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MEAN CONVERGENCE OF PROLATE SPHEROIDAL SERIES AND

THEIR EXTENSIONS

MOURAD BOULSANE, PHILIPPE JAMING & AHMED SOUABNI

Abstract. The aim of this paper is to establish the range of p’s for which the expansion of a
function f ∈ Lp in a generalized prolate spheroidal wave function (PSWFs) basis converges to
f in Lp. Two generalizations of PSWFs are considered here, the circular PSWFs introduced
by D. Slepian and the weighted PSWFs introduced by Wang and Zhang. Both cases cover
the classical PSWFs for which the corresponding results has been previously established by
Barceló and Cordoba.

To establish those results, we prove a general result that allows to extend mean conver-
gence in a given basis (e.g. Jacobi polynomials or Bessel basis) to mean convergence in a
second basis (here the generalized PSWFs).

-

1. Introduction

In their seminal work from the 70s, Landau, Pollak and Slepian [LP1, LP2, SP] have
shown that the orthonormal basis that is best concentrated in the time-frequency plane is
given by the Prolate Spheroidal Wave Functions (PSFWs). This basis therefore provides
an efficient tool for signal processing. Since then, the PSFWs have proven useful in many
applications ranging from random matrix theory (e.g. [dCM, Me, Dy]) to numerical analysis
(e.g. [XRY, Wa2]). While taking naturally place in an L2 setting, one may also consider
the behavior of expansions of functions in the PSFW basis in the Lp-setting. This has been
done by Barcelo and Cordoba for the usual PSFWs. Our aim here is to extend this work to
two natural generalizations of the PSFWs, namely, the Hankel-PSFWs introduced by Slepian
[Sl1] and the weighted PSFWs recently introduced by Wang and Zhang [WZ].

Let us now be more precise with the results in this paper. First let us recall that the
prolate spheroidal wave functions (ψn,c)n≥0 are eigenvectors of an integral operator. Using
the min-max theorem, they can thus be obtained as solutions of an extremal problem: for

c > 0, recall that the Paley-Wiener space PWc = {f ∈ L2(R) : supp f̂ ⊂ [−c, c]} where f̂
stands for the Fourier transform of f . Then one sets

ψn,c = argmax

{
‖f‖L2(I)

‖f‖L2(R)

: f ∈ PWc, f ∈ span{ψk,c, k < n}⊥
}
.

A fundamental fact discovered by Landau, Pollak and Slepian is that they are also eigen-
functions of a Sturm-Liouville operator, a fact tagged as a “happy miracle” by Slepian [Sl3].
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Another key fact for our purpuses is that (ψn,c)n≥0 is an orthonormal basis of PWc and this
basis is the best concentrated in the time domain.

In this paper, we are interested in two generalizations of the PSFWs. For both cases, the
basis is constructed as a set of eigenvectors of an integral operator, the happy miracle occurs
so that they are also eigenvectors of a Sturm-Liouville operator and, more important for us,
they form an orthonormal basis of a Paley-Wiener type of space.

The first basis we consider was introduced by Slepian [Sl1]. It is an analogue of the classical
PSFWs adapted to higher dimensional radial Fourier analysis. To introduce them, we need
some further notation. First, we replace the Fourier transform by the Hankel transform
defined for f ∈ L1(0,+∞) by

Hαf(x) =

∫ +∞

0

√
xyJα(xy)f(y) dy

where Jα is the Bessel function and α > −1/2. Like the usual Fourier transform, the Hankel
transform extends into a unitary operator on L2(0,+∞). The corresponding Paley-Wiener
space is then denoted by

HB(α)
c =

{
f ∈ L2(0,∞); suppHα(f) ⊆ [0, c]

}
.

Finally, the Circular (Hankel) Prolate Spheroidal Wave Functions (CPSWFs) are defined by

ψα
n,c = argmax

{
‖f‖L2(0,1)

‖f‖L2(0,+∞)

: f ∈ HB(α)
c , f ∈ span{ψα

k,c, k < n}⊥
}
.

Then (ψα
n,c)n≥0 is an orthonormal basis of HB

(α)
c . Note also that when α = 0, these are usual

PSFWs, more precisely, ψ0
n,c = ψ2n,c.

The second basis we consider, the Weighted Prolate Spheroidal Wawe Functions (WPS-
FWs), is defined in a similar fashion. We first introduce the weighted Paley-Wiener spaces

wPW (α)
c =

{
f ∈ L2(R); supp f̂ ⊆ [−c, c], f̂ ∈ L2

(
(−c, c), (1 − x2/c2)−α dx

)}
.

The WPSFWs are defined by

Ψα
n,c = argmax





‖f‖
L2

(
(−1,1),(1−x2)α dx

)
∥∥∥f̂
∥∥∥
L2

(
(−c,c),(1−x2/c2)−α dx

)
: f ∈ wPW (α)

c , f ∈ span{Ψα
k,c, k < n}⊥




.

Again, Ψα
n,c is an orthonormal basis of wPW

(α)
c and Ψ0

n,c = ψn,c.
The aim of this paper is to characterize the range of p’s for which prolate spheroidal wave

functions converge in Lp. The subject of the Lp-convergence (also called mean convergence
of order p) of orthogonal series, is a central subject in harmonic analysis. This kind of
convergence is briefly described as follows. Let 1 < p <∞ , a, b ∈ R, I = (a, b), and {φn} an
orthonormal set of the weighted Hilbert space L2(I, ω)-space, where ω is a positive weight
function. We define the kernel

KN (x, y) =

N∑

n=0

φn(x)φn(y)
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so that the orthogonal projection of f ∈ L2(I, ω) on the span of {φ0, . . . , φN} is given by

KN (f)(x) =

∫

I
KN (x, y)f(y)ω(y) dy =

N∑

n=0

an(f)φn(x)

with

an(f) =

∫

I
f(y)φn(y)ω(x) dy.

Now, this last expression may be well defined even for f ∈ Lp(I, ω), p 6= 2 and then KN (f)
is also well defined. This happens for instance if φn ∈ Lp(I, ω) for every p which is often
the case in practice. The orthonormal set {φn} is said to have mean convergence of order p,
or Lp-convergence over the Banach space Lp(I, dω) if for every f ∈ Lp(I, dω), KN (f) is well
defined and

lim
N→∞

‖f −KNf‖Lp(I,ω) = lim
N→∞

[ ∫ b

a
|f(x)−KN (f)(x)|pω(x) dx

]1/p
= 0.

This concept of mean convergence is also valid on a subspace B, rather than the whole Banach
space Lp(I, dω).

To the best of our knowledge, M. Riesz was the first in the late 1920’s, to investigate this
problem in the special case of the trigonometric Fourier series over Lp(T), 1 ≤ p < +∞.More
precisely, in [Ri], it has been shown that the Hilbert transform over the torus T is bounded
on Lp(T) if and only if p > 1. Further, the Lp−boundedness of the Hilbert transform is
equivalent to the mean convergence of the Fourier series on Lp(T). In the late 1940’s, H.
Pollard, in a series of papers [Po1, Po2, Po3], has studied the mean convergence of some
classical orthogonal polynomials, such as Legendre and Jacobi polynomials. In particular, in
the later case, he has shown that if α ≥ −1

2 and ωα(x) = (1 − x2)α, x ∈ I = [−1, 1] is the
Jacobi weight, then the mean convergence over Lp(I, ωα,) of Jacobi series expansion holds
true, whenever

m(α) := 4
α+ 1

2α + 3
< p < M(α) := 4

α+ 1

2α + 1
.

He has also shown that the previous conclusion fails if p < m(α) or p > M(α). In [MW], the
authors have shown that the mean convergence of the Bessel series expansion over the space
Lp([0, 1], xdx) holds true whenever 4/3 < p < 4. Later on, Newman and Rudin [NR] have
shown that the mean convergence fails for the critical values of p = m(α), p = M(α) in the
Jacobi case and for p = 4/3, p = 4 for the Bessel case. More recently, in [Va] Varona has
extended the mean convergence of Bessel series for α > −1/2 over the Hankel Paley-Wiener
space of functions from Lp([0,∞), xα dx) with compactly supported Hankel transforms.

An other important extension has been given by Barcelo and Cordoba [BC] where they have
shown that the series expansion in terms of the classical prolate spheroidal wave functions
(PSWFs) has the mean convergence property over the previous Fourier Paley- Wiener space,
holds true if and only if 4/3 < p < 4. This is the main source of inspiration for our work, so let
us detail the ideas behind [BC]. Barcelo and Cordoba first determine the expansion of PSFWs
in a basis consisting of Bessel functions. It turns out that the kernel of the projection onto
this second basis is given by a Christoffel-Darboux like formula so that it’s mean convergence
properties can be deduced from estimates for weighted Hilbert transforms. The last step of
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the proof is a sort of transference principle which allows to show that the PSWFs have the
mean convergence property of order p exactly when the Bessel basis has this property.

Our first aim here is to formalize this transference principle. We consider two orthonormal
bases (ϕn)n≥0 and (ψn)n≥0 of L2(Ω, µ). Then, we establish a fairly general principle giving
several conditions on (ϕn)n≥0 and (ψn)n≥0 that will ensure the mutual mean convergence
property of order p associated for the two bases.

The second part of the paper then consists in applying this principle to the two extensions
of PSFWs mentionned above. For the Circular PSFWs the second basis consists again of a
basis built from Bessel functions for which we have to adapt the proof of Barcelo-Cordoba to
establish the range of p’s for which mean convergence holds. The case of Weighted PSFWs is a
bit simpler as the second basis consists of Jacobi polynomials for which the mean convergence
property is already known. As this case is simpler, it will be treated first. We may now state
our main result:

Theorem. Let α > −1/2, c > 0, N ≥ 0. Let I = (−1, 1) and ωα(x) = (1− x2)α.

• Let p0 = 2 − 1
α+3/2 and p′0 = 2 +

1

α+ 1/2
. Let (Ψ

(α)
n,c)n≥0 be the family of weighted

prolate spheroidal wave functions. For a smooth function f on I = (−1, 1), define

Ψ
(α)
N f =

N∑

n=0

〈
f,Ψ(α)

n,c

〉
L2(I,ωα)

Ψ(α)
n,c .

Then, for every p ∈ (1,∞), Ψ
(α)
N extends to a bounded operator Lp(I, ωα(x) dx) →

Lp(I, ωα(x) dx). Further

Ψ
(α)
N f → f in Lp(I, ωα(x) dx)

for every f ∈ Lp(I, ωα(x) dx) if and only if p ∈ (p0, p
′
0).

• Let (ψ
(α)
n,c )n≥0 be the family of Hankel prolate spheroidal wave functions. For a smooth

function f on I = (0,∞), define

Ψ
(α)
N f =

N∑

n=0

〈
f, ψ(α)

n,c

〉
L2(0,∞)

ψ(α)
n,c .

Then, for every p ∈ (1,∞), Ψ
(α)
N extends to a bounded operator Lp(0,∞) → Lp(0,∞).

Further

Ψ
(α)
N f → f in Lp(0,∞)

for every f ∈ Bα
c,p if and only if p ∈ (4/3, 4).

