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MEAN CONVERGENCE OF PROLATE SPHEROIDAL SERIES AND
THEIR EXTENSIONS

MOURAD BOULSANE, PHILIPPE JAMING & AHMED SOUABNI

ABSTRACT. The aim of this paper is to establish the range of p’s for which the expansion of a
function f € L” in a generalized prolate spheroidal wave function (PSWFSs) basis converges to
fin LP. Two generalizations of PSWF's are considered here, the circular PSWF's introduced
by D. Slepian and the weighted PSWF's introduced by Wang and Zhang. Both cases cover
the classical PSWF's for which the corresponding results has been previously established by
Barcel6 and Cordoba.

To establish those results, we prove a general result that allows to extend mean conver-
gence in a given basis (e.g. Jacobi polynomials or Bessel basis) to mean convergence in a
second basis (here the generalized PSWFs).

1. INTRODUCTION

In their seminal work from the 70s, Landau, Pollak and Slepian [LP1, LP2, SP| have
shown that the orthonormal basis that is best concentrated in the time-frequency plane is
given by the Prolate Spheroidal Wave Functions (PSFWs). This basis therefore provides
an efficient tool for signal processing. Since then, the PSFWs have proven useful in many
applications ranging from random matrix theory (e.g. [dCM, Me, Dy]) to numerical analysis
(e.g. [XRY, Wa2]). While taking naturally place in an L? setting, one may also consider
the behavior of expansions of functions in the PSFW basis in the LP-setting. This has been
done by Barcelo and Cordoba for the usual PSFWs. Our aim here is to extend this work to
two natural generalizations of the PSFWs, namely, the Hankel-PSFWs introduced by Slepian
[S11] and the weighted PSFWs recently introduced by Wang and Zhang [WZ].

Let us now be more precise with the results in this paper. First let us recall that the
prolate spheroidal wave functions (¢ )n>0 are eigenvectors of an integral operator. Using
the min-max theorem, they can thus be obtained as solutions of an eXAtremal problem: foi
¢ > 0, recall that the Paley-Wiener space PW,. = {f € L*(R) : supp f C [—c,c|} where f
stands for the Fourier transform of f. Then one sets

11l 22 ()

o = argmax { : f € PW,, f €span{ty . k < n}l} )

11l 2wy
A fundamental fact discovered by Landau, Pollak and Slepian is that they are also eigen-
functions of a Sturm-Liouville operator, a fact tagged as a “happy miracle” by Slepian [S13].
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Another key fact for our purpuses is that (¢, ¢),>0 is an orthonormal basis of PW, and this
basis is the best concentrated in the time domain.

In this paper, we are interested in two generalizations of the PSFWs. For both cases, the
basis is constructed as a set of eigenvectors of an integral operator, the happy miracle occurs
so that they are also eigenvectors of a Sturm-Liouville operator and, more important for us,
they form an orthonormal basis of a Paley-Wiener type of space.

The first basis we consider was introduced by Slepian [S11]. It is an analogue of the classical
PSFWs adapted to higher dimensional radial Fourier analysis. To introduce them, we need
some further notation. First, we replace the Fourier transform by the Hankel transform
defined for f € L(0,+00) by

“+oo

Hf(z) = ; Vryda(zy) f(y) dy

where J, is the Bessel function and o > —1/2. Like the usual Fourier transform, the Hankel
transform extends into a unitary operator on L?(0,4o00). The corresponding Paley-Wiener
space is then denoted by

HB = {f € L*(0,00);supp H*(f) C [0, ]} .
Finally, the Circular (Hankel) Prolate Spheroidal Wave Functions (CPSWFs) are defined by

Wlzon_ p o gp@, 1 e spanfugo b <nj* b,
17T 220.100) |

a
¢y, . = argmax {

Then (¢5; .)n>0 is an orthonormal basis of H Bé‘”. Note also that when o = 0, these are usual

PSFWs, more precisely, 1/19176 = Yon.c-
The second basis we consider, the Weighted Prolate Spheroidal Wawe Functions (WPS-
FWs), is defined in a similar fashion. We first introduce the weighted Paley-Wiener spaces

wPWC(O‘) = {f € L2(R);suppf§ [—e, ], fe L2((—c, ), (1 — a:2/c2)_°‘ dx)} .
The WPSFWs are defined by

HfHLz((_Ll),(l_mz)a dz)
|

Again, U7 . is an orthonormal basis of wPW.!® and \I/g’c = Yn,c-

The aim of this paper is to characterize the range of p’s for which prolate spheroidal wave
functions converge in LP. The subject of the LP-convergence (also called mean convergence
of order p) of orthogonal series, is a central subject in harmonic analysis. This kind of
convergence is briefly described as follows. Let 1 < p < oo, a,b € R, I = (a,b), and {¢,} an
orthonormal set of the weighted Hilbert space L?(I,w)-space, where w is a positive weight
function. We define the kernel

vy

(fewPW, fe span{ Wy ., k < n}t

¢ = argmax

L2 ((—c,c),(l—xz/cz)*a d:c)

N
KN(JJ, y) = Z ¢n($)¢n(y)
n=0
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so that the orthogonal projection of f € L?(I,w) on the span of {¢g,...,¢n} is given by

N
K@) = [ Knta) o) dy = Y a(1)ou(a)
n=0

with
an(f) = /I F ) Bn()w(z) dy.

Now, this last expression may be well defined even for f € LP(I,w), p # 2 and then Kx(f)
is also well defined. This happens for instance if ¢, € LP(I,w) for every p which is often
the case in practice. The orthonormal set {¢,} is said to have mean convergence of order p,
or LP-convergence over the Banach space LP(I,dw) if for every f € LP(I,dw), Kn(f) is well
defined and

b 1/p
Jim 17 = Ko Sl = Jim [ [0~ K @Puta)az] - =o.

This concept of mean convergence is also valid on a subspace B, rather than the whole Banach
space LP(I,dw).

To the best of our knowledge, M. Riesz was the first in the late 1920’s, to investigate this
problem in the special case of the trigonometric Fourier series over LP(T), 1 < p < +o00. More
precisely, in [Ri], it has been shown that the Hilbert transform over the torus T is bounded
on LP(T) if and only if p > 1. Further, the LP—boundedness of the Hilbert transform is
equivalent to the mean convergence of the Fourier series on LP(T). In the late 1940’s, H.
Pollard, in a series of papers [Pol, Po2, Po3|, has studied the mean convergence of some
classical orthogonal polynomials, such as Legendre and Jacobi polynomials. In particular, in
the later case, he has shown that if @ > —1 and w,(z) = (1 —22)®, z € I = [-1,1] is the
Jacobi weight, then the mean convergence over LP(I,w,,) of Jacobi series expansion holds
true, whenever

a+1 a+1
m(a) .—420[_1_3 <p< M(a) '_42a—|—1'
He has also shown that the previous conclusion fails if p < m(«) or p > M(«). In [MW], the
authors have shown that the mean convergence of the Bessel series expansion over the space
LP([0,1],zdz) holds true whenever 4/3 < p < 4. Later on, Newman and Rudin [NR| have
shown that the mean convergence fails for the critical values of p = m(a),p = M(«) in the
Jacobi case and for p = 4/3, p = 4 for the Bessel case. More recently, in [Va] Varona has
extended the mean convergence of Bessel series for a > —1/2 over the Hankel Paley-Wiener
space of functions from LP([0,00), 2% dx) with compactly supported Hankel transforms.

An other important extension has been given by Barcelo and Cordoba [BC] where they have
shown that the series expansion in terms of the classical prolate spheroidal wave functions
(PSWFs) has the mean convergence property over the previous Fourier Paley- Wiener space,
holds true if and only if 4/3 < p < 4. This is the main source of inspiration for our work, so let
us detail the ideas behind [BC]. Barcelo and Cordoba first determine the expansion of PSFWs
in a basis consisting of Bessel functions. It turns out that the kernel of the projection onto
this second basis is given by a Christoffel-Darboux like formula so that it’s mean convergence
properties can be deduced from estimates for weighted Hilbert transforms. The last step of
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the proof is a sort of transference principle which allows to show that the PSWF's have the
mean convergence property of order p exactly when the Bessel basis has this property.

Our first aim here is to formalize this transference principle. We consider two orthonormal
bases (¢n)n>0 and (¥y)n>0 of L2(Q, iu). Then, we establish a fairly general principle giving
several conditions on (¢n)n>0 and (¢p)n>0 that will ensure the mutual mean convergence
property of order p associated for the two bases.

