
HAL Id: hal-01839973
https://hal.science/hal-01839973

Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Odyssey Approach for Optimizing Federated
SPARQL Queries

Gabriela Montoya, Hala Skaf-Molli, Katja Hose

To cite this version:
Gabriela Montoya, Hala Skaf-Molli, Katja Hose. The Odyssey Approach for Optimizing Federated
SPARQL Queries. International Semantic Web Conference, Oct 2017, vienne, Austria. �hal-01839973�

https://hal.science/hal-01839973
https://hal.archives-ouvertes.fr

The Odyssey Approach for Optimizing Federated
SPARQL Queries

Gabriela Montoya1, Hala Skaf-Molli2, and Katja Hose1

1 Aalborg University, Denmark {gmontoya,khose}@cs.aau.dk
2 Nantes University, France hala.skaf@univ-nantes.fr

Abstract. Answering queries over a federation of SPARQL endpoints requires
combining data from more than one data source. Optimizing queries in such sce-
narios is particularly challenging not only because of (i) the large variety of pos-
sible query execution plans that correctly answer the query but also because (ii)
there is only limited access to statistics about schema and instance data of re-
mote sources. To overcome these challenges, most federated query engines rely
on heuristics to reduce the space of possible query execution plans or on dynamic
programming strategies to produce optimal plans. Nevertheless, these plans may
still exhibit a high number of intermediate results or high execution times because
of heuristics and inaccurate cost estimations. In this paper, we present Odyssey,
an approach that uses statistics that allow for a more accurate cost estimation for
federated queries and therefore enables Odyssey to produce better query execu-
tion plans. Our experimental results show that Odyssey produces query execution
plans that are better in terms of data transfer and execution time than state-of-the-
art optimizers. Our experiments using the FedBench benchmark show execution
time gains of at least 25 times on average.

1 Introduction
Federated SPARQL query engines [1, 4, 7, 14, 17] answer SPARQL queries over a fed-
eration of SPARQL endpoints. Query optimization is a particularly complex and chal-
lenging task in a federated setting. The query optimizer minimizes processing and com-
munication costs by selecting only relevant sources for a query. It decomposes the query
into subqueries, and produces a query execution plan with good join ordering and phys-
ical operators. With limited access to statistics, however, most federated query engines
rely on heuristics [1, 17] to reduce the huge space of possible plans or on dynamic pro-
gramming (DP) [5, 7] to produce optimal plans. However, these plans may still exhibit
a high number of intermediate results or high execution times because of inadequate
heuristics or inaccurate estimations of cost functions [8].

In this paper, we propose Odyssey, a cost-based query optimization approach for
federations of SPARQL endpoints. Odyssey defines statistics for representing entities
inspired by [12] and statistics for representing links among datasets while guaranteeing
result completeness. In a federated setting, computing statistics naturally requires ac-
cess to more than one dataset. To reduce the overhead, Odyssey uses entity synopsis to
identify links among datasets. This comes at the risk of losing some accuracy in the link
identification but still guarantees that no links will be missed during query optimization,

i.e., there is a small risk that more sources are queried than strictly necessary but the
query result will be complete.

Odyssey uses the computed statistics to estimate the sizes of intermediate results and
dynamic programming to produce an efficient query execution plan with a low number
of intermediate results. In summary, this paper makes the following contributions:
• Concise statistics of adequate granularity representing entities and describing links

among datasets while guaranteeing result completeness.
• A lightweight technique to compute federated statistics in a federated setup that

relies on entity synopsis.
• A query optimization algorithm based on dynamic programming using our statistics

to find the best plan.
• Extensive evaluation using a well-accepted standard benchmark for federated query

processing [16], including comparison against a broad range of state-of-the-art re-
lated work [5, 7, 15, 17]. The results show Odyssey’s superiority with a speed-up of
up to 126 times and a reduction of transferred data of up to 118 times on average.

This paper is organized as follows. Section 2 presents related work, Section 3 describes
the Odyssey approach and its algorithms. Section 4 discusses our experimental results.
Finally, conclusions and future work are outlined in Section 5.

2 Related Work
Query optimization in state-of-the-art federated query engines, such as FedX [17] and
ANAPSID [1], relies on heuristics. For instance, FedX [17] integrates the variable
counting heuristic, where relative selectivity of triple patterns is heuristically estimated
according to the presence of constants and variables in the triple patterns. These heuris-
tics are lightweight but might not lead to the best query execution plan [18]. To find
an optimal plan, several approaches [5, 7, 14, 19] rely on dynamic programming. How-
ever, given the high number of alternative query plans for SPARQL queries with many
triple patterns, dynamic programming is very expensive [8]. Another important factor
of query optimization is source selection. Several approaches [1, 7, 15, 17, 19] try to
determine the relevance of a source by sending ASK queries, which increases the costs
for a single query but might amortize in large federations for an overlapping query load.
Another technique is to estimate whether combining the data of multiple sources can
lead to any join results, e.g., by computing the intersection of the sources’ URI author-
ities [15] or detailed statistics [10, 13].

Federated query optimization can also rely on cardinality estimations based on
statistics and used, for instance, to reduce sizes of intermediate results. Most avail-
able statistics [3] use the Vocabulary of Interlinked Datasets VOID [2], which describes
statistics at dataset level (e.g., the number of triples), at the property level (e.g., for each
property, its number of different subjects), and at the class level (e.g., the number of
instances of each class). However, approaches based on VOID [5, 7, 9] and other statis-
tics, such as QTrees [10] and PARTrees [13], share the drawback of missing the best
query execution plans because of errors in estimating cardinalities caused by relying on
assumptions that often do not hold for arbitrary RDF datasets [12], e.g., a uniform data
distribution and that the results of triple patterns are independent.

