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Abstract 

A Smoothed Particle Hydrodynamics axisymmetric solver was developed in order to simulate 
the collapse of a single cavitation bubble close to an elastic-plastic material and study plasticity 
formation and hence material erosion. Findings indicate the relative importance of the material 
deformation due to the impact of the micro-jet and the shock wave that develop during 
collapse. A shock-wave dominated impact has a much higher material erosion ability 
compared to a micro-jet impact. Strain rate is found to have a significant effect on plastic 
deformation, with an overestimation of the plastic deformation up to 60% if strain rate effects 
are neglected in the case of stainless steel A2205. We also demonstrate that, although the 
impact pressure is maximum just below the collapsing bubble, maximum plastic strain occurs 
at a radial offset from the symmetry axis.  This is the result of inertial effects that have an 
impact on both the magnitude and the position of the plastic domain in the material. A new 
non-dimensional parameter called effective pressure is introduced that can predict plastic 
strain location accurately for higher stand-off ratios. Alternatively, a characteristic time 
analysis also shows that it can be used for prediction of plastic strain zone in the solid for 
detached cavities. 

Keywords: Smoothed Particle Hydrodynamics, cavitation erosion, fluid structure Interaction, 
plastic strain, inertial effects, strain rate effects 

1.   Introduction 

Understanding cavitation erosion better has been a constant quest for cavitation research. The simplest cavitation 
erosion empirical models relate the erosion resistance derived from a standard cavitation test [1-6] to the mechanical 
properties of the material such as Yield stress, Young’s Modulus, hardness, toughness etc. Other kinds of empirical 
models relate the erosion resistance to the pitting rate or flow aggressiveness most often without considering material 
properties [7-9]. Models that can account for both the fluid and the solid behavior were developed [10-13], but some 
studies show that they fail to match the experimental results [11]. Considering the complex phenomenon of cavitation 
and the various aspects not considered in these models, it is needed to have better ways to model material erosion. A 
lack of accurate numerical model for erosion calculation has been a bottleneck in understanding cavitation erosion. 
Most models as mentioned above either are empirical or phenomenological models that oversimplify the phenomenon 
of cavitation erosion. However, a few studies have tried solving for cavitation erosion using numerical methods such 
as FEM or even fluid structure interaction solvers that can provide a much better understanding. We focus on these 
studies and the shortcomings therein in order to improve the numerical scheme in the present work.  

Some studies have used an inverse approach based on the Finite Element Method where it is assumed that the impact 
pressure due to a single bubble collapse has a Gaussian distribution in space [14-15].  
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where, r is the radial distance to the symmetry axis and Hσ is the maximum amplitude of the hydrodynamic impact 
pressure and Hd is the diametric extent of the load. The inverse calculation provides the characteristics and the 



pressure distribution that could have led to a pit of given diameter and depth. This study was extended to dynamic 
loading [16] by adding a temporal evolution to the pressure, modifying equation 1 to the following equation 
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Where t is time and tmax is the time when Hσσ =  and tH is the characteristic impact rise duration. In a similar way dH 
represents the radial spread of the load. The authors found that at high frequency or small characteristic loading time, 
the pits formed for the same pressure and radial spread appear to be smaller than the pits for the static case i.e. without 
temporal evolution of pressure. The results were attributed to strain rate and inertial effects. However, it would be 
interesting to analyses these effects under the actual loading due to a bubble collapse which is much more complicated 
than a simple Gaussian pressure. 

To understand cavitation erosion in entirety, some studies have focused on fluid structure interaction (FSI) solvers 
[17-18]. An initial footstep towards a numerical understanding of cavitation using FSI would be to understand the 
cavitation erosion phenomenon for a single cavitation bubble. Hsiao et al. have attempted to develop a cavitation FSI 
solver wherein both fluid and solid response can be captured [17]. In order to solve for the fluid bubble collapse, they 
use three codes: two fluid solvers, namely, boundary element method code (3DYNAFS-BEM) and a finite difference 
code (GEMINI), whereas the solid response was simulated using a finite element code (DYNA3D). The aim of having 
two fluid solvers is to create a hybrid scheme wherein the bubble collapse is solved using two different schemes 
which depend upon the kind of system to be solved. Cavitation bubbles create no shock waves during the growth 
phase and even during the collapse, shock waves are generated only towards the end of the collapse. Hence, they use 
the incompressible BEM until the end of the collapse where the flow is mostly incompressible. Once the shock wave 
generation is expected, the solver is switched to a compressible finite difference solver. At each iteration, the solid 
solver takes the pressure as input and solves for the material response. The code solves the material using a linear 
isotropic hardening law, however, most materials exhibit non-linear isotropic hardening. Also, the code does not 
consider strain rate hardening effects which are significant for fast dynamic phenomena like cavitation erosion.  

Another work by Turangan et al. [18] studied fluid structure interaction using a Free-Lagrange scheme, FLM, that 
incorporates the compressibility, multi-phases and elastic plastic solid models. They simulated the collapse of 40 µm-
radius single bubbles attached to/near rigid and Aluminum walls by a 60 MPa-lithotripter shock, and the collapse of 
a 255 µm-radius bubble attached to a 25 µm-thick Aluminum foil by a 65 MPa-lithotripter shock. They simulated the 
bubble with different stand-off distance and found that an attached cavity can produce larger deformation compared 
to a detached cavity. However, again the material model does not consider non-linear hardening and strain rate 
sensitivity. 

A comprehensive cavitation FSI numerical model should ideally take into account the elasto-plastic behavior of the 
material as well as the development of damage. Since cavitation is a fast process, strain rate dependent hardening 
behavior should be included in the model. Also, a fluid structure interaction scheme is required. During bubble 
collapse, high intensity shock waves are produced along with micro jet. The shock wave travels through the fluid to 
the solid, a part of the wave is reflected back into the liquid and the rest gets transmitted to the solid [19]. A two-way 
coupling is required to model this behavior properly. 

