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Adoption dynamics: sequential or synchronous
modelling

Cécile Hardouin

MODAL’X, Universit Paris Nanterre

Abstract: This paper deals with the choice of dynamics in spatial sim-
ulation and modelling. In economical context, N agents choose between two
technological standards according to a local assignment rule. The adoption dy-
namics is sequential if the choices are made one after the other; it is synchronous
or partially synchronous if all or some part of the agents choose simultaneously.
This paper points out differences among the three dynamics, especially in their
evolution and limit configurations.

Key words: standard adoption, sequential dynamics, synchronous dynamics,
partial parallelism, Markov chain, ergodicity.

1 Introduction

In many applications, we are interested in the study of the evolution of a sys-
tem, in space and in time. For instance it may concern competition between
different species in ecology, diffusion of technological innovation involving social
behaviour, particles system in physics, fluid spread model, disease propagation,
image sequences. Some models are deterministic such as cellular automata ([5]),
differential equations for instance, while others are based on a stochastic frame-
work, like Gibbs dynamics, probabilistic automata , or particle systems.

Our framework is standard’s adoption but the results may apply to other
applications where the entourage plays a major role in one’s decision mak-
ing process (see for instance [2], [3]). We consider a finite set of sites S =
{1, 2, · · · , N}. Each site i is associated to an agent who makes a choice Xi in
a state space E. The state space E can be finite or not. In all the following,
we will assume for simplicity E = {−1,+1}, which is associated to a choice
between two competitive technologies (see for instance [1]). When this choice
Xi depends of the local context, we say that there is spatial coordination, the
spatial dependency being positive if there is cooperation between the agents,
and negative in case of competition. Guyon and Hardouin proposed in [10]
tests for spatial coordination allowing to distinguish between “independent”
and influenced choices. We consider in this work probabilistic assignment rules
depending on the neighbourhood, and compare different adoption dynamics:
sequential, synchronous or partially synchronous. We do not provide new the-
oretical results but we gather and clarify some results, hoping to shed light on
different modellings, offering information tools about the ins and outs. Indeed,
the Gibbs sampler theory is well known, synchronous parallelism a little bit
less, and partial parallelism is not much investigated in the literature, though
the three dynamics are considered in standard’s adoption. The main result gives
the limit behaviour of these dynamics; first, whatever the dynamics, sequential,
synchronous or partially synchronous, it is ergodic; the proof involves standard
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Markov chains properties; Second, we show that the limit distribution differs
with the dynamics; consequences are important, directly linked with the choice
of the model for standards adoption or other economic application; one has to
figure out that this primary choice will lead to different economic situations.
The invariant distribution is the generating distribution for the sequential dy-
namics, but it remains generally unknown for the other dynamics. However, its
characterization is possible for the synchronous dynamics in the particular case
of the Ising model; and we can apply some simulated annealing properties to
the partially synchronous dynamics.

A scan or a sweep of S is a tour of all the sites. When the scans are sequential
and indefinitely repeated, the agents make their decision one by one; then we get
the well known Gibbs sampler and it is possible to characterize the probability
distribution of the limit configuration. When the dynamics is synchronous, all
the agents make their decision simultaneously, there is still ergodicity but it is
difficult to explicit the limit distribution (See [8] for a full description). Finally,
partial synchronous dynamics run step by step, a significant part of the changes
happening simultaneously at each step.

Our purpose is not to discuss about the choice of the dynamics; this depends
only on the economic situation to be modeled. We just want to point out that,
for a same local assignment rule, the configurations of the systems can differ
widely according to a synchronous or sequential course.

In section 2, we briefly describe the difference between deterministic and
probabilistic assignment rules, through standard examples. Then we present
the sequential, synchronous and partially synchronous dynamics in section 3,
followed by their ergodic properties in section 4. Some illustrating examples are
given in section 5.