Characteristic sets (CS) [6, 12] aim at solving this problem in centralized systems
by capturing statistics about sets of entities having the same set of properties. This in-

formation can then be used to accurately estimate the cardinality and join ordering of
star-shaped queries. Typically, any set of joined triple patterns in a query can be divided
into connected star-shaped subqueries. Subqueries in combination with the predicate
that links them, define a characteristic pair (CP) [8, 11]. Statistics about such CPs can
then be used to estimate the selectivity of two star-shaped subqueries. Such cardinality
estimations can be combined with dynamic programming on a reduced space of alterna-
tive query plans. Whereas existing work on CSs and CPs were developed for centralized
environments, this paper proposes a solution generalizing these principles for federated
environments.

3 The Odyssey Approach
Inspired by the latest advances in statistics for centralized triple stores [8, 11, 12],
Odyssey uses statistics about individual datasets to derive detailed statistics for optimiz-
ing federated queries. In the following, we first describe the foundations of our statistics
on individual datasets (Section 3.1) and then propose a novel method for computing
such statistics in a federated environment based on entity descriptions (Section 3.2).
As the detailed entity descriptions cause too much overhead in a federated setup, we
propose a method for reducing the sizes of the descriptions (Section 3.3). Finally, we
present the Odyssey approach for query optimization and its main steps (Section 3.4):
source selection, join ordering, and query decomposition.

3.1 Dataset Statistics on Individual Datasets
Star-Shaped Subqueries To estimate the cardinality and costs of BGPs sharing the
same subject (or object), i.e., star-shaped subqueries, we exploit the principle that en-
tities sharing the same set of properties are similar. In this context, we refer to the
set of an entity’s properties as its characteristic set (CS) and use css(e) to denote
the CS of entity e in dataset s or cs(e) if s is clear from the context. For instance,
in DBpedia 3.5.1 cs(dbr:Gary Goetzman)=C1={dbo:birthDate, foaf:name, rdf:type,
dbo:activeYearsStartYear, rdfs:label, skos:subject}. In total, 260 entities share this set
of properties and therefore CS C1.

Listing 1.1: Statistics for CS C1

{ count : 260 ,
elems :
{{ pred : dbo : b i r thDate , ocurrences : 260 } ,
{ pred : f o a f : name, ocurrences : 326 } ,
{ pred : r d f : type , ocurrences : 1023 } ,
{ pred : dbo : ac t iveYearsStar tYear , ocurrences : 260 } ,
{ pred : r d f s : l abe l , ocurrences : 260 } ,
{ pred : skos : sub jec t , ocurrences : 1336 }}}

CSs can be computed by scanning once a dataset’s triples sorted by subject; after
all the entity properties have been scanned, the entity’s CS is identified. For each CS C,
we compute statistics, i.e., the number of entities sharing C (count(C)) and the number
of triples with predicate p occurring with these entities (occurrences(p, C)). Listing 1.1
shows the statistics for the above mentioned example CSC1. Entities ofC1 occur on av-
erage in 1 triple with property dbo:birthDate and in 3.94 triples with property rdf:type.

For a star-shaped query, only CSs including all of the query’s properties are relevant
as entities that only satisfy a subset of these properties cannot contribute to the answer.

Listing 1.2: Find persons that have been active
SELECT DISTINCT ?person WHERE {

?person dbo : b i r t hDa te ?date . (tp1)
?person dbo : ac t i veYearsStar tYear ?sy . (tp2)
?person f o a f : name ?name (tp3)

}

For star-shaped queries asking for the set of unique entities described by some prop-
erties (query with DISTINCT modifier), the exact number of answers can be deter-
mined precisely (no estimation). For example, the cardinality of the query given in
Listing 1.2 can be obtained by adding up the count(C) of all CSs containing the prop-
erties dbo:birthDate, dbo:activeYearsStartYear, and foaf:name. In DBpedia 3.5.1, there
are 7,059 CSs that include these three properties, and the total number of entities with
these CSs is 83,438. Formally, the number of entities for a given set of properties P,
cardinality(P), is computed based on the CSs Cj that include all the properties in P as:

cardinality(P) =
∑

P⊆Cj

count(Cj) (1)

For queries without the DISTINCT modifier, we need to account for duplicates by con-
sidering the number of triples with predicate pi ∈ P that an entity is associated with on
average:

estimatedCardinality(P) =
∑

P⊆Cj

(
count(Cj) ∗

∏
pi∈P

ocurrences(pi, Cj)

count(Cj)

)
(2)

In DBpedia 3.5.1, as mentioned above, there are 7,059 CSs relevant for the query
in Listing 1.2 with 83,438 entities as answer. These 83,438 entities are described by
109,830 triples with predicate foaf:name, 83,448 with predicate dbo:birthDate, and
110,460 with predicate dbo:activeYearsStartYear. If the query is considered without the
DISTINCT modifier, i.e., considering duplicated results, we estimate: 148,486 match-
ing entities in the result, which is very close to the real number (149,440).

Once the relevant CSs for a query have been identified, they can be used to find
the join order minimizing the sizes of intermediate results. For the query in Listing 1.2,
we start by estimating the cardinalities for each subquery with two out of the three
triple patterns using Formula 1: {tp1, tp2}: 98,281, {tp1, tp3}: 209,731, and {tp2, tp3}:
127,712. The triple pattern not included in the cheapest subquery ({tp1, tp2}) is exe-
cuted last (tp3). We proceed recursively with the cheapest subquery and determine the
cardinalities for its subsets: {tp1}: 232,608 and {tp2}: 143,004. Again, the triple pat-
tern not included in the cheapest subquery (tp1) will be executed last of the currently
considered set of triple patterns. As a result, we will execute the join between tp2 and
tp1 first and afterwards compute the join with tp3. We also get the order in which the
triple patterns should be evaluated for the first join: first tp2 and then tp1.