This work is organized a follows. In section 2, we study a general principle that ensure
the mutual Lp-convergence of two series expansion with respect to two different orthonormal
bases of a Hilbert space L2(µ). In section 3, we give a list of technical lemmas that ensure
or simplify the conditions given in the general principle of the previous section. In section 4,
we apply the results of sections 2 and 3 and check in detail that the conditions that we have
established in the case of general principle hold true for the series expansion in the weighted
PSWFs. Finally in section 5, we prove that this mean convergence property holds also true
for circular PSWFs series.
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2. The General principal

2.1. The setting and the main result. As already explained, to prove the Lp-convergence
of the expansion in a prolate basis, we will expend the prolates in a second basis for which
this Lp-convergence is easier to study. This idea is formalized in the following setting:

We consider a measure space (Ω, µ) and assume that, for every 1 < p < ∞, Lp(Ω, µ) is

infinite dimensional and separable. The dual index of p will be denoted by p′ =
p

p− 1
. We

consider two orthonormal bases (ϕn)n≥0 and (ψn)n≥0 of L
2(Ω, µ). For N ≥ 0 we denote by ΦN

(resp. ΨN ) both the orthogonal projection on span{ϕ0, . . . , ϕN} (resp. span{ψ0, . . . , ψN})
and its kernel

ΦN (x, y) =

N∑

n=0

ϕn(x)ϕn(y) resp. ΨN (x, y) =

N∑

n=0

ψn(x)ψn(y).

Our aim in this section is to define several conditions on ϕn, ψn that will ensure that, for
any 1 < p < ∞, ΦNf → f in some Lp if and only if ΨNf → f in Lp. The first condition
is of course that this makes sense. The second one is that some relation exists between the
two bases. The other conditions are technical and are those that will be the most difficult to
check in practice.

(L) For every 1 < p < ∞, and every n, ϕn ∈ Lp(µ). Further, we assume that there is a
0 ≤ γp < 1 such that

(2.1) ‖ϕn‖Lp(µ) . nγp .

Finally, we assume that 0αp := γp + γp′ < 1 and that there is a p0 such that if
p ∈ (p0, p

′
0), αp = 0. In other words, for p ∈ (p0, p

′
0),

(2.2) ‖ϕn‖Lp(µ)‖ϕn‖Lp′ (µ) . 1

while for p /∈ (p0, p
′
0),

(2.3) ‖ϕn‖Lp(µ)‖ϕn‖Lp′(µ) . nαp , αp < 1.

(R) Let αn
k = 〈ψn, ϕk〉L2(µ) so that ψn =

∑∞
n=0 α

n
kϕk. We assume that there exists

an integer n0 and κ, κ′ > 0 two real numbers such that (αn
k) satisfies a three term

recursion formula
f(k, n)αn

k = akα
n
k−1 + ak+1α

n
k+1

where
(1) |ak| ≤ 1

2 ,

(2) for fixed n, there is a kn such that |f(k, n)| & k2 when k ≥ kn,
(3) there is an n0 ≥ 0 such that, for n ≥ n0, and every k ≥ 0, |f(k, n)| & k|k − n|,
(4)

(2.4)

∣∣∣∣
an+1

f(n+ 1, n)
− an+2

f(n+ 2, n + 1)

∣∣∣∣ . n−2.

(B) Let Φ̃N (x, y) =

N∑

n=0

ϕn(x)ϕn+1(y) and write also Φ̃N for the corresponding integral

operator. For every 1 < p <∞, we assume that Φ̃N defines a bounded linear operator
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on Lp(µ) and that there exists βp < 1 such that, for every f ∈ Lp(µ)

∥∥∥Φ̃Nf
∥∥∥
Lp(µ)

. Nβp‖f‖Lp(µ).

(C) There exists 1 < p0 < 2 such that ΦNf → f for every f ∈ Lp(Ω, µ), with convergence
in Lp(Ω, µ), if and only if p0 < p < p′0.

(D) There exists a set D that is dense in every Lp(µ), 1 < p < ∞, such that, for every
1 < p <∞ and every f ∈ Lp(µ), ΦNf,ΨNf → f in Lp(µ) when N → ∞.

In this all of Section 2.1 we will use the above notation and assume that these conditions
are fulfilled. Our main result is then:

Theorem 2.1. With the above notation, and under conditions (L), (R), (B), (C) and (D),
we have ΨNf → f for every f ∈ Lp(Ω, µ), with convergence in Lp(Ω, µ), if and only if
p0 < p < p′0.

Remark 2.2. Note that the adjoint Φ̃∗
N of Φ̃N has kernel Φ̃∗

N (x, y) =

N+1∑

n=1

ϕn(x)ϕn−1(y). Thus,

if condition (B) holds, then for every f ∈ Lp(µ)

∥∥∥Φ̃∗
Nf
∥∥∥
Lp(µ)

. Nβp′‖f‖Lp(µ).

Condition (B) may be replaced by a slightly weaker condition, see Remark 2.7 below.
Also we state the various conditions with 1 < p < ∞. It is enough that they hold for

p1 < p < p′1 with 1 < p1 < p0.

The remaining of this section is devoted to the proof of this result.

2.2. Step 1: A simple lemma and an extension of the Banach-Steinhaus Theorem.

We will here formalize a result that has already been used in [BC]. To start, let us state the
following simple and well known lemma that we prove for sake of completeness:

Lemma 2.3. Let 1 < p <∞ and let K : Ω× Ω → C be such that

‖K‖Lp(µ)⊗Lp′ (µ) :=

(∫

Ω

(∫

Ω
|K(x, y)|p′ dµ(y)

)p/p′

dµ(x)

)1/p

< +∞.

Then the integral operator K defined by

Kf(x) =

∫

Ω
K(x, y)f(y) dy

extends to a continuous operator K : Lp → Lp with norm

‖K‖Lp(µ)→Lp(µ) ≤ ‖K‖Lp(µ)⊗Lp′ (µ).
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Proof. Indeed, using Hölder’s inequality,

‖Kf‖pp =

∫

Ω

∣∣∣∣
∫

Ω
K(x, y)f(y) dµ(y)

∣∣∣∣
p

dµ(x)

≤
∫

Ω

(∫

Ω
|K(x, y)|p′ dµ(y)

)p/p′ ∫

Ω
|f(y)|p dµ(y) dµ(x)

= ‖K‖p
Lp
(
µ)⊗Lp′ (µ)

‖f‖pLp(µ)

as claimed. �

With condition (L) we can now make sense of ΦNf,ΨNf for every f ∈ Lp(µ). Moreover,
according to the Banach-Steinhaus Theorem, the following are equivalent:

(i) for every f ∈ Lp(µ), ΦNf → f in Lp(µ);
(ii) there exists a dense set D ⊂ Lp(µ) such that, for every f ∈ D, ΦNf → f in Lp(µ)

and for every f ∈ Lp(µ), ‖ΦNf‖Lp(µ) . ‖f‖Lp(µ).

The statement hold of course with ΦN replaced by ΨN .
Now, as we assume conditions (D), Lp-convergence of ΦNf → f , ΨNf → f , is equivalent

to the uniform boundedness of ‖ΦN‖Lp(µ)→Lp(µ), and ‖ΨN‖Lp(µ)→Lp(µ). But then, under

condition (C), the uniform boundedness of ‖ΦN‖Lp(µ)→Lp(µ) holds if and only if p0 < p <

p′0. But if ‖ΦN −ΨN‖Lp(µ)→Lp(µ) is uniformly bounded for every p, then we also get that

‖ΨN‖Lp(µ)→Lp(µ) is uniformly bounded if and only if p0 < p < p′0. We may summarize this

discussion in the following proposition:

Proposition 2.4. With the notation of Section 2.1 and under conditions (L), (R), (B), (C)
and (D), the following are equivalent:

(i) ΨNf → f for every f ∈ Lp(Ω, µ), with convergence in Lp(Ω, µ), if and only if p0 <
p < p′0.

(ii) for every 1 < p <∞, there exists a constant C such that, for every N ≥ 0 and every
f ∈ Lp(µ),

‖ΦNf −ΨNf‖Lp(µ) ≤ C‖f‖Lp(µ).

2.3. Step 2: The behavior of the sequence αn
k .

Lemma 2.5. Let n be an integer, (ak), (fk) be two sequences such that a1 6= 0, |f1| . n2 for

every k, |ak| ≤
1

2
, |fk| & k|k − n|. Let (αk)k≥0 be a sequence such that

–

∞∑

k=0

|αk|2 = 1;

– (αk)k≥0 satisfies a three term recursion formula

fkαk = akαk−1 + ak+1αk+1.

Then there exists κ, n1 depending only on the constants appearing in the above . and &
inequalities such that, if n ≥ n1,

(i) |α0| . (κn)3−n,

(ii) for k ≥ 1, |αk| . (Cn)−|k−n|
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(iii) |αn|2 = 1− η with 0 < η . n−2.

Proof. First, as
∑ |αk|2 = 1, |αk| ≤ 1 for every k ≥ 0.

We will first prove the estimate for k ≥ 1 and write |fk| ≥ κ′k|n − k| ≥ κn, κ = κ′/4. As
|ak| ≤ 1

2 for every k, we get |fk||αk| ≤ 1 thus |αk| ≤ (κn)−1 if |k − n| ≥ 1. Assume now that
we have proven that, for J ≥ 1, for every k ≥ 1,

|αk| ≤ (κn)−min(|k−n|,J).

Then, if |k − n| ≥ J + 1,

|fk||αk| ≤ (κn)−J .

As |fk| ≥ κn, we obtain

|αk| ≤ (κn)−(J+1)

as claimed. This induction does not allow to estimate α0 for which we instead use the
induction formula in a rougher way: we assumed that there is a constant C̃ such that |f1| ≤
C̃n2

|a1||α0| ≤ |f1||α1|+
1

2
|α2| ≤ C̃n2(κn)1−n +

1

2
(κn)2−n ≤

(
C̃

κ2
+

1

2κn

)
(κn)3−n.

from a bound of the form |α0| ≥ κ(κn)3−n follows.
Finally, if n > max(4, 1/2κ)

|αn|2 = 1−
∑

|k−n|≥1

|αk|2 ≥ 1− κ2(κn)6−2n − 2
∑

j≥1

(κn)−2j

≥ 1− κ2(κn)−2 − 2(κn)−2
(
1− (κn)−2

)

≥ 1− (κ2 + 4)(κn)−2

as claimed. �

Let us now state what this lemma implies on (αn
k ) satisfying condition (R).

According to Lemma 2.5, and up to replacing eventually n0 by max(n0, n1), we may assume
that, if n ≥ n0,

(i) for every n, |αn
k | . k−2 (with a constant that depends on n);

(ii) if n ≥ n0,
(a) |αn

0 | . n−2,

(b) for k ≥ 1, |αn
k | . (κn)−|k−n|

(c) |αn
n|2 = 1− ηn with 0 < ηn . n−2.

Let us show that this implies that (ψn) also satisfies condition (L):

Lemma 2.6. With the notation of Section 2.1 and under conditions (L), (R), the sequence
(ψn)n≥0 also satisfies condition (L).

Proof of Lemma 2.6. We write ψn =

∞∑

k=0

αn
kϕk so that

‖ψn‖Lp(µ) ≤
∞∑

k=0

|αn
k |‖ϕk‖Lp(µ) .

