding). Problem 3.1 is solved by
the following LMI optimization problem:

min
ρ2(ωj),c(ωj)

ρ2(ωj) s.t. (12) holds and (15)

x(ωj) = 1, y(ωj) = −c(ωj), z(ωj) = c2(ωj)− ρ2(ωj).

Proof. See Korniienko et al. (2018) for the proof. 2

Band Embedding Given system T (s, θi) in (11), its
frequency response set {T ($j , θi) | θi ∈ Ui} is embedded
in a band set at ωj if ∀θi ∈ Ui

2a2(ωj) ≤ (�)∗ + n∗(ωj)T ($j , θi) ≤ 2a1(ωj), (16)

where n(ωj) ∈ C is the complex number which defines the
vector −→n = [Re(n), Im(n)]T giving the band orientation
in complex plain (it is perpendicular to both band hyper-
planes) and a1(ωj), a2(ωj) ∈ R are the signed distances of
the two band hyperplanes to the origin multiplied by |n|,
see Dinh et al. (2014). The size measure of this embedding
is the band width d(ωj) = a1(ωj)−a2(ωj) and the problem
of computation of the tightest embedding can be formu-
lated as follows, assuming again appropriate gridding Ω.

Problem 3.2. Given system (11), its uncertainty sets (6),
compute for each ωj ∈ Ω:

min
n(ωj),a1(ωj),a2(ωj)

a1(ωj)− a2(ωj) subject to (16)



This problem is efficiently solved as follows.

Theorem 3. (Band embedding). Problem 3.2 is solved by
the following LMI optimization problem:

min
a1(ωj),a2(ωj),n(ωj)

a1(ωj)− a2(ωj) (17)

such that (13) holds with

x1(ωj) = 0, y1(ωj) = n(ωj), z
1(ωj) = −2a1(ωj)

and (13) holds with

x2(ωj) = 0, y2(ωj) = −n(ωj), z
2(ωj) = 2a2(ωj).

Proof. See Korniienko et al. (2018) for the proof. 2

3.3 Global Step

In this subsection, we assume that for all ωj ∈ Ω and for
each subsystem Ti(s, θi), several embeddings are found in
the local step. We thus obtain Nd dissipativity triplets
xki (ωj), y

k
i (ωj), z

k
i (ωj) for k = 1, . . . , Nd, for each sub-

system i = 1, . . . , Nmod and for all ωj ∈ Ω. The next
theorem allows to compute an upper bound γUB(ωj) on
the maximum amplification γ(ωj) of Problem 2.1.

Theorem 4. Given system (1)-(3),(4), a frequency ωj and
given xki (ωj), y

k
i (ωj), z

k
i (ωj) such that

T si (ωj) ⊂ Ti((xki (ωj), y
k
i (ωj), z

k
i (ωj))

for k = 1, . . . , Nd, i = 1, . . . , Nmod (see (8) and (9))

The upper bound γUB(ωj) on the maximum amplification
γ(ωj) of Problem 2.1 is the solution of the following LMI
optimization problem:

min
γ̄2(ωj),T

k
ω ,(k=1...Nd)

γ̄2(ωj)

s.t.

(
M($j)

I

)∗
N (γ̄2(ωj))

(
M($j)

I

)
> 0, with (18)

N (γ̄2(ωj))
∆
=


∑

TkωZkd 0

0 −I

[∑
TkωYkd 0

0 0

]∗
∑

TkωYkd 0

0 0

∑
TkωXkd 0

0 γ̄2(ωj)I


with real strictly definite positive diagonal matrices for
k = 1 . . . Nd, T

k
ω = diagi(τ

k
i (ωj)), and

Xkd = diagi(x
k
i (ωj)), Ykd = diagi(y

k
i (ωj)), Zkd = diagi(z

k
i (ωj))

Proof. See Korniienko et al. (2018) for the proof. 2

The detailed analysis of the computational complexity of
the proposed Hierarchical approach can be found in Laib
et al. (2017); Korniienko et al. (2018). The next section
rather focus on the numerical example.