Arbitrary Queries To estimate the cardinality for queries with more complex shapes,
we need to consider the connections (links) between entities with different CSs.
Entity dbr:Evan Almighty, for example, is linked to dbr:Tom Shadyac via property
dbo:director by triple (dbr:Evan Almighty, dbo:director, dbr:Tom Shadyac).

The links between CSs via properties can formally be described by characteristic
pairs (CPs), they are defined as (css(e1), css(e2), p) for entities e1 and e2 if (e1, p,

e2) ∈ s. The statistics – count((Ci, Cj , p)) – capture the number of links between a
pair of CSs (Ci and Cj) using a particular property p. For example, given the CSs
of dbr:Tom Shadyac and dbr:Evan Almighty as C1 and C2 the number of links via
property dbo:director is given by: count((C2, C1, dbo:director)).

Listing 1.3: Find movies and their directors
SELECT DISTINCT ? f i l m ? d i r e c t o r WHERE {

? f i l m dbo : runt ime ?runt ime . (tp1)
? f i l m dbo : d i r e c t o r ? d i r e c t o r . (tp2)
? f i l m dbo : budget ?budget . (tp3)
? d i r e c t o r dbo : b i r t hDa te ?date . (tp4)
? d i r e c t o r dbo : ac t i veYearsStar tYear ?sy . (tp5)
? d i r e c t o r f o a f : name ?name (tp6)

}

The number of unique results (pairs of entities, query with DISTINCT modifier) can be
exactly computed (not estimated) using the formula:

cardinality((Pi, Pj , p)) =
∑

Pi⊆Ck∧Pj⊆Cl

count((Ck, Cl, p)) (3)

For the query in Listing 1.3 property dbo:director links several pairs of CSs rep-
resenting movies and actors. Hence, we need to compute Σf1∧f2 count((Ck, Cl,
dbo:director)), where f1 is {dbo:runtime, dbo:director, dbo:budget} ⊆ Ck and f2 is
{dbo:birthDate, dbo:activeYearsStartYear, foaf:name} ⊆ Cl, one of the operands of
this sum is count((C2, C1, dbo:director)) mentioned in the example above. For this
query, DBpedia 3.5.1 contains 1,509 CPs linking entities from two CSs via property
dbo:director.

If a query does not involve the DISTINCT modifier, result cardinality estimation
considers the property occurrences in the CSs:

estimatedCardinality((Pi, Pj , p)) =
∑

Pi⊆Ck∧Pj⊆Cl

(
count((Ck, Cl, p))

∗
∏

pi∈Pi−{p}

(ocurrences(pi, Ck)

count(Ck)

)
∗
∏

pj∈Pj

(ocurrences(pj , Cl)

count(Cl)

)) (4)

Assuming that the order of joins within star-shaped subqueries has already been
determined based on the CSs as described above, we treat each star-shaped subquery
as a single meta-node to reduce complexity. We estimate the cardinalities of the meta-
nodes using the statistics on CPs and use dynamic programming (DP) to determine
the optimal join order that minimizes the size of intermediate results. Although the
presentation in this section focuses on subject-subject joins, the same principle can be
applied to other types of joins, e.g., object-object.
3.2 Federated Statistics
In general, entities might occur in multiple datasets in a federation S. Hence, we define a
federated characteristic set (FCS) as follows: fcsS(e)=

⋃
s∈S css(e), S might be omitted

if clear from the context. However, triples describing the same entity are typically part of
a single dataset so that most CSs can be computed over each dataset independently from
the others3. The federated characteristic pair (FCP) of entities e1 and e2 via property p

3 FCSs describing entities across multiple datasets are very rare. In FedBench, for instance, they
affect less than 0.5% of all CSs.

LMDB DBpedia

linguo:en dbr:Gary Goetzman

film:28350
... dbr:Evan Almighty

...

dbr:Evan Almighty dbr:Tom Shadyac

film:28350 1952-11-06

il:49900
... dbr:Gary Goetzman

...

photos:Evan Almighty dbc:American film producer

movie:language

owl:sameAs

dbo:producer

dbo:director

mol:link source

mol:link target

dbo:birthDate

skos:subject

CLMDB,1={movie:language,...,owl:sameAs} CSs and CPs at the sources CDBpedia,1={dbo:producer,...,dbo:director}

CLMDB,2={mol:link source, mol:link target} a) CDBpedia,2={dbo:birthDate,...,skos:subject}
(CLMDB,2,CLMDB,1,mol:link source) (CDBpedia,1,CDBpedia,2,dbo:producer)

... ...

local subjectsLMDB(CLMDB,1)={ film:28350, ... } Entity Descriptions local subjectsDBpedia(CDBpedia,1)={ dbr:Evan Almighty, ... }
local objectsLMDB(movie:language, CLMDB,1)={ linguo:en,...}
local objectsLMDB(owl:sameAs,CLMDB,1)={ dbr:Evan Almighty, ...} b)

local objectsDBpedia(dbo:producer,CDBpedia,1)={ dbr:Gary Goetzman, ...}
local objectsDBpedia(dbo:director,CDBpedia,1)={ dbr:Tom Shadyac, ...}

(CLMDB,1,CDBpedia,1,owl:sameAs) FCPs (and FCSs)

c)

1Fig. 1: Federated Computation of Statistics

in federation S is defined as (fcsS(e1), fcsS(e2), p). For FCSs FCi and FCj and property
p, we compute statistics count(FCi), occurrences(p, FCi), and count((FCi,FCj ,p)) as
before for CSs and CPs. For simplicity, the following sections focus on FCPs connecting
CSs instead of FCSs. The generalization using FCSs is straightforward.