∞∑

k=0

(1 + k)−2+γp < +∞.
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Further, if n ≥ n0,

‖ψn‖Lp(µ) ≤ |αn
0 |‖ϕ0‖Lp(µ) +

n−1∑

k=1

|αn
k |‖ϕk‖Lp(µ) + ‖ϕn‖Lp(µ) +

∞∑

k=n+1

|αn
k |‖ϕk‖Lp(µ)

.

(
n−2 + 2

∞∑

k=1

(κn)−|k−n| + 1

)
nγp . nγp

as claimed. �

2.4. Step 3: The decomposition of ΨN . In order to prove the theorem, we need to
decompose ΨN in the basis (ϕn)n≥0.

Recall that ψn =
∑∞

k=0 α
n
kϕn and that (αn

k ) satisfy (R).
The decomposition of ΨN is the following:

ΨN(x, y) =

N∑

n=0

ψn(x)ψn(y) =

n0∑

n=0

ψn(x)ψn(y) +

N∑

n=n0+1

∞∑

k=0

∞∑

ℓ=0

αn
kα

n
ℓ ϕk(x)ϕℓ(y)

= ΦN (x, y) +K1(x, y)−K2(x, y)−K3(x, y) +K4(x, y) +K5(x, y) +K6(x, y)(2.5)

with

K1(x, y) =

n0∑

n=0

ψn(x)ψn(y) , K2(x, y) =

n0∑

n=0

ϕn(x)ϕn(y),

K3(x, y) =
N∑

n=n0+1

ηnϕn(x)ϕn(y),

K4(x, y) =
N∑

n=n0+1

αn
nα

n
n+1ϕn(x)ϕn+1(y) , K5(x, y) =

N∑

n=n0+1

αn
n+1α

n
nϕn+1(x)ϕn(y)

and K6(x, y) = K̃6(x, y) + K̃6(y, x) where

K̃6(x, y) =

N∑

n=n0+1

∑

k

∑

|ℓ−n|≥2

αn
kα

n
ℓ ϕk(x)ϕℓ(y).

Let us write Kjf(x) =

∫

Ω
Kj(x, y)f(y) dµ(y) for the corresponding integral operators. We

want to bound ‖Kj‖Lp(µ)→Lp(µ) independently from N .

According to Lemma 2.3

‖K1‖Lp(µ)→Lp(µ) ≤ C1 :=

n0∑

n=0

‖ψn‖Lp(µ)‖ψn‖Lp′(µ)

while

‖K2‖Lp(µ)→Lp(µ) ≤ C2 :=

n0∑

n=0

‖ϕn‖Lp(µ)‖ϕn‖Lp′ (µ)

and these two quantities are finite according to condition (L) and do not depend on N .
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Further, thanks again to condition (L),

‖K3‖Lp→Lp ≤
N∑

n=n0+1

|ηn|‖ϕn‖Lp(µ)‖ϕn‖Lp′ (µ) .

∞∑

n=1

1

n2−αp
< +∞.

For K̃6 thus K6 we will use Lemma 2.5 to see that, if |ℓ − n| ≥ 2, |αn
ℓ | . (κn)−|ℓ−n| if

ℓ 6= 0. On the other hand ‖ϕℓ‖Lp′(µ) . kγp′ with γp′ < 1. Note also that if we denote by

Sj =

∞∑

ℓ=j

(κn)−ℓ then Sj . (κn)−j . We then have to estimate

∑

ℓ≥n+2

|αn
ℓ |‖ϕℓ‖Lp′ (µ) .

∑

j≥2

(n+ j)γp′ (κn)−j =
∑

j≥2

(n+ j)γp′ (Sj − Sj+1)

= (n+ 2)γp′S2 +
∞∑

j=3

(
(n+ j)γp′ − (n+ j − 1)γp′

)
Sj . nγp′−2

and as |αn
0 | . n−2,

∑

0≤ℓ≤n−2

|αn
ℓ |‖ϕℓ‖Lp′(µ) . n−2 + nγp

∑

j≥2

(κn)−j . nγp′−2.

Further, |αn
n±1|, |αn

n| ≤ 1 and ‖ϕn±1‖Lp(µ)‖ϕn‖Lp(µ) . nγp we thus also obtain that

∑

0k

|αn
k |‖ϕℓ‖Lp(µ) .. nγp .

All together, this leads to

∥∥∥K̃6

∥∥∥
Lp(µ)→Lp(µ)

≤
∞∑

n=n0

∑

k

∑

|ℓ−n|≥2

|αn
k ||αn

ℓ |‖ϕk‖Lp(µ)‖ϕℓ‖Lp′ (µ)

.

∞∑

n=n0

nγp+γp′−2 =

∞∑

n=n0+1

n−2+αp < +∞

since αp < 1. By symmetry, ‖K6‖Lp(µ)→Lp(µ) . 1.

The terms K4 and K5 are the most difficult to treat. As they are similar, we will only
show Lp-boundedness of the first one. To start, we use (R) to rewrite

K4(x, y) =
N∑

n=n0+1

αn
nα

n
n+1ϕn(x)ϕn+1(y)

=
N∑

n=n0+1

an+1

f(n+ 1, n)
|αn

n|2ϕn(x)ϕn+1(y) +
N∑

n=n0+1

an+2

f(n+ 1, n)
αn
nα

n
n+2ϕn(x)ϕn+1(y)

= K1
4 (x, y) +K2

4 (x, y).
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Now

∥∥K2
4

∥∥p
Lp
(
µ)⊗Lp′ (µ)

.

N∑

n=n0+1

|an+2|
|f(n+ 1, n)| |α

n
n||αn

n+2|‖ϕn‖Lp(µ)‖ϕn‖Lp′(µ)

.

∞∑

n=n0+1

n−3+αp < +∞.

since |an+2| . 1, |f(n+ 1, n)| & n, |αn
n| ≤ 1, |αn

n+2| . n−2 and Property (Lp).

Next, writing α̃n =
an+1

f(n+ 1, n)
|αn

n|2 and using Abel summation, we get

K1
4 (x, y) =

N−1∑

n=n0

(
α̃n − α̃n+1

)
Φ̃n(x, y) + α̃N Φ̃N−1(x, y)

Note that |α̃n| . n−1 so that, with (B),
∥∥∥α̃N Φ̃N−1

∥∥∥
Lp(µ)→Lp(µ)

. 1. Further |αn+1
n+1|2 =

|αn
n|2 + ηn − ηn+1 thus

α̃n+1 =
an+2

f(n+ 2, n + 1)
|αn

n|2 +O(n−3)

since |ηn − ηn+1| . n−2, |an+2| . 1, |f(n + 2, n + 1)| & n. Thus, using (2.4) we get
|α̃n − α̃n+1| . n−2. It follows that

∥∥∥∥∥

N−1∑

n=n0

(
α̃n − α̃n+1

)
Φ̃n

∥∥∥∥∥
Lp(µ)→Lp(µ)

.

N−1∑

n=n0

n−2
∥∥∥Φ̃n

∥∥∥
Lp(µ)→Lp(µ)

.

∞∑

n=n0

n−2+βp < +∞.

This shows that K1
4 is also a bounded operator Lp(µ) → Lp(µ) with bound independent on

N . The proof for K5 being similar, we conclude that each term in (2.5) defines a bounded
operator Lp(µ) → Lp(µ) with bound independent on N and the proof of the theorem is
complete. ✷

Remark 2.7. By treating simultaneously the terms K4 and K5, it is enough to assume the
following slightly weaker condition:

(B′) Let Φ̂N (x, y) =

N∑

n=0

ϕn(x)ϕn+1(y) + ϕn+1(x)ϕn(y) and write also Φ̂N for the corre-

sponding integral operator. For every 1 < p < ∞, we assume that Φ̂N defines a
bounded linear operator on Lp(µ) and that there exists βp < 1 such that, for every
f ∈ Lp(µ) ∥∥∥Φ̂Nf

∥∥∥
Lp(µ)

. Nβp‖f‖Lp(µ).

3. Preliminaries and technical Lemmas

In this section, we will gather some facts from the literature and some simple technical
lemmas that will allow to easily establish the conditions of Theorem 2.1.
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3.1. Condition (R).

Lemma 3.1. Let a, b, c, d, e, ℓ ∈ R. Let (ek,n)k,n∈N be a bounded sequence with |ek,n| ≤ e. Let

f(k, n) = (an + b)(cn+ d)− (ak + b)(ck + d) + ek,n.

Let (an) be a sequence such that an = ℓ+ ãn with |ãn| . n−1. Then there exists n0 such that

(i) for fixed n, there exists kn such that, if k ≥ kn, |f(k, n)| ≥
ac

2
k2;

(ii) if n ≥ n0, |f(k, n)| ≥
ac

2
n|n− k|;

(iii) if n ≥ n0,

∣∣∣∣
an+1

f(n+ 1, n)
− an+2

f(n+ 2, n+ 1)

∣∣∣∣ . n−2.

Proof. Up to replacing f by −f we may assume that ac > 0. The first part is trivial as, for
fixed n, k−2f(k, n) → ac when k → ∞.

For the second part, the result is trivial for k = n so let us first consider the case k > n
and write k = n+ p, p ≥ 1. Now

f(n+ p, n) = −acp2 − p
(
2acn + cb+ ad

)
+ en+p,n

= −ac
2
pn− p

(
ac(n+ p) +

ac

4
n+ cb+ ad

)
−
(ac
4
pn− en+p,n

)
.

Now ac(n + p) ≥ 0,
ac

4
n + cb + ad ≥ 0 if n ≥ −4(cb+ad)

ac and ac
4 pn − en+p,n ≥ ac

4 n − e ≥ 0 if

n ≥ 4e
ac . It follows that, if n is large enough f(n+ p, n) ≤ −ac

2
pn.

Let us now turn to the case 0 ≤ k < n and write k = n− p with 1 ≤ p ≤ n. Then

f(n− p, n) = −acp2 + p
(
2acn + cb+ ad

)
+ en−p,n

≥ ac

2
np+ p

(
ac(n − p) +

ac

4
n+ cb+ ad

)
+
ac

4
np+ en−p,n.

Now, n ≥ p thus ac(n− p) ≥ 0, and the two other terms are treated as previously.
For the last assertion, first write

an+1

f(n+ 1, n)
− an+2

f(n+ 2, n+ 1)
=
an+1f(n+ 2, n+ 1)− an+2f(n+ 1, n)

f(n+ 1, n)f(n+ 2, n + 1)
.

