%0 Journal Article %T Mechanical strength of wet particle agglomerates %+ Laboratoire de Mécanique et Génie Civil (LMGC) %+ Physique et Mécanique des Milieux Divisés (PMMD) %+ Danang Architecture University (DAU) %+ Multiscale Material Science for Energy and Environment (MSE 2) %+ Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE) %+ ArcelorMittal Maizières Research SA %A Vo, Thanh-Trung %A Mutabaruka, Patrick %A Nezamabadi, Saeid %A Delenne, Jean-Yves %A Izard, Edouard %A Pellenq, Roland %A Radjai, Farhang %< avec comité de lecture %@ 0093-6413 %J Mechanics Research Communications %I Elsevier %V 92 %P 1-7 %8 2018 %D 2018 %R 10.1016/j.mechrescom.2018.07.003 %K Granular matter %K Agglomerate %K Capillary force law %K Discrete element method %K Plastic strength %K Diametrical compression %Z Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] %Z Engineering Sciences [physics]/Civil EngineeringJournal articles %X Using particle dynamics simulations, we investigate the strength and microstructure of agglomerates of wet frictional particles subjected to axial compression. The numerical model accounts for the cohesive and viscous effects of the binding liquid up to a debonding distance with the liquid assumed to be distributed homogeneously inside the agglomerate. We show that wet agglomerates undergo plastic deformation due to the rearrangements of primary particles during compression. The compressive strength is thus characterized by the plastic threshold before the onset of failure by the irreversible loss of wet contacts between primary particles. We find that the agglomerate plastic threshold is proportional to the characteristic cohesive stress defined from the liquid-vapor surface tension and the mean diameter of primary particles, with a prefactor that is a nearly linear function of the debonding distance and increases with size span. We analyze the agglomerate microstructure and, considering only the cohesive capillary forces at all bonds between primary particles, we propose an expression of the plastic strength as a function of the texture parameters such as the wet coordination number and packing fraction. This expression is shown to be consistent with our simulations up to a multiplicative factor reflecting the distribution of the capillary bridges. %G English %2 https://hal.science/hal-01863416/document %2 https://hal.science/hal-01863416/file/Art_Vo_al_Mech_Research_Comm_2018.pdf %L hal-01863416 %U https://hal.science/hal-01863416 %~ CIRAD %~ CNRS %~ UNIV-MONTP2 %~ INRA %~ IATE %~ LMGC %~ GENIECIVIL %~ AGREENIUM %~ MIPS %~ BA %~ UNIV-MONTPELLIER %~ INSTITUT-AGRO-MONTPELLIER %~ INRAE %~ INRAEOCCITANIEMONTPELLIER %~ UM-2015-2021 %~ INSTITUT-AGRO