Whereas single dataset statistics can be computed once and provided by the sources
in the same way they currently provide VOID statistics, FCSs and FCPs require more
effort and centralized knowledge about all entities in the considered datasets. A naive
way to compute FCSs and FCPs is evaluating expensive SPARQL queries with FILTER
expressions involving NOT EXISTS, but this can take weeks for a dataset with thou-
sands of CSs. It is much more efficient if the sources directly share information about
local subjects and objects with the federated query engine. local subjectss(C) contains
the entity set with CS C for source s, while local objectss(p, C) contains the set of enti-
ties connected via p to CS C. Such information can, for instance, be obtained efficiently
while computing CSs and CPs locally and then shared with the federated query engine.

The federated query engine can then use this information to compute FCSs
and FCPs. Consider, for instance, the two datasets LMDB and DBpedia in
Fig. 1; based on the CSs (Fig. 1a)), the sources compute entity descrip-
tions (local subjectsi and local objectsi in Fig. 1b)). Entity film:28350 has
properties { movie:language,...,owl:sameAs}= CLMDB,1. Hence, film:28350 ∈ lo-
cal subjectsLMDB(CLMDB,1). Entity dbr:Evan Almighty is the value of property
owl:sameAs for an entity with CS CLMDB,1 (film:28350) so dbr:Evan Almighty ∈ lo-
cal objectsLMDB(owl:sameAs, CLMDB,1) (Fig. 1b)). The overlap between the set of
entities local objectsDBpedia(CDBpedia,1) and local subjectsLMDB(owl:sameAs, CLMDB,1)
are links from LMDB to DBpedia via property owl:sameAs. Hence, we ob-
tain FCP (CLMDB,1, CDBpedia,1, owl:sameAs) (Fig. 1c)). count((CLMDB,1, CDBpedia,1,
owl:sameAs)) corresponds to the cardinality of the intersection between all the lo-
cal objectsDBpedia and local subjectsLMDB.

Algorithm 1 describes in more detail how to compute FCPs only based on the pre-

Algorithm 1 Compute FCPs Algorithm
Input: local objectsd1 and local subjectsd2 for datasets d1 and d2
Output: A set of FCPs (FCPs) with links from d1 to d2
count(fcp) for each fcp in FCPs

1: function ComputeFCPs(local subjectsd2, local objectsd1)
2: FCPs←{ }
3: count← a function with default value 0
4: for (p, Cd1,i) ∈ domain(local objectsd1) do
5: entities← local objectsd1(p,Cd1,i)
6: for Cd2,j ∈ domain(local subjectsd2) do
7: entities← entities

⋂
local subjectsd2(Cd2,j)

8: if entities 6= ∅ then
9: FCPs← FCPs

⋃ { (Cd1,i, Cd2,j , p) }
10: count((Cd1,i, Cd2,j , p))← count((Cd1,i, Cd2,j , p)) + cardinality(entities)
11: end if
12: end for
13: end for
14: return CPs, count
15: end function

computed statistics local objectsd1 and local subjectsd2. First, all common entities in
local objectsd1 and local subjectsd2 are identified in line 7. These common entities
represent links between CSs Cd1,i and Cd2,j via property p and are captured by a FCP
(lines 9-10).

Listing 1.4: Find LMDB movies that are also DBpedia movies
SELECT ? f i l m ?movie WHERE {

? f i l m dbo : budget ?budget .
? f i l m dbo : d i r e c t o r ? d i r e c t o r .
?movie owl : sameAs ? f i l m .
?movie lmdb : sequel ?seq
}

FCPs can be used for cardinality estimation and join ordering using the same principles
as described in Section 3.1. Consider a federation consisting of DBpedia (160,061 CSs)
and LMDB (8,466 CSs) with 22,592 FCPs. We can use Formula 4 with FCPs to estimate
the result cardinality: 171. This is close to the real cardinality (293).

3.3 Reducing the Sizes of Entity Descriptions
As the entity descriptions (local subjectsd and local objectsd) introduced above are
often very expensive to compute, maintain and exchange, we propose a technique to
reduce their sizes. We organize the entity descriptions in a tree structure that sum-
marizes the entities used as subject or object in any pf the dataset’s triples. Inspired
by [10, 13, 15], we factorize common prefixes, transform suffixes into integers, and
summarize sets of integers in buckets, i.e., a set synopsis consisting of minimum value
(mn), maximum value (mx),

[
mn, mx

]
, number of elements, num, and their set of two

least significant bytes (lsb). lsb(i) is computed as i mod 216 and is included to improve
the synopsis’ accuracy.

The tree structure is organized in three levels. The top level summarizes the prefixes
of entity IRIs occurring as subjects and objects in the dataset. Suffixes are mapped to
integers using a hash function, these integers are summarized in the middle and bottom
levels. The middle level includes buckets where parent nodes subsume the synopsis of
their children (ranges are included, nums are added) and aids in efficiently accessing

a) http:

// ...

dbpedia.org data.linkedmdb.org ...

b)
[

-2146364786, 2129745678
]
, 1602942

... ...

[
-2146364786, 2126107368

]
, 1602735

local subjects(CLMDB,1)={-3490,...}
local objects(mol:link source, CLMDB,2)={-3490,...}

...

c) http://data.linkedmdb.org/ resource/film/28350

hashCode(“resource/film/28350”)=1093595742, lsb(1093595742)=-3490,

-2146364786 ≤ 1093595742 ≤ 2126107368

1Fig. 2: Reduced Entity Descriptions for LMDB in Fig. 1. The tree factorizes common
prefixes in the top level (in the ellipses) and summarizes the suffixes in the middle (in
the rectangles) and bottom (in the trapezium) levels

the bottom level. The bottom level (leaves) stores (in local subjects and local objects)
only the integer’s lsb to reduce the space use while improving the synopsis’ accuracy.