Next, note that f(n + 1, n) = −2acn + fn with fn = −(ac + cb + ad) + en+1,n a bounded
sequence, |fn| ≤ f := |ac+ cb+ ad|+ e while an = ℓ+ ãn with |ãn| ≤ Cn−1. But then

an+1f(n+ 2, n + 1)− an+2f(n+ 1, n)

= (ℓ+ ãn+1)(−2acn − 2ac + fn+1)− (ℓ+ ãn+2)(−2acn + fn)

= 2acn(ãn+2 − ãn+1) + (ℓ+ ãn+1)(−2ac + fn+1)− (ℓ+ ãn+2)fn

which is bounded by F := ac(6C + 2|ℓ|) + 2(|ℓ|+ C)f . As for n ≥ f/ac, f(n+ 1, n) ≤ −acn
we obtain ∣∣∣∣

an+1

f(n+ 1, n)
− an+2

f(n+ 2, n + 1)

∣∣∣∣ ≤
F

(ac)2
n−2

as claimed. �
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3.2. A simple criteria for condition (D). In the examples we have in mind, condition
(D) will be very easy to check. Indeed, it will fall in the scope of the following simple lemma:

Lemma 3.2. Assume that the following conditions hold:

(i) Ω ⊂ R
d is an open set and the set of smooth compactly supported functions C∞

c (Ω) is
dense in every Lp(Ω), 1 < p <∞;

(ii) there exists a differential operators L (resp. L̃) such that each ϕn (resp. ψn’s) is an

eigenfunctions of L (resp. L̃);

(iii) writing Lϕn = λnϕn (resp. L̃ψn = λ̃nψn) we further assume that there is an α > 0

(resp. α̃ > 0) such that λn & nα (resp. λ̃n & nα) when n is big enough;
(iv) (ϕn) (resp. ψn) satisfy condition (L).

Under the above conditions, ΦNf → f (resp. ΨNf → f) in Lp(µ) for every f ∈ C∞
c (Ω).

Proof. Indeed, if f ∈ C∞
c (Ω) and n is big enough,

〈ϕn, f〉L2(µ) =
1

λn
〈Lϕn, f〉L2(µ) =

1

λn
〈ϕn, L

∗f〉L2(µ) =
1

λkn

〈
ϕn, (L

∗)kf
〉
L2(µ)

by induction on k. But then |〈ϕn, f〉L2(µ)| . n−kα
∥∥(L∗)kf

∥∥
L2(µ)

. As ‖ϕn‖Lp(µ) . nαp it is

enough to take k big enough to have −kα+ αp < −1 to see that
∑

n≥0

〈ϕn, f〉L2(µ)ϕn

converges in Lp(µ). As the limit of this series in L2(µ) is f , so is the limit in Lp(µ). The
proof for ψn is the same. �

3.3. The Hilbert transform on weighted Lp spaces. In this section 1 < p <∞.
First, let us recall that ω : J → R+ (J an interval) is a Muckenhaupt Ap weight if

[ω]Ap := sup
K

(
1

|K|

∫

K
ω(x) dx

)(
1

|K|

∫

K
ω(x)

− p′

p dx

)
< +∞

where the supremum is taken over all intervals K ⊂ J . The quantity [ω]Ap is called the
Ap-characteristic of ω (or Ap norm, though it is not a norm).

Let us recall that the Hilbert transform is defined as

Hf(x) = 1

π

∫

J

f(y)

x− y
dy

where the integral has to be taken in the principal value sense.
Hunt, Muckenhaupt and Wheeden [HMW] proved that the Hilbert transform extends into

a bounded linear operator Lp(J, ω) → Lp(J, ω) if and only if ω is an Ap weight and the sharp
dependence on the Ap characteristic has been obtained by Petermichl:

Theorem 3.3 (Petermichl). Let 1 < p < +∞, J an interval and let ω be an Ap weight, then

(3.6) ‖H‖Lp(J,ω)→Lp(J,ω) . [ω]
max(1,(p−1)−1)
Ap .

Let us now estimate some Ap characteristics that we will need in the sequel, when consid-
ering the Hankel prolates:
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Lemma 3.4. Let 1 < p <∞, , α ∈ R and µ ≥ 1. Let ωα,± be defined by

(3.7) ωα,±(x) = xα
(
|c
√
x− µ|+ µ

1

3

)± p

4 .

Then xα ∈ Ap[0, 1] if and only if xα ∈ Ap[1,+∞] if and only if −1 < α < p − 1. Moreover,

ωα,± ∈ Ap[0,+∞] if −1 + p
8 < α <

7

8
p− 1 and in this case

[ωα,±]Ap .

{
1 if 4

3 < p < 4

µ3/4 otherwise

with the implied constant depending on α.

Proof of Lemma 3.4. The first part is well known and left to the reader. Recall that if ω is
an Ap weight, then so is λω(µx) with [λωj(µx)]Ap = [ω]Ap .

Next, we have

ωα,+(x) = (c2µ−2x)αc−2αµ2α−p/4
(
|
√
c2µ−2x− 1|+ µ−

2

3

) p

4 = λ3ω̃α,+(c
2µ−2x)

with λ3 = c−2αµ2α−p/4 and

ω̃α,+(x) = xα
(
|
√
x− 1|+ µ−

2

3

)p

4 .

So it is enough to estimate [ω̃α,+]Ap . Similarly, we may replace ωα,− by

ω̃α,−(x) = xα
(
|
√
x− 1|+ µ−

2

3

)− p

4 .

Next, on [0, 1/2], ω̃α,±(x) ≃ xα ∈ Ap since −1 < α < p − 1. Note that constants here

are independent on µ ≥ 1. On the other hand, on [3/2,+∞], ω̃α,±(x) ≃ xα±p/8 ∈ Ap since
−1 < α± p/8 < p− 1. Again, constants here are independent on µ ≥ 1.

Finally, on [1/2, 3/2],

ω̃α,±(x) ≃
(
|
√
x− 1|+ µ−

2

3

)± p

4 ≃ ω±(x) :=
(
|x− 1|+ µ−

2

3

)± p

4 .

We thus want to estimate

[ω±]Ap = sup
I

(
1

|I|

∫

I

(
|x− 1|+ µ−

2

3

)± p

4 dx

)(
1

|I|

∫

I

(
|x− 1|+ µ−

2

3

)∓ p′

4 dx

)p/p′

where the sup runs over intervals I ⊂ [1/2, 3/2]. Equivalently, we want to estimate

[ω±]Ap ≃ sup
I

(
1

|I|

∫

I

(
|x|+ µ−

2

3

)± p

4 dx

)(
1

|I|

∫

I

(
|x|+ µ−

2

3

)∓ p′

4 dx

)p/p′
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where the sup runs over intervals I ⊂ [−1/2, 1/2]. It is enough to consider I = [0, a] then,
when p 6= 4/3, 4, we are looking at

[ω±,p]Ap ≃ sup
a∈[0,1/2]

((
a+ µ−

2

3

)1± p

4 −
(
µ−

2

3

)1± p

4

a

)

(
a+ µ−

2

3

)1∓ p′

4 −
(
µ−

2

3

)1∓ p′

4

a




p/p′

= sup
a∈[0,1/2]

((
1 + aµ

2

3

)1± p

4 − 1

aµ
2

3

)

(
1 + aµ

2

3

)1∓ p′

4 − 1

aµ
2

3




p/p′

= sup

t∈[0,µ
2
3 /2]

((
1 + t

)1± p

4 − 1

t

)

(
1 + t

)1∓ p′

4 − 1

t




p/p′

:= sup

t∈[0,µ
2
3 /2]

ϕ±(t).

Note that ϕ± extends continuously at 0 and that, when t→ +∞. Moreover,
— ϕ±(t) = O(1) for p, q < 4 that is 4/3 < p < 4

— for p > 4, ϕ− = O
(
t
p

4
−1
)
, ϕ+ = O(1),

— for p < 4, ϕ+ = O
(
t
p′

4
−1
)
, ϕ− = O(1).

The computation has to be slightly modified for p = 4/3 to obtain ϕ+ = O(log t) and
ϕ− = O(1) while for p = 4 one gets ϕ− = O(log t), ϕ+ = O(1). The result follows. �

4. Application to weighted prolates

4.1. Weighted prolates. In this section, we will fix real numbers c > 0 and α > 0. We
denote by I = [−1, 1] that will be endowed with the measure ωα(x) dx with ωα(x) = (1−x2)α.
We will simply write ωα for the measure ωα(x) dx. The aim of this section is to consider the set
of Weighted Prolate Spheroidal Wave Functions (WPSWFs) introduced in [KS1, KS2, WZ]
and to study the Lp(I, ωα) convergence of the associated series.

More precisely, the WPSWFs are the eigenfunctions of the weighted finite Fourier trans-

form operator F (α)
c defined by

(4.8) F (α)
c f(x) =

∫ 1

−1
eicxyf(y)ωα(y) dy.

It is well known, see [KS1, WZ] that the operator

Q(α)
c =

c

2π
F (α)∗
c ◦ F (α)

c

is defined on L2(I, ωα) by

(4.9) Q(α)
c g(x) =

∫ 1

−1

c

2π
Kα(c(x− y))g(y)ωα(y) dy

with

Kα(x) =
√
π2α+1/2Γ(α+ 1)

Jα+1/2(x)

xα+1/2

and Jα(·) is the Bessel function of the first kind and order α.
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It has been shown in [KS1, WZ] that the last two integral operators commute with the

following Sturm-Liouville operator L(α)
c defined by

(4.10) L(α)
c (f)(x) = − d

dx

[
ωα(x)(1 − x2)f ′(x)

]
+ c2x2ωα(x)f(x).

Also, note that the (n + 1)−th eigenvalue χn(c) of L(α)
c satisfies the following classical in-

equalities,

(4.11) n(n+ 2α+ 1) ≤ χn(c) ≤ n(n+ 2α+ 1) + c2, ∀n ≥ 0.

We will denote by (Ψ
(α)
n,c )n≥0 the set of common eigenfunctions of F (α)

c ,Q(α)
c and L(α)

c and

call them Weighted Prolate Spheroidal Wave Functions (WPSWFs). Then {ψ(α)
n,c , n ≥ 0} is

an orthogonal basis of L2(I, ωα).

Our aim will be to apply Theorem 2.1 with the following setting: Ω = I, µ = ωα, ψn = Ψ
(α)
n,c .

The first task will be to define the basis ϕn and then to show that it satisfies each of the
desired properties.

4.2. Some facts about Jacobi polynomials.

4.2.1. Jacobi polynomials. In this section, we gather results on Jacobi polynomials1 that
will be used later. The Jacobi polynomials are defined as being the orthonormal family of
polynomials with respect to the scalar product associated to ‖·‖L2(I,ωα)

with leading coefficient

being non-negative.

Alternatively, we define the (non-normalized) Jacobi polynomials P
(α)
k through the induc-

tion formula (see for example [AAR])

(4.12) P
(α)
k+1(x) = AkxP

(α)
k (x)− CkP

(α)
k−1(x), x ∈ [−1, 1],

where P
(α)
0 (x) = 1, P

(α)
1 (x) = (α+ 1)x+ α and

Ak =
(2k + 2α+ 1)(k + α+ 1)

(k + 1)(k + 2α+ 1)
= 2−1

k
+O(k−2) , Ck =

(k + α)(k + α+ 1)

(k + 1)(k + 2α+ 1)
= 1−1

k
+O(k−2).

We consider the normalized Jacobi polynomials P̃
(α)
k =

∥∥∥P (α)
k

∥∥∥
−1

L2(I,ωα)
P

(α)
k which form an

orthonormal basis of L2(I, ωα). A cumbersome computation shows that

P̃
(α)
k (x) =

1√
h
(α)
k

P
(α,β)
k (x), h

(α)
k =

22α+1Γ(k + α+ 1)2

k!(2k + 2α+ 1)Γ(k + 2α+ 1)
.

