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ABSTRACT

In this paper, we present a new distributed algorithm for min-
imizing a sum of non-necessarily differentiable convex func-
tions composed with arbitrary linear operators. The over-
all cost function is assumed strongly convex. Each involved
function is associated with a node of a hypergraph having the
ability to communicate with neighboring nodes sharing the
same hyperedge. Our algorithm relies on a primal-dual split-
ting strategy with established convergence guarantees. We
show how it can be efficiently implemented to take full ad-
vantage of a multicore architecture. The good numerical per-
formance of the proposed approach is illustrated in a problem
of video sequence denoising, where a significant speedup is
achieved.

Index Terms— convex optimization, distributed algo-
rithms, proximal methods, video processing, parallel pro-
gramming.

1. INTRODUCTION

Numerous tasks in image processing, such as video restora-
tion, can be formulated as nonsmooth optimization problems
over large datasets. In this context, it is necessary to pro-
pose parallel/distributed methods to compute efficiently the
solutions to the corresponding high-dimensional optimiza-
tion problems. In this work, we focus on the case when the
objective function is a sum of several convex non-necessarily
smooth functions [1]. In the general case, a closed form
expression of the solution does not exist, and developing iter-
ative strategies becomes necessary.
Primal-dual splitting methods are used prominently when
dealing with convex optimization problems where large-size
linear operators are involved [2, 3, 4, 5]. This class of algo-
rithms is well suited for large-scale problems encountered in
image processing [6, 7]. Primal-dual techniques are based on
several well-known strategies such as the Forward-Backward
iteration [8, 9], the Forward-Backward-Forward iteration
[10, 11], the Douglas-Rachford algorithm [12, 13], or the

Alternating Direction Method of Multipliers [14, 15, 16, 17].
Recently, primal-dual algorithms have been combined with
block-coordinate approaches [18, 19]. These algorithms
can achieve a fast convergence speed with reduced mem-
ory requirements. Both stochastic [20, 21] and deterministic
[22, 23] versions of these have been used in image process-
ing and machine learning applications. In the latter context,
algorithms based on a dual Forward-Backward approach are
often refered to as dual ascent methods.
The aforementioned algorithms were originally proposed
with a centralized implementation, which may be subopti-
mal or even unsuitable when dealing with massive datasets.
Various asynchronous or distributed extensions have recently
been proposed [14, 24, 25, 26], where each term is han-
dled independently by a processing unit and the convergence
toward an aggregate solution is ensured via a suitable com-
munication strategy between those processing units.
In this paper, we propose a new proximal algorithm appli-
cable to multicore architectures for minimizing a sum of
convex functions involving linear operators when the global
cost function is strongly convex. The proposed algorithm
extends the algorithm that was recently proposed in [22, 27]
to a distributed asynchronous scenario. In this algorithm,
each involved function is locally related to a node of a con-
nected hypergraph, where communications are allowed only
between neighboring nodes. Our approach takes advan-
tage of the sparse structure of the involved linear operators,
which limits the local memory cost required for each node.
Our proposal benefits from the classical key advantages of
primal-dual splitting strategies, in particular their ability to
handle a finite sum of convex functions without having to
invert any linear operator, and its convergence is guaranteed.
The remainder of this paper is organized as follows: in Sec-
tion 2 we recall some fundamental background and state the
problem. In Section 3, our asynchronous block dual forward-
backward optimization algorithm is presented. In particular,
we describe our dimension reduction strategy. Section 4
shows the good performance of the proposed algorithm in
the context of video denoising. Finally, some conclusions are



drawn in Section 5.

2. PROBLEM FORMULATION

2.1. Notation

Let ψ be a proper lower-semicontinuous convex function
from RN to s ´ 8,`8s and let B P RNˆN be a symmet-
ric positive definite matrix. The proximity operator of ψ at
rx P RN relative to the metric induced by B, denoted by
proxB,ψprxq, is defined as the unique solution to the following
minimization problem [28, 1]:

minimize
xPRN

ψpxq `
1

2
}x´ rx}2B , (1)

where } ¨ }B denotes the usual Euclidean norm of RN ,
weighted by B.