4. NUMERICAL EXAMPLE

Let us now consider an illustration example of an Auto-
mated Highway System (AHS): a platoon of autonomous
cars following external reference signals as in Seiler et al.
(2004). Each car’s simplified model dynamics is described
by (1), with Gi(s, θ) = ki

s2(τis+1) and true parameter vector

θi,0 = [τi, ki]
T where τi, ki were randomly chosen around

0.105 and 0.95 respectively with uniform ±10% distribu-
tion. Each system is controlled by the same initial decen-
tralized controller Kinit(s) = 2s+1

0.05s+1 taken from Seiler

et al. (2004), see (2). There are Nmod = 5 cars in the net-
work which are allowed to exchange information according
to bidirectional chain topology, see Seiler et al. (2004), as
depicted in Fig.1 and defined by (3).

The main objective of the network is that each car follows
a ramp reference signal ref(t), available only for the
first car, shifted by a constant value δi = iδ, ∀i to
avoid colisions, while keeping string instability (oscillation
propagation through the network) limited Seiler et al.
(2004). It can be shown that this tracking performance
specification is equivalent to the ability of each car to track
the same ramp signal ref(t) ensuring that all local tracking
errors ei = ri − yi go to zero in steady-state.

As a consequence, let us define performance input w̄(t) =
ref(t) and performance output z̄(t) = r̄(t)− ȳ(t). It thus
determines the interconnection topology (4) with M =[
A B
A− I B

]
. If the maximum singular value of Tw̄→z̄(s, θo)

has a slope of +40 dB/dec at low frequency range, then
the tracking performance is ensured, see Skogestad and
Postlethwaite (2005). Moreover, a lower gain ensures a
better tracking speed and the resonance peak limitation
reduces the effects of string instability Seiler et al. (2004).
The maximal singular value of the true system Tw̄→z̄(s, θo)
with initial controller Kinit is represented by orange dash-
dotted line in Fig. 2. In order to improve the tracking
performance of the network and to reduce the oscillation
effects provoked by the string instability, let us impose the
frequency constraint (5) with W (ω) represented in Fig. 2
by the red dashed line.
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Fig. 2. Maximal singular value of the true system
Tw̄→z̄(s, θo) for initial controller (orange dash-dotted
line), improved controller (blue solid line) and im-
posed frequency constraint W (ω) (red dashed line).

To satisfy this constraint, first an identification procedure
is performed leading to a consistent parameter vector

estimate θ̂i of each subsystem true parameter vector θi,0
as well as an estimation of the corresponding covariance
matrices Pθi ensuring (6). Due to the presence of a double
integrator in the car transfer function model, this iden-
tification experiment has to be performed in closed loop
with a stabilizing controller either independently for each
module (see Ljung (1999); Barenthin et al. (2008)) or in
the network (see Bombois et al. (2017)). The results of the
latter method are presented in Fig. 3 where the controllers
were chosen as Ki(s) = Kinit(s), ∀i. Different discrete-



time white noise excitation signals of length Nid = 1000,
sampling time Ts = 0.01 sec and variance 10 are added
via a zero order hold to the references ri of each closed-
loop systems Ti(s, θi,0). The measured discrete signal yi is
also perturbed by generated mutually independent white
noise discrete signals vi with variance of 4 each modeling
the measurement noise effects. A standard, prediction-
error identification criterion is used, see Ljung (1999). No-
tice that in this example the continuous transfer function
parameters ki and τi and the corresponding covariance
matrices could be directly identified since the car transfer
function model is rather simple.
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Fig. 3. Identification results. True parameter vectors θi,0
(green dots), its estimated values θ̂i (red crosses), and
corresponding ellipsoid set borders (full lines) for χ
chosen to ensure 95% probability.