The normalized Jacobi polynomials satisfy the recursion formula

(4.13) P̃
(α)
k+1(x) = ÃkxP̃

(α)
k (x)− C̃kP̃

(α)
k−1(x),

where

(4.14) Ãk =

√√√√ h
(α)
k

h
(α)
k+1

Ak = 2 +O(k−2) , C̃k =

√√√√h
(α)
k−1

h
(α)
k+1

Ck = 1− 1

2k
+O(k−2)

1We only use a particular subfamily of Jacobi polynomials and may as well call them ultra-spherical or
Gegenbauer polynomials.
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since

h
(α)
k

h
(α)
k+1

=
(k + 1)(2k + 2α+ 3)(k + 2α+ 1)

(2k + 2α+ 1)(k + α+ 1)2
= 1 +

1

k
+O(k−2).

Further, it has been shown that

(4.15) |P̃ (α)
n (x)| . wn,α(x) := (

√
1− x+ n−1)−α−1/2(

√
1 + x+ n−1)−α−1/2

uniformly over (−1, 1) where the constant involved is independent of n (see e.g. [Sz, Chapter
4]).

Moreover, let p0 = 2− 1
α+3/2 so that p′0 = 2+

1

α+ 1/2
then, for 1 < p <∞ , the Lp-norm

of Jacobi polynomials is given by Aptekarev, Buyarov and Degeza [ABD] (see also [ADMF]):

(4.16) ‖P̃ (α)
n ‖Lp(I,ωα) =





C(α, p) + ◦(1) if 1 < p < p′0
C(α, p) log(n)(1 + ◦(1)) when p = p′0
n(α+1/2)(p−p′0) when p > p′0

with C(α, p) is a generic constant depending only on α and p. Note that

(4.17) Ln(α) := ‖P̃ (α)
n ‖Lp(I,ωα)‖P̃ (α)

n ‖Lp′ (I,ωα)
≈





n(α+1/2)(p′−p′0) when 1 < p < p0

log n when p = p0 or p = p′0
1 when p0 < p < p′0
n(α+1/2)(p−p′

0
) when p > p′0.

In particular, Ln(α) = O(nαp) with αp = 0 if p ∈ (p0, p
′
0) and αp < 1 when p ∈ (p1, p

′
1) with

p′1 = p′0 +
1

α+ 1/2
= 2 +

2

α+ 1/2
. It follows that Condition (L) of Theorem 2.1 is satisfied.

Further, the Jacobi polynomials are eigenfunctions of the differential operator

Lf := (1− x2)f ′′ − (2α + 1)xf ′

with eigenvalue λn = −n(n + 2α + 1). It follows from Lemma 3.2 that Condition (D) of
Theorem 2.1 is also satisfied.

4.2.2. The Projection on the span of Jacobi polynomials. Let us now introduce

C
(α)
N (x, y) =

N∑

k=0

P̃
(α)
k (x)P̃

(α)
k (y)

and, according to the Christofel Darboux Formula,

C
(α)
N (x, y) =

βN
βN+1

P̃
(α)
N+1(x)P̃

(α)
N (y)− P̃

(α)
N+1(y)P̃

(α)
N (x)

x− y
.

Pollard [Po2] proved that C
(α)
N defines a bounded operator C

(α)
N : Lp(I, ωα) → Lp(I, ωα) and

that the operators C
(α)
N are uniformly bounded in the range p0 < p < p′0. Further, he proved

that the series C
(α)
N f may diverge if p /∈ [p0, p

′
0] but did not provide a bound for C

(α)
N . The
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divergence at the end points was proved later by Newman and Rudin [NR]. The key point
in Pollard’s proof is the following identity

C
(α)
N f(x) = UnP̃

(α)
n+1(x)

∫ 1

−1

Q̃
(α)
n (y)f(y)ωα(y)

x− y
dy

+VnQ̃
(α)
n (x)

∫ 1

−1

P̃
(α)
n+1(y)f(y)ωα(y)

x− y
dy

+Wn

〈
f, P̃

(α)
n+1

〉
L2(I,ωα)

P̃
(α)
n+1(x)

= C
(α,1)
N f(x) + C

(α,2)
N f(x) + C

(α,3)
N f(x)

where Un, Vn,Wn → 1
2 and Q̃

(α)
n is an other family of orthogonal polynomials.

Hölder’s inequality and Lemma 2.3 show that
∥∥∥C(α,3)

N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. Nαp while Pol-

lard showed that
∥∥∥C(α,j)

N f
∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. 1 for j = 1, 2.

Let us summarize the results from this section

Lemma 4.1. Let 1 < p < ∞ and α > −1/2, ε > 0. Let I = (−1, 1), ωα(x) = (1 − x2)α

and P̃
(α)
n be the Jacobi polynomials , i.e. the orthonormal family of polynomials in L2(I, ωα)

defined above. Let C
(α)
N be the orthogonal projection on the span of P̃

(α)
0 , . . . , P̃

(α)
N .

Let p0 = 2− 1
α+3/2 so that p′0 = 2 +

1

α+ 1/2
. Define

αp =





(α+ 1/2)(p′ − p′0) when 1 < p < p0

ε when p = p0 or p′0
0 when p ∈ (p0, p

′
0)

(α+ 1/2)(p − p′0) when p > p′0

so that αp < 1 when p ∈ (p1, p
′
1) with p

′
1 = p′0 +

1

α+ 1/2
= 2 +

2

α+ 1/2
. Then

— Aptekarev, Buyarov and Degeza [ABD] we have

(4.18) ‖P̃ (α)
n ‖Lp(I,ωα)‖P̃ (α)

n ‖Lp′ (I,ωα)
. nαp ;

— Pollard [Po2] the operators C
(α)
N extend to bounded operators Lp(I, ωα) → Lp(I, ωα) with

∥∥∥C(α)
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. Nαp .

4.3. Condition (R). The aim of this section is to establish condition (R) of Theorem 2.1.

The series expansion of the WPSWFs in the basis of Jacobi polynomials (P̃
(α)
n ) which can

be written in the form

(4.19) Ψ(α)
n,c =

∑

k≥0

βnk P̃
(α)
k
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where βnk =
〈
Ψ

(α)
n,c , P̃

(α)
k

〉
L2(I,ωα)

. By replacing the expression (4.19) in the differential equa-

tion (4.10), one gets the following recursion formula satisfied by the βnk for k ≥ 2

(4.20) f(k, n)β
(n)
k = a

(α)
k β

(n)
k−2 + a

(α)
k+2β

(n)
k+2,

where

f(k, n) =

χn(c)−
(
k(k + 2α+ 1) + c2b

(α)
k

)

c2
(4.21)

a
(α)
k =

√
k(k − 1)(k + 2α)(k + 2α− 1)

(2k + 2α− 1)
√

(2k + 2α+ 1)(2k + 2α− 3)

b
(α)
k =

2k(k + 2α+ 1) + 2α− 1

(2k + 2α+ 3)(2k + 2α− 1)
.

This is not exactly of the desired form. To overcome this problem, first note that Ψ
(α)
n,c

and P̃
(α)
n have same parity as n, so that β

(n)
k = 0 if k and n have opposite parity. Next, we

decompose
Lp(I, ωα) = Lp

e(I, ωα)⊕ Lp
o(I, ωα)

where Lp
e(I, ωα), resp. L

p
o(I, ωα), is the set of even, resp. odd, functions in Lp(I, ωα).

Our aim is then to characterize for which p, for every f ∈ Lp
e(I, ωα) — resp. f ∈ Lp

o(I, ωα)

—
∑

n≥0

〈
f,Ψ

(α)
2n,c

〉
Ψ

(α)
n,c — resp.

∑
n≥0

〈
f,Ψ

(α)
2n+1,c

〉
Ψ

(α)
n,c — converges to f in Lp(I, ωα). This

can be done by applying Theorem 2.1. To do so, we will now establish condition (R).

First note that a
(α)
k → 1/4 and that we may write

a
(α)
k =

√
(1− k−1)(1 + 2αk−1)

(
1 + (2α− 1)k−1

)

(
2 + (2α − 1)k−1

)√(
2 + (2α+ 1)k−1

)(
2 + (2α − 3)k−1

)

from which it is obvious that a
(α)
k = 1/4 +O(k−1). As b

(α)
k is clearly bounded, all conditions

of Lemma 3.1 are satisfied and f(k, n) satisfies all requirements of condition (R).
It remains to establish the following:

Lemma 4.2. For every α > −1/2 and every k ≥ 2, |a(α)k | ≤ 1/2.

Proof. First

a
(α)
2 =

2
√
1 + α

(3 + 2α)
√
5 + 2α

which is maximal for α =
√
2− 2 < −1/2 and the maximal value is

√
64
√
2− 52

343
∼ 0.335 <

1/2.
Next, for k ≥ 3 and −1/2 < α ≤ 1/2, we bound

a
(α)
k ≤ 1

4

√
k(k + 1)

(k − 1)(k − 2)
≤

√
3

4
<

1

2
.
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Finally, 2k+2α+1 ≥ k+2α, for α > 0, (2k+2α−1) ≥ 2
√
k(k − 1), and 2k+2α−3 ≥ k+2α−1

when k ≥ 2 thus

a
(α)
k =

√
k(k − 1)(k + 2α)(k + 2α − 1)

(2k + 2α− 1)
√

(2k + 2α + 1)(2k + 2α − 3)
<

1

2

as announced. �

4.4. Condition (B′). We will now establish Condition (B′) in Theorem 2.1. As we consider
separately Lp

e(I, ωα) and L
p
o(I, ωα), we actually have to estimate the Lp(I, ωα) → Lp(I, ωα)

norm of the operator with kernel

ΦN (x, y) =

N∑

n=0

(
P̃ (α)
n (x)P̃

(α)
n+2(y) + P̃

(α)
n+2(x)P̃

(α)
n (y)

)

with P̃
(α)
n+2 instead of P̃

(α)
n+1. We will also write ΦN for the associated operator on Lp(I, ωα).

Note that the bound (4.18) together with Lemma 2.3 leads to

‖ΦN‖Lp(I,ωα)→Lp(I,ωα)
. N1+αp

which is not good enough for our needs.
Using the recursion formula (4.13) twice, we get for n ≥ 2,

P̃ (α)
n (x)P̃

(α)
n+2(y) = P̃ (α)

n (x)
(
Ãn+1yP̃

(α)
n+1(y)− C̃n+1P̃

(α)
n (y)

)

= yÃn+1P̃
(α)
n (x)

(
yÃnP̃

(α)
n (y)− C̃nP̃

(α)
n−1(y)

)
− C̃n+1P̃

(α)
n (x)P̃ (α)

n (y)

= y2Ãn+1ÃnP̃
(α)
n (x)P̃ (α)

n (y)− yÃn+1C̃nP̃
(α)
n (x)P̃

(α)
n−1(y)− C̃n+1P̃

(α)
n (x)P̃ (α)

n (y).