2.2. Minimization problem

This paper aims at solving the following general form of
strongly convex optimization problem:

Find rx “ argmin
xPRN

Gpxq `
1

2
}x´ rx}2, (2)

where G is a proper lower-semicontinuous convex functions
from RN to s ´ 8,`8s and rx is a given point of RN . Note
that this optimization task is also equivalent to computing
proxI,Gprxq. In accordance with many variational models
used in image processing [29, 30], we will assume that func-
tion G can be split as follows:

p@x P RN q Gpxq “
J
ÿ

j“1

gjpAjxq, (3)

where, for every j P t1, . . . , Ju, gj : RMj Ñs ´8,`8s is
a proper lower-semicontinuous convex possibly nonsmooth
function and Aj is a real-valued matrix of dimension Mj ˆ

N . In addition, we will need the technical assumption that
ŞJ
j“1 dom pgj ˝Ajq is nonempty.

A number of primal-dual algorithms [8, 12, 13, 14] can be
applied to Problem (2) by making use of its dual formulation.

3. ASYNCHRONOUS DUAL FORWARD-BACKWARD
SCHEME

3.1. Consensus formulation

Efficient distributed schemes can be obtained by resorting to
a global consensus technique [31, 14, 24, 2] and rewriting the
problem under the following form:

Find px “ argmin
x“pxj

q1ďjďJPΛ

J
ÿ

j“1

gjpAjx
jq`

1

2

J
ÿ

j“1

ωj}x
j´rx}2,

(4)

Algorithm 1 Proposed distributed algorithm

Initialization:
T˚t ” index set of nodes using block t P t1, . . . , T u,
tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P
t1, . . . , T uq

ÿ

jPT˚t

ωj,t “ 1,

yj0 P R
Mj , p@t P Tjq rxj0st “ rrxst ´ ω

´1
j,tA

J
j,ty

j
0,

ε Ps0, 1s and p@` P t1, . . . , Luq ϑ` “ min
jPV`,tPTj

ωj,t.

Main loop:
for n “ 0, 1, . . . do
γn P rε, 2´ εs
jn P t1, . . . , J ` Lu
if jn ď J then

Local optimization:
ryjnn “ yjnn ` γnB

´1
jn

ÿ

tPTjn

Ajn,trx
jn
n st

yjnn`1 “ ryjnn ´ γnB
´1
jn

proxγnB´1
jn
,gjn

`

γ´1
n Bjnry

jn
n

˘

yjn`1 “ yjn, j P t1, . . . , Juztjnu
for t P Tjn do
rxjnn`1st “ rx

jn
n st ´ ω

´1
jn,t

AJjn,tpy
jn
n`1 ´ y

jn
n q

end for
prxjn`1stqtPTj “ prx

j
nstqtPTj , j P t1, . . . , Juztjnu

else
Projection:
`n “ jn ´ J
yjn`1 “ yjn, j P t1, . . . , Ju
for j P V`n do

for t P Tj do
rxjn`1st “ rx

j
nst`

γnϑ`nω
´1
j,t

`

mean
`

prxj
1

n stqj1PV`nXT˚t

˘

´ rxjnst
˘

end for
end for
prxjn`1stqtPTj “ prx

j
nstqtPTj , j R V`n .

end if
end for

where pωjq1ďjďJ Ps0, 1sJ are such that
řJ
j“1 ωj “ 1. Essen-

tially, the global variable x has been replaced by a collection
of vectors pxjq1ďjďJ , each one being associated with one
of the terms in (3). In this reformulation, Λ is a vector sub-
space of RNJ defined so as to introduce suitable coupling
constraints on the latter variables.
The second ingredient of our distributed approach is that it re-
lies on a hypergraph formulation. Each node j P t1, . . . , Ju
is associated with the function gj , which is considered lo-
cal and processes its own private data. Moreover, each
node j is allowed to communicate with nodes that be-
long to the same group V` with ` P t1, . . . , Lu. The sets
pV`q1ď`ďL can then be viewed as the hyperedges of the hy-
pergraph (the standard graph topology is recovered when
every V` has only 2 elements). In this context, the constraint



space Λ is decomposed in a collection of constraint spaces
pΛ`q1ď`ďL of lower dimension in such a way that, for every
x “ rpx1qJ, . . . , pxJqJsJ P RNJ ,

x P Λ ô p@` P t1, . . . , Luq pxjqjPV`
P Λ`. (5)

3.2. Proposed distributed strategy

When the operators pAjq1ďjďJ have no specific structure,
the DBFB algorithm from [22, 27] leads to a distributed al-
gorithm that we proposed as preliminary work in [32]. This
method however requires each node of the hypergraph to han-
dle a local copy of an N -dimensional variable, which may be
prohibitive for highly dimensional problems. Hopefully, as
is often the case in image processing problems, the operators
pAjq1ďjďJ have a sparse block structure (like gradient oper-
ators), which makes it possible to alleviate this problem.