2 Assignment rules

Let us specify the model and give some notations. S is equipped with a symmet-
ric graph G and 〈i, j〉 denotes a pair of neighbouring sites i and j. If A is a subset
of S, we denote ∂A = {i ∈ S, i /∈ A and ∃j ∈ A s.t. i and j are neighbouring
sites} the neighbourhood of A, and ∂i = ∂{i}. Let us note x = (x1, x2, · · · , xN )
a realization of X = (X1, X2, · · · , XN ) in Ω = ES ; for a subset A ⊂ S, xA (resp.
xA) is the configuration x on A (resp. outside of A), and xi = x{i}. Finally, |A|
denotes the cardinal number of A.

The agent i makes his choice according to a local assignment rule πi(. | x∂i)
depending on x∂i. We give below two commonly used examples of deterministic
and probabilistic rules.

Example 1 Deterministic Majority choice
Let S = {1, 2, ..., n}2 be a square lattice of size n × n, with the 4 nearest

neighbours system. The agent i chooses the state +1 (resp. −1) if +1 (resp.
−1) is majority among his neighbours, and makes a choice at random in case
of equality. If we add the assumption that the agent also takes into account his
own advice, or private information, then there is always a majority state among
the 5 sites of ∂i∪{i} and the rule is deterministic; the system is a kind of cellular
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automata ([6]). For those two rules, general consensus (same state everywhere)
is an absorbing state. That means that if the number of scans is large, one of
the technological standards will emerge and dominate, ending unique. The only
point is to know which one of the standards will disappear, and the necessary
number of scans to determine the winner. The answer depends on the rule, that
is the kind of majority, and on the initial rates of the two standards.

Example 2 Probabilistic Ising rule
Let us consider an Ising type model; the Ising model was introduced by

physicists in ferromagnetism to represent spins configurations. It is frequently
used for standards’ adoption or voter models (see for instance [7]). We note
Ni(x) = N(x∂i) =

∑
j∈∂i xj ; then agent i chooses state +1 with probability:

πi(xi | x∂i) =
expxi(α+ βNi(x))

exp(α+ βNi(x)) + exp−(α+ βNi(x))
. (1)

This probability is nothing but the conditional distribution probability of a
Gibbs field on Ω with a joint distribution given by:

π(x) = Z−1 exp{α
∑
i∈S

xi + β
∑
〈i,j〉

xixj} (2)

The normalization constant Z of the joint distribution, which is often com-
putationally intractable, does not occur in the expression of conditional local
distributions (1); that’s the reason why we work with these ones.

In this example, the choice of the agent depends on two parameters α and
β setting the marginal distributions and spatial correlation.The parameter α
is a measure of the global frequency of +1 and −1; α > 0 strengthens states
+1 while α < 0 increases the number of states −1, and α = 0 balances the
two standards. The parameter β (the inverse temperature) determines the re-
semblance or dissimilarity between neighbouring sites. There is cooperation
between neighbouring sites if β > 0, while β < 0 ensures competition. If β = 0,
the assignment is independent of the neighbourhood.

If we set α = 0 and β > 0, β rather large, the rule meets the previous ma-
jority choice. Then, a deterministic rule can be approximated by a probabilistic
rule.

In all the following, we consider the case of a probabilistic rule in terms of
conditional distributions; this implies to define properly the underlying model.
Let us consider the general positive distribution π on the configuration set Ω:

π = {π(x), x ∈ Ω}, with π(x) > 0 for all x and
∑
Ω

π(x) = 1 (3)

The positivity condition allows us to define, for all A and xA, the conditional
probabilities πA(. | xA), particularly the conditional distributions {πi(. | xi), i ∈
S}. When πA(. | xA) depends only on x∂A, π refers to a Markov random field,
as in the example above (2) (see for instance [9]).
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3 Sequential, synchronous dynamics

Let us describe the three dynamics involved in standards adoption. We start
with an initial state denoted x = (x1, x2, · · · , xN ) which represents the initial
standards adopted by agents 1, ..., N . Then, one agent (sequential dynamics), or
all agents (synchronous dynamics), or some of the agents (partially synchronous
dynamics) choose a new standard, each agent i making his choice according to
a local probabilistic rule πi(xi | x∂i).