In the present study a first attempt has been made to solve cavitation erosion using a meshless particle method, namely 
the Smoothed Particle Hydrodynamics (SPH) technique, and model both the fluid and the solid behavior in a unique 
Lagrangian framework. The method offers the following advantages: 

• Both fluid and solid response can be captured using the same solver and the same numerical method i.e. SPH. 
Both the solid and the fluid can be coded and solved within a single code making it much easier from the 
development perspective. 

• Conventional methods of coupling a FVM solver to a FEM solver can be quite complicated and require 
dedicated procedures for data transfer across the two codes. The problem is eliminated here since the solver 
uses SPH for both solid and fluid in a common code; no such coupling is required; the data are easily 



exchanged within the RAM memory. For each particle, one only needs to specify if it is a fluid or a solid 
particle. 

• The tricky mesh reconstruction for the fluid domain is eliminated when using meshless methods like SPH 
since both the fluid and the solid are solved using a Lagrangian formulation and hence such deformations are 
already taken care of via particle movement. 

The existing 2D open source fluid SPH code SPHYSICS is used as a basis to develop the solver further [20]. The 2D 
solver is modified to 2D axisymmetric for the fluid solver.  The axisymmetric solid solver is developed in-house. 
However, axisymmetric SPH solver suffers from an inconsistent definition of density near the symmetry axis. A new 
method to mathematically resolve this issue for the axisymmetric solid SPH solver inspired by an approach used in 
fluid axisymmetric SPH simulations is used in the present study. The axisymmetric fluid and solid solvers are 
validated against Rayleigh-Plesset collapse and FEM simulation respectively. The two solvers are eventually coupled 
together to obtain a fully coupled FSI solver capable of solving single bubble collapses over a solid medium to obtain 
elastic-plastic response using the Johnson-Cook model [21]. The paper presents simulations for a detached cavity and 
an attached cavity to understand the distinct material response the two cavities can produce. Attached and detached 
refers to whether the cavity surface is attached or detached to the solid medium respectively.  

2. Methodology 

A detailed methodology to change a 2D SPH solver to an axisymmetric SPH solver is provided in [26]. SPH algorithm 
for solving a fluid and a solid together within a single code is provided in the following sections. 

2.1. Fluid solver  

A major issue with axisymmetric SPH is the treatment of particles that are close to the symmetry axis. Indeed, large 
errors in density and consequently other quantities can be observed with particles at distance less than 2h from the 
axis. The fluid axisymmetric SPH scheme implemented in the present study uses a corrective function for density 
calculation near the symmetry axis. Further, the density correction leads to a corrected momentum equation [22].  

The 2D density is calculated using the following equation, 
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where aη


is the new corrected 2D density for particle a and
af1 is the correction function which is prominent close to 

the symmetry axis and equals 1 far away from the symmetry axis such that the density of the particle tends to zero as 
the radial distance of the particle goes to zero. Axisymmetric calculations use 2D density which is related to the actual 
3D density by the following: 

aaa r ρπη 2=
 

(4) 

Detailed derivation for the correction factor
af1 can be found in [22]. The function 

af1 for a particle a is given by 
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(5) 

where aaa hr=ζ , ar being the radial distance from the symmetry axis and ah is the smoothing length of the kernel.  

Once the density is calculated, the pressure at each particle can be computed using an equation of state. In the present 
work, we use for liquid water the Tait equation of state that is given by the following, 
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where γ = 7 and γρ /cB 0
2
01 = , 0ρ  = 1000 kg m-3 is the reference density and 0c is the sound speed at the reference 

density. 

Since the density equation has been re-written as equation 3, the momentum equations should also be corrected to 
obtain correct acceleration and velocities for a particle close to the axis. The acceleration in the radial and axial 
directions for a cylindrical system is given by, 
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where, 
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Additional information regarding the equations 9 and 10 can be found in the work by Monaghan [23]. Once the 
particle acceleration is obtained from equations 7 and 8, the acceleration is time integrated to obtain the velocities of 
each particle and eventually particles are moved at each time step according to their velocities (for details see [20]). 



2.2. Solid solver  

A detailed derivation of corrected density and momentum equations near the symmetry axis for a solid SPH 
axisymmetric solver is presented in [26]. The 2D density is calculated using equation 3 which remains the same as 
for the fluid. Velocities from the last time step are used to calculate the strain rate which is given by, 
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The strain rate can be time integrated to obtain the strain and eventually the stress using the following relation for an 
elastic solid, 

kkijijij µ ελδεσ += 2
 (12) 

Once the stress is obtained, the acceleration of each particle is calculated using the following 
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(14) 

Detailed derivation of these equations can be found in [26]. Further the accelerations can be used to obtain the new 
position of each particle in the same way as for the fluid. The above equations are only valid for an elastic solid. 
However plastic deformation is a key aspect in material response under cavitation load. To calculate plastic strain, 
the Johnson-Cook model is used (temperature effects are neglected in the paper), 
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where, A0, B0, C0, n are material constants,
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 =  (the non-dimensional effective plastic strain rate) where 0pε is 

the  reference plastic strain-rate of the quasi-static test used to determine the yield and hardening parameters A0, B0 
and n. Details regarding plasticity calculation and return mapping algorithm for non-linear isotropic hardening are 
provided in Appendix B. 

2.3. Fluid structure interaction in SPH  

Since the solid and the fluid solver are coded within a single code, all particles irrespective of them being solid or 
fluid particles are solved at the same time. However, a few modifications are required for the particles close to the 
interface. Consider the situation in figure 1, where particle a is a solid particle and its kernel contains fluid particles, 
one of them being particle b. While calculating density of the solid particle a, the contribution from the fluid particle 
(which has a lower mass) can lead to underestimation of the density in the solid and overestimation of density in the 
fluid. In other words, a numerical density diffusion would be observed near the interface unless corrective measures 
are taken. To achieve this and avoid any numerical density diffusion, the density equation is modified to the following, 
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Where 0aρ and 0bρ is the density of particle a and b respectively at the start of the simulation. 