More specifically, we assume in the sequel that

p@j P t1, . . . , Juq
`

@xj “ prxjstq1ďtďT P RN
˘

Ajx
j “

ÿ

tPTj

Aj,trx
jst (6)

where, for every j P t1, . . . , Ju, rxjst is a vector corre-
sponding to a block of data of dimension L, T is the overall
number of blocks (i.e., N “ TL), and Tj Ă t1, . . . , T u
defines the reduced index subset of the components of vec-
tor xj acting on the operator Aj . In the above equation,
pAj,tqtPTj are the associated reduced-size matrices of dimen-
sions Mj ˆ L. To avoid degenerate cases, we will assume
that the sets pTjq1ďjďJ are nonempty and their union is equal
to t1, . . . , T u.

The specific form of the operators pAjq1ďjďJ shows that
it is necessary to define spaces Λ and pΛ`q1ď`ďL in order to
reach a consensus only for the components prxjstq1ďjďJ,tPTj

of interest in vectors pxjq1ďjďJ . Under such a consensus con-
straint, Problem (4) reduces to the minimization, with respect
to prxjstq1ďjďJ,tPTj

, of

J
ÿ

j“1

gj

´

ÿ

tPTj

Aj,trx
jst

¯

`
1

2

J
ÿ

j“1

ÿ

tPTj

ωj,t
›

›rxjst´rrxst
›

›

2
, (7)

where pωj,tq1ďjďJ,tPTj are positive constants. The appli-
cation of the DBFB minimization method to the resolu-
tion of the above constrained problem yields Algorithm
1. Like its synchronous counterpart, Algorithm 1 benefits
from the acceleration provided by variable metric meth-
ods through the introduction of preconditioning matrices
pBjq1ďjďJ in RMjˆMj that must satisfy the majorization
rule Bj ľ

ř

tPTj
ω´1
j,tAj,tAJj,t. Under this condition, con-

vergence guarantees on both the generated primal sequences
pxnqnPN and dual sequences pyjnqnPN with j P t1, . . . , Ju
can be deduced from [22] under mild requirements on the
sequence pjnqnPN defining the variables to be updated at each
iteration.

3.3. Case of practical interest

We now focus on the practical case when only C ď J pro-
cessing units are available. An interesting instance of Algo-
rithm 1 is when L “ C ` 1 and when each hyperedge V`
with ` P t1, . . . , Cu corresponds to a given computing unit
where the computations are locally synchronized. Finally, the
last hyperedge VL is set to t1, . . . , Ju in order to model the
global synchronization steps. These consist of an averaging
over all the available nodes. Then, at each iteration n, only
a subset of the dual variable indices may be activated within
the `-th hyperedge. This update is followed by either local or
global synchronization.

4. APPLICATION TO VIDEO DENOISING

4.1. Problem statement

In this section, we provide a validation of the proposed dis-
tributed algorithm for the denoising of video sequences.
The original sequence x “ prxstq1ďtďT P RTL is natu-
rally decomposed in T blocks of data, each corresponding
to one frame containing L pixels (hence, TL “ N ). The
sought sequence x is corrupted by additive zero-mean white
Gaussian noise, so yielding the observed noisy sequence
rx “ prrxstq1ďtďT P RTL. An estimate of the unknown video
can be inferred by solving Problem (2) where J “ T . The
last quadratic term in (2) is a least squares data fidelity term,
and functions pgjq1ďjďT stand for regularization functions
that incorporate both temporal and spatial prior knowledge on
each video frame. For every t P t1, . . . T u, the regularization
function gt : RMt Ñ r0,`8r reads:

gt pprxst1qt1PTt
q “ η tgvprxstq ` ιrxmin,xmaxsLprxstq

` ht pprxst1qt1PTt
q (8)

with, for every t P t1, . . . , T uq, Tt “
 

maxtt ´ 1, 1u, t,

mintt ` 1, T u
(

. Hereabove, ιrxmin,xmaxsL designates the in-
dicator function of rxmin, xmaxs

L, equal to zero over this in-
terval, and `8 everywhere else. tgv denotes the Total Gen-
eralized Variation regularization from [33]. Moreover, ht is
a temporal regularization term that takes into account motion
estimation between consecutive frames similarly to the strat-
egy used in [27].