The sequential dynamics
A sequential dynamics is defined by a sequence of scans of the set of sites

S. For instance, we browse the sites 1 to N , sequentially, in this order.
◦ step 1: the initial state is x = (x1, x2, · · · , xN ).
◦ step 2: we browse the sites 1 to N ; first, agent 1 turns from x1 to y1

according to π1(y1 | x2, · · · , xN ); then agent 2 turns from x2 to y2 according
to π2(y2 | y1, x3, · · · , xN ); and so on; at the k-th site, agents 1 to k − 1 have
made a choice and their state is (y1, y2, ..., yk−1) while agents k + 1 to N are
still in the state (xk+1, ..., xN ); we (uniquely) relax (modify) the k-th value
according to the local conditional assignment rule, and conditionally to the
previous configuration;

xk 7→ yk according to πk(yk | y1, y2, · · · , yk−1, xk+1, · · · , xN ).

◦ step 3: we come back to step 1 with the new initial state y = (y1, y2, · · · , yN ).
Then a scan of S changes the configuration x to the new one y = (y1, y2, · · · , yN )

in N steps.
Some variants are possible:

1. the route to visit all sites can be different from one scan to the other;

2. an individual site can be visited several times during the scan, the impor-
tant point being to visit all sites;

3. the order of the visits can be chosen at random;

4. the release can also be done by groups of sites, one group followed by
another one, with S being the union of the groups, and each group evolving
internally sequentially.

As we will see, all those sequential procedures are asymptotically equivalent,
leading to the same stationary distribution ([8], [9]).

The synchronous dynamics
Synchronous dynamics is also called total parallelism; in fact, all the sites

are relaxed simultaneously and a scan of S is realized in 1 step.
◦ step 1 : the initial state is x = (x1, x2, · · · , xN ).
◦ step 2: we release simultaneously all the states, getting x to y = (y1, y2, · · · , yN )

with the simultaneous rule on each site k,

xk 7→ yk according to πk(yk | xk) = πk(yk | x1, x2, · · · , xk−1, xk+1, · · · , xN ), k ∈ S.

◦ step 3 : we come back to step 1 with the new initial state y.
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Partial parallelism. Between sequential and synchronous dynamics, we
can define partially synchronous dynamics where M of the N agents choose
simultaneously.

Let M be an integer, 1 ≤M ≤ N .
◦ step 1 : the initial state is x = (x1, x2, · · · , xN ).
◦ step 2: we choose a subset A of S with M elements (|A| = M) and we

simultaneously modify the values of the sites in A, while the other sites remain
unchanged, getting x = (xA, x

A) to y = (yA, x
A) with the simultaneous rule on

each site of A,

xk 7→ yk according to πk(yk | xk) = πk(yk | x1, x2, · · · , xk−1, xk+1, · · · , xN ), k ∈ A,
xk 7→ xk, k /∈ A.

◦ step 3 : we come back to step 1 with the new initial state y = (yA, x
A).

The ratio τ = M
N is called the parallelism rate; M = 1 corresponds to

the sequential dynamics, while M = N defines the synchronous one. Let us
precise that iterating the dynamics, we choose a new subset A at each step 2.
This hybrid dynamics depends on the way of choosing A. It can be chosen at
random, for instance with a uniform distribution giving the same weight to the(
N
M

)
subsets of S with M elements, or not, for instance we fix a covering of S

with subsets of cardinal M .
More generally, we can consider several rates of active sites; let A1, ..., An

be some subsets of S such that ∪iAi = S; at each step, we choose a subset Ai
of S with probability γ(Ai) > 0 and we update the sites of Ai.

We distinguish a particular case of partial parallelism; let us assume that
there is a neighbourhood graph on S; a coding subset C is a subset of S such
that any two sites of C are not neighbours with respect to this graph. Then,
let us consider a partition of coding subsets {C1, C2, ...CK} of S; if we run
the previous partial algorithm with these coding subsets, then it meets the
sequential dynamics.