In Fig. 2 we present a fragment of the reduced descriptions for LMDB. The reduced
descriptions include all the entities that are subject or object in the dataset’s triples. In
particular, it includes the entity with IRI http://data.linkedmdb.org/resource/film/28350
(Fig. 2c)). This IRI prefix identifies the subtree that summarizes the entity (light gray el-
lipses in Fig. 2a)), while the hash code of its suffix (resource/film/28350), 1093595742,
is used to identify the leaf that includes its lsb (-3490), i.e., with 1093595742 be-
tween its minimum and maximum values (gray rectangle in Fig. 2b)). Its lsb is in
local subjects(CLMDB,1) and local objects(mol:link source, CLMDB,2) in the identified
leaf (trapezium in Fig. 2b)). This tree structure exhibits size reduction and eases the
computation of FCPs by allowing to discard large portions of the descriptions contrary
to descriptions in Fig. 1b), where all the local subjects and local objects should be
pair-wise tested for overlap.

Computation costs are greatly reduced by pruning large portions of the tree and
comparing only a few pairs of leaves, the ones that have common prefixes and over-
lapping representation of the suffixes. An important feature of these summaries is that
entities present in more than one dataset are always detected.

These trees are considerably lighter than the entity descriptions discussed in Sec-
tion 3.2, but they might reduce accuracy. For FedBench’s DBpedia 3.5.1 subset,
a dataset with 43,126,772 triples that occupies 6.1GB, the local subjects and lo-
cal objects occupy 1.37GB and the tree only occupies 68MB4. They have compression
ratios of 4.45 and 91.86, respectively. Regarding the quality, the tree summary allows
for computing all the FCSs and FCPs.

4 Implementation based in Java’s HashSet and HashMap was used to measure their sizes.

To reduce the resources used by the tree, we have reduced the number of CSs as
suggested in [8, 12] to 10,000. Only the CSs that are shared by a greater number of
entities are kept, and the others are merged into existing CSs if possible. For instance,
by selecting from the CSs that include all the properties of the merged CS the one with
the smallest number of properties and adding count and ocurrences values to its own
values, or splitting the CS into property subsets that can be merged with other CSs. This
may reduce the accuracy of the query cardinality estimation, but it allows to bound the
resources used to store and access these statistics.

Entity summaries can be kept up-to-date in two ways. For datasets that are rarely
updated the subtree representing the entities with the prefix affected by the updates, e.g.,
Fig. 2b) in our example, can be re-computed. For datasets that are often updated, leaves
should support removal of entities, this can be easily done by storing the multiplicity
of each least significant byte, so they are removed only if all the entities with that least
significant byte have been removed from the dataset.

SELECT DISTINCT ∗ WHERE {
? f dbo : budget ?b . (tp1)
? f dbo : d i r e c t o r ?d . (tp2)
?m owl : sameAs ? f . (tp3)
?m lmdb : sequel ?s . (tp4)
?d dbo : b i r t hDa te ?bd . (tp5)
?d dbo : ac t i veYearsStar tYear ?sy (tp6)
}

(a) Query QF

./
./

./

tp1 tp2

./

tp6 tp5

./

tp4 tp3
@DBpedia @LMDB

(b) Optimized Plan

Fig. 3: Query QF and its Optimized Plan

3.4 Optimizing Federated Queries
Query optimization in Odyssey can logically be divided into the following steps: i) pre-
processing and source selection, ii) join ordering, and iii) query decomposition. Arbi-
trary queries can be handled incrementally by optimizing its subqueries. In the follow-
ing, we address the optimization of queries with bounded predicates, Odyssey relies on
existing optimizers to handle other queries.

Preprocessing and source selection We first parse the query and identify its star-
shaped subqueries. Then, properties in each star-shaped subquery are used to iden-
tify relevant CSs and sources. For example, the subquery composed by tp3 and tp4
in Fig. 3(a) has relevant CSs that include both owl:sameAs and movie:sequel. In the
FedBench federation described in Table 1, these CSs are only part of LMDB. There-
fore, LMDB is the only relevant source for this subquery. Afterwards, we use CPs/FCPs
to identify relevant sources for the links between the star-shaped subqueries.

Join ordering Once we have identified the set of relevant sources, we can estimate
cardinalities of subqueries and find the best join ordering. We first optimize the order of
joins and triple patterns within each star-shaped subquery as explained in Section 3.1
using the reduced entity descriptions described in Section 3.3. Afterwards, as described
in Section 3.1, each subquery is treated as a meta-node and we estimate cardinalities of

the joins between these meta-nodes using formulas in Section 3.1 for FCPs to estimate
subquery cost and apply DP. Fig. 4 (left) shows the estimated cardinality and cost of the
subqueries of QF (Fig. 3(a)), arrows indicate which smaller subqueries were combined
by the DP algorithm to form a larger subquery. As the number of subqueries is usually
considerably lower than the number of triple patterns, applying DP becomes affordable.

?sy

?d

?f ?bd

?m

?b

?s

?star1 ?star2 ?star3

?star1

?star2

?star3

ow
l:sa

meA
s

m
ovie:sequel

dbo
:dir

ect
or

dbo:budget

dbo:b
irthD

ate

dbo:activeYearsStartYear

subqueries cardinality cost

{ ?star1 } 1,548 1,548

{ ?star2 } 6,057 6,057

{ ?star3 } 125,003 125,003

{ ?star1, ?star2 } 417 1,965

{ ?star2, ?star3 } 979 979

{ ?star1, ?star3 } 1.9e8 1.9e8

{ ?star1, ?star2, ?star3 } 68 1,047

1
Fig. 4: Example query optimization

In our current implementation, the cost function is solely defined on the cardinalities
of intermediate results and how many results need to be transferred from endpoints
during execution. This favors query plans with selective subqueries. For instance, the
cost of the join between meta-nodes ?star1 and ?star2 (1,965) includes the result sizes
(417) and the incurred intermediate results (1,548). This cost function assumes that
all endpoints have the same characteristics. We can easily extend this cost function
by additional parameters that can be fine-tuned to represent the characteristics of each
endpoint individually, e.g., communication delays, response times, etc.