To transfer force across the interface while solving all the particles together, for any interaction of particle across the 
interface, the total force on a given particle a due to particle b can be resolved in the r-z direction, while considering 
there is no interface but a continuum across the interface. 
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However, since there exists a discontinuity at the interface and in the absence of viscous forces, the force parallel to 
the interface should be zero. Hence the force vector is multiplied by the vector normal to the interface to obtain the 
final force on the particle. 

jnFinFF zzrr
Interface

ab
ˆˆ +=



 (18) 

The above equation along with the momentum equation is enough to satisfy the Neumann boundary condition to 
transfer the forces across the interface. As the particles across the interface are solved together within a single code 
and at the same time, the velocity at the interface always satisfies the Dirichlet boundary condition. However, to 
avoid any penetration and avoid disorder, XSPH [25] is used which takes into account not just the velocity of the 
particles itself but also the velocity of the nearby particles while moving it. 

 

 

Figure 1. Interaction of solid and fluid particles near the interface, red circle represents the kernel of particle a. 

3. Validations 

3.1. Fluid solver validation 

To validate the fluid solver, a classic case of a spherical bubble collapse is carried out using SPH and compared 
against the analytical solution to the Rayleigh-Plesset equation. Figure 2 shows the domain used for a bubble collapse 
simulation in a large medium. A void bubble of radius 0.099 mm is placed in a spherical domain which is 7 times the 
bubble radius. A pressure wave of 90 MPa is generated by the wave maker whereas the initial pressure inside the 
bubble is 0 Pa. All the domain walls are given a non-reflective boundary condition to avoid any wave reflections 
hitting the bubble. The flow is treated as non-viscous and no surface tension forces are considered in the model. The 
wave maker shown in the figure is a set of repulsive particles which apply force on the nearby particles, hence acting 
as a pressure wave generator. Figure 3 shows good agreement between SPH results and the analytical solution of 
Rayleigh-Plesset equation, which validates the fluid solver. The slight increase in bubble radius at the end of the 
collapse is due to the high pressure shock wave generated at the center by the collapse. The shock wave travels 



outwards and this outward travelling shock leads to a post-shock velocity in the same direction as the shock. That 
leads to a weak rebound of the particle near the center. Also the bubble radius does not go to zero in the figure 3, that 
can be explained by the fact that since particles have to keep a certain distance from each other (the interpartcile 
distance), the minimum radius at the end of the collapse is dependent on the interpartcile distance and would tend 
towards zero as the number of particles used in the simulation are increased. 

 
Figure 2. Simulation domain for bubble collapse simulation in 2D axisymmetric. 

 

 
Figure 3. Comparison of bubble radius vs. time, SPH against Rayleigh-Plesset solution for a bubble collapse 

simulation (domain shown in figure 2). 



3.2. Solid solver validation  

An indentation test is used to validate the SPH solid solver against an FEM solver. Figure 4 shows the domain used 
for indentation simulations. Stainless steel A-2205 is simulated; the material properties are given in Table 1. In the 
validation step, the strain rate sensitivity coefficient C0 will be taken as 0 so the behavior will be assumed to be strain 
rate insensitive. 

Table 1. Table showing material properties for A-2205. 

Parameter Solid (A-2205) 

Density (kg/m3) 7800 

Sound speed (m/s) 4883.33 

Young’s Modulus  186 GPa 

Poisson ratio 0.3 

A0 (in equation 15) 508 MPa 

B0 (in equation 15) 832 MPa 

C0 (in equation 15) 0.031 (used as 0 for validation simulation) 

n (in equation 15) 0.29 

0pε  0.05 s-1 

 

 

Figure 4. The figure on the left shows the computational domain for solid simulation, the boundary particles 
marked in blue are given a downward velocity with a Gaussian profile with the distance to the axis shape as plotted 
on the right. The extent of the velocity profile R is defined as the distance from the center where the velocity is 1% 

of the peak value, a non-uniform but constant velocity is given to the indenter. 



 
Figure 5. FEM results compared against SPH (for a pit of 6 microns in depth and 0.4 mm in radius for a stainless 
steel A-2205 specimen, the results are plotted on the horizontal red dotted line in figure 3 (0.12 mm below the top 

surface). 

The same case is setup in FEM and the axisymmetric SPH solver, with the novel mathematically consistent solution 
near the symmetry axis. The FEM simulations have been performed with CAST3M [24] using 3456 8-node elements 
with a minimum mesh size of 2 μm and the same velocity profile is applied to the top nodes of the mesh as Dirichlet 
boundary conditions. The SPH simulation has been performed using 125570 particles and initial inter-particle 
distance of 2.5 μm and a smoothing length 2h = 6.5 μm. Figure 5 shows a comparison of stress components and 
plastic strain along the line AB (marked in figure 3) for the SPH and FEM simulation. The comparison shows 
excellent agreement with average error less than 1% between the SPH and FEM. Figure 6 shows the plastic strain 
contours obtained for the SPH and FEM simulation. 

 
Figure 6. FEM and SPH plastic strain contours for a pit of 6 microns in depth and 0.4 mm in radius for a stainless 

steel A-2205 specimen. 



4. Results and discussion 

In this paper, we present two different cases of bubble collapse over a deformable solid medium, one with the bubble 
attached to the solid and the other with the bubble detached from the solid. The following sections would present the 
results for the two cases and we point out some interesting findings about the response of the material due to cavitation 
loading. The material parameters correspond to A2205 duplex stainless steel including strain rate sensitivity effects 
as identified by Roy et al. [16], the material properties are listed in Table 1. 

4.1. Single bubble collapse: Detached cavity vs Attached cavity 

 
Figure 7(a) Sketch of the initial simulation domain for axisyymmetric SPH FSI simulation of a detached cavity of 

radius R = 0.15 mm and standoff ratio SR = 1.33, (b) shows contours of axial velcosity in the fluid and plastic 
strain in the solid, a micro jet formation can be observed (the dotted semi-circle represents the initial bubble shape) 

at τ = 0.92, (c) contours of pressure in the fluid and plastic strain in the solid, a shock wave generated due to the 
bubble collapse can be observed as it just recahes the interface at τ = 1.053, (d) plastic strain contours in the solid 

at the end of the simulation, the maximum plastic strain occurs at a radial offset dPM from the symmetry axis. 