4 Ergodicity

4.1 General results

Let us consider the same generating distribution π for each dynamics; we as-
sume that, for each dynamics, we repeat the scans a large number of times;
the following result shows that the final configurations differ from each other;
specifically, in the case of sequential dynamics, the generating distribution π
is stationary, whereas it is not the case for other dynamics. It underlines the
importance of the kind of dynamics when choosing such an agent-based model.
The result is obtained writing the dynamics in terms of Markov chains.

Let us note σk the k−th scan, x = X(k) = (X1(k), X2(k), · · · , XN (k)) and
y = X(k + 1) the configurations before and after the kth scan; let us write
P = (P (x, y))x,y∈Ω, the dynamics’ transition matrix for the scan σk defined by:

Pσk
(x, y) = P (X(k + 1) = y | X(k) = x), x, y ∈ Ω

The following properties hold for X = (X(k), k ≥ 0), the evolution of these
configurations.
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Proposition 1 Let X = (X(k), k ≥ 0) be the dynamics generated by probability
π.

(1) X is an ergodic Markov chain on Ω.
(2) For a sequential dynamics, the invariant distribution is π.
(3) For a synchronous dynamics, the invariant distribution is ν, and ν differs

from π.
(4) For a partially synchronous dynamics with M ≥ 2, τ = M

N , the invariant
distribution is λτ , and λτ differs from π.

We give hereafter the main lines of the proof and refer the reader for instance
to [4] or [11], [16] for general results on Markov chains. We complete the results
with properties on the limit distributions characterization.

4.2 Sequential dynamics

The transition is for one scan

Pσ(x, y) =

N∏
i=1

πi(yi | y1, y2, · · · , yi−1, xi+1, · · · , xN ),

and Pσ(x, y) > 0 for every x, y. If we have different ways of scanning, we
note Pk = Pσk

and µ the distribution of X(0); X is an inhomogeneous chain
([4]) and the distribution of X(k) is

X(k) ∼ µP1P2P3 · · ·Pk.

On the other hand, if the scanning order is always the same, σk ≡ σ for
all k ≥ 1, the chain is homogeneous with transition probabilities P = Pσ, and
X(k) ∼ µP k.

It is easy to see that π is invariant for each Pσ which is strictly positive;
therefore π is the stationary distribution. For instance in the homogeneous
case, we write

∀x ∈ Ω, P k(x, y) −→
k→∞

π(y).

Hence, if we repeat the scans a large number of times, the “final” layout of the
standards depends on π and its parameters.

Application: this result enables one to simulate any law π; it suffices to use
it as generating distribution in the sequential dynamics.This procedure is the
well-known Gibbs sampler ([16]).

4.3 Synchronous dynamics

4.3.1 The general case

Let us write the transition

Q(x, y) =

N∏
i=1

πi(yi | x1, x2, · · · , xi−1, xi+1, · · · , xN ) =

N∏
i=1

πi(yi | xi) > 0.
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Again, this expression is strictly positive for every x, y, which ensures the er-
godicity of the dynamics:

∀x ∈ Ω, Qk(x, y) −→
k→∞

ν(y)

But the stationary distribution ν is different from π (the generating distribution
which is also the invariant distribution for the sequential case), and moreover
in most cases, not explicit. Indeed, π is no more invariant for Q.

ν verifies νQ = ν; then ν is a left eigenvector associated to Q and the
eigenvalue 1. The search of this eigenvector is difficult because of the high
dimension of the matrix Q (originated by the large cardinal number of Ω) while
in the sequential case, this search of the eigenvector is trivially solved since
πP = π.

However, if the πi are the conditional distributions of the nearest neighbours
Ising model, it is possible to write ν; we detail this in the following example.

4.3.2 The Ising model

We consider the torus S = {1, 2, · · · , n}2, n being even, equipped with the 4
nearest neighbours system. The generating distribution π is the trimmed Gibbs
law (1) :

πi(xi | x∂i) =
expxi(α+ βNi(x))

2 cosh(α+ βNi(x))
,

with Ni(x) =
∑

j:|i−j|=1

xj .