The second part of the paper then consists in applying this principle to the two extensions
of PSFWs mentionned above. For the Circular PSFWs the second basis consists again of a
basis built from Bessel functions for which we have to adapt the proof of Barcelo-Cordoba to
establish the range of p’s for which mean convergence holds. The case of Weighted PSFWs is a
bit simpler as the second basis consists of Jacobi polynomials for which the mean convergence
property is already known. As this case is simpler, it will be treated first. We may now state
our main result:

Theorem. Let a > —1/2,¢>0, N > 0. Let I = (—1,1) and w(z) = (1 — 2%)*.

e Let po =2 — and pj = 2 + Let (\I’sﬁéc))nzo be the family of weighted

1
a+3/2 a+1/2°

prolate spheroidal wave functions. For a smooth function f on I = (—1,1), define

Iy (F52) Ly P

Then, for every p € (1,00), \I/S\?‘) extends to a bounded operator LP(I,w,(x)dz) —
LP(I,wq(z)dx). Further

Vo in LP(1wa(x) da)

for every f € LP(I,wq(z)dz) if and only if p € (po, pj)-

o Let (ngxc) )n>0 be the family of Hankel prolate spheroidal wave functions. For a smooth
function f on I = (0,00), define

N
VS = 30 () gy

Then, for every p € (1,00), \Ilg\o,‘) extends to a bounded operator LP (0, c0) — LP(0,c0).
Further

\I/S\?)f - f in LP(0, c0)
for every f € B¢, if and only if p € (4/3,4).

This work is organized a follows. In section 2, we study a general principle that ensure
the mutual LP-convergence of two series expansion with respect to two different orthonormal
bases of a Hilbert space L?(u). In section 3, we give a list of technical lemmas that ensure
or simplify the conditions given in the general principle of the previous section. In section 4,
we apply the results of sections 2 and 3 and check in detail that the conditions that we have
established in the case of general principle hold true for the series expansion in the weighted
PSWFs. Finally in section 5, we prove that this mean convergence property holds also true
for circular PSWF's series.
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2. THE GENERAL PRINCIPAL

2.1. The setting and the main result. As already explained, to prove the LP-convergence
of the expansion in a prolate basis, we will expend the prolates in a second basis for which
this LP-convergence is easier to study. This idea is formalized in the following setting:

We consider a measure space (€2, ) and assume that, for every 1 < p < oo, LP(€Q, i) is

infinite dimensional and separable. The dual index of p will be denoted by p’ = Ll We
p fe—

consider two orthonormal bases (¢y,)n>0 and (¥n, )n>0 of L2(Q, i1). For N > 0 we denote by ®
(resp. W) both the orthogonal projection on span{yg,...,pon} (resp. span{tyg,...,¥n})
and its kernel

N
=Y ¢u(@)paly) resp. Un(z,y) Z%
n=0

Our aim in this section is to define several conditions on ¢, ¢n that will ensure that, for
any 1 < p < oo, xyf — f in some LP if and only if U f — f in LP. The first condition
is of course that this makes sense. The second one is that some relation exists between the
two bases. The other conditions are technical and are those that will be the most difficult to
check in practice.

(L) For every 1 < p < oo, and every n, ¢, € LP(u). Further, we assume that there is a
0 <, < 1 such that

(2.1) lenll Loy S 77

Finally, we assume that O, := 7, + 7y < 1 and that there is a pg such that if
p € (po,pp), ap = 0. In other words, for p € (po, p}),

(2.2) H(PnHLp(u lpnll Lo () ~ =
while for p ¢ (po, pf),
(2.3) HSDnHLP(“)”(Pn”LP’(M) S n, ap < L.

(R) Let of = (¢n,Pk)r2(,) so that ¢, = oo ootk We assume that there exists
an integer ny and K,k > 0 two real numbers such that (o) satisfies a three term
recursion formula

[k n)ay = apo_y + apr1054,
where
(1) |a| <3,
(2) for fixed n, there is a k,, such that |f(k,n)| > k% when k > k,,
(3) there is an ng > 0 such that, for n > ng, and every k > 0, |f(k,n)| 2 k|k — n|,
(4)

Gp+1 An+2 <2

(2:4) ‘f(n—l—l W Tt

(B) Let P ~N(z,y) Zcpn ) on+1(y ) and write also @y for the corresponding integral

operator. For every 1 < p < 0o, we assume that @y defines a bounded linear operator
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on LP(u) and that there exists 8, < 1 such that, for every f € LP(u)
) H < N .
[@n ], = N7 g

(C) There exists 1 < pg < 2 such that & f — f for every f € LP(, ), with convergence
in LP(Q, p), if and only if pg < p < py.

(D) There exists a set D that is dense in every LP(u), 1 < p < oo, such that, for every
1 <p<ooandevery f € LP(u), Pnf,Unf — fin LP(u) when N — oo.

In this all of Section 2.1 we will use the above notation and assume that these conditions
are fulfilled. Our main result is then:

Theorem 2.1. With the above notation, and under conditions (L), (R), (B), (C) and (D),
we have YN f — f for every f € LP(Q,u), with convergence in LP(Q, u), if and only if
po < p < pj

N—+1
Remark 2.2. Note that the adjoint <I>* of ® N has kernel <I>* (z,9) Z on(x gon 1(y). Thus,

if condition (B) holds, then for every f € LP(u)
6, <1
1 I T

Condition (B) may be replaced by a slightly weaker condition, see Remark 2.7 below.
Also we state the various conditions with 1 < p < oco. It is enough that they hold for
p1 < p<pj with 1 <p; < po.

The remaining of this section is devoted to the proof of this result.

2.2. Step 1: A simple lemma and an extension of the Banach-Steinhaus Theorem.
We will here formalize a result that has already been used in [BC]. To start, let us state the
following simple and well known lemma that we prove for sake of completeness:

Lemma 2.3. Let 1 <p < oo and let K : Q2 x Q — C be such that

VK i o (/ </ K (2. 9)P duly )>p/pf du(x)>1/p .

Then the integral operator K defined by

=/K@wﬂw®
Q

extends to a continuous operator K : LP — LP with norm

”K”LP —>LP < ”KHLP @Lp( )
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Proof. Indeed, using Holder’s inequality,

10 = [ | K ) dut) " du()

< [([ix@nr du(y)),,/p, [ 1P anty) (o

= K|
K12 o

g
as claimed. O

With condition (L) we can now make sense of ®y f, Uy f for every f € LP(u). Moreover,
according to the Banach-Steinhaus Theorem, the following are equivalent:
(i) for every f € LP(u), ®nf — f in LP(u);
(ii) there exists a dense set D C LP(u) such that, for every f € D, &nf — f in LP(p)
and for every f € LP(u), | PN fllrr(uy S I f e

The statement hold of course with ® 5 replaced by Wy.

Now, as we assume conditions (D), LP-convergence of ®nf — f, Unf — f, is equivalent
to the uniform boundedness of |®n|l1p(,)—rp(n: a0d (YN o) rp(y- But then, under
condition (C'), the uniform boundedness of ||® x| Le(u)—Lp(y) Dolds if and only if pp < p <
py- But if [[@n — Up| Lo(u)—>Lr(y) 19 uniformly bounded for every p, then we also get that
INZN L ()= LP () 18 uniformly bounded if and only if py < p < pj. We may summarize this
discussion in the following proposition:

Proposition 2.4. With the notation of Section 2.1 and under conditions (L), (R), (B), (C)
and (D), the following are equivalent:
(i) Unf — f for every f € LP(Q, ), with convergence in LP(Q, ), if and only if py <
< pp-
(ii) ?or fé)ery 1 < p < oo, there exists a constant C such that, for every N > 0 and every
feLP(u),
185 — O Fll gy < Ll

2.3. Step 2: The behavior of the sequence aj.

Lemma 2.5. Let n be an integer, (ax), (fr) be two sequences such that a; # 0, |f1| < n? for
1
every k, |ax| < 5 |fi| Z k|k —n|. Let (o)k>0 be a sequence such that

o0
- Z |ak|2 = 17'
k=0
~ (a)k>0 satisfies a three term recursion formula
frou = agog—1 + ag410%641.
Then there exists k,nq depending only on the constants appearing in the above < and 2
inequalities such that, if n > nq,
(i) [aol S (kn)*~",
(ii) for k>1, |ax| S (Cn)~lF=
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(iii) |ap|? =1 —n with 0 <n <n~2.

Proof. First, as Y |ax|? = 1, |a| < 1 for every k > 0.

We will first prove the estimate for k > 1 and write |fx| > &'k|n — k| > kn, k = k//4. As
|a| < L for every k, we get | fi||ax| < 1 thus |ag| < (kn)~1if |k —n| > 1. Assume now that
we have proven that, for J > 1, for every k > 1,

‘ak‘ < (Kn)—min(\k—nLJ).