4.2. Distributed implementation

We employ our proposed asynchronous distributed frame-
work to address this denoising problem. The functions
pgtq1ďtďT and their associated primal variables prxtst1qt1PTt

for t P t1, . . . , T u, are spread over C computing units,
each of them handling the same number κ of nodes (i.e.
T “ κC). The associated hyperedges are then given by:
p@c P t1, . . . , Cuq Vc “ tpc´ 1qκ` 1, . . . , cκu. In our case,
at each local synchronization step, the update of each frame



requires the averaging of at most 3 images. During the global
synchronization step, local sums are transmitted to the next
computing unit to compute an average which is sent back
to the current unit. This workflow is illustrated by Figure 1
when κ “ 3. In practice, we only activate global synchro-
nization every 4 iterations. This frequency was chosen in
order to achieve a good trade-off between the communication
overhead and a satisfactory convergence speed.

4 5 6 7 8 9

»

–

x3

x4

x5

fi

fl

»

–

x4

x5

x6

fi

fl

»

–

x5

x6

x7

fi

fl

»

–

x6

x7

x8

fi

fl

»

–

x7

x8

x9

fi

fl

»

–

x8

x9

x10

fi

fl

rx4
nst1 rx5

nst1 rx6
nst1 rx7

nst1 rx8
nst1 rx9

nst1

Transmit local sum

. . .. . .. . . . . .. . .. . .

c “ 2 c “ 3

4 5 6 7 8 9

»

–

x3

x4

x5

fi

fl

»

–

x4

x5

x6

fi

fl

»

–

x5

x6

x7

fi

fl

»

–

x6

x7

x8

fi

fl

»

–

x7

x8

x9

fi

fl

»

–

x8

x9

x10

fi

fl

rx4
nst1 rx5

nst1 rx6
nst1 rx7

nst1 rx8
nst1 rx9

nst1

Transmit average

. . .. . .. . . . . .. . .. . .

Fig. 1: Illustration of the global synchronization process between
computing unit c “ 2 and computing unit c “ 3.

4.3. Simulation results

We now evaluate the performance of the proposed denoising
method on the standard test video sequences Foreman, and
Irene, composed of T “ 72 frames of size 348 ˆ 284 and
352 ˆ 288 respectively, so that N is more than 6ˆ 107. The
initial SNR (signal-to-noise ratio) values are 24.41 dB for the
first sequence and 25.51 dB for the second. Our method is im-
plemented in the Julia-0.4.6 language and a Message Passing
Interface (MPI) wrapper for managing communication be-
tween cores [34, 35]. We use a multi-core architecture using
2 Intel(R) Xeon(R) E5-2670 v3 CPU @ 2.3 GHz processors,
each with 12 cores, hence C “ 24. We evaluate the proposed
distributed approach in terms of restoration quality and accel-
eration provided by our algorithm with respect to the number
of cores. The images composing the video sequences are par-
titioned in groups of equal size κ processed by the computing
units.

Figure 2 displays the speedup in execution time with re-
spect to the number of cores. The speedup is initially greater
than 1:1 as the number of cores increases from 1 to 12. This
effect is due to the fact that the cache memory increases with
each new processor. This reduces main RAM access and low-
ers the global execution time despite the communication over-
head. However, this speedup starts to saturate after 12 cores
(as in Amdahl’s law [36]). This may be due to the fact that
inter CPU exchanges, rather than inter-core start to dominate.

The former are significantly slower.
Figure 3 shows some frames extracted from the degraded

and restored sequences, which allows us to evaluate the good
visual quality of the performed denoising. The SNRs of the
restored sequences are equal to 32.04 dB and 30.97 dB, re-
spectively.
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Fig. 2: Speedup with respect to the number of used cores: proposed
method (solid, blue, diamond), linear speedup (dashed, green).

Fig. 3: Example of input degraded images (top) and associated
restored images (bottom) for Foreman (left) and Irene (right) se-
quences.

5. CONCLUSION

In this paper, we introduced a distributed version of the pre-
conditioned dual block-coordinate forward-backward algo-
rithm for minimizing a strongly convex function. We mainly
focused on an instance of the proposed approach when the
involved linear operators have a block sparse structure. The
experimental results we obtained for video denoising are
quite promising and demonstrate the ability of our algorithm
to take advantage of multiple cores. In future work, it would
be interesting to evaluate the proposed optimization strategy
on more distributed parallel computing systems.
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