Figure 7a shows the sketch of the initial domain used for simulating a detached cavity collapse over a solid. A bubble 
radius of 0.15 mm and a standoff ratio (SR) of 1.33 are used for the initial domain (where SR is defined as D/R, D is 
the distance from the bubble center to the interface and R is the radius of the bubble). The figures 7b-d show a 
sequence of images for the collapse of the cavity and subsequent response of the material. To initiate the collapse, a 
pressure wave of 50 MPa is generated using a wave generator from the top of the fluid domain. Figure 7b shows 
contours of axial velocity (z-direction) in the fluid and plastic strain in the solid at τ = 0.92 (where τ is the simulation 
time at that instance divided by time required for the bubble to collapse), with the formation of a micro jet after the 
pressure wave hits the bubble (the dotted circle in figure 7b shows the initial bubble before the start of collapse). 
Figure 7c shows contours of pressure in the fluid and plastic strain in the solid at τ = 1.053. A shock wave is generated 
due to the micro jet hitting the liquid on the other side of the bubble as shown in figure 7b. Figure 7c shows the shock 
just reaching the interface. This shock wave produces plastic deformation in the material as shown in Figure 7d. A 
maximum plastic strain of 0.0023 can be observed just beneath the interface and not at the solid surface. Surprisingly, 
the maximum plastic strain does not occur right beneath the center of the bubble but at an offset from the symmetry 
axis marked as distance dPM in figure 7d (dPM is around 1.1 times the initial bubble radius for the case presented in 
figure 7). This material behavior for the detached cavity will be dealt with in detail in section 4.4. 



 
Figure 8(a) Sketch of the initial simulation domain for axisyymmetric SPH FSI simulation of an attached cavity of 

radius R = 0.15 mm, (b) shows contours of axial velocity in the fluid and plastic strain in the solid, a micro jet 
formation can be observed, (c) contours of axial velocity in the fluid and plastic strain in the solid, the micro jet 
shown in figure 8b hits the material and produces a very tiny zone of plastic strain (max plastic strain 0.0042) at 
the center (the contours in figure 8c are magnified along the white dotted rectangle shown in figure 8b), it also 

demonstrates the formation of a toroid bubble after the micro jet impact on the solid, (d) plastic strain contours in 
the solid at the end of the simulation, contour in the material shown in figure 8d is magnified along the white dotted 
line in figure 8c, two zones of plastic strain can be seen: one due to the torioid collapse and the other at the center 

due to the micro jet and also the shock wave from the toroid collapse. 

Figure 8a shows the sketch of the initial domain used for simulating an attached cavity collapse over a solid. A bubble 
radius of 0.15 mm and a standoff ratio (SR) of 0.66 are used for the initial domain. To initiate the collapse, a pressure 
wave of same amplitude 50 MPa is generated, still using a wave generator from the top of the fluid domain. As for 
the previous case of a detached cavity, a micro jet can be observed after the pressure wave hits the bubble (Fig. 6.8b). 
Figure 8c shows contours of axial velocity (z-direction) in the fluid and plastic strain in the solid (the contours are 
magnified along the white dotted rectangle marked in figure 8b). A tiny zone of localized plastic deformation 
(maximum plastic strain 0.00042) at the center is observed due to the micro jet hitting the material. Also, a toroidal 
bubble can be observed towards the right of the micro jet. The toroidal cavity then collapses to further produce plastic 
deformation in the material as shown in Figure 8d corresponding to the end of the simulation, after unloading. As the 
toroid collapses, it produces plastic deformation below it (marked as plastic strain due to toroid collapse in figure 8d). 
Also, the shock wave due to the collapse of the toroidal bubble travels towards the center of the material and focuses 
on the axis to produce additional plastic deformation. A maximum plastic strain of 0.0042 is produced due to the 
micro jet and thereafter an additional plastic deformation is observed at the center due to the shock wave produced 
by the toroid collapse to give a final maximum plastic strain of 0.0083 at the center. This can be referred to as the 
primary zone of plastic deformation. A secondary zone of plastic deformation is observed below the point of toroid 
collapse with maximum plastic strain of 0.002.  

Comparing the two cases, the results suggest that the micro jet generated by the collapse of an attached cavity (see 
fig 6.8c, before the toroid collapse) has an ability to cause a larger (almost 2 times larger) plastic strain in the material 
as compared to the shock wave generated by the collapse of a detached cavity, for the same magnitude of pressure 
wave initiating the collapse and the same bubble size. As a result, it could be conjectured that, the repeated collapse 



of an attached cavity would lead to a smaller incubation time compared to the repeated collapse of a detached cavity. 
But it should also be noted that the volume of material that is plastically deformed in case of a micro jet is miniscule 
compared to a shock wave impact (almost 800 times smaller). This would imply that even though the incubation time 
for material erosion might be lower for a micro jet collapse, the shock wave can plastify a much larger volume of 
material and hence the erosion rate should be higher for a shock wave impact. Hence it could be inferred that the 
material erosion ability of a shock wave is much higher than that of a micro jet.  

4.2. Detached cavity material response 

We get our attention back to the unexpected material response observed for the detached cavity. As shown in Figure 
7d, the maximum plastic strain does not occur right below the center of the bubble but at an offset dPM from the 
symmetry axis. To understand this behavior, we plot the pressure in the fluid along the interface (r-axis as shown in 
figure 7a) in figure 9 at different times. The plot shows that the maximum pressure decreases as we move ahead in 
time (time 1 to time 6), which is the expected behavior for a spherical wave. Although the maximum pressure for all 
times is observed at the symmetry axis, the maximum plastic strain occurs at an offset dPM from the symmetry axis 
as shown by the red circle markers in figure 9. This behavior is contrary to the popular belief that cavitation erosion 
occurs where the maximum pressure is observed at the interface. Two hypotheses are considered to explain this 
behavior. The first hypothesis refers to a material effect by strain rate hardening, the second refers to dynamic effects 
in the relation between loading and plastic strain. These hypotheses are worked out in the following section. 