Then, if |k —n| > J+ 1,

| fillew] < (kn) ™.
As | fx| > kn, we obtain

k| < (wn) =+
as claimed. This induction does not allow to estimate g for which we instead use the
induction formula in a rougher way: we assumed that there is a constant C' such that |fi| <
Cn?

C 1
(kn)* ™" < (? + %—n> (km)3~™.

DO | =

1 = _
jaalleo] < [fillen] + las| < Cn®(sn)' ™" +

from a bound of the form |ag| > k(kn)>~" follows.
Finally, if n > max(4,1/2k)

a2 = 1= 3 a2 1= w2(m)* 2 =23 (k)Y
h=nl>1 7=

1= R (k)™ = 2(mm) (1 = () )

1— (k* +4)(kn) 2

as claimed. O

VARV

Let us now state what this lemma implies on (a}’) satisfying condition (R).
According to Lemma 2.5, and up to replacing eventually ng by max(ng, n1), we may assume
that, if n > ng,
(i) for every n, |af| < k™2 (with a constant that depends on n);
(ii) if n > ny,
(a) o] <n 2
(b) for k > 1, |a| < (kn) ==
(c) [a?]? =1 —n, with 0 <n, Sn~2
Let us show that this implies that (¢,,) also satisfies condition (L):

Lemma 2.6. With the notation of Section 2.1 and under conditions (L), (R), the sequence
(n)n>0 also satisfies condition (L).

Proof of Lemma 2.6. We write 1, = Z ag ek so that
k=0

o0 o
lallogy < S lallerllpngy S S (1 + k)27 < +oc.
k=0 k=0
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Further, if n > ny,

n—1 00
[nlley < lagllieollegy + Z g lllekll Loy + lenll Loy + Z g [l Lo
k=1 k=n+1
oo
< <n_2 + 22(/471)"'“”‘ + 1> n’ <nr
k=1
as claimed. (]

2.4. Step 3: The decomposition of Uy. In order to prove the theorem, we need to
decompose ¥y in the basis (@5, )n>0-

Recall that v, = > "7, of¢, and that (o} ) satisfy (R).

The decomposition of Wy is the following:

N no
Un(zy) = > Un(@n(y) =D n@nl) + > D> araier()ey)
n=0 n=0 _

(25) = CI)_N(xvy) + Kl(‘rvy)—_ KQ(xvy) - Kg(l’,y) + K4(£,y) + K5(£,y) + Kﬁ(l’,y)
with

no

Kl(x7y) = an(‘ﬁ)wn—(y) ’ K2($7y) = Z@n(l‘)@n(y),
n=0

n=0

N
Ks(z,y) = Y naen(@)en(y),

n=ng+1

N N
Ki(w,y) = Y apol on(@)eni(y) » Ks@y)= > on oloni(x)en(y)

n=ng+1 n=ng+1

and Kﬁ(:pvy) = Rﬁ(gj7y) + Kﬁ(y7x) where

N
Ko(r,y)= > > > aiafer(@)edy).

n=no+l k [f—n|>2

Let us write Kjf(z) = / K;(z,y)f(y)du(y) for the corresponding integral operators. We

Q
want to bound || Kj|| Le(p)—1r(y) ndependently from N.

According to Lemma 2.3

no
VB sy < 1t i= S 8l oy 1950l o

n=0

while

ng
HK2HLP(H)—>LP(H) < Cyi= Z H‘PnHLP(u)”SDnHLp'(M)

n=0

and these two quantities are finite according to condition (L) and do not depend on N.
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Further, thanks again to condition (L),

2—ap < +o0.

N oo
1Kl oy e < Z |77n|||90nHLp(u)||90n||Lp’(u) S Z
n=1

n=ng+1

For K thus Kg we will use Lemma 2.5 to see that, if [¢ —n| > 2, [a7| < (kn)7 177 if
¢ # 0. On the other hand |[¢gl|;, B S k% with 4,y < 1. Note also that if we denote by

o0

S; = Z(/m)_z then S; < (kn)~7. We then have to estimate
=

S labllerllr gy < ot i)W (n) T = 3+ ) (S) - Sjg)

>n+2 Jj=2 j=2

= (F2WS+ > ((n+)W = (n+j—1))S; Sn¥
j=3

and as [af}| < n7?

S (0fllleel gy S n 720 Y () S0
0<t<n—2 i>2

Further, |of [, |07 <1 and [|ont1ll 1o lonll Lr() < 777 we thus also obtain that
Z lagllleell oy SS 0.
Ok

All together, this leads to

|

o0
< arllog|ller well o
sy S 2 2 3 el el

[e.e]

o0
S E n Pt 2 = E n2te < 4o

n=ngo n:n0+1

since o, < 1. By symmetry, ||K6||Lp(“)_>Lp(“) <1

~

The terms K4 and K5 are the most difficult to treat. As they are similar, we will only
show LP-boundedness of the first one. To start, we use (R) to rewrite

N
K4(x,y) = Z aﬁa

n1#n(2)nt1(y)
n=ng+1
N a N STy
n+1 ni2 — N n+2 nm— 7
= Z ‘an’ (pn(x)(pn-i-l(y) + Z 7ana2+2§0n(x)90n+1 (y)
e f(n+1,n) n fn+1,n)

= K{(z,y) + Ki(z,y).
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Now
N
2 < |an+2| n|.n ,
12 o S 2= TFons 1,y @ llensallenlliogy Ieallr g,
n=ng+1

00
-3+«
< E n P < 400.
n=nop+1

since |an+2| 5 17 |f(n + 1,’1’L)| 2 n, |OZZ| S 17 |O[Z+2| S ’I’L_2 and Property (Lp)

. ~ Ap+1 ni2 . .
Next t = d Abel t t
ext, writing dy, Tt L) |a; | and using Abel summation, we ge
N-1 ) )
Ki(z,y) = > (n — ny1)Onl2,y) + anPy_1(z,y)
n=ng
Note that |&,| < n~! so that, with (B), ‘dNiN_l‘ L) < 1. Further |a2ﬂ|2 =
P)—LP(p
la?|? + n, — npe1 thus
~ m n|2 -3
= 0]

since [y — Mua1| S 072 Janse| <1, |f(n+2,n + 1)] = n. Thus, using (2.4) we get
|6y, — Gpa1| S n2 Tt follows that

N—-1 ~ N—-1 ~ 0
> (@0 i) DI L D Dl
o Loy Lr(y) "m0 (W)= L (u) = =

This shows that K} is also a bounded operator LP(u) — LP(u1) with bound independent on
N. The proof for K5 being similar, we conclude that each term in (2.5) defines a bounded
operator LP(yu) — LP(u) with bound independent on N and the proof of the theorem is
complete. O

Remark 2.7. By treating simultaneously the terms K4 and K3, it is enough to assume the
following slightly weaker condition'

(B') Let <I>N (z,9) Z(’D” ) on+1(y ) + ¢©n+1(z)en(y) and write also ®y for the corre-

sponding mtegral operator. For every 1 < p < 0o, we assume that dy defines a
bounded linear operator on LP(x) and that there exists 5, < 1 such that, for every

f e Lr(u)
[#x7],,, = N7y

3. PRELIMINARIES AND TECHNICAL LEMMAS

In this section, we will gather some facts from the literature and some simple technical
lemmas that will allow to easily establish the conditions of Theorem 2.1.
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3.1. Condition (R).
Lemma 3.1. Let a,b,c,d,e,l € R. Let (e )k nen be a bounded sequence with |ey, | < e. Let
f(k,n) = (an +b)(cn+ d) — (ak + b)(ck + d) + ep 5.

Let (ay,) be a sequence such that a, = {+ a, with |a,| <n~t.