Then the transition for one synchronous scan is

Q(x, y) =
∏
i∈S

exp yi(α+ βNi(x)

2 cosh(α+ βNi(x))

One can show that the invariant distribution ν for the transition Q is

ν(x) = Γ−1 exp{α
∑
i∈S

xi}
∏
i∈S

cosh(α+ βNi(x))

where Γ is a normalization constant.
Indeed, let’s write

ν(x)Q(x, y) = Γ−1 exp{α
∑
i∈S

xi} exp{α
∑
i∈S

yi}
∏
i∈S

expβyiNi(x) ;

since for instance for i = (s, t),
∑
ys,t(xs−1,t + xs+1,t) =

∑
xs,t(ys−1,t +

ys+1,t), the previous equality is also

ν(x)Q(x, y) = Γ−1 exp{α
∑
i∈S

xi} exp{α
∑
i∈S

yi}
∏
i∈S

expβxiNi(y),

that is ν(x)Q(x, y) = ν(y)Q(y, x). The transition matrix Q is then ν−reversible,
which implies that ν is Q−invariant;

From this explicit expression for ν, let us underline two important differences
between the sequential and synchronous dynamics:
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(i) We have seen that the πi are the conditional distribution probability of
a Gibbs field on Ω with a joint distribution given by

π(x) = Z−1 exp{
∑
i∈S

αxi + β
∑
i∈S

∑
j:|i−j|=1

xixj}.

From this form, we see that π is a Markov distribution and the cliques of the
associated neighbourhood graph (the four nearest neighbours) are of order 1
and 2, made up with singletons and pairs of sites at distance 1, which are of
two types, horizontal or vertical.

Similarly, we write

ν(x) = Γ−1 exp{
∑
i∈S

αxi +
∑
i∈S

log{cosh(α+ β
∑

j:|i−j|=1

xj)}}.

Then ν characterizes a Markov field, like π. But the neighbourhood system is
quite different: the cliques are the singletons and the four nearest neighbours
for π, while they are the singletons and the squares of sites at distance

√
2 for

ν.

(ii) Let us denote S+ the subset of sites i = (u, v) with u+v even (the black
fields on a chequer board), S− the complementary subset (the white fields), and
x+ (resp. x−) the configuration on S+ (resp. S−).

We define

ν+(x+) = Γ−
1
2 exp{a

∑
i∈S+

x+
i }

∏
i∈S−

cosh(a+ bNi(x
+)), and

ν−(x−) = Γ−
1
2 exp{a

∑
i∈S−

x−i }
∏
i∈S+

cosh(a+ bNi(x
−)).

We have ν(x) = ν+(x+)ν−(x−): contrary to the sequential dynamics, the
synchronous evolutions on S+ and S− are independent from each other.

Figures 1 and 2 in section 5 illustrate the difference between these dynamics.

4.4 Partially synchronous dynamics

Let us denote R the transition matrix of this dynamics. We also denote 1 the
indicator function.

4.4.1 The general case

We choose the subset A at random, for instance uniformly in the set of the
subsets of cardinal number M (with τ = M

N ). Therefore,

R(x, y) =
(
N
M

)−1 ∑
A⊂S:|A|=M

{
1(xA = yA)

∏
k∈A

πk(yk | xA)

}
.

This transition is positive for every x, y. Hence the partially synchronous dy-
namics is ergodic, with the stationary distribution λτ ,

∀x ∈ Ω, Rk(x, y)
k→∞−→ λτ (y).
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If M ≥ 2, we verify that π is not invariant for R, and then λτ 6= π.

Again, λτ is not explicit but we some properties established for simulated
annealing apply.

Proposition 2 ([15] Theorem 2.7 and [14])
(i) If the parallelism rate tends to zero, and for a fix value of the interaction

parameter β > 0, we get a continuity property with

lim
τ→0

λτ = π . (4)

(ii) On the other hand, if the interaction parameter β tends to infinity, and
for a fix value of the parallelism rate τ, 0 < τ < 1, we get a limit distribution
that does not depend anymore on the parallelism rate:

lim
β→+∞

λτ (β) = λτ (∞) = λ(∞) if 0 < τ < 1 (5)

This is no more true for τ = 1. Therefore we can have discontinuity for large
β.