Next note that

yP̃
(α)
n−1(y) =

1

Ãn−1

P̃ (α)
n (y) +

C̃n−1

Ãn−1

P̃
(α)
n−2(y)

so that

P̃ (α)
n (x)P̃

(α)
n+2(y) = y2Ãn+1ÃnP̃

(α)
n (x)P̃ (α)

n (y)−
(
C̃n+1 +

Ãn+1C̃n

Ãn−1

)
P̃ (α)
n (x)P̃ (α)

n (y)

− Ãn+1C̃nC̃n−1

Ãn−1

P̃ (α)
n (x)P̃

(α)
n−2(y).

Let us define

κn = −
(
C̃n+1 +

Ãn+1C̃n

Ãn−1

)
= −1 +

1

n
+O(n−2)

κ̃n = 1− Ãn+1C̃nC̃n−1

Ãn−1

=
1

n
+O(n−2).

Then

P̃ (α)
n (x)P̃

(α)
n+2(y) + P̃ (α)

n (y)P̃
(α)
n+2(x) = y2Ãn+1ÃnP̃

(α)
n (x)P̃ (α)

n (y) + κnP̃
(α)
n (x)P̃ (α)

n (y)

+κ̃nP̃
(α)
n (x)P̃

(α)
n−2(y).
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Summing over n, we conclude that

ΦN (x, y) = P̃
(α)
0 (x)P̃

(α)
2 (y) +

N∑

n=2

(
P̃ (α)
n (x)P̃

(α)
n+2(y) + P̃ (α)

n (x)P̃
(α)
n−2(y)

)
− P̃

(α)
N (x)P̃

(α)
N+2(y)

= P̃
(α)
0 (x)P̃

(α)
2 (y)− P̃

(α)
N (x)P̃

(α)
N+2(y) + y2

N∑

n=2

Ãn+1ÃnP̃
(α)
n (x)P̃ (α)

n (y)

+
N∑

n=2

κnP̃
(α)
n (x)P̃ (α)

n (y) +
N∑

n=2

κ̃nP̃
(α)
n (x)P̃

(α)
n−2(y).

Further, exchanging the roles of x and y and summing, we obtain 2ΦN (x, y) = Φ1
N (x, y) +

· · · +Φ6
N (x, y) where

Φ1
N (x, y) = P̃

(α)
0 (x)P̃

(α)
2 (y) + P̃

(α)
2 (x)P̃

(α)
0 (y)

−(4x2 + 4y2 − 2)
(
P̃

(α)
0 (x)P̃

(α)
0 (y) + P̃

(α)
1 (x)P̃

(α)
1 (y)

)

Φ2
N (x, y) = −P̃ (α)

N (x)P̃
(α)
N+2(y)− P̃

(α)
N+2(x)P̃

(α)
N (y)

Φ3
N (x, y) = (x2 + y2)

N∑

n=2

Ãn+1ÃnP̃
(α)
n (x)P̃ (α)

n (y)

Φ4
N (x, y) = 2

N∑

n=2

κnP̃
(α)
n (x)P̃ (α)

n (y)

Φ5
N (x, y) =

N∑

n=2

κ̃n
(
P̃ (α)
n (x)P̃

(α)
n−2(y) + P̃

(α)
n−2(x)P̃

(α)
n (y)

)
.

We also write Φj
N for the corresponding integral operators and will now estimate their

norm as operators Lp(I, ωα) → Lp(I, ωα).
Using the bound (4.18) together with Lemma 2.3 we get

∥∥Φ1
N

∥∥
Lp(I,ωα)→Lp(I,ωα)

. 1

and ∥∥Φ2
N

∥∥
Lp(I,ωα)→Lp(I,ωα)

. Nαp .

Using Abel summation, we can write

Φ3
N (x, y) = −Ã3Ã2(x

2 + y2)C
(α)
1 (x, y) + (x2 + y2)

N∑

n=2

Ãn+1(Ãn − Ãn+2)C
(α)
n (x, y)

+ÃN+1ÃN (x2 + y2)C
(α)
N (x, y)

= Φ3,1
N (x, y) + Φ3,2

N (x, y) + Φ3,3
N (x, y).

Of course ∥∥∥Φ3,1
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. 1
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while Lemma 4.1 shows that

∥∥∥Φ3,2
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

.

N∑

n=2

1

n2
nαp . Nαp−1

since |Ãn+1(Ãn − Ãn+2)| . n−2 and
∥∥∥Φ3,3

N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. Nαp .

Using Abel summation again, we write

Φ4
N(x, y) = −2κ2C

(α)
1 (x, y) + 2

N∑

n=2

(κn − κn+1)C
(α)
n (x, y) + 2κNy

2C
(α)
N (x, y)

= Φ4,1
N (x, y) + Φ4,2

N (x, y) + Φ4,3
N (x, y).

Again ∥∥∥Φ4,1
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. 1

while Lemma 4.1 shows that

∥∥∥Φ4,2
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

.

N∑

n=2

1

n2
nαp . Nαp−1

since |κn − κn+1| . n−2 and
∥∥∥Φ4,3

N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. Nαp .

A last use of Abel summation leads to

Φ5
N (x, y) = −κ̃2Φ(α)

1 (x, y) +

N∑

n=2

(κ̃n − κ̃n+1)Φ
(α)
n (x, y) + κ̃NΦ

(α)
N (x, y)

= Φ5,1
N (x, y) + Φ5,2

N (x, y) + Φ5,3
N (x, y).

Of course ∥∥∥Φ5,1
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. 1.

For the two other terms, we will use the fact that ‖ΦN‖Lp(I,ωα)→Lp(I,ωα)
. N1+αp and that

κ̃n = n−1 +O(n−2), in particular |κ̃n − κ̃n+1| . n−2. It follows that

∥∥∥Φ5,2
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

.

N∑

n=2

n−2n1+αp . Nαp

and ∥∥∥Φ5,3
N

∥∥∥
Lp(I,ωα)→Lp(I,ωα)

. N−1N1+αp . Nαp .

Summing all terms, Condition (B) of Theorem 2.1 is satisfied.
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4.5. Conclusion. It remains to conclude, all conditions of Theorem 2.1 are satisfied. There-
fore, the Weighted prolate spheroidal series converges in Lp(I, ωα) if and only if the Jacobi
series converge. The later ones converge in Lp(I, ωα) if and only if p ∈ (p0, p

′
0). We have thus

proved the following:

Theorem 4.3. Let α > −1/2 and c > 0, N ≥ 0. Let p0 = 2− 1
α+3/2 so that p′0 = 2+

1

α+ 1/2
.

Let (ψ
(α)
n,c )n≥0 be the family of weighted prolate spheroidal wave functions. For a smooth

function f on I = (−1, 1), define

Ψ
(α)
N f =

N∑

n=0

〈
f, ψ(α)

n,c

〉
L2(I,ωα)

ψ(α)
n,c .

Then, for every p ∈ (1,∞), Ψ
(α)
N extends to a bounded operator Lp(I, ωα) → Lp(I, ωα).

Further

Ψ
(α)
N f → f in Lp(I, ωα)

for every f ∈ Lp(I, ωα) if and only if p ∈ (p0, p
′
0).

5. Application to circular prolate spheroidal wave functions

For two real numbers c > 0 and α > −1
2 , the family of the circular prolate spheroidal

wave functions (CPSWFs), introduced by D. Slepian [Sl2] and denoted by ψ
(α)
n,c , are the

eigenfunctions of the finite Hankel transform Hα
c , the operator on L2[0, 1] with kernel given

by Hα
c (x, y) =

√
cxyJα(cxy). On other words

Hα
c f(x) =

∫ 1

0

√
cxyJα(cxy)f(y) dy.

We denote by µn,α(c) the family of the eigenvalues of the operator Hα
c , that is Hα

c ψ
(α)
n,c =

µn,α(c)ψ
(α)
n,c . The functions ψ

(α)
n,c satisfy the following orthogonality relations:

∫ 1

0
ψα
n,c(x)ψ

α
m,c(x) dx = δn,m and

∫ +∞

0
ψα
n,c(x)ψ

α
m,c(x) dx =

δn,m
cµ2n,α(c)

and the ψ
(α)
n,c ’s constitute a complete orthonormal system in L2[0, 1].

The ψ
(α)
n,c ’s are also related to the Hankel operator Hα, the integral operator on L2[0,+∞[

with kernel given by Hα(x, y) =
√
xyJα(xy). More precisely,

Hα(ψα
n,c)(x) =

1

cµn,α(c)
ψα
n,c

(x
c

)
χ[0,c](x).

According to Plancherel’s theorem, the family ψ
(α)
n,c =

√
c|µn,α(c)|ψ(α)

n,c constitute a complete
orthonormal system in Bα

c defined by:

(5.22) Bα
c = {f ∈ L2(0,∞); supp(Hα(f)) ⊂ [0, c]}.

Fore more details, see for example [Sl2, BK]. Our first aim in this section is to prove that
in the case of CPSWFs, we have mean convergence in the Hankel Paley-Wiener space Bα

c,p
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defined by

Bα
c,p = {f ∈ Lp(0,∞); supp(Hα(f)) ⊆ [0, c]} ,

if and only if 4/3 < p < 4.

5.1. Some facts about Spherical Bessel function.

5.1.1. Spherical Bessel function. The spherical Bessel function is defined as

(5.23) j(α)n,c (x) =
√

2(2n + α+ 1)
J2n+α+1(cx)√

cx
.

Here, Jα is the Bessel function of the first kind and order α. The spherical Bessel functions
satisfy the orthogonality relation,

∫ +∞

0
j(α)n,c (x)j

(α)
m,c(x) dx = δn,m.

Their Hankel transforms are given by, see for example [Sl2]

(5.24) Hα(j(α)n,c )(x) =

√
2(2n + α+ 1)

c

(x
c

)α+ 1

2

P (α,0)
n

(
1− 2

(x
c

)2)
χ[0,c](x).

where P
(α,0)
n is the Jacobi polynomials of degree n and parameter α, normalized so that

P
(α,0)
n (1) =

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α + 1)
. Introducing

(5.25) Tn,α(x) = (−1)n
√

2(2n + α+ 1)xα+
1

2P (α,0)
n (1− 2x2).

We thus get Hα(j
(α)
n,c )(x) = c−1χ[0,1](x/c)Tn,α(x/c). Note that the orthogonality relations of

the j
(α)
n,c ’s and the unitary character of Hα imply that (Tn,α)n≥0 is an orthonormal basis of

L2[0, 1] while the spherical Bessel functions j
(α)
n,c form a complete orthonormal system in Bα

c .

Further, using the induction property
2β

x
Jβ(x) = Jβ−1(x) + Jβ+1(x), we get the following

induction formula

j
(α)
n+1,c =

2
√

(2n + α+ 2)(2n + α+ 3)

cx
j
(α)
n+1/2,c −

√
2n+ α+ 3√
2n+ α+ 1

j(α)n,c .

Moreover, for 1 < p <∞, we have

(5.26)
∥∥∥j(α)n,c

∥∥∥
Lp(0,∞)

∼





n−
1

2
+ 1

p when 1 < p < 4

n−
1

4 log n when p = 4

n
− 1

3
+ 1

3p when p > 4

.