(i) for fized n, there exists k,, such that, if k > ky, |f(k,n)| > %k‘z;

(i) if n > mo, |£(k,n)| > Sonln — kl;

Then there exists ng such that

ceey Ap+1 An4-2 )
iii) if n > ng, — <n”°.
) m 20 |50 ~ Fnr 2T~
Proof. Up to replacing f by —f we may assume that ac > 0. The first part is trivial as, for
fixed n, k=2 f(k,n) — ac when k — oc.
For the second part, the result is trivial for k = n so let us first consider the case k > n

and write k =n+p, p > 1. Now

fn+p,n) = —acp* —p(2acn + cb+ ad) + enypn
ac

ac ac
= —5pn-p (ac(n +p) + ik +cb+ ad) - (an - €n+p7n> :

4(cb+ad)
ac

ac . .
Now ac(n +p) > 0, Zn—i—cb—i—adzOlfnz— and Fpn —epypn > Fn—e >0 if

e ac
n> %. It follows that, if n is large enough f(n + p,n) < —5pn.
Let us now turn to the case 0 < k < n and write k =n — p with 1 < p < n. Then
f(n—p,n) = —acp®+ p(2acn +cb+ ad) + en—pn

ac ac ac
> - P +p (ac(n —p)+ Vi +cb+ ad) + 2P + en—pn-

Now, n > p thus ac(n — p) > 0, and the two other terms are treated as previously.
For the last assertion, first write

Unt1 an2 ~antif(n+2,n+1) —anpaf(n+1,n)

fn+1,n) fn+2,n+1) fin+1,n)f(n+2,n+1)

Next, note that f(n + 1,n) = —2acn + f, with f, = —(ac + ¢b + ad) + ep41,, a bounded
sequence, |f,| < f := |ac + cb + ad| + e while a,, = £ + @, with |@,| < Cn~!. But then

ant1f(n+2,n+1) —apsaf(n+1,n)
= (0 + ant1)(—2acn — 2ac + fry1) — (0 + apt2)(—2acn + fp)
= 2acn(@nt2 — Gny1) + (€ + ang1)(=20¢ + fri1) — (04 Gny2) fn
which is bounded by F' := ac(6C + 2|¢]) 4+ 2(|/¢| + C)f. As for n > f/ac, f(n+1,n) < —acn

we obtain

ant1 On2 R

fn+1,n) fn+2,n+1)] = (ac)?
as claimed. O
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3.2. A simple criteria for condition (D). In the examples we have in mind, condition
(D) will be very easy to check. Indeed, it will fall in the scope of the following simple lemma:

Lemma 3.2. Assume that the following conditions hold:

(i) © C R? is an open set and the set of smooth compactly supported functions C°(S2) is
dense in every LP(Q2), 1 < p < oo;

(ii) there exists a differential operators L (resp. L) such that each o, (resp. vy ’s) is an
eigenfunctions of L (resp. L);

(iii) writing Ly, = Apen (Tesp. Liby, = Athn ) we further assume that there is an o > 0
(resp. & > 0) such that A\, = n® (resp. A, = n®) when n is big enough;

(iv) (¢n) (resp. 1y) satisfy condition (L).

Under the above conditions, ®nf — f (resp. Unf — f) in LP(u) for every f € C°(12).

Proof. Indeed, if f € C°(2) and n is big enough,
1

1 . 1 X
<90mf>L2(u) = )\_n<L(’D”’f>L2(M) = /\_n<90mL f>L2(M) = /\_ﬁ<(’0m(L )kf>L2(M)

by induction on k. But then [{¢n, f) 20| < n_kaH(L*)kaLz(u). As llonllpp(y < o it is
enough to take £ big enough to have —ka + oy, < —1 to see that

Z <‘:0m f>L2(M)90n

n>0

converges in LP(u). As the limit of this series in L?(u) is f, so is the limit in LP(u). The
proof for 1, is the same. O

3.3. The Hilbert transform on weighted LP spaces. In this section 1 < p < oc.
First, let us recall that w : J — Ry (J an interval) is a Muckenhaupt AP weight if

el =5 (i [ wt@an) (g [ o) ar) < oo

where the supremum is taken over all intervals K C J. The quantity [w],, is called the
AP-characteristic of w (or AP norm, though it is not a norm).
Let us recall that the Hilbert transform is defined as

Hiw) =+ [ I gy

where the integral has to be taken in the principal value sense.

Hunt, Muckenhaupt and Wheeden [HMW] proved that the Hilbert transform extends into
a bounded linear operator LP(J,w) — LP(J,w) if and only if w is an AP weight and the sharp
dependence on the AP characteristic has been obtained by Petermichl:

Theorem 3.3 (Petermichl). Let 1 < p < +oo, J an interval and let w be an A, weight, then

max(1l,(p— -1
(3.6) 1 o gy £y S ] BP7D70)

Let us now estimate some AP characteristics that we will need in the sequel, when consid-
ering the Hankel prolates:
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Lemma 3.4. Let1 <p<oo, ,a € R and p > 1. Let wy + be defined by

B

o 1+
(37) ot (@) = 27 (jev@ — i + ).
Then z* € AP[0,1] if and only if x® € Ap[l,+00] if and only if —1 < a < p — 1. Moreover,

7
Wa,+ € AP[0, +o0] if -1+ & <a < P 1 and in this case

1 iff<p<4
w N X
[ a,i]AP ~ {M3/4 otherwise

with the implied constant depending on .
Proof of Lemma 8.4. The first part is well known and left to the reader. Recall that if w is

an AP weight, then so is Aw(px) with [Aw;(uz)] 4, = [W] 4p-
Next, we have

2, P
Wa 4 () = (62u_2$)ac_2au2o‘_p/4(|\/c2u—2$ — 1|+ p73) T = M@ (P )

with \g = ¢20y20-P/4 4

B

Gat(x) = 2 (|Va = 1| +475)

So it is enough to estimate [©0q 4] 4,. Similarly, we may replace wq,— by

]

o (1) = 2 (|VT = 1| +p~3) 75,

Next, on [0,1/2], @q+(x) >~ % € AP since —1 < a < p — 1. Note that constants here
are independent on p > 1. On the other hand, on [3/2,4+00], W, +(z) =~ 2OFP/8 € AP since
—1<a+p/8<p-—1. Again, constants here are independent on p > 1.

Finally, on [1/2,3/2],

+

L]

5 4P
:t4

Do+ () = (Vo =1 +,u_%) ~wy(z) = (lz — 1] +p73)

We thus want to estimate

1 £ 1 o p/p’
(Wil 4 = sup <—/(!w— 1]+ 3)* da:) (—/(\x 14 pm3)FE da;)
AL s

where the sup runs over intervals I C [1/2,3/2]. Equivalently, we want to estimate

1 ) 1 o p/v'
st o (1 [ (el w5 aw) ([ (ol o)™ a0)
r \H[Jr Vi
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where the sup runs over intervals I C [—1/2,1/2]. It is enough to consider I = [0, a] then,
when p # 4/3,4, we are looking at

! 1\ P/P
(atp=5)5F — ()Y ((atp5)'TT - ()T
[wiplgp = sup
a€l0,1/2] a a
' p/p
<(1+a/~‘§>&%_1> (1+ap) 5 -1
= sup 5 5
a€l0,1/2] a3 ap3
/ p/p
1+ -1\ [a+0)F5 -1
= sup " ; = sup @i(t).
1€l0.u3 /2 1€l0.u3 /2

Note that ¢4 extends continuously at 0 and that, when ¢ — 4o00. Moreover,

— p4(t) =0(1) for p,g <4 that is 4/3 <p <4

— for p> 47 Y- = O(t§_1)7 P+ = 0(1)7

—forp <4, o, = O(t%_l), v =0(1).

The computation has to be slightly modified for p = 4/3 to obtain ¢y = O(logt) and
w_ = O(1) while for p = 4 one gets p_ = O(logt), o+ = O(1). The result follows. O

4. APPLICATION TO WEIGHTED PROLATES

4.1. Weighted prolates. In this section, we will fix real numbers ¢ > 0 and o > 0. We
denote by I = [—1, 1] that will be endowed with the measure wq (z) dz with wy(z) = (1—22)%.
We will simply write w,, for the measure w, (x) dz. The aim of this section is to consider the set
of Weighted Prolate Spheroidal Wave Functions (WPSWFs) introduced in [KS1, KS2, WZ]
and to study the LP(I,w,) convergence of the associated series.

More precisely, the WPSWF's are the eigenfunctions of the weighted finite Fourier trans-

form operator fc(a) defined by

1 .
(4.8) FO) f(z) = / ¢ £(y) waly) dy.

1
It is well known, see [KS1, WZ] that the operator

*

o Fla)

[

(@) _ €
Qe 27T]:C

is defined on L?(I,wy) by
1
C
(1.9 0g(a) = [ 5Kalela = )a(wa(w) dy
with
Jao
Kala) = R2H/2T (o 4 1) 22200
xa

and J,(-) is the Bessel function of the first kind and order «.
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It has been shown in [KS1, WZ] that the last two integral operators commute with the
following Sturm-Liouville operator E&a) defined by

(4.10) LE(f) (@) = —% [wa(@)(1 = a?) f'(2)] + 2’wa(x) f(2).

Also, note that the (n + 1)—th eigenvalue x,(c) of £ satisfies the following classical in-
equalities,

(4.11) n(n+2a+1) < xp(c) <n(n+2a+1)+c%  ¥n>0.