Query decomposition Finally, we optimize the SPARQL queries that are actually sent
to the endpoints and try to minimize their number. For instance, we combine all triple
patterns and logical subqueries to a particular endpoint into a single SPARQL query
to a particular endpoint whenever possible. For instance, meta-nodes ?star2 and ?star3
in Fig. 4 are combined into one subquery (Fig. 3(b)) and evaluated by the DBpedia
endpoint.

4 Evaluation
In this section, we present the results of our experimental study that compares our
approach, Odyssey, with state-of-the-art federated query engines: HiBISCuS (FedX-
HiBISCuS, cold and warm cache) [15], SemaGrow [5], FedX (cold and warm
cache) [17], and SPLENDID [7]. Full implementations, statistics, and results are avail-
able at https://github.com/gmontoya/federatedOptimizer.
Datasets and queries: We use the real datasets and queries proposed in the FedBench
benchmark [16]. Queries are divided into three groups Linked Data (LD1-LD11), Cross
Domain (CD1-CD7), and Life Science (LS1-LS7). They have 2-7 triple patterns and
star and hybrid shapes. They have between 1 and 9,054 answers. Basic statistics about

Table 1: FedBench [16] dataset statistics: number of distinct triples (#DT), number
of predicates (#P), number of CSs (#CS), number of CPs (#CP), Odyssey statistics and
synopsis computation time in s, HiBISCuS summaries computation time in s, and VOID
statistics computation time in s

Dataset #DT #P # CS #CP #FCP Odyssey HiBISCuS VOID
ChEBI 4,772,706 28 978 9,958 19,360 82.91 96.02 73.89
KEGG 1,090,830 21 67 239 13,822 30.15 95.23 12.84

Drugbank 517,023 119 3,419 12,589 103,070 1,299.9 76.4 6.98
DBpedia subset 42,855,253 1,063 10,000 1,069,431 6,583 2,739 770.48 1,465.36

Geonames 107,949,927 26 673 7,707 322,672 1,885.97 609.52 39,694.07
Jamendo 1,049,647 26 42 190 1,259 31.25 99.17 14.66
SWDF 103,595 118 547 6,713 17,557 7.27 69.21 2.03
LMDB 6,147,916 222 8,466 94,188 359,340 947.16 317.21 355.45

NYTimes 335,119 36 47 158 3.96 10.01 72.56 4.22
Federated 620.35

Total 7,654.27 2,205.8 41,629.5

the datasets are listed in Table 1. We ran each query ten times and report the averages
over the last nine runs. Standard deviation is included as error bars on the plots.
Implementation: Odyssey is implemented in Java using the Jena library to parse and
transform queries into queries with SPARQL 1.1 service clauses. Our implementation
uses the FedX 3.1 framework with deactivated native optimization to execute Odyssey’s
query plans.
Hardware configuration: For our experiments we used virtual machines (VMs). A
VM using up to 4GB of RAM to run the federated query engine and nine VMs with 2
processors, 8GB of RAM and CPU 2294.250 MHz to host Virtuoso endpoints with the
datasets described in Table 1 (one dataset and endpoint per VM).
Statistics computation: As DBpedia has a very high number of CSs (160,061), we
reduced them to 10,000 by merging (as suggested in [8,12] and explained in Section 3.3)
without significant losses in the quality of estimations. Details on creation times of
statistics are listed in Table 1. Odyssey’s statistics can be more expensive to compute for
datasets with more than 3,419 CSs and cheaper than HiBISCuS’s for datasets with less
than 67 CSs. In total, Odyssey’s statistics are computed five times faster than VOID’s.
Evaluation metrics: i) Optimization time (OT): is the elapsed time since the query
is issued until the optimized query plan is produced, ii) number of selected sources
(NSS): is the number of sources that have been selected to answer a query, iii) number
of subqueries (NSQ): is the number of subqueries that are included in the query plan,
iv) execution time (ET): is the time elapsed since the evaluation of the query plan starts
until the complete answer is produced (with a timeout of 1,800 seconds), v) number of
transferred tuples (NTT): is the number of tuples transferred from all the endpoints to
the query engine during query evaluation.
Result completeness: All approaches produce the complete result set for non-timed
out queries, except SPLENDID for query LS7.

4.1 Experimental Results
Optimization time Fig. 5 shows the optimization time (OT) for the studied approaches.
Because of the detailed statistics and dynamic programming, one might expect Odyssey
to suffer from a considerable overhead in OT. As our experimental results show, how-
ever, Odyssey’s query planner is competitive to most other approaches with a slight

100

102

104

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11

O
T

 (
m

s)Odyssey
HiBISCuS−Warm
HiBISCuS−Cold
FedX−Warm
FedX−Cold
SemaGrow
SPLENDID

100

102

104

CD1 CD2 CD3 CD4 CD5 CD6 CD7

O
T

 (
m

s)

100

102

104

LS1 LS2 LS3 LS4 LS5 LS6 LS7

O
T

 (
m

s)

Fig. 5: Optimization Time in ms (OT, log scale). CD1 and LS2 have variable predicates
and Odyssey relies on FedX to find plan.

advantage for FedX-Warm as this system has cached information about the query rel-
evant sources. For instance, Odyssey is up to 69 times faster (SemaGrow) than other
approaches on average.