Note that, if 1
p + 1

q = 1, then for ℓ ∈ Z, we have

(5.27)
∥∥∥j(α)n+ℓ,c

∥∥∥
Lp(0,∞)

∥∥∥j(α)n,c

∥∥∥
Lq(0,∞)

∼





n
2

3p
− 1

2 when 1 < p < 4
3

log n when p = 4
3 or p = 4

1 when 4
3 < p < 4

n
1

6
− 2

3p when p > 4

= o(n
1

6 )
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where the constants depend on ℓ, for more details see [BC]. We can now see that condition
(L) is satisfied.

The expansion of ψ
(α)
n,c in the basis of the spherical Bessel functions is done as follows.

First, by using (5.23), we calculate the scalar product

〈
ψ(α)
n,c , j

(α)
n,c

〉
L2[0,+∞[

=

∫ +∞

0

√
c|µn,α(c)|ψα

n,c(x)j
(α)
n,c (x) dx

=
√
c|µn,α(c)|

∫ +∞

0
ψα
n,c(x)

√
2(2n + α+ 1)

J2n+α+1(cx)√
cx

dx.

Writing ν =
√
c
|µn,α(c)|
µn,α(c)

√
2(2n + α+ 1) and since

ψα
n,c(x) =

1

µn,α(c)
Hα

c ψ
α
n,c(x) =

1

µn,α(c)

∫ 1

0

√
cxyJα(cxy)ψ

α
n,c(y) dy,

then Fubini’s theorem together with (5.24), we get

〈
ψ(α)
n,c , j

(α)
n,c

〉
L2[0,+∞[

= ν

∫ 1

0

√
yψα

n,c(y)

∫ +∞

0
J2n+α+1(cx)Jα(cxy) dxdy

=
ν

c

∫ 1

0
yα+

1

2P (α,0)
n (1− 2y2)ψα

n,c(y) dy.

We thus have
〈
ψ(α)
n,c , j

(α)
n,c

〉
L2[0,+∞[

= (−1)k
|µn,α(c)|√
cµn,α(c)

〈
ψ(α)
n,c , Tn,α

〉
L2[0,1]

where Tn,α has been defined in (5.25). Writing dnk =
〈
ψ
(α)
n,c , Tk,α

〉
L2[0,1]

, we thus get the

following expansion on [0,+∞):

ψ(α)
n,c (x) =

|µn,α(c)|√
cµn,α(c)

∑

k≥0

(−1)kdnk j
(α)
k,c (x).

Consider the differential operator given by

Dα
c (φ)(x) = − d

dx

[
(1− x2)

d

dx

]
φ(x)−

(
1
4 − α2

x2
− c2x2

)
φ(x).

We know from [Sl2] that the operators Dα
c and Hα

c commute so that ψ
(α)
n,c are eigenvectors of

both operators and we denote by χn,α(c) the corresponding eigenvalue of Dα
c , that is

(5.28) Dα
c (ψ

(α)
n,c ) = χn,α(c)ψ

(α)
n,c .

Further more, we have the following inequality see [Sl2]:

(5.29)

(
α+ 2n+

1

2

)(
α+ 2n+

3

2

)
≤ χn,α(c) ≤

(
α+ 2n+

1

2

)(
α+ 2n+

3

2

)
+ c2.
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According to [W], the Spherical Bessel functions are the eigenfunctions of the differential
operator given by

Dc(ω) =
(x
c

)2 d2

d2x
(ω) +

(1 + c)√
c

(x
c

) d

dx
(ω) + c2x2ω

and the corresponding eigenvalues are given by
(
(2n + α + 1)2 − c2−2c

2c3

)√
2(2n + α+ 1). It

follows from Lemma 3.2 that Condition (D) of Theorem 2.1 is also satisfied.

If we substitute the expression of ψ
(α)
n,c as a series of Jacobi polynomials into (5.28), we

obtain the relations satisfied by the coefficients dnk . More precisely, from [Sl2], we obtain the
three term recurrence relation

(5.30) f(k, n, c, α)dnk = ak,αd
n
k−1 + ak+1,αd

n
k+1, ∀k ≥ 0

where dn−1 = 0 and

f(k, n, c, α) =
χn,α(c) − (α+ 2k + 1

2)(α + 2k + 3
2 )− c2bk,α

c2
(5.31)

ak,α =
k(k + α)

(α+ 2k)
√
α+ 2k + 1

√
α+ 2k − 1

bk,α =
1

2

[
α2

(α+ 2k + 1)(α + 2k)
+ 1

]
.

5.1.2. The projection on the span of spherical Bessel functions. Let 1 < p <∞ and α ≥ −1
2 .

For n ≥ 0, let

P (α)
n (x, y) :=

n∑

k=0

j
(α)
k,c (x)j

(α)
k,c (y)

and P(α)
n be the operator with kernel P

(α)
n (x, y). That is, P(α)

n is the projection on the span

of {j(α)0,c , . . . , j
(α)
n,c }.

Proposition 5.1. Let 1 < p <∞, α > −1/2. Then the following estimate holds for every n
and every f ∈ Lp(0,∞)

∥∥∥P(α)
n (f)

∥∥∥
Lp(0,∞)

.




‖f‖Lp(0,∞) if

4

3
< p < 4

n3/4‖f‖Lp(0,∞) otherwise

with the implied constant independent of f and n.

Proof. The projection on the span of spherical Bessel functions has been studied by Varona
[Va] with a different normalization. He considered

jαn (x) =
√
2n+ α+ 1J2n+α+1(

√
x)x−α/2−1/2

so that
j(α)n,c =

√
2jαn (c

2x2)(cx)α+1/2.

Next, if we define

Kn(x, y) =
n∑

k=0

jαn (x)j
α
n (y)
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(with Varona’s notation) then P
(α)
n (x, y) = 2c2α+1(xy)α+1/2Kn(c

2x2, c2y2).
Using Varona’s computation [Va, page 69] we get

P (α)
n (x, y) =

(xy)1/2

x2 − y2
{xJα+1(cx)Jα(cy)− yJα+1(cy)Jα(cx)}

+
(xy)1/2

x2 − y2
{xJ ′

α+2n+2(cx)Jα+2n+2(cy)− yJα+2n+2(cx)J
′
α+2n+2(cy)}.(5.32)

Now, recalling that H denotes the Hilbert transform, it follows from (5.32) that

P(α)
n (f)(x) = Ω1(f)(x)− Ω2(f)(x) + Ω3(f)(x)− Ω4(f)(x)

where

Ω1(f)(x) =

∫ ∞

0

(xy)1/2

x2 − y2
xJα+1(cx)Jα(cy)f(y) dy

=
x

3

2

2
Jα+1(cx)H

[
y−1/4Jα(cy

1/2)f(y1/2)
]
(x2).

Ω2(f)(x) =

∫ ∞

0

(xy)1/2

x2 − y2
yJα(cx)Jα+1(cy)f(y) dy

=
x

1

2

2
Jα(cx)H

[
y1/4Jα+1(cy

1/2)f(y1/2)
]
(x2).

Ω3(f)(x) =

∫ ∞

0

(xy)1/2

x2 − y2
xJ ′

α+2n+2(cx)Jα+2n+2(cy)f(y) dy

=
x

3

2

2
J ′
α+2n+2(cx)H

[
y−1/4Jα+2n+2(cy

1/2)f(y1/2)
]
(x2).

Ω4(f)(x) =

∫ ∞

0

(xy)1/2

x2 − y2
yJα+2n+2(cx)J

′
α+2n+2(cy)f(y) dy

=
x

1

2

2
Jα+2n+2(cx)H

[
y1/4J ′

α+2n+2(cy
1/2)f(y1/2)

]
(x2).

Note that each of these operators is of the form

Ωj(f)(x) = Gj(x)H
[
ϕj

]
(x2)

so that

‖Ωj(f)‖pLp(0,∞) =

∫ ∞

0
|Gj(x)|p|H

[
ϕj

]
(x2)|p dx

=

∫ ∞

0

|Gj(
√
x)|p

2
√
x

|H
[
ϕj

]
(x)|p dx.

But then, if we are able to find an upper bound ωj ∈ Ap (see [Va]) of
|Gj(

√
x)|p

2
√
x

. ωj(x), we

obtain

‖Ωj(f)‖pLp(0,∞) .
∥∥H
[
ϕj

]∥∥p
Lp

(
(0,∞),ωj(x) dx

) . [ωj]
max(p,p′)
Ap ‖ϕj‖p

Lp

(
(0,∞),ωj(x) dx

).
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It then remains to prove that ‖ϕj‖p
Lp

(
(0,∞),wj(x) dx

) . ‖f‖pLp(0,∞).

For Ω1, ϕ1(y) = y−1/4Jα(cy
1/2)f(x1/2). Further, we use the bound |Jα+1(t)| ≤ Cαt

−1/2

which allows us to chose ω1(y) = y
p−1

2 ∈ Ap since −1 <
p− 1

2
< p− 1. Further

‖ϕ1‖pLp(R+,ω1(y) dy)
=

∥∥∥y−1/4Jα(cy
1/2)f(y1/2)

∥∥∥
p

Lp(R+,ω1(y) dy)
.

∫ ∞

0

∣∣∣∣∣
f(y1/2)

(cy)1/2

∣∣∣∣∣

p

x
p−1

2 dy

. ‖f‖pLp(0,+∞).

We will now take care of Ω2. In this case with ϕ2(y) = y1/4Jα+1(cy
1/2)f(y1/2) and the

same bound on the Bessel function shows that we can chose ω2(x) = x−
1

2 ∈ Ap.

‖ϕ2‖pLp(R+,ω2(x) dx)
=

∥∥∥x1/4Jα+1(cx
1/2)f(x1/2)

∥∥∥
p

Lp(R+,ω2(x) dx)
.

∫ ∞

0

∣∣∣f(x1/2)
∣∣∣
p
x−

1

2 dx

. ‖f‖p
Lp(0,+∞)

.

The same reasoning would apply to Ω3,Ω4 but with a bound that depends on n. We thus
need a more refined estimate which follows from [BC]:

|Jµ(x)| . x−
1

4

(
|x− µ|+ µ

1

3

)− 1

4

|J ′
µ(x)| . x−

3

4

(
|x− µ|+ µ

1

3

) 1

4 .

Set µ = α+ 2n+ 2. We may then take

ω3(x) = x
3p

8
− 1

2

(
|c
√
x− µ|+ µ

1

3

) p

4 and ω4(x) = x
p

8
− 1

2

(
|c
√
x− µ|+ µ

1

3

)− p

4

By the Lemma (3.4), ω3 and ω4 ∈ Ap with [ωj]Ap . 1 if
4

3
< p < 4 and [ωj ]Ap . µ3/4

otherwise.
Finally

ϕ3(x) = x−1/4Jα+2n+2(cx
1/2)f(x1/2) and ϕ4(x) = x1/4J ′

α+2n+2(cx
1/2)f(x1/2).

Note that

|ϕ3(x)| . x−3/8
(
|c
√
x−µ|+µ 1

3

)− 1

4 |f(x1/2)| and |ϕ4(x)| . x−1/8
(
|c
√
x−µ|+µ 1

3

) 1

4 |f(x1/2)|.
so that

‖ϕj‖pLp(R+,ωj(x) dx)
.

∫ ∞

0
x−

1

2 |f(x1/2)|dx . ‖f‖pLp(0,+∞).