We will denote by (\Ifsﬁc))nzo the set of common eigenfunctions of ]:ca), an) and E&a) and

call them Weighted Prolate Spheroidal Wave Functions (WPSWFs). Then {¢£Lac),n > 0} is
an orthogonal basis of L?(I,w,).

Our aim will be to apply Theorem 2.1 with the following setting: Q = I, u = wq, ¥ = \I!%ac)
The first task will be to define the basis ¢, and then to show that it satisfies each of the

desired properties.
4.2. Some facts about Jacobi polynomials.

4.2.1. Jacobi polynomials. In this section, we gather results on Jacobi polynomials' that
will be used later. The Jacobi polynomials are defined as being the orthonormal family of
polynomials with respect to the scalar product associated to ||-[| 27 ) with leading coefficient
being non-negative.

Alternatively, we define the (non-normalized) Jacobi polynomials P}ga) through the induc-
tion formula (see for example [AAR])

(4.12) P\ () = AP (@) — CuPY (2), @ e [1,1],

where Péa) (x) =1, Pla) () = (a4 1)z + a and
(2k+2a+1)(k+a+1) 1 9 _ kto)kta+l) 1 9
(k+1)(k+2a+1) =2 k+0(k )’C’“_(k+1)(k+2a+1)_1 k+0(k )
1

A =

P,ga) which form an

We consider the normalized Jacobi polynomials ]S,ga) = HPLEQ) ;2(1 :

orthonormal basis of L?(I,w,). A cumbersome computation shows that
1 220D (k + o + 1)?

(,8) (@) _
/(@ B @),y k(2k +2a + D)D(k +2a + 1)

k

B (z) =

The normalized Jacobi polynomials satisfy the recursion formula

(4.13) P () = AP (2) — B (x),
where
B h(a)
(4.14) Ay = (’jx) Ay =240(k?)
i

lwe only use a particular subfamily of Jacobi polynomials and may as well call them ultra-spherical or
Gegenbauer polynomials.
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since
WY (k4 1)(2k + 20+ 3)(k + 20+ 1) 1 ,
_ — 14 E2).
(@) Ok 20+ )(E+ati)? Tp POk

k+1
Further, it has been shown that

(415) |ﬁ7(za) (:E)| S wn,a(iﬂ) = (\/ 1—z+ n—l)—a—l/2(\/1_'_—$ + n—l)—oc—l/2
uniformly over (—1, 1) where the constant involved is independent of n (see e.g. [Sz, Chapter
4)).

1
Moreover, let pg = 2 — so that p{, = 24+ ——— then, for 1 < p < co , the LP-norm
@

+3/2 i 1/2
of Jacobi polynomials is given by Aptekarev, Buyarov and Degeza [ABD] (see also [ADMF]):

C(a,p) +o(1) if 1 <p<p
(4.16) P50 (1wa) = § € p) log(n)(1 + (1)) when p = pj
n(a+1/2)(p_p6) When p > p6

with C'(a, p) is a generic constant depending only on « and p. Note that

n(et1/2)F'=P0)  when 1 < p < po
~ ~ logn when p = pg or p = p,
(417)  Lo(@) = [P o 1wm) 1PN 1ot (1.0 =
n n o ILp(Lwa) 0 "N Le (Iwa) 1 when py < p < pj,

n(@+1/2)(P=ro)  when p > p).
In particular, L, (o) = O(n®) with o, = 0 if p € (po,pp) and o < 1 when p € (p1,p)) with
2
ph = ph+ YT =2+ o132 It follows that Condition (L) of Theorem 2.1 is satisfied.
Further, the Jacobi polynomials are eigenfunctions of the differential operator

Lf =1 —2%)f"—(2a+1)zf

with eigenvalue A\, = —n(n + 2« + 1). It follows from Lemma 3.2 that Condition (D) of
Theorem 2.1 is also satisfied.

4.2.2. The Projection on the span of Jacobi polynomials. Let us now introduce

Z P ()P (y)
and, according to the Christofel Darboux Formula,

By P ()P (y) — P (y)PY ()
BN+1 T -y '

' (2, y) =

Pollard [Po2] proved that C’](\?) defines a bounded operator C’J(\?) : LP(I,wy) — LP(I,w,) and

that the operators C](\?)

that the series C’](\?) [ may diverge if p ¢ [po, py] but did not provide a bound for C’](\?). The

are uniformly bounded in the range py < p < p{,. Further, he proved
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divergence at the end points was proved later by Newman and Rudin [NR]. The key point
in Pollard’s proof is the following identity

~ 1 Ala)
I

D) / P (1) f (y)waly)

-1 r—y
B(e)
<f "+1>L2(I,wa)P"+l(x)

= OV @)+ O f@) + O (@)

dy

where U, V,,, W,, — % and éﬁf) is an other family of orthogonal polynomials.

< N while Pol-
LP(I,wa)—LP(I,wa)

<1forj=1,2.

Holder’s inequality and Lemma 2.3 show that HC’](\?’?’)‘

7.] f‘
LP(I,wa)—LP(I,wa)
Let us summarize the results from this section

lard showed that

Lemma 4.1. Let 1 < p < 0o and a > —1/2, ¢ > 0. Let I = (—1,1), wa(z) = (1 — 2?)®
and I:’T(La) be the Jacobi polynomials , i.e. the orthonormal family of polynomials in L*(I,w,)
defined above. Let C’](\?‘) be the orthogonal projection on the span of Iséa), e ’p](va).

1
— 1 _
Let po =2 — 57573 0 that py, = 2 + i Define

(a +1/2)(p" —py)  when 1 <p <po
when p = py or pj,

Ay =
P when p € (po, pp)
(a+ 1/2)(p —py)  when p > py
so that « <1whenp€(p1p’)wz'thp’:p/+;:2+ 2 Then
b Tl L7 a41/2 a+1/2

— Aptekarev, Buyarov and Degeza [ABD] we have
(4.13) 1B o1 1B gy S
— Pollard [Po2] the operators C](\?) extend to bounded operators LP(I,wq) — LP(I,wy) with

S N,

(@)
HCN LP(Iwa)—=LP(Iwe) ™~

4.3. Condition (R). The aim of this section is to establish condition (R) of Theorem 2.1.

The series expansion of the WPSWEFs in the basis of Jacobi polynomials (ﬁ,(ﬁ)) which can
be written in the form

(4.19) v =" g

k>0
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where ]! = <q;£f‘c), ﬁ,ga)>L2(I ) By replacing the expression (4.19) in the differential equa-
tion (4.10), one gets the foll(;wlling recursion formula satisfied by the 37 for k > 2

(4.20) [k, n)ﬁ,ﬁ") = a,ia)ﬁ;@g k+2ﬁk+27

where

Xn(c) — (k‘(kz + 20+ 1)+ czb,ia)>

(4.21) Flk,n) = >
a(a) B \/k‘ D(k+2a)(k+2a—1)
B (2k+2a—1)\/(2k+2a+1)(2k+2a—3)
b(a) B 2k(k+2a+1)+2a—1
Foo 2k +20+3)(2k + 20— 1)

()

This is not exactly of the desired form. To overcome this problem, first note that Wy ¢

and ]ST(LO‘) have same parity as n, so that B,g") = 0 if £ and n have opposite parity. Next, we
decompose
LP(I,wy) = LE(I,wq) @ LE(I,wy)
where LE(I,w,), resp. LH(I,wy), is the set of even, resp. odd, functions in LP(I,w,).
Our aim is then to characterize for which p, for every f € LE(I,wy) — resp. f € LH(I,wy)

Zn>0 <f \I/2n C>\I/n02 resp. zn>0 <f \I/2n+1 C>\I/£L02 — converges to f in LP(I,w,). This
can be done by applying Theorem 2.1. To do so, we will now establish condition (R).
First note that a,(f) — 1/4 and that we may write

(@) _ \/(1 — k(1 +2ak1) (1 + (200 — 1)k~ 1)
| e i) e D) E -0k

from which it is obvious that ak =1/4+0(k™Y). As bl(f) is clearly bounded, all conditions
of Lemma 3.1 are satisfied and f(k,n) satisfies all requirements of condition (R).
It remains to establish the following:

Lemma 4.2. For every a > —1/2 and every k > 2, |a,(€a)| <1/2.
Proof. First

gl _ 2V1+a
2 (34 20)V5 + 20
which is maximal for « = v/2 — 2 < —1/2 and the maximal value is %/35473_52 ~ 0.335 <
1/2.
Next, for £ > 3 and —1/2 < a < 1/2, we bound