100

101

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11

N
S

S

Odyssey
HiBISCuS−Warm
HiBISCuS−Cold
FedX−Warm
FedX−Cold
SemaGrow
SPLENDID

100

101

CD1 CD2 CD3 CD4 CD5 CD6 CD7

N
S

S

100

101

LS1 LS2 LS3 LS4 LS5 LS6 LS7

N
S

S

Fig. 6: Number of Selected Sources (NSS, log scale, 100=1)

Number of selected sources As Fig. 6 shows, Odyssey selects only a small number
of relevant sources; for instance, at least 1.81 times less (FedX-Cold/Warm and Sema-
Grow) and up to 1.93 times less (HiBISCuS-Cold/Warm) on average. For some queries,
e.g., LS4, existing approaches already select the optimal number of sources. For LD7,
Odyssey selects a larger number of sources than the optimum because our approach
does not perform ASK queries during execution to prune irrelevant sources. Sometimes
Odyssey overestimates the set of relevant sources – but on the other hand it never misses

any relevant sources. For LS1, most approaches select just one (100) source because
there is only one dataset that have triples with the predicate in the query.

100

101

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11

N
S

Q

Odyssey
HiBISCuS−Warm
HiBISCuS−Cold
FedX−Warm
FedX−Cold
SemaGrow
SPLENDID

100

101

CD1 CD2 CD3 CD4 CD5 CD6 CD7

N
S

Q

100

101

LS1 LS2 LS3 LS4 LS5 LS6 LS7
N

S
Q

Fig. 7: Number of Subqueries (NSQ, log scale, 100=1)

Number of subqueries As Fig. 7 shows, Odyssey uses considerably fewer subqueries
than other approaches, at least 2.62 times less (HiBISCuS-Cold/Warm) and up to 3.41
times less (SPLENDID) on average. The fact that Odyssey always produces the correct
and complete answers confirms that Odyssey correctly identifies and exploits cases for
which it is advantageous to combine subqueries. Odyssey’s reduction of the number of
relevant sources has a positive impact on the number of subqueries (NSQ), Odyssey’s
pruning of non relevant sources allows for combining triple patterns into subqueries
without affecting the result completeness. Some queries, like LD2, LD4, and LD9, in-
clude triple patterns that can be evaluated by a unique endpoint of the federation and
existing approaches already decompose the query into the optimal NSQ. Only for LD7,
FedX-Cold/Warm, SPLENDID, and SemaGrow decompose the query into fewer sub-
queries than Odyssey, this is because they use ASK queries to assess a source’s rele-
vance. Odyssey could be enhanced with this strategy.

Execution time Some approaches failed to answer all queries before the timeout:
SPLENDID (2 queries) and SemaGrow (4 queries). Even when considering only those
queries that completed before the timeout, Odyssey is on average 126.26 times faster
than SPLENDID and 28.30 times faster than SemaGrow. Fig. 8 shows the execution
times (ET) for the studied approaches. Odyssey is on average at least 25.46 times faster
(FedX-Warm). Only for few queries Odyssey is (slightly) slower than other approaches,
e.g., LS3. As for the other metrics, Odyssey’s ET can be improved if ASK queries were
used during query execution to further reduce the relevant sources similarly as it is done
by other approaches. For five of the queries, Odyssey is one of the fastest approaches
and for 11 queries, Odyssey is the fastest approach. Odyssey’s achieved reductions on
the NSS and NSQ have a positive impact on the ET, as fewer endpoints are queried
fewer times, Odyssey produces results faster than most approaches in most cases.

T
IM

E
O

U
T

100

102

104

106

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11

E
T

 (
m

s)Odyssey
HiBISCuS−Warm
HiBISCuS−Cold
FedX−Warm
FedX−Cold
SemaGrow
SPLENDID

100

102

104

106

CD1 CD2 CD3 CD4 CD5 CD6 CD7

E
T

 (
m

s)

T
IM

E
O

U
T

T
IM

E
O

U
T

T
IM

E
O

U
T

IN
C

O
M

P
LE

T
E

 R
E

S
U

LT
A

B
O

R
T

100

102

104

106

LS1 LS2 LS3 LS4 LS5 LS6 LS7

E
T

 (
m

s)

Fig. 8: Execution Time in ms (ET, log scale)

T
IM

E
O

U
T

100

102

104

106

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11

N
T

T

Odyssey
HiBISCuS−Warm
HiBISCuS−Cold
FedX−Warm
FedX−Cold
SemaGrow
SPLENDID

100

102

104

106

CD1 CD2 CD3 CD4 CD5 CD6 CD7

N
T

T

T
IM

E
O

U
T

T
IM

E
O

U
T

T
IM

E
O

U
T

IN
C

O
M

P
LE

T
E

 R
E

S
U

LT
A

B
O

R
T

100

102

104

106

LS1 LS2 LS3 LS4 LS5 LS6 LS7

N
T

T

Fig. 9: Number of Transferred Tuples (NTT, log scale, 100=1)

Number of transferred tuples Fig. 9 shows the number of transferred tuples (NTT)
for the studied approaches. Odyssey transfers fewer tuples than other approaches. Even
when considering only those queries that completed before the timeout, Odyssey trans-
fers on average 1.15 times fewer tuples faster than SemaGrow and 108.4 times fewer
tuples than SPLENDID. For the approaches that completed all the queries, Odyssey
transfers at least 117.55 fewer tuples (HiBISCuS-Cold/Warm) on average. Most ap-
proaches are competitive in terms of NTT. The largest difference is observed for LS6,
where Odyssey clearly outperforms the other approaches transferring 500 times fewer
tuples. In contrast to other approaches, Odyssey not only reduces the number of requests
sent to the endpoints but also avoids non-selective queries, which significantly reduces
network traffic and the local load at the endpoints.