These properties are illustrated by Figure 4 in the next section.

More generally, let us consider A1, ..., An some subsets of S; at each step,
we choose a subset Ai of S with probability γ(Ai) > 0 and we update the sites
of Ai; the parallelism rate is no longer fixed but determined by γ; the dynamics
is ergodic with limit distribution λγ if and only if ∪iAi = S ([13]).

4.4.2 The coding case

Let us assume that π has a Markov property with respect to a neighbourhood
graph. A subset C of S is called a coding subset if for all i, j of C, i 6= j, i
and j are not neighbours for the markovian structure. Let {C1, C2, ...CK} be a
partition of coding subsets of S; at each step we choose a coding subset Ck of
S and we update its |Ck| sites. We define for k = 1, ...,K,

RCk
(x, y) = 1(xCk = yCk)

∏
s∈Ck

πs(y
Ck
s | x).

Then the transition matrix is R(x, y) = RC1 ...RCK
(x, y); but for each k and

each Ck = {s1, ...s|Ck|} there is no interaction between the sites of Ck that all
simultaneously change, and all conditional probabilities πs(ys | xCk) = πs(ys |
x∂s), s ∈ Ck, depend only of the values of Ck; this leads to write RCk

(x, y) =
πs1(ys1 | x∂s1)πs2(ys2 | x∂s2)...πs|Ck|

(ys|Ck|
| x∂s|Ck|

); finally R coincides with
the transition probability P for a sequential sweep of S.

As for a simple example, consider the square lattice for S with the four
nearest neighbours system, C is the subset of the “black” nodes, and C is the
white ones. Obviously, C and C̄ are coding subsets and S = C ∪ C; changing
simultaneously the black sites then the white ones leads to the same result as
changing all the sites one by one.
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5 Some illustrating examples

We propose a simulation experiment to illustrate the differences of the previous
dynamics. As for the generating distribution we consider the Ising model defined
in the previous section with the four or eight nearest neighbours system, with
conditional distributions

πi(xi | x∂i) =
expxi(α+ βVi(x) + γWi(x))

2 cosh(a+ βVi(x) + γWi(x))

where Vi(x) is the sum of the four nearest neighbours (at distance 1) of site i
and Wi(x) is the sum of the four diagonal neighbours (at distance

√
2) of site

i.If γ = 0, then we come back to the four nearest neighbours. We will consider
α = 0, that is +1 and -1 occur with the same probability.

We initialize at random and for one initialization we simulate the three dy-
namics described above: the sequential, synchronous and partially synchronous
dynamics. Each simulation of the sequential and synchronous dynamics is ob-
tained running 600 scans on a square toric lattice of size 64 × 64. Of course,
similar results occur for non toric lattices but we avoid here some disturbances
which may be caused by edge effects.

In the case of partial parallelism, we iterate the scans until each site has been
visited at least 600 times. We also compute the empirical spatial correlation ρ̂1

at distance 1 (based on the four nearest neighbours) and ρ̂8 based on the eight
nearest neighbours.

The parameters are β and γ, and the parallelism rate τ. First we present
below some examples of realizations obtained from the same generating distri-
bution π with the three algorithms, for different values of β and γ (the paral-
lelism rate is fixed to τ = 50%). Figure 1 present resulting configurations which
strongly visually differ, illustrating Proposition 1 (π 6= ν 6= λ0.5). We get hori-
zontal stripes for the sequential algorithm; we still meet these stripes together
with vertical ones in the partially synchronous case; but the totally synchronous
layout is completely different and features a chessboard.