—_

(a)<1 k(k+1) \/g
% SN G Dk-2 =1 2
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Finally, 2k+2a+1 > k+2q, for o > 0, (2k+2a—1) > 2/k(k — 1), and 2k+2a—3 > k+2a—1
when k£ > 2 thus

(@) \/k 1)(k+2a)(k+2a—1)
ak —

1
< —
(2k+2a—1)\/(2k+2a+1)(2k+2a—3) 2

as announced. O

4.4. Condition (B’). We will now establish Condition (B’) in Theorem 2.1. As we consider
separately LY(I,w,) and L5(I,w,), we actually have to estimate the LP(I,wa) — LP(I,w,)
norm of the operator with kernel

N

On(z,y) =Y (P (@) PLTy(y) + PLy(@) P ()

n=0

with P! +)2 instead of PT(L +)1 We will also write ®x for the associated operator on LP(I,w,).
Note that the bound (4.18) together with Lemma 2.3 leads to

PN L1 oy Lo (100) S N

which is not good enough for our needs.
Using the recursion formula (4.13) twice, we get for n > 2,

P @) Py = PO(@)(AnayP () — Corr PO(y))

= yAui1 P (@) (YA P (y) — CuPy (1)) — Cost P () P (y)

= P A1 AP ()P (y) — y A1 Co P (@) P (y) — Crod B (2) P ().
Next note that

« 1 (o CN’n— Hla
yP\ (y) = TP+ LR (y)

n—1 1 An—l n—2
so that
B ()P (1) = 2 Ao A, PO @) PO () — [ Goay + 22100 | B () Bl
n+2\Y) =Y Apnt1anly (Z’) n (y) n+1 1 A ) n (‘T) n (y)
An C'n ~n— (o la
— SRl P () P (y)
An—l
Let us define
o ~ An_l’_lén o 1 -2
Kp = —(C’n+1+ i )——1+E+O(n )
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Summing over n, we conclude that

By(ry) = P (@)B(y +Z (B (@) P\ (y) + B (2) P\ (y)) — P ()P, (v)

N
— POOl) (x)P2Ol) (y) . P](Va) (x)Pj(vanz(y) + y2 Z An-i—lAnPy(La) (x)Pr(La) (y)
n=2
+Z/€np(a +ZH P(a P(a L ().

Further, exchanging the roles of z and y and summing, we obtain 2@y (z,y) = 4 (z,y) +
-+ 9% (2, y) where

ol(r,y) = B (@) B (y) + B () B\ (y)
—(42” + 4 — 2) (B (2) B\ (y) + P () P\ ()
% (z,y) = —P ()P o) — P, (@) PE (y)
N
% (z,y) = (@2 +9?)Y  Ap1 AP (x) P (y)
n=2
N o~ o~
ON(z,y) = 2 K P(2) P (y)
n=2
N ~ ~ o~ o~
O(z,y) = > Fn(P(@) P (y) + B % () B (1)),
n=2

We also write <I>§V for the corresponding integral operators and will now estimate their
norm as operators LP(I,w,) — LP(I,w,).
Using the bound (4.18) together with Lemma 2.3 we get

1PN o1y 210y S 1

and

H(I)?VHLP(LWa)—)LP(I,wa) 5 N

Using Abel summation, we can write
N
Oh(a,y) = —Asda(a® +7)01 (2,y) + (@ 4y )2 Ansa (e = A2 )

+An 1 AN (@2 + 2 (2, y)
= O (z,y) + BV (x,y) + D% ().

Of course

<1

H 31
LP(Lwe)—LP(Iwa)

N
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while Lemma 4.1 shows that

3,2
|

Ny
< Z —nor < Nap—l
Lo(Lwa)—LP(Twa) ~ <= n2 ~

since ]Anﬂ(fln — n+2)\ < n=2 and

|23 < Nov,
N lLe (1 wa)—Lp (Twa) ™
Using Abel summation again, we write
N
h(z.y) = 2620 (2,y) +2 (50 — knp1) O (2,y) + 26ny°C (2,y)

n=2
4,1 42 43
= Oy (z,y) + N (z,y) + N (2, y).
Again

<1

H(I)Z]l\}l‘ LP(Iwa)—=LP(Iwa)

while Lemma 4.1 shows that

4,2
|o%

gy}
5 § : 2nap gNap—l
LP(I,wa)—LP(I,wa) o n

since |kn — Fng1| S 2 and

@43( < Now.
H Nl Lo (1 wa)—Lp(Iwa) ™
A last use of Abel summation leads to
N
OX(w,y) = —m®V(2,y) + Y (Fn — Fins1)@D (2,y) + An O (2,)
n=2

= O (z,y) + O (x,y) + BN (2, y).

Of course

< 1.

LP(LWQ)_)LP(LWOJ ~

5,1
|23

For the two other terms, we will use the fact that PNl o (s o) rr(1wa) S N'*er and that
fn =n"1+O0(n™?), in particular |&, — Fp+1| < n72. It follows that

N
< n—2n1+ap < N

P> 2‘
H Nl Lo (1 wa)—LP (Lwa) ™ —~

and
o

X < N—lNl—}—ozp < N9,

LP(LWQ)_)LP(L‘U(J) ~

Summing all terms, Condition (B) of Theorem 2.1 is satisfied.
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4.5. Conclusion. It remains to conclude, all conditions of Theorem 2.1 are satisfied. There-
fore, the Weighted prolate spheroidal series converges in LP(I,w,) if and only if the Jacobi
series converge. The later ones converge in LP(I,w,) if and only if p € (pg, pj)). We have thus
proved the following:

Theorem 4.3. Letaw > —1/2 and ¢ >0, N > 0. Let pg = 2— so that pyy = 2+

w37 a+1/2°

Let (¢,(ﬁc))n20 be the family of weighted prolate spheroidal wave functions. For a smooth
function f on I = (—1,1), define

N
W= (F90) g, B

Then, for every p € (1,00), \I/E\?) extends to a bounded operator LP(I,w,) — LP(I,wy).
Further

Vf—f  inLP(Iw)
for every f € LP(I,w,) if and only if p € (po,pj)-

5. APPLICATION TO CIRCULAR PROLATE SPHEROIDAL WAVE FUNCTIONS

For two real numbers ¢ > 0 and o > —%, the family of the circular prolate spher01da1

wave functions (CPSWFs), introduced by D. Slepian [S12] and denoted by ¢n7c, are the
eigenfunctions of the finite Hankel transform H&, the operator on L?[0,1] with kernel given
by H%(z,y) = J/cxyJa(cry). On other words

HE (o /WJ (cay) f () dy.

We denote by fi,, o(c) the family of the eigenvalues of the operator HS, that is 7—[3‘1/17(1@0) =
,un,a(c)i,bﬁlac) . The functions T,ZJSLQC) satisfy the following orthogonality relations:

e a [e% 5"7771
wnc mc )dl’ - 5 n,m and 0 n,c(x)d}m,c(x) dl’ - cu%’a(c)
and the wnac s constitute a complete orthonormal system in L2[0, 1].

The ¢ s are also related to the Hankel operator H®, the integral operator on L2[0, +oo]
with kernel given by H*(z,y) = \/TyJo(zy). More precisely,
H ( n,c)(‘r) = wn,c <_) X[0,c] (.Z')

Chin,a(C) c

According to Plancherel’s theorem, the family %(10{0) =/ ,un,a(c)wgfc) constitute a complete
orthonormal system in BY defined by:

(5.22) B = {f € L*(0,00); supp(H(f)) C [0,c]}.

Fore more details, see for example [S12, BK]. Our first aim in this section is to prove that
in the case of CPSWFs, we have mean convergence in the Hankel Paley-Wiener space B,
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defined by
B, = {f € LP(0,00);supp(H*(f)) € [0, ]},
if and only if 4/3 < p < 4.

5.1. Some facts about Spherical Bessel function.

5.1.1. Spherical Bessel function. The spherical Bessel function is defined as

(5.23) Ja) = V2ot 1)%;1@_

Here, J, is the Bessel function of the first kind and order a.. The spherical Bessel functions
satisfy the orthogonality relation,

+oo
/ jn?éc (x)jr(na,)c(x) dz = 6n,m-
0
Their Hankel transforms are given by, see for example [S12]

520 el = D () peo (105 (1)) g0

’ C C

where P,(La’o) is the Jacobi polynomials of degree n and parameter «, normalized so that

(a,0) B P(n +a+1) .
w0 (1) = Tln+ (0 1+ 1) Introducing
(5.25) Tpolz) = (—1)"/22n + a + D2t 2 P01 — 222).