It follows that ‖Ωj(f)‖Lp(0,∞) . 1 if
4

3
< p < 4 and ‖Ωj(f)‖Lp(0,∞) . n3/4‖f‖Lp(0,∞) for

1 < p ≤ 4

3
. Grouping all estimates, the same holds for P(α)

n . Finally, as P(α)
n is self-adjoint,

we also get the estimate
∥∥∥P(α)

n (f)
∥∥∥
Lp(0,∞)

. n3/4‖f‖Lp(0,∞) for p ≥ 4.

�
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5.2. Condition (R). We will now show that conditions (R) of Theorem 2.2 are satisfied,
this is done in three lemmas.

Lemma 5.2. For every k ≥ 1 and α > −1

2
, 0 ≤ a

(α)
k ≤ 1

2
.

Proof. For k = 1, a1,α =
√
1+α

(2+α)
√
α+3

which is clearly ≤ 1/2 when α ≥ 0. It is easy to see that

a1,α is increasing with α ∈ (−1/2, α0) and decreasing with α ∈ (α0, 0) where α0 = −3+
√
5

2 .
Finally, a1,α0

∼ 0.3 so that a1,α ≤ 1/2 for every α. Write

|ak,α| =
1

4

1 + 2α
2k(

1 + α
2k

)√
1 + α+1

2k

√
1 + α−1

2k

=
1

4
ψ(1/2k),

where ψ(x) =
1 + 2αx

(1 + αx)
(
1 + (α− 1)x

)1/2(
1 + (α+ 1)x

)1/2 . It is thus enough to show that

|ψ(x)| ≤ 2 for x ∈ [0, 1/4]. Note that ψ is non-negative for α > −1/2 and x ≤ 1. When
−1/2 < α ≤ 0, as 1 + 2αx ≤ 1 + αx and 1 + (α+ 1)x ≥ 1,

ψ(x) ≤ 1√
1 + (α− 1)x

≤ 1√
1− 3x/2

≤ 1√
5/8

< 2

when x ≤ 1/4. When α > 0, we first bound

ψ(x) ≤ 1 + 2αx

(1 + αx)
(
1 + (α− 1)x

)

and it is enough to prove that, for x > 0, we have

1 + 2αx ≤ 2(1 + αx)
(
1 + (α− 1)x

)
= 2 + (4α− 2)x+ 2α(α − 1)x2.

or, equivalently, 1 + 2(α − 1)x + 2α(α − 1)x2 ≥ 0. When α ≥ 1 this is obvious, while for
0 < α < 1, the roots of this equation are

−1− α+
√
1− α2

2α(1 − α)
< 0 <

√
1− α2 − (1− α)

2α(1 − α)
=

√
1 + α−

√
1− α

2α
√
1− α

.

The inequality is therefore satisfied as soon as x ≤ 1/2k with

k ≥ kα :=
α
√
1− α√

1 + α−
√
1− α

=
α(1 − α+

√
1− α2)

2
.

As 0 < α < 1, it is easy to see that kα ≤ 1. �

Let us now estimate the bk,α’s:

Lemma 5.3. For every k and every α > −1/2, bk,α = 1
2 + η̃k,α with |η̃k,α| ≤ 1

2 .

Proof. From the definition of bk,α, η̃k,α = α2

2(α+2k+1)(α+2k) . When α = 0, η = 0 and when

α > 0 we directly get η̃k,α ≤ 1
2 . When −1/2 < α < 0, α+ j > 1/2 > |α| for every j ≥ 1 thus

|η̃0,α| = |α|
2(α+1) ≤ 1

2 while for k ≥ 1 we directly get 0 ≤ η̃k,α = 1
2

|α|
α+2k

|α|
α+2k+1 ≤ 1

2 . �
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The last step consists in establishing the bounds for |f(k, n, c, α)|. But from (5.29) and
(5.31), it is straightforward to see that f(k, n, c, α) satisfies the conditions of Lemma 3.1. In
summary

Lemma 5.4. For every α > −1/2, every c > 0,
— for fixed n, f(k, n, c, α) & k2, when k is large enough;
— for every n ≥ c2/2, k ≥ 0, k 6= n, we have

|f(k, n, c, α)| ≥ 4
|k − n|k + c2

c2
;

— for every n ≥ c2/2,
∣∣∣∣∣

a
(α)
n+1

f(n+ 1, n, c, α)
− a

(α)
n+2

f(n+ 2, n + 1, c, α)

∣∣∣∣∣ . n−2.

5.3. Condition (B′). It remains to check condition (B′) that is, to estimate the Lp norm of
the operator with kernel

Q
(α)
N (x, y) =

N∑

n=n0

(
j(α)n,c (x)j

(α)
n+1,c(y) + j

(α)
n+1,c(x)j

(α)
n,c (y)

)
.

Lemma 5.5. Let 1 < p <∞ then, for every f ∈ Lp(0,∞)

(∫ ∞

0

∣∣∣∣
∫ ∞

0
Q

(α)
N (x, y)f(y) dy

∣∣∣∣
p

dx

)1/p

. N2/3‖f‖Lp(0,∞).

and the implied constant is independent of N and f .

Proof. First, using the identity (see [W])

(5.33)
2ν

x
Jν(x) = Jν+1(x) + Jν−1(x)

twice, one gets

J2n+α+3(x) =
4(2n + α+ 1)(2n + α+ 2)

x2
J2n+α+1(x)

−2(2n + α+ 2)

x
J2n+α(x)− J2n+α+1(x).

so that

J2n+α+1(x)J2n+α+3(y) + J2n+α+1(y)J2n+α+3(x)

= 4(2n + α+ 1)(2n + α+ 2)

(
1

x2
+

1

y2

)
J2n+α+1(x)J2n+α+1(y)

−2(2n + α+ 2)

(
1

y
J2n+α(y)J2n+α+1(x) +

1

x
J2n+α(x)J2n+α+1(y)

)

−2J2n+α+1(x)J2n+α+1(y).
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Using again (5.33) for the middle term, we get

J2n+α+1(x)J2n+α+3(y) + J2n+α+1(y)J2n+α+3(x)

= 4(2n + α+ 1)(2n + α+ 2)

(
1

x2
+

1

y2

)
J2n+α+1(x)J2n+α+1(y)

−2
(2n + α+ 2)

2n+ α

((
J2k+α+1(y) + J2k+α−1(y)

)
J2n+α+1(x)

+
(
J2n+α+1(x) + J2n+α−1(x)

)
J2n+α+1(y)

)

−2J2n+α+1(x)J2n+α+1(y).

Next, since j
(α)
n,c (x) =

√
2(2n + α+ 1)J2n+α+1(cx)√

cx
, one obtains

j(α)n,c (x)j
(α)
n+1,c(y) + j(α)n,c (y)j

(α)
n+1,c(x)

=
4

c2

√
(2n + α+ 1)(2n + α+ 3)(2n+ α+ 2)

(
1

x2
+

1

y2

)
j(α)n,c (x)j

(α)
n,c (y)

−2
(2n+ α+ 2)

2n + α

√
2n+ α+ 3

2n+ α− 1

(
j
(α)
n−1,c(y)j

(α)
n,c (x) + j

(α)
n−1,c(x)j

(α)
n,c (y)

)

−2

√
2n+ α+ 3

2n+ α+ 1

(
2(2n + α+ 2)

2n + α
+ 1

)
j(α)n,c (x)j

(α)
n,c (y).(5.34)

Now we write

γn =
4

c2

√
(2n+ α+ 1)(2n + α+ 3)(2n + α+ 2),

so that |γn| . n2,

2
(2n + α+ 2)

2n+ α

√
2n+ α+ 3

2n+ α− 1
= 2 + κn, 0 ≤ κn . n−1

and

2

√
2n+ α+ 3

2n+ α+ 1

(
2(2n + α+ 2)

2n+ α
+ 1

)
= 6 + κ̃n, 0 ≤ κ̃n . n−1.

Then, summing (5.34) from n = n0 to n = N gives

Q
(α)
N (x, y) =

(
1

x2
+

1

y2

) N∑

n=n0

γnj
(α)
n,c (x)j

(α)
n,c (y)

−(2 + κn0
)
(
j
(α)
n0−1,c(y)j

(α)
n0,c(x) + j

(α)
n0−1,c(x)j

(α)
n0,c(y)

)

−2Q
(α)
N (x, y)−

N∑

n=n0

κn

(
j(α)n,c (y)j

(α)
n+1,c(x) + j(α)n,c (x)j

(α)
n+1,c(y)

)

+(2 + κN )
(
j
(α)
N,c(y)j

(α)
N+1,c(x) + j

(α)
N,c(x)j

(α)
N+1,c(y)

)

−6P
(α)
N (x, y) + 6Pn0−1(x, y)−

N∑

n=n0

κ̃nj
(α)
n,c (x)j

(α)
n,c (y).
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It follows that

Q
(α)
N (x, y) = QN,1(x, y) + · · ·+QN,7(x, y).

Using (5.27) and Lemma 2.3 we get that

‖QN,2‖Lp(0,∞)→Lp(0,∞), ‖QN,6‖Lp(0,∞)→Lp(0,∞) . 1

and

‖QN,4‖Lp(0,∞)→Lp(0,∞) . N1/6

while

‖QN,3‖Lp(0,∞)→Lp(0,∞) .

N∑

n=n0

1

n
n1/6 . N1/6

and

‖QN,7‖Lp(0,∞)→Lp(0,∞) .

N∑

n=n0

1

n
n1/6 . N1/6.

We have seen in Proposition 5.1 that ‖QN,5‖Lp(0,∞)→Lp(0,∞) . N3/4.

Concerning QN,1, we will use the following equality, see [BC],

∥∥x−2jαn
∥∥
Lp(0,∞)

‖jαn‖Lq(0,∞) + ‖jαn‖Lp(0,∞)

∥∥x−2jαn
∥∥
Lq(0,∞)

= O(n−
7

3 )

from which we deduce that

‖QN,1‖Lp(0,∞)→Lp(0,∞) .

N∑

n=n0

n2n−7/3 . N2/3.

By grouping all estimates, we obtain
∥∥∥Q(α)

N

∥∥∥
Lp(0,∞)→Lp(0,∞)

. N2/3 as claimed. �

5.4. Conclusion. It remains to conclude. ll conditions of Theorem 2.1 are satisfied. There-
fore, the Hankel prolate spheroidal series converges in Lp(0,∞) if and only if the Bessel series
converge. The later ones converge in Lp(0,∞) if and only if p ∈ (4/3, 4). We have thus
proved the following:

Theorem 5.6. Let α > −1/2 and c > 0, N ≥ 0.

Let (ψ
(α)
n,c )n≥0 be the family of circular prolate spheroidal wave functions. For a smooth

function f on I = (0,∞), define

Ψ
(α)
N f =

N∑

n=0

〈
f, ψ(α)

n,c

〉
L2(0,∞)

ψ(α)
n,c .

Then, for every p ∈ (1,∞), Ψ
(α)
N extends to a bounded operator Lp(0,∞) → Lp(0,∞). Further

Ψ
(α)
N f → f in Lp(0,∞)

for every f ∈ Bα
c,p if and only if p ∈ (4/3, 4).
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