 
Figure 9. Plot of pressure (left axis) vs the distance along the interface for different times: Time 1 to Time 6 ( Time 

1-6 refers to τ =1.053, 1.106, 1.16, 1.2, 1.24 & 1.28 respectively, where τ is the simulation time divided by the 
bubble collapse time), the right axis corresponding to the red circle markers refers to the plastic strain plotted 
along a line located just below the interface and parallel to it ( the line passes through the point of maximum 

plastic strain in the material). 

4.3. Detached cavity: Strain rate effect 

It could be due to strain rate effects, as the material can demonstrate hardening when strain rates are high. In order to 
examine this hypothesis, we eliminate strain rate dependency of yield stress by substituting C0 = 0 in equation 15, 
instead of C0 = 0.031. The contours of plastic strain for C0 = 0 are shown in figure 10. A maximum plastic strain of 
0.0037 can be observed which is 60% higher than for the C0 = 0.0031 case. However, the offset dPM still remains the 
same for the two cases. Thus such a material behavior is not due to the strain rate effects. 



 
Figure 10. Contour of plastic strain in the material for C0 = 0 in equation 15 (refers to the case with no strain rate 

effect). 

4.4. Dynamic loading in cavitation  

Since strain rate effects cannot account for the unexpected material behavior for the detached cavity case, it could 
well be the fast dynamics during cavitation loading that can lead to such a behavior. In order to analyze whether this 
is true, we follow the same strategy (as for the analysis of strain rate effects) by eliminating dynamic effects from the 
simulation. We achieve this by using the same load as seen by the material during an FSI simulation, but run a static 
simulation using an FEM solver since the present SPH solid solver cannot be used for static simulations.  

4.4.1. Static vs dynamic loading in cavitation 

 
Figure 11. Contour of plastic strain in the material for static simulation, simulated using FEM with pressure as 

boundary condition (pressure obtained from the interface pressure in SPH simulation at 500 time steps). 

In order to setup a static case in FEM using the same load as experienced by the material in the FSI simulation, we 
use the load data between the time when the shock wave hits the solid material as shown in figure 7c (where the 
shock wave just reached the interface at its left end, let’s call this instance T1) to when the shock wave travels along 
the interface and reaches the right end of the interface, let’s call this instance T2. Between these times T1 and T2, we 
capture the pressure along the interface in the fluid from SPH simulation reported in figure 7, for 500 intermediary 
steps. Thereafter, the FEM solver [24] is used to setup a solid simulation with, as a boundary condition, the pressure 
data obtained at 500 time steps from the FSI SPH simulation. The minimum mesh size is set as 5 μm (using a QUA8 
mesh type) and 5920 cells are used for the FEM simulation. The material properties are set the same as in the SPH 



simulation with α = 0 which refers to no strain rate effect. The FEM solver solves the material for each of the 500 
steps one after the other. The plastic strain is accumulated in the material for all the 500 steps to obtain a static 
response of the material for the same load as the solid experiences during the SPH simulation. Figure 11 shows the 
response of the solid when subjected to a static loading simulated using FEM. Contours of plastic strain show that 
the static response does not have an offset dPM for the maximum plastic strain which occurs at the symmetry axis. 
This result would suggest that the reason for the offset of maximum plastic strain as shown in figure 7d is the dynamic 
loading. A dynamic simulation differs from a static one in terms of the rate of loading and unloading. A very fast rate 
of loading and unloading (dynamic simulation) would not allow sufficient time for the material to respond to the load 
because of inertial effects which are dealt with in the next section. 

4.4.2.  Inertial effects on material response  

To understand the inertial effects on material response, we now look at the dynamics of the shock wave produced by 
the bubble collapse when it interacts with the fluid-solid interface. Figure 12 shows the shock wave interaction at the 
interface. The contours are taken from the SPH FSI simulation for detached cavity with SR = 1.33 as previously 
presented in figure 7. Contours of pressure are plotted in the fluid and plastic strain in the solid at a certain time 
during the simulation after the shock wave has hit the interface. A primary shock wave can be observed in the fluid 
which is generated by the bubble collapse. Once this shock wave reaches the interface, a part of the shock is reflected 
back in the fluid which is marked as a reflected shock wave in figure 12. The point of intersection of the primary and 
reflected shock wave corresponds to the maximum pressure along the interface as seen in the contours in figure 12.  

 
Figure 12. Contours of pressure in the fluid and plastic strain in the solid, shows the primary shock wave 

(generated by the bubble collapse) and a reflected shock wave (generated by the reflection of primary shock wave 
at the interface). 

In order to understand the phenomenon better, a schematic is presented in figure 13, demonstrating the shock wave 
evolution wrt time. Consider a spherical shock wave generated in the fluid at T=0 as marked in the figure 13 (T 
corresponds to a fictitious time used to exhibit the time evolution of the shock wave). The red dot corresponds to the 
point where the shock wave initiates, supposed to be at an axial distance αz from the interface. The shock wave then 
travels spherically outwards from the point of shock generation. At time T=3, the shock just reaches the interface. At 
T=4, along with the primary shock wave, a reflected shock wave is observed as the primary shock wave gets reflected 
from the interface. The point of intersection of the primary and reflected shock waves is marked as A, B & C 
corresponding to the time T=4, T=5 & T=6 respectively. These points correspond to the location of the maximum 
pressure along the interface at a given time as shown in figure 9. We will refer to this point where the primary and 
reflected shock wave intersect as the ‘shock front’ from now on in the article. Consider an SPH particle right below 



point A. This solid particle would respond to the pressure it experiences from the fluid and deform accordingly. If 
the shock front moves really quickly, the material might not have enough time to react to the load and deform as 
much as it would have had for the same magnitude of pressure under a static load. It is then of primary importance 
to compute the speed of the shock wave along the interface.  

 
Figure 13. Schematic of time evolution of the primary shock wave and the reflected shock wave (times T=0 to T=6 

correspond to fictitious time separated by a constant time interval, used to exhibit the position of the wave wrt 
time). 