We thus get H“(]T(Lac))(:n) = ¢ 'X(0,1](z/¢)Tha(x/c). Note that the orthogonality relations of
the jﬁf‘c)’s and the unitary character of H® imply that (7}, o)n>0 is an orthonormal basis of

L?[0,1] while the spherical Bessel functions gﬁﬁc) form a complete orthonormal system in BS.

2
Further, using the induction property —5J5(az) = Jg_1(x) + Jp41(x), we get the following
x
induction formula

@ _ 2/@n+a+2)2n+a+3) ( V2n+a+3

jn-i—l,c - cx jn+1/2,c o M+ a+ 1‘7&?2
Moreover, for 1 < p < oo, we have
1 1
n 2% when 1 <p <4
(5.26) 3@ ~{n~ilogn whenp=14
T LLP(0,00) 1,1
n 373p when p > 4

Note that, if % + % =1, then for ¢ € Z, we have

2.1 4
n3 2 when 1 <p<3
logn whenp:%orpzél_

(o) -
La(0,00) 1 when % <p<d4

jn+€,c

] )

(5.27) ﬁf:‘c o(n%)

LP(0,00)

1
n® 3 when p >4
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where the constants depend on ¢, for more details see [BC]. We can now see that condition

(L) is satisfied.
First, by using (5.23), we calculate the scalar product
) () dae

+o00
=, Vel tin,a(c) [t ()
+oo
22n +a+ 1)%+Q7¢Jg_jfm dz.

= \/E’Nn,a(c)‘ wﬁ,c(l’)

The expansion of 1, ¢ in the basis of the spherical Bessel functions is done as follows

<¢(a) 7 ]1(1?{0) >L2[07+Oo[

Writing v = \/—|,un = Z ) V2(2n + a + 1) and since
1 [e NN
Vpo(T) = PN E) \/Cx yJa(czy)vy () dy,

U e(T) =
NE
then Fubini’s theorem together with (5.24), we get
1 400
| Vi) [ B (e uery) dudy
0

<1/1nmjn, >L2[O o]
v ! 1 o o
= L[ RO = 2P )
g |bn,a(c)] a)
TTLO[
)<w"’c’ ’>L2[071}

b Vepin,alc

We thus have

i(a)
k,a> 20 we thus get the

()
<7;Z)n crIne >L2[0,+oo[
where T), , has been defined in (5.25). Writing d}} = <¢1(1ac)’
following expansion on [0, +00):
|bn.a(c)| k()
Une(r) = —=———= > (=1)"dij; . (z).
’ Vetin,a(c) ,;0 o
Consider the differential operator given by
d 1
4 —cx

«

We know from [S12] that the operators D and HS commute so that iy, ¢ are eigenvectors of
o ) - Xn,a(c)wn,c

both operators and we denote by xy.(c) the corresponding eigenvalue of D¢, that is
D?(wn,c

(5.28)
Further more, we have the following inequality see [S12]
(5.29) <Oé+2n+ 2> <a+2n+g> < Xnalc) < <a+2n+ > <a+2n+ 2> +
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According to [W], the Spherical Bessel functions are the eigenfunctions of the differential
operator given by

z\2 d? (1+¢) sz d
o= (2)' e+ 28 (5) e
(w) . d%(w)—k 7= \g dx( w) + crtw
and the corresponding eigenvalues are given by <(2n +a+1)? - > V2@2n+a+1). It
follows from Lemma 3.2 that Condition (D) of Theorem 2.1 is also Satlsﬁed.

(a)

If we substitute the expression of ¢, ¢ as a series of Jacobi polynomials into (5.28), we
obtain the relations satisfied by the coefficients d}}. More precisely, from [S12], we obtain the
three term recurrence relation

(530) f(ka n,c, O‘)dz = ak,ad;gl—l + ak—i—l,adz-‘rl’ Vk >0
where d"; = 0 and

Xn,a(c) — (o + 2k + %)(O& + 2k + %) — czbk,a

(5.31) f(k,n,c,a) = 2
k(k+ )
k.o =
’ (a+2k)Va+2k+1Va+2k—1
1 a?
. 1].
bra 2[(a+2k+1)(a+2k) * }

5.1.2. The projection on the span of spherical Bessel functions. Let 1 < p < oo and @ > —%.

For n > 0, let
Z]kc jkc

and PT(LO‘) be the operator with kernel Pr(L )(x, y) That is, PT(L @) is the projection on the span
of {j§ gl }

Proposition 5.1. Let 1 < p < 0o, a > —1/2. Then the following estimate holds for every n
and every f € LP(0,00)

L4
< HfHLp(o,oo) if 3 <p<4

~

[Pl

LP(0,00) n3/4| fHLP(O,oo) otherwise

with the implied constant independent of f and n.

Proof. The projection on the span of spherical Bessel functions has been studied by Varona
[Va] with a different normalization. He considered

J%(@) = V20 + a+ Lopyar1 (Va)z =212
so that

Il = V25 (a?) (ex) 2

z,y) = Jv(x)is(y)
k=0

Next, if we define
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(with Varona’s notation) then P\ (z,y) = 2¢20+1 (zy)o+ /2K, (222, 2y?).
Using Varona’s computation [Va, page 69] we get
(@) (zy)'/?
P (zy) = W{$Ja+l(cx)<]a(cy) — yJa+1(cy)Ja(cz)}
(fcy)” ’ ,
(5.32) + 22 2{ +2n+2(cx)*}a+2n+2 (cy) — yJatan+2 (C$)Ja+2n+2(cy)}-
Now, recalling that H denotes the Hilbert transform, it follows from (5.32) that
P (@) = () (@) — (f)(@) + DB(f)(@) = Uu(f)(@)
where
00 ($y)1/2
(@) = [ e o) 4) dy
3
z2 _
= (e My ey ) £ o).
() ( )1/2
(@) = [ Tl e ()£ 4) dy
1
xr2
= S Jalca)H[y"  ari ey ) f(512)] (0%).
() ( )1/2
%uN@ = | T Tnalea) asasalen) /(4) dy
3
x -
- 9 (/1+2n+2(0$)7‘l[y 1/4Ja+2n+2(Cyl/z)f(yl/z)] («?).
() ( )1/2
Qu(f)(x) = /0 WZ/JaHnM(Cx)Ja+2n+2(Cy)f(y) dy
1
x2
— 7Ja+2n+2(cx)7_[[ 1/4 J +2n+2(cy1/2)f(y1/2)] (x2)
Note that each of these operators is of the form
Q(f)(w) = Gj(x)H[p;] (+*)
so that
125(NOI7, 000 = /0 |Gj(@)PH [p)] ()P da
<G V)P
—————|H|p;|(z)|P dx.
| e @)
: o GV
But then, if we are able to find an upper bound w; € AP (see [Va]) of TovE Swj(x), we

obtain

1924 0000 S IHLea0 < Wli sl

(0,00),wj(x) dx) JiAp

Ly ((0,00),0.13- (z) d:c) '
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It then remains to prove that || < f
9712y mntran) & 1 ey

For Qi, ¢1(y) = y~ /4 Ja(cy'/?) f ( 1/2). Further, we use the bound [Jai1(t)] < Cut™/?
which allows us to chose wi(y) = Yz ' € AP since —1 < p? < p — 1. Further

<[
LP(Ry ,wi(y) dy) 0

We will now take care of Q. In this case with @o(y) = y'/*Jas1(cy'/?) f(y*/?) and the
same bound on the Bessel function shows that we can chose wa(z) =272 € AP,

[

—r 2 :Eprl dy
(cy)t/?

el o @, o) ay = Hy—1/4,]a(cy1/2)f( 1/2)‘

S Mo 0,400y

1

P o0 p
< A I |
LP (R wo(z) dz) N/O ‘f(x )‘ v v

H('O2HI£”(R+,wg(m)dm) — Hx1/4ja+1(cx1/2)f(xl/2)‘

The same reasoning would apply to Q3,4 but with a bound that depends on n. We thus
need a more refined estimate which follows from [BCJ:

1
1

1 1
[Tu@)| < @75 (lv = pl + p3)
_3 1
@) S 271 (Jz— pl 4 ps)t
Set © = a + 2n + 2. We may then take

3p 1 1. P
4

wy(x) = x5 "2 (|ev/a — pl + p3)

N

P

and  wy(z) = 2872 (\cf — |+ M%)ﬂ;

4
By the Lemma (3.4), w3 and wy € A, with [w;],, < 1 if 3 <p < 4and [wjl,, < 3/

otherwise.
Finally

p3(z) = 95—1/4Ja+2n+2(C$1/2)f($1/2) and @4(z) = 951/4J&+2n+2(Cxl/z)f(l’l/z)-
Note that
_ 1,1 _ 1,1
los(@)] S 2738 (|eva—pl+p3) 3| f(@"?)] and Joa(@)| S @B (leva—pl+us) £ (z'/2)].
so that
13120 g o) S /0 2 HF @) e S 11 s

It follows that [|(f)ll (e S 1 if g <p < 4and [Q(H)llsooey S 0 Lo(o,00) for

4 (0% . ) . o .
1 < p < =. Grouping all estimates, the same holds for PT(L ), Finally, as PT(L ) is self-adjoint,

P < 13| 0,00y for p > 4.

we also get the estimate ‘ H
LP(0,00)
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5.2. Condition (R). We will now show that conditions (R) of Theorem 2.2 are satisfied,
this is done in three lemmas.