Fig. 1: Simulations of fields with parameters β = 1, γ = −1 for different dynamics
Sequential, τ = 0 Partially synchronous τ = 50% Synchronous, τ = 1

sequentiel beta=1 gamma=−1
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mixte beta=1 gamma=−1
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synchrone beta=1 gamma=−1
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ρ̂1 = 0, ρ̂8 = −0.4993 ρ̂1 = 0.0083, ρ̂8 = −0.4624 ρ̂1 = −1, ρ̂8 = 0

On the other hand, for other sets of parameters, we may have similar final
configurations; for instance we present in Figure 2 perfect or nearly chessboard
images for π, ν, and λ0.5 for parameters β = −0.5 and γ = +0.5.
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Fig. 2: Simulations of fields with parameters β = −0.5, γ = 0.5 for different dynamics
Sequential, τ = 0 Partially synchronous τ = 50% Synchronous, τ = 1
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ρ̂1 = −1, ρ̂8 = 0 ρ̂1 = −0.9497, ρ̂8 = −0.0083 ρ̂1 = −0.9497, ρ̂8 = −0.0076

Most often in the context of standards’ adoption, interaction parameters are
positive, agents inclining to imitate their “neighbours”; in this case, we obtain
similar configurations ensuing from the sequential and partially synchronous
dynamics, unlike the synchronous case; Figure 3 illustrates this case with the
set of parameters β = 1, γ = 0; similar phenomena occur for β = γ = 0.5
or β = 0.5, γ = 0, or β = 0.3, γ = 0; in each case, we get similar images
for sequential and partially synchronous dynamics, the clustering being more
or less emphasised with respect to the interaction parameter value; but the
synchronous realization is different. It is not so clear for small values of β; for
instance, Figure 3 (last row) presents realizations issued for β = 0.2, γ = 0;
it seems now that the three configurations visually look like each other; and
the final frequencies of sites +1 are very close, between 49.44% and 50.49%;
however, the empirical correlations highlights the differences and isolates the
synchronous case.
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Fig. 3: Simulations of fields with positive interaction parameters for different dynamics
β = 1, γ = 0
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Then we consider only the partially synchronous dynamics. Coming back
to the previous section, both limit distributions π and ν are known for the
Ising model (sequential and synchronous dynamics), but we can’t characterize
λτ for the partially synchronous dynamics. We repeat hundred times each
simulation and compute the mean of the empirical correlations ρ̂1 and ρ̂8 We
draw the evolution of those two correlations when τ increases from 0 to 1 by
steps of 5%. We know from property (5) that if β tends to infinity, the stationary
distribution doesn’t depend of τ, 0 < τ < 1; in practice, this means that we
should observe some constancy for large values of β; in fact, we observe that the
correlations are constant from 5% to 95% in the cases β > 0 (β ≥ 0.5 is large
enough) and γ = 0, but also if β < 0 (β ≤ −0.5) and γ = 0. In both cases we
observe constancy or a light gap between the sequential dynamics with τ = 0
and the partial dynamics with τ = 5%, which illustrates property (4); most of
all, we observe discontinuity between τ = 0.95 and τ = 1, as foreseen again
by (5). The same thing occurs if we permute parameters β and γ (for instance
β = 0, γ = 1 or β = 0, γ = −1), see Figure 4.
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Fig. 4: Correlations ρ̂1 − ∗− and ρ̂8 − o−
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Finally, if the parameters have different signs, we observe different behaviours;
property (5) doesn’t hold anymore. We observe constant correlations in the case
β = −0.5, γ = 0.5; in fact the observed images at different parallelism rates are
all similar to the sequential and synchronous dynamics cases, leading to chess-
board like configurations (see Figure 5). On the other hand, if β > 0, and γ < 0,
the behaviour of the correlations is quite different; the correlations are quite
equal for small parallelism rate and then slowly meet the total synchronous cor-
relations values. It seems there is a threshold rate from which the configurations
change, from the correlations point of view (see Figure 5).

Fig. 5: Correlations ρ̂1 − ∗− and ρ̂8 − o−
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In conclusion, our simulations allow us to illustrate the theoretical results;
we have shown that the choice of the dynamics is very important in standards
adoption context, as well as in other application fields. Moreover, we point out
that except in specific examples, the limit ergodic distributions remain unknown
for the synchronous and partially synchronous choices; they coincide or strongly
differ for specific values of the dynamics parameters, as presented in the pre-
vious examples. We may suppose that the partial synchronous case coincides
with the sequential dynamics for positive interaction parameters, whenever the
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parallelism rate remains much less than 1 (less than more or less 90% to 95%
in our simulations).
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