4.2 Combining Odyssey with Existing Optimizers
We have also integrated Odyssey techniques into an the FedX optimizer and obtained:

100

102

104

106

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11

E
T

 (
m

s)Odyssey
FedX−Cold−Odyssey
Odyssey−FedX−Cold
FedX−Warm
FedX−Cold

T
IM

E
O

U
T

100

102

104

106

CD1 CD2 CD3 CD4 CD5 CD6 CD7

E
T

 (
m

s)

A
B

O
R

T

100

102

104

106

LS1 LS2 LS3 LS4 LS5 LS6 LS7

E
T

 (
m

s)

Fig. 10: Execution Time in ms (ET, log scale)

– Odyssey-FedX-Cold, which relies on CSs and CPs to select sources and decom-
poses the query but uses FedX join ordering.

– FedX-Cold-Odyssey, which relies on the FedX optimizer for source selection but
uses Odyssey for query decomposition and join ordering.

Fig. 10 compares the execution times (ET) of these two implementations with Odyssey,
FedX-Cold, and FedX-Warm. In most cases the combined approaches are considerably
faster than native FedX. In a few cases, however, their ET can increase considerably.
In these cases, queries include a highly selective subquery with one triple pattern and
using FedX’s heuristic to execute subqueries with more than one triple pattern first leads
to plans that are more expensive than others. On average, the combined approaches are
26.86 and 3.99 times faster than FedX-Cold.

For query LD7, Odyssey and FedX-Cold/Warm exhibit similar ETs whereas FedX-
Cold-Odyssey is considerably faster. For this query it happens that the advantages of
both Odyssey and FedX coincide, i.e., we can take advantage of the good join ordering
by Odyssey but also of the additional pruning based on ASK queries by FedX.

Even if Odyssey’s OT can be higher in comparison to existing approaches, Odyssey
produces better plans composed of fewer subqueries and fewer selected sources per
triple pattern without compromising result completeness. Benefits of these features
have been evidenced with significantly faster ETs and less transferred data from
endpoints to the federated query engine.

5 Conclusion
In this paper, we have presented Odyssey, an approach for optimizing federated
SPARQL queries based on statistics. These statistics detail information about the data
provided by remote endpoints as well as the links between them. This enables more
accurate cost estimations, query optimization, and selection of relevant sources. Our
extensive experimental evaluation shows that Odyssey produces query execution plans
that are better in terms of data transfer and execution time than state-of-the-art optimiz-

ers. In our future work, we plan to further improve Odyssey by considering in which
situations exactly it is worthwhile to use additional aspects of other optimizers, such as
ASK queries and associated statistics. Another interesting perspective work is to further
reduce the computation time and sizes of the entity descriptions and provide efficient
strategies to update the descriptions and statistics.

Acknowledgments
This research was partially funded by the Danish Council for Independent Research
(DFF) under grant agreement no. DFF-4093-00301.

References
1. M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: An Adaptive

Query Processing Engine for SPARQL Endpoints. In ISWC’11, pages 18–34, 2011.
2. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing Linked Datasets. In

LDOW’09, 2009.
3. C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQL Web-Querying In-

frastructure: Ready for Action? In ISWC’13, pages 277–293, 2013.
4. C. Basca and A. Bernstein. Querying a Messy Web of Data with Avalanche. J. Web Sem.,

26:1–28, 2014.
5. A. Charalambidis, A. Troumpoukis, and S. Konstantopoulos. SemaGrow: Optimizing Fed-

erated SPARQL queries. In SEMANTICS’15, pages 121–128, 2015.
6. F. Du, Y. Chen, and X. Du. Partitioned Indexes for Entity Search over RDF Knowledge

Bases. In DASFAA, pages 141–155, 2012.
7. O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting VOID De-

scriptions. In COLD’11, 2011.
8. A. Gubichev and T. Neumann. Exploiting the query structure for efficient join ordering in

SPARQL queries. In EDBT’14, pages 439–450, 2014.
9. S. Hagedorn, K. Hose, K. Sattler, and J. Umbrich. Resource planning for SPARQL query

execution on data sharing platforms. In COLD, pages 49–60, 2014.
10. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. Data Summaries

for On-Demand Queries over Linked Data. In WWW’10, pages 411–420, 2010.
11. M. Meimaris, G. Papastefanatos, N. Mamoulis, and I. Anagnostopoulos. Extended Charac-

teristic Sets: Graph Indexing for SPARQL Query Optimization. In ICDE’17.
12. T. Neumann and G. Moerkotte. Characteristic Sets: Accurate Cardinality Estimation for

RDF Queries with Multiple Joins. In ICDE’11, pages 984–994, 2011.
13. F. Prasser, A. Kemper, and K. A. Kuhn. Efficient Distributed Query Processing for Au-

tonomous RDF Databases. In EDBT’12, pages 372–383, 2012.
14. B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL. In ESWC,

pages 524–538, 2008.
15. M. Saleem and A. N. Ngomo. HiBISCuS: Hypergraph-Based Source Selection for SPARQL

Endpoint Federation. In ESWC, pages 176–191, 2014.
16. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench: A

Benchmark Suite for Federated Semantic Data Query Processing. In ISWC’11, pages 585–
600, 2011.

17. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization Tech-
niques for Federated Query Processing on Linked Data. In ISWC’11, pages 601–616, 2011.

18. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL Basic Graph
Pattern Optimization Using Selectivity Estimation. In WWW’08, pages 595–604, 2008.

19. X. Wang, T. Tiropanis, and H. C. Davis. LHD: Optimising Linked Data Query Processing
Using Parallelisation. In LDOW, 2013.