1 1
Lemma 5.2. Foreveryk>1anda>—— 0<a,(€)§§
Proof. For k=1, a1, = 5757— VITe  which is clearly < 1/2 when a > 0. It is easy to see that

(2+a)Va+3
a1 o is increasing with a € (—1/2,ap) and decreasing with a € (ap,0) where ap =
Finally, aj o, ~ 0.3 so that a; o < 1/2 for every o. Write

—3+V5
—e,

1+ 2

1
|ak,a| - Z |4 a ] a+1 )
(1+35) 1+ +

1+ 2ax

(14 az) (14 (o — 1):E)1/2(1 + (o + 1):E)1/2
|(x)] < 2 for x € [0,1/4]. Note that 1 is non-negative for « > —1/2 and x < 1. When
—1/2<a<0,as 1420z <1l+arand 1+ (a+ 1)z >1,

P(z) < ! < ! < L _,
Tt(a_Dz 1322 /58

when = < 1/4. When a > 0, we first bound

P(z) <

TV (1/2k),

where ¢(z) = . It is thus enough to show that

1+ 20z
(1+az)(1+4 (a— 1))

and it is enough to prove that, for x > 0, we have

1+ 20z <2(1+az)(1+ (o — 1)z) = 2+ (4a — 2)z + 2a(a — 1)2?

or, equivalently, 1 + 2(a — 1)z + 2a(a — 1)z2 > 0. When a > 1 this is obvious, while for
0 < a < 1, the roots of this equation are
l—a+v1—a? Vi-a?—(1-a) Vi+a—-+V1-a

<0<

2a(1 — ) 2a(1 — @) B 200/1 — «

The inequality is therefore satisfied as soon as x < 1/2k with

k> ko a1l —a _al-a+V1-a?)
- VIra-Vi—-a 2 '

As 0 < o < 1, it is easy to see that k, < 1. O

Let us now estimate the by, ’s:

Lemma 5.3. For every k and every a > —1/2, by o = % + M0 With [Nk o < %

WM When a = 0, n = 0 and when

a > 0 we directly get Mo < 2 When —1/2 < a <0, a+j>1/2> |al for every j > 1 thus

Proof. From the definition of bi.ar Mo =

la| _ laf

170,a| = 2(014'_1) § while for £ > 1 we directly get 0 < 7y, o = %a+2k P <1 3 O
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The last step consists in establishing the bounds for |f(k,n,c,a)|. But from (5.29) and
(5.31), it is straightforward to see that f(k,n,c,«) satisfies the conditions of Lemma 3.1. In
summary

Lemma 5.4. For every a > —1/2, every ¢ > 0,
— for fized n, f(k,n,c,a) 2 k%, when k is large enough;
— for everyn > c?/2, k > 0, k # n, we have

k—nlk+ ¢
Fkmc0)] = 4l MEEE,
c
— for everyn > c?/2,
(a) (a)
e Ay i <2

fn+1n.ca)  fn+2,n+1,ca)

5.3. Condition (B’). It remains to check condition (B’) that is, to estimate the LP norm of
the operator with kernel

N
QW (@) = > (@) ) + 3% (@) W)
n=ngo

Lemma 5.5. Let 1 < p < oo then, for every f € LP(0,00)

U

and the implied constant is independent of N and f.

P 1/p )
dx) < N o

/0 QW ) (y) dy

Proof. First, using the identity (see [W])
2v
(5.33) ?Jy(x) = Jyt1(z) + Jo—1(x)

twice, one gets

42n+a+1)2n+a+ 2
J2n+a+3(33) = ( LZ')2( )J2n+a+1($)
22n + o+ 2
—%J%H—a(:p) — Jonta+t1(2).

so that
J2n+a+1(x)<]2n+a+3 (y) + J2n+a+1(y)<]2n+a+3 (33)

11
=42n+a+1)2n + a +2) (P + ?) Jontat1(T)Jontar1(y)

1 1
—2(27’L + o+ 2) <§J2n+a(y)<]2n+a+l($) + EJ2n+a(x)J2n+a+1(y)>

—2J2n+a41 (%) Jonta+1(y).
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Using again (5.33) for the middle term, we get
Jon+a+1(2) Janrat3(y) + Jantat1(y) S2ntats(@)
=42n+a+1)(2n + a+2) (% + %) Jontat1() Jontat1(y)

(2n+a+2)
2n+ «

+ (J2n+a+1 (a;) + J2n+oz—1 (x)) J2n+a+1 (y))

_2J2n+oc+l(x)t]2n+a+l(y)'
Next, since jf(Lac) () =+/2(2n + a+ 1)‘]2”%;1(696), one obtains
G @) ) + QW) (@)

4 1 1 .
=3V ta+ D)@ +a+3)(2n+a+2) <—2 + —2> 3 (2)35) ()

-2 ((J2k+a+1(y) + Joktra—1(¥)) Jontat1(z)

Cn+a+2) 2n4+a+3/ () (@) (@) (@)
o ta 2n +a— 1 (Jn—l,c(y)Jnvc (@) + Jp1.0(T) e (y))

2n+a+3 (22n+a+2) (o (@)
. — 1 .
(5.34) /5, T < o T ) Jne () ne (Y)

Now we write

4
yn:0—2\/(2n—|—o¢—|—1)(2n+a+3)(2n—|—a—|—2),

so that |vy,| < n?,

2n+a+2) 2n+a+3 1
2 =2 0< <
2n + « 2n+a—1 + Fny =it
2n+a+3 (22n+a+2) ~ _
2 1) =6 0<
\/2n+a+1< mta > + Fn, = fin

Then, summing (5.34) from n = ng to n = N gives

and

n L.

A

N
@ 1 1 (o (o
QW (x,y) = <; + ?> > il (@) (y)
n=ng

=2+ i) (31 W)@ + 3L ()T ))

N
200 @.w) = 3 i (JL I o) + 2@ )
n=no
2+ ) (NI (@) + @) )
N
~6P () + 6Pag-1(2.y) = > Fadl@)3 ).

n=ng

31
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It follows that
QW (@.y) = Quala,y) +- -+ Quale,y).
Using (5.27) and Lemma 2.3 we get that

HQN72HLP(O,00)—>LP(O,00)’ |’QN76”LP(O,00)—>LP(O,00) S.; 1

and

1/6
”QNAHLP(O,oo)—)LP(OpO) SJ N /
while
N
HQNBHLP(QOO)_)LP(O,OO) N Z Enl/ﬁ N Nl/ﬁ
n=ng
and
N
||QN77||LP(O’OO)_>LP(O7OO) ,S Z —nl/ﬁ S N1/6.

n
n=ng

< N3/4,

—LP(0,00) ~
Concerning Q 1, we will use the following equality, see [BC],

We have seen in Proposition 5.1 that \|QN75HL,,(0 00)

—2. . ‘ 2. -z
& 2]3“[,1’(0700)HJSHLQ(O,OO) + HJSHLP(QOO)H'Z. 2]3“,31(0700) =0(n"3)
from which we deduce that
N
2. -7/3 2/3
1@ Lo (0,00) Lr(0.00) S Z S NP,
n=ng

< N?/3 as claimed. O
LP(0,00)—LP(0,00)

By grouping all estimates, we obtain HQS\?)

5.4. Conclusion. It remains to conclude. 1l conditions of Theorem 2.1 are satisfied. There-
fore, the Hankel prolate spheroidal series converges in LP(0, 00) if and only if the Bessel series
converge. The later ones converge in LP(0,00) if and only if p € (4/3,4). We have thus
proved the following:

Theorem 5.6. Let « > —1/2 and ¢ >0, N > 0.

Let (nglc) Jn>0 be the family of circular prolate spheroidal wave functions. For a smooth
function f on I = (0,00), define

N
v f = > (£ gy 8L

Then, for every p € (1,00), \IJE\?‘) extends to a bounded operator LP(0,00) — LP(0,00). Further

v in L7(0,00)
for every f € BE, if and only if p € (4/3,4).
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