The location of the primary shock wave on the interface (as shown in schematic in figure 13) in an r-z plane can be 
represented by a circle and is given by, 

( ) 222 )(tRzr z =−+ α  (19) 

where )(tR  is the radius of the primary shock wave as a function of time. It can be written as ∫= dttutR )()( , )(tu
is the radial velocity of the primary shock wave as a function of time, r is the radial position and z is the axial position 
of the wave front. Substituting z = 0 in equation 19 would give the position of the shock front (for example point A, 
B or C in figure 13) wrt time along the interface, derivative of the radial position gives the velocity of the shock wave 
along the interface (𝑣𝑣𝑆𝑆𝑆𝑆) given by equation 20.  

𝑣𝑣𝑆𝑆𝑆𝑆 = 𝑐𝑐𝑙𝑙�1 + �
𝛼𝛼𝑧𝑧
𝑟𝑟
�
2
 (20) 

To obtain an analytical solution, we substitute 𝑐𝑐𝑙𝑙  = 1500 m/s (speed of sound in water) and zα = 0.09 mm, which 
corresponds to the position where the micro jet hits the bubble surface for the detached cavity case with SR = 1.33. 
The solution of equation 19 & the equation 20) gives the position and velocity of the shock front wrt time. Figure 14 
shows the plot of the theoretical velocity of the shock front wrt to the radial distance from the axis (legend marked as 
SW Intersection Velocity Analytical). The velocity of the shock front is high close to the symmetry axis and goes 
down till it reaches the speed of the shock wave itself, which is here set as 1500 m/s. The high velocity near the 
symmetry axis is due to the spherical shock front hitting a flat surface. As a result, the rate of loading and unloading 
is also high close to the symmetry axis, which does not allow the material sufficient time to respond to the load, hence 
exhibiting lower plastic strain near the symmetry axis even though the pressure acting on the material is the highest 
at the symmetry axis.  



To sum up the argument, we have plotted the pressure and the velocity corresponding to the shock front wrt to the 
radial distance from the axis in figure 14 as obtained from SPH simulations. The computed velocity of the shock front 
obtained from SPH compares well with the analytical solution. The difference in values could be due to the fact that 
the shock wave velocity is considered as a constant (1500 m/s) for the analytical solution, whereas it actually depends 
on the pressure difference between the shock front and rear. The background contour (plastic strain) on the graph is 
set to scale with the x-axis of the graph which corresponds to the distance along the interface. It can be clearly seen 
that the pressure at the shock front (which is also the maximum pressure for a given instance) is maximum at the 
symmetry axis and decreases as we move along the interface. Moreover, the point at which the pressure decreases 
below the material yield stress (508 MPa) also corresponds well to the end of the plastic zone. Clearly, the background 
contour demonstrates that the maximum plastic strain occurs not at the point of maximum pressure but at an offset 
somewhere between 0.1 mm to 0.2 mm from the symmetry axis along the interface.  

 

 
Figure 14. Plot for the velocity of the shock front (right axis) wrt its position along the interface obtained from both 

the SPH simulation and analytical expressions (equation 19). Plot also shows the pressure of the point of 
intersection (left axis) wrt its position along the interface obtained from SPH simulation The background contours 

are for plastic strain in the solid and are set to scale with the x-axis. 

4.4.3.  Effective Pressure 

A physical explanation was given in the last section that demonstrates why the plastic deformation occurs at a radial 
offset. However, it would be interesting to understand the phenomenon from a quantitative perspective. Moreover, 
in this section we aim at providing a criterion that could predict the zone where plasticity will occur based on 
quantities available in classic CFD calculations, namely pressure and velocity in the fluid. We define a new variable 
named effective pressure as given below, 

( )2
0
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Y
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)P(P
−

−
=
ρ

σ

 
(21) 

where P is the pressure at the interface where the effective pressure is being calculated, 0Yσ is the initial Yield stress 
for the material (508 MPa in the present simulation), ρ is the density of the solid , SWv is the velocity of the shock 



front along the interface at the point where the effective pressure is calculated and lc is the speed of sound in the 
liquid. The effective pressure is a non-dimensional parameter that should indicate the pressure that effectively leads 
to plastic strain in the solid. The numerator gives the excess pressure above the Yield stress, as only the load above 
the Yield stress could lead to plasticity. The denominator takes into account the inertial effects due to the density of 
the solid and the excess velocity of the shock front above the sound speed of liquid. The excess velocity is the shock 
front velocity ( SWv ) minus the speed of sound in liquid ( lc ). The term ( )lSW cv −  makes sure that if the velocity of 
shock front along the interface is much higher than the sound speed, the effective pressure acting on the material (due 
to inertial effects) is reduced via the term ( )2lSW cv −ρ . The density term in the denominator plays an important role 
since the phenomenon is linked to the inertial effects in the material, however for the present simulation the density 
effects can be neglected as we simulate the same material for different cases.  

 
Figure 15. Contours of plastic strain for 50 MPa driving pressure and 0.15 mm bubble radius for (a) Stand-off 

ratio SR = 1.2, (b) stand-off ratio SR = 1.33 & (c) stand-off ratio SR = 1.5. 

We present three cases with different stand-off ratios (1.2, 1.33 & 1.5). The contours of plastic strain are shown in 
fig 6.15 a-c. It can be observed that the three cases produce distinctly different patterns of plastic strain. The effective 
pressure given by equation 20 will be used for all the three cases to check whether the effective pressure can 
qualitatively match the plastic strain in the solid, thus giving us a parameter (effective pressure) that can be used in 
fluid simulations to indicate the erosion prone areas better while considering the inertial effects. 

 



 
Figure 16. Plot of plastic strain and effective pressure for (a) Stand-off ratio 1.2, (b) stand-off ratio 1.33 & (c) 

stand-off ratio 1.5 for 50 MPa driving pressure and 0.15 mm bubble radius. 