A new improved decentralized controller is designed based
on the H∞ framework Scorletti and Duc (2001); Korni-
ienko et al. (2016):

K(s) =
12111(s+ 10)(s2 + 0.9s+ 0.4)

s(s2 + 111.6s+ 6230)
.

It ensures that the nominal global transfer function

Tw̄→z̄(s, θ), with θ = θ̂, respects the frequency dependent
bound in (5).

Our problem is now to efficiently test if the constraint is
satisfied by the true system by solving Problem 2.1 for
properly chosen Ω. To do so, the proposed hierarchical
approach is used. The results of the local step embeddings
for the first system and at 0.15 Hz are presented in
Fig. 4 where the borders of the minimum radius disc
embedding (green full circle) and of the tightest band
(red full lines) are presented. For the sake of illustration,
we show the borders of the structured uncertainty set

T s1 (red dots), the estimated T1(θ̂1) (blue cross) and the
true T1(θ1,0) (black round) value of the corresponding
frequency responses evaluated at ω = 0.15 Hz. Notice that

disk center c(ω) 6= T1(jω, θ1,0) 6= T1(jω, θ̂1). The results
are found by solving the LMI optimization problems (15)
and (17). Similar results are obtained for other subsystems
and other frequencies from Ω. The global step analysis
results are presented in Fig. 5 for two cases : computed
γUB based on the propagation of (i) disc embedding
only Nd = 1 (blue rounds) and of (ii) disc and band
embeddings Nd = 3 (red dots). Fig. 5 also presents some
Monte-Carlo samples i.e. the maximal singular value of
Tw̄→z̄(s, θ) for randomly chosen θi ∈ Ui. As we can
see, the worst-case bounds are respected. Surprisingly

even though the disc embedding set is much bigger than
the intersection of disc and band sets (see Fig. 4), the
overall upper bound γUB is not improved a lot, see
Table 1. It is due to the fact that, in this application,
the phase uncertainty information, mostly captured by
the band embedding, is much less important than the
gain uncertainty information, mostly captured by the disc
embedding. The corresponding computation times are also
given in Table 1 for both serial and parallel computation
of local embeddings. Finally, maximal singular values of
the true system Tw̄→z̄(s, θo) with the new controller are
represented by the blue solid line in Fig. 2. As we can see,
the global performance is ensured for the true system.
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Fig. 4. Local step embedding results. Borders of structured
uncertainty set T s1 (red dots), of the minimum radius
disc embedding (green full circle), of the tightest band
(red full lines), circle center (green dot), estimated
frequency response (blue cross) and true frequency
response (black round).

Fig. 5. Global step analysis results. Upper bounds com-
puted by (i) propagation of disc embedding only (blue
rounds), by (ii) propagation of disc and band em-
beddings (red dots), Monte-Carlo samples of maximal
singular value of Tw̄→z̄(s, θ), for some θi ∈ Ui.

Table 1. Hierarchical analysis results

disc only disc + band difference

Dissipativity number Nd = 1 Nd = 3
γUB @ 0.13 Hz −11.83 dB −12.04 dB 1.8%
γUB @ 0.15 Hz −12.64 dB −12.92 dB 2.2%
γUB @ 0.17 Hz −14.28 dB −14.44 dB 1.1%
Overall Time 15.33 sec 19.04 sec −24.2%

Overall Time (Parallel) 11.85 sec 14.43 sec −21.8%



5. CONCLUSIONS

In this paper we proposed robustness analysis method
adapted to the uncertainty sets constructed by identifi-
cation in a network context. The type of network in this
system is usual in the literature of multi-agent systems
and the size of the network plays a crucial role in the
robustness analysis complexity. In order to manage the
trade-off between the computation time and the precision
of the obtained result, the hierarchical robustness analysis
approach was proposed and illustrated in the case of SISO
subsystems. Future extension is the MIMO subsystem case
with an appropriate choice of hierarchical structure (with
possibly more than two hierarchical levels) in order to even
better address the mentioned trade-off.
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