Plastic strain in the material (plotted along a line parallel to the interface in the material passing through the maximum 
plastic strain position) and effective pressure at the interface are plotted for all three cases (shown in fig 6.15) in fig 
6.16 a-c. It can be observed that effective pressure defined by equation 20 qualitatively matches well with plastic 
strain in the material for SR = 1.33 & 1.5. However, for SR = 1.2, the plastic strain does not match equally well with 
effective pressure close to the symmetry axis. The contour in fig 6.15(a) for SR =1.2 shows a maximum plastic strain 
at an offset which is due to the inertial effects as explained earlier. However, close to the symmetry axis a tiny zone 
of relatively high plastic deformation can also be observed, which is actually due to the impact of the micro jet. The 
effective pressure definition (equation 20) being based on the assumption that all energy that reaches the interface is 
via the shock wave impact, the effective pressure near the symmetry axis for SR=1.2 does not correlate with the micro 
jet impact. The lower the stand-off ratio, the higher the dynamic pressure experienced by the interface would be. 
Hence the effective pressure definition can be used to predict plastic strain when the stand-off ratio is sufficiently 
large (SR >1.3). For lower stand-off ratios, the plastic strain close to the symmetry axis is under predicted by effective 
pressure and an alternative approach should be proposed that is the aim of the next section. 



4.4.4. Characteristic response time 

 
Figure 17. (a)Contour of plastic strain showing depth of plastic strain zone at different point on the interface. The 
material characteristic time is defined as the depth of the plastic strain divided by the speed of sound in the solid, 
e.g. material characteristic time at point P1 can be calculated as d1/cs (where cs is the sound speed in the solid), 

(b)shows a typical pressure vs time curve for a certain point on the interface, to estimate the loading characteristic 
time we consider the time from when the pressure is above 100 MPa till it drops down to 508 MPa (initial yield 

stress). 

An alternative approach to quantitatively analyze the material behavior is presented in this section. We focus on two 
quantities: material characteristic time (or characteristic response time) and loading characteristic time. We use the 
definition of material characteristic time as mentioned in Roy et al. [69], which is given by the depth of the plastic 
zone divided by the speed of sound in solid and which signifies the amount of time required for the material to react 
to a load.  Figure 17a shows the depth of the plastic zone at various points along the interface from which the material 
characteristic time was computed. On the other hand, the loading characteristic time for a point at the interface is 
defined as the time during which the pressure at that point first rises above 100 MPa (black dashed horizontal line in 
figure 17b) and finally drops down below 508 MPa (initial yield stress for the material marked as green dashed line 
in figure 17b).The exceedance limit of 100 MPa is chosen in our case since a sharp change in slope of the pressure-
time curve is observed around 100 MPa as evident from figure 17b, it is thus assumed that the loading due to bubble 
collapse starts at the time when the pressure reaches 100 MPa. It should be noted that if the material characteristic 
time is greater than the loading characteristic time, the material behavior would be dominated by the inertial effects. 



 
Figure 18. Plot shows material characteristic time and loading characteristic time along the interface for SR= 

1.33, plot background image is the contours of plastic strain for SR = 1.33. 

Figure 18 shows the plot of both material characteristic time and loading characteristic time along the interface for 
SR = 1.33, the contours of plastic strain are set as the background in the plot. It can be observed that for the region 
close to the symmetry axis where the material exhibits relatively low plastic deformation (region marked as A in the 
figure), the loading characteristic time is lower than the material characteristic time and for region B where the 
material characteristic time is lower than the loading characteristic time, the material has time to deform under the 
load and hence exhibits relatively higher plastic deformation 

For the case of SR = 1.2, where the effective pressure fails to capture the plastic zone close to the symmetry axis, it 
would be interesting to see whether characteristic time plot can capture it better. Figure 19 shows the characteristic 
time plots for SR = 1.2. It can be observed that in region A where the plastic strain is relatively high, the material 
characteristic time is lower than the loading characteristic time thus predicting well the effect of inertia and dynamic 
pressure. As we move further along the interface into region B, the material characteristic time becomes marginally 
larger than the loading characteristic time, thus leading to a slightly lower plastic strain zone as the inertial effects 
come into play. Further, in region C the material characteristic time is much lower than the loading characteristic 
time thus the material exhibits higher strain rate since the inertial effects are not dominant. Thus, characteristic time 
analysis can be used to predict plastic strain zone in the material. However, the definition of the material characteristic 
time used in this study requires knowing the plastic strain depth and hence cannot be estimated from an only fluid 
simulation. 



 
Figure 19. Plot shows material characteristic time and loading characteristic time along the interface for SR= 1.2. 

Background image is the contours of plastic strain for SR = 1.2. 

4.5. Experimental comparison 

A well-known experimental study by Phillip and Lauterborn [27] report findings for bubble collapsing over soft 
aluminum and the consequent damage that occurs due to one or more collapses. One of the results in their paper show 
damage patterns for standoff ratio 1.4 (which is close to the standoff ratio of 1.33 for detached cavities used in this 
study), where a ring shaped pattern is observed. The ratio of the damage ring radius to the maximum bubble radius 
is observed to be around 1.3 by Phillip and Lauterborn [27] in the experimental findings which is close to the ratio of 
dPM and bubble radius of 1.1 for the numerical simulations in our case. Phillip and Lauterborn [27] associate the 
occurrence of ring type damage to the fact the rebound bubble collapses over the damaged ring. However, it cannot 
be denied that it can be first the plastic strain developed due to the shock wave from the primary collapse (as shown 
by our simulation) and then additional plastic strain due to the micro bubbles in the rebound bubble that causes the 
damage. Thus even though there does not exist a direct evidence of the fact that shock wave causes a ring shaped 
deformation, the experimental and the numerical results suggest that it is very much possible that the ring can be due 
to both: first the shock wave and then the rebound bubble, this of course remains a topic of further investigation. 

5. Conclusions and future work  

An axisymmetric SPH FSI solver has been developed, which is capable of computing the collapse of a single bubble 
over an elastic-plastic solid following Johnson-Cook yield criterion. The fluid solver was validated against the 
analytical solution of the Rayleigh-Plesset equation and the solid solver against an FEM solver for an indentation 
case.  

Simulations of the collapse of a detached and an attached cavity suggest that the micro jet generated during the 
collapse of an attached cavity has an ability to cause a larger maximum plastic strain in the material as compared to 
the shock wave generated during the collapse of a detached cavity. It is observed that for the same magnitude of 
pressure wave initiating the collapse and the same size of the bubble, the micro jet can produce twice the maximum 



plastic deformation compared to a shock wave. Hence, in case of repeated collapse, a micro jet dominated impact 
would exhibit a smaller incubation time compared to the detached cavity. On the other hand, the volume of material 
that is plastically deformed in case of a micro jet is miniscule compared to a shock wave impact (almost 800 times 
smaller). This would imply that, even though the incubation time for material erosion might be lower for a micro jet 
collapse, the shock wave can plastify a much larger volume of material and hence the erosion rate should be higher 
for a shock wave impact. Hence it could be inferred that the material erosion ability of a shock wave dominated 
collapse is much higher than that of a micro jet dominated collapse.  

An important aspect of cavitation loading is the high strain rate associated to the phenomenon. The present results 
show that the strain rate effects can significantly affect plastic deformation in the solid since non-strain rate sensitive 
simulations produce around 61% higher plastic deformation for a detached cavity compared to a strain rate sensitive 
model in the case of stainless steel A2205.  

An important and novel finding in the present article is the response of the material for a detached cavity. It is shown 
that the maximum plastic deformation does not occur at the center of collapse but at an offset from the center (cf. 
figure 7d). Even though the pressure experienced by the material is the highest at the center, it does not produce the 
maximum plastic deformation there. This phenomenon is due to inertial effects, since the material tends not to respond 
to the load as the rate of loading and unloading is extremely high. The effect is linked to the high velocity of shock 
front along the interface close to the symmetry axis. The study clearly demonstrates that maximum pressure does not 
always correspond to the location of maximum plastic deformation.  

A new parameter called effective pressure is defined in the article which matches well with the plastic strain in the 
material. for a standoff ratio SR=1.33. Such a parameter can easily be used in CFD calculation to predict the location 
where plasticity will be localized. It is found that the effective pressure can also predict the location of the plastic 
zone for a higher standoff ratio SR=1.5. However, the definition of effective pressure is based on the shock wave 
impacting the solid and hence is only valid for large stand-off ratios where plasticity is governed by wave propagation 
only. For lower stand-off ratios the effective pressure under predicts the plastic strain near the symmetry axis which 
is due to the impact of the micro jet and not due to the shock wave. 

Another approach to quantifying material response while considering inertial effects is then proposed based on a 
characteristic time analysis. The material characteristic time and the loading characteristic time are compared for two 
cases (SR = 1.2 & 1.33), where a lower material characteristic time relative to the loading characteristic time signifies 
more dominant inertial effects and hence relatively lower plastic strain. It is found that the characteristic time analysis 
predicts the zones of plastic deformation quite well. However, the definition of material characteristic time is such 
that it cannot be known without solving for the solid.  
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Nomenclature 

W SPH Kernel function 
ha kernel smoothing length 
Pa pressure of particle a 
ma mass of particle a 
ρa density of particle a 
ρa0 Initial density of particle a (at the start of the simulation) 
σ stress tensor 
ε strain tensor 

i
av  velocity of particle a in direction i 



Πab artificial viscosity term for interaction of particle a & b 
A,B,C coefficients in Johnson-Cook model 

abF


 Force vector on particle a due to particle b 

rF , zF  Force component in radial and axial direction respectively 

rn , zn  Interface normal unit vector components in radial and axial directions respectively 
Interface

abF


 Force vector on particle a due to particle b (when a & b interact from across the 
interface) 

α, β coefficients in artificial viscosity term 

abc  average sound speed of particle a and b 

aη  2D density of particle a 

aη
  corrected 2D density of particle a 

ra radial distance of particle a from the symmetry axis 
af1  correction function for density equation of particle a 

aζ  non-dimensional radial distance of particle a from the symmetry axis 

Yσ  yield stress for the material 

0Yσ  initial yield stress for the material 
K, 1α   coefficients for the yield stress-strain curve 

Hd  diametric extent of the load 
Hσ  maximum amplitude of the hydrodynamic impact pressure 

Ht  characteristic impact rise duration 

zα  Axial distance of bubble collapse point from the interface 
μ, λ Lamé parameters 

0pε  Reference plastic strain rate  
*
pε  Non-dimensional effective plastic strain rate 
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Appendix A 

Return mapping algorithm 

To calculate plastic strain, a return mapping algorithm is required to return from a trial stress state to the yield curve 

at any time step, an incremental plastic strain is then calculated corresponding to the return from trial stress to the 

yield curve. Firstly, we define the von Mises stress as: 
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And the equivalent plastic strain is defined as, 
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At any time, step, as the material deforms the stress state is updated. If the von Mises stress goes beyond the Yield 

stress, the stress state is assumed as a trial state ( t
VMσ ). The stress state then has to return back to the yield curve as 

shown in fig B.1. The following equation then gives the solution to the incremental plastic strain (ΔεP): 

03 1 =∆+−∆− − )(G P
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t
VM εεσεσ  (B.3) 



Where t
VMσ is the trial von-Mises stress in the material, Pε∆ is the incremental plastic strain, 1−N

Pε is the plastic strain 

at time step N-1 and Yσ is the yield stress in the material. The above equation can be solved using numerical methods 

such as Newton-Raphson. Yield stress can be calculated using equation 48, however, the yield stress not just depends 

on the plastic strain but also on plastic strain rate. To calculate plastic strain, rate the following equation is used: 
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(B.4) 

where a backward differencing method is used to calculate the derivative of plastic strain and p
N
p

N
p εεε ∆+= −1  

The above calculation can be subsisted in equation 48 to give yield stress and finally the yield stress is substituted in 

equation B.3 which then becomes a non-linear equation in Pε∆ , iterative methods such as newton Raphson can then 

be used to solve for Pε∆ at each time step. 

 

Figure B.1. Schematic shows the yield curve and the stress return algorithm in the π-plane, shows how stress from 

the trial state returns back to the yield curve. 



 

Figure B.2. Schematic shows the decomposition of elastic and plastic strain and return to the yield curve from a 

trial stress on a stress-strain